
Miklós and Smith

RESEARCH

Sampling and counting genome rearrangement
scenarios
István Miklós1,2*† and Heather Smith3

*Correspondence:

miklos.istvan@renyi.mta.hu
1MTA Rényi Institute, Reáltanoda

u. 13-15, 1053 Budapest, Hungary

Full list of author information is

available at the end of the article
†Equal contributor

Abstract

Background:
Even for moderate size inputs, there are a tremendous number of optimal

rearrangement scenarios, regardless what the model is and which specific
question is to be answered. Therefore giving one optimal solution might be
misleading and cannot be used for statistical inferring. Statistically well funded
methods are necessary to sample uniformly from the solution space and then a
small number of samples are sufficient for statistical inferring.

Contribution:
In this paper, we give a mini-review about the state-of-the-art of sampling and

counting rearrangement scenarios, focusing on the reversal, DCJ and SCJ
models. Above that, we also give a Gibbs sampler for sampling most
parsimonious labeling of evolutionary trees under the SCJ model. The method
has been implemented and tested on real life data. The software package
together with example data can be downloaded from
http://www.renyi.hu/~miklosi/SCJ-Gibbs/

Keywords: Genome rearrangement; computational complexity; Gibbs sampling;
Single Cut or Join

1 Introduction
The minimum number of mutations necessary to transform one genome into an-

other is only one of the statistics that describe the evolutionary relationship between

genomes. By definition, this number is constant for any most parsimonious rear-

rangement scenario. On the other hand, other statistics like the breakpoint reuse

[3, 5], sizes and positions of inversions [1, 9] vary among the possible solutions,

and drawing these values from a single optimal solution might be statistically bi-

ased. Instead of highlighting one most parsimonious solution, we are interested in

expectations of the above mentioned statistics, for example, what is the expected

usage of a particular breakpoint, what is the expected (average) size of reversals.

Statistical samples are needed for hypothesis testing, too, like testing the Random

Breakpoint Model [3, 5] or the hypothesis that there is selection for maintaining

balanced replichors [9].

The final goal is to sample rearrangement scenarios from a statistically well-funded

distribution, for example, from some Bayesian distribution. Some efforts have been

made to develop Monte Carlo methods to sample from such distributions [10, 20, 26].

The theoretical study of the computational efficiency of the Monte Carlo methods

is in its childhood, and the first attempts use simplifications. A possible simplifi-

cation is to restrict the distribution only for the most parsimonious solutions. This

mailto:miklos.istvan@renyi.mta.hu
http://www.renyi.hu/~miklosi/SCJ-Gibbs/

Miklós and Smith Page 2 of 21

restricted distribution will be the uniform one when the rearrangement model is the

reversal model [24] and will be close to the uniform distribution in case of the DCJ

and SCJ models [29]. It is well known that sampling from a distribution close to

the uniform distribution and sampling from the uniform distribution have similar

computational complexity, since importance sampling or rejection sampling can be

used to transform one of the problems into the another [21]. Therefore studying the

computational complexity of sampling from the uniform distribution is theoretically

well-funded even for the DCJ and SCJ models.

The general theory of the computational complexity of counting combinatorial

objects as well as sampling from the uniform distribution of them has been devel-

oped since the late seventies and eighties [38, 18]. In this paper, we give an overview

of what we know about sampling and counting genome rearrangement scenarios,

what are the proved theorems and what are the conjectures and open questions.

Above that, we give a Gibbs sampler for sampling uniformly the most parsimo-

nious labeling of internal nodes of a rooted binary tree under the SCJ model. This

sampling problem has an unknown computational complexity, and as a first step

towards resolving its computational complexity, we prove the irreducibility of the

Gibbs sampler. The method has been tested on real life data.

2 Preliminaries
2.1 Complexity classes

Below we review the complexity classes needed in this paper together with the im-

portant main theorems. First we start with the decision problems since the count-

ing problems are defined via them and also main theorems on counting complexity

classes which use these decision complexity classes.

Definition 1 A decision problem is in P if a deterministic Turing machine can

solve it in polynomial time.

Definition 2 A decision problem is in NP if a non-deterministic Turing machine

can solve it in polynomial time. An equivalent definition is that a witness proving

the “yes” answer to the question can be verified in polynomial time.

Definition 3 A decision problem is in NP− complete if it is in NP and any

problem in NP is polynomial reducible to it.

Definition 4 A decision problem is in RP if a random algorithm exists with the

following properties: a) the running time is deterministic and grows polynomially

with the size of the input, b) if the true answer is “no,” then the algorithm answers

“no” with probability 1, c) if the true answer is “yes,” then it answers “yes” with

probability at least 1/2.

We know that P ⊆ RP ⊆ NP. In this paper, we will assume that RP 6= NP and

thus P 6= NP.

Now we turn to define counting problems.

Miklós and Smith Page 3 of 21

Definition 5 A counting problem is in #P if it asks for the number of witnesses

of an NP problem.

Definition 6 A counting problem in #P is in FP if it can be solved in polynomial

time.

Definition 7 A counting problem in #P is in #P− complete if any problem in

#P can be reduced to it by a polynomial time counting reduction.

Hard decision problems cannot be counted easily. Although if a decision prob-

lem X is in NP− complete, it does not necessarily imply that the corresponding

counting problem #X is in #P− complete, however, it is easy to see if #X was in

FP that would immediately imply that P = NP. If a decision problem is easy, the

corresponding counting problem might still be hard. In his seminal paper in which

the #P complexity class has been defined, Valiant proved that counting the number

of perfect matchings in a bipartite graph is #P− complete, although finding one

perfect matching is easy [38].

Counting problems also have random approximation algorithms. The two main

complexity classes are the following.

Definition 8 A counting problem in #P is in FPRAS (Fully Polynomial Ran-

domized Approximation Scheme) if there exists a randomized algorithm such that

for any instance x, and ε, δ > 0, it generates an approximation f̂ for the solution

f , satisfying

P

(
f

1 + ε
≤ f̂ ≤ f(1 + ε)

)
≥ 1− δ, (1)

and the algorithm has a running time bounded by a polynomial of |x|, 1/ε, − log(δ).

Such an algorithm is also called an FPRAS algorithm and we will also say equiva-

lenty that the problem has an FPRAS approximation.

Definition 9 A counting problem in #P is in FPAUS (Fully Polynomial Almost

Uniform Sampler) if there exists a randomized algorithm such that, for any in-

stance x and ε > 0, it generates a random element of the solution space following a

distribution p satisfying

dTV (U, p) ≤ ε (2)

where U is the uniform distribution over the solution space, and the algorithm has

a time complexity bounded by a polynomial of |x|, and − log(ε). Such an algorithm

is also called FPAUS and we will also say that a problem has an FPAUS.

The two counting classes have a strong correspondence. Jerrum, Valiant and Vazi-

rani proved that any counting problem belonging to a large class of counting prob-

lems is in FPRAS if and only if it is in FPAUS [18]. The proof is constructive, so

given one of the algorithms, the other one can be explicitly constructed. This large

Miklós and Smith Page 4 of 21

class is called self-reducible counting problems. Here we skip the formal definition.

Informally, a self-reducible counting problem is such that the extension of any pre-

fix of a partial solution is the solution of another problem instance (and other mild

technical conditions are necessary, the exact definition can be found in [18]). For

example, any genome rearrangement problem asking for most parsimonious genome

rearrangement scenarios are self-reducible counting problems. Indeed, assume that

a genome G1 has started transforming into G2 in a most parsimonious way. If a

few transformations tr are applied on G1, then the possible finishing of this partial

scenario are the most parsimonious rearrangement scenarios between G1 ∗ tr and

G2, where G1 ∗ tr denotes the genome we get by applying the transformations tr on

G1. For self-reducible counting problems, FPRAS algorithms are frequently given

via FPAUS, and FPAUS is given via rapidly mixing Markov chains. We skip the

definition of rapidly mixing Markov chains. Roughly speaking, a Markov chain is

rapidly mixing if it can be used for an FPAUS algorithm.

It is hard to count, even approximately, the number of witnesses of a hard decision

problem. It is easy to see that an FPRAS algorithm for a #X counting problem

whose corresponding decision problem X is in NP− complete would imply that

RP = NP [17].

Even easy decision problems might be hard to count approximately. Jerrum,

Valiant and Vazirani proved that an FPRAS algorithm for counting the number

of cycles in a directed graph would imply that RP = NP [18].

On the other hand, there are #P− complete problems that have FPRAS approx-

imations. An example for this is counting the number of total orderings of partially

ordered sets, which has an FPAUS algorithm via a rapidly mixing Markov chain

[19] and thus, the problem is also in FPRAS since it is self-reducible. On the other

hand, it is #P− complete [7].

To summarize, hard decision problems are hard to count both exactly and ap-

proximately (assuming that P 6= NP and RP 6= NP). The corresponding counting

problem of an easy decision problem might be i) easy (in FP), ii) hard to exactly

count (#P− complete) but have a good stochastic approximation (FPRAS) or iii)

hard to count even approximately (not in FPRAS assuming that RP 6= NP). Al-

though no strict trichotomy exists, the majority of the counting problems fall into

these three categories just like the majority of the decision problems are either in

P or in NP− complete.

2.2 Genome Rearrangement models

Here we consider 3 genome rearrangement models: the reversal, the DCJ and the

SCJ model.

2.2.1 The reversal model

In the reversal model, genomes are represented as signed permutations. Each num-

ber represents a synteny block in a linear, unichromosomal genome. A reversal

flips a consecutive part of the permutation, it reverses the order of the number

and changes all signs. For example, a reversal from +3 till +5 on permutation

(+2 +3 −1 −4 +6 +5 −8 +7) creates permutation (+2 −5 −6 +4 +1 −3 −8 +7).

Polynomial running time algorithms exist to calculate the minimum number of re-

versals transforming a signed permutation into another [15, 36, 35]. Such series of

reversals are called most parsimonious reversal scenarios.

Miklós and Smith Page 5 of 21

2.2.2 The DCJ model

In the Double Cut and Join model, genomes are edge-labeled directed graphs, each

label is unique, and each vertex has a total degree (sum of incoming and outgoing

edges) either 1 or 2. Such graphs can be uniquely decomposed into paths and cycles.

Degree 2 vertices are called adjacencies, degree 1 vertices are called telomeres. Each

edge represents a synteny block, thus in this model, genomes are mixed multichro-

mosomal genomes, namely, the chromosomes may be both linear and circular. The

ends of the edges are called extremities. Since the edges are directed, the two ends

are distinguishable. A Double Cut and Join operation takes at most two vertices

and shuffles them into at most two new vertices meanwhile keeping the labels of

the edges. Finding a shortest DCJ scenario transforming a genome into another can

also be done in polynomial time [4].

2.2.3 The SCJ model

In the Single Cut or Join model, genomes are modeled exactly in the same way as in

the DCJ model. A Single Cut or Join operation either takes an adjacency and cuts it

into two parts or takes two telomeres and joins them into an adjacency. In the SCJ

model, the simplified representation of the genomes, which is the list of adjacencies

that the genome has, is useful. Given a set of common synteny blocks a set of

genomes share, each genome can be uniquely represented by its list of adjacencies.

With n common synteny blocks,
(
2n
2

)
possible adjacencies can be considered, which

have 2(2n
2) possible subsets. However, not all these subsets represent a genome. We

say that two adjacencies are in conflict if they share an extremity. It is easy to see

that conflict-free sets of adjacencies are exactly the sets of adjacencies that represent

genomes [13]. Finding a shortest SCJ scenario is also an easy computational task

[13].

3 State-of-the-art of sampling and counting genome
rearrangement scenarios

We consider the reversal (REV), DCJ and SCJ models in this section. For each

model, five specific questions are considered:

• Pairwise rearrangement problem Given two genomes,G1 andG2, and one

of the rearrangement models, M , how many most parsimonious rearrangement

scenarios exist that transform G1 into G2? We will denote this number by

nM (G1, G2) and the counting problem to estimate this number by #M, where

M ∈ {REV, DCJ, SCJ}.
• Most parsimonious median problem Given a series of genomes, G1,

G2 . . . Gk, and one of the rearrangement models, M , how many genomes Gm

exist that minimize
∑k
i=1 dM (Gi, Gm), where dM (G,G′) denotes the mini-

mum number of operations needed to transform G into G′ under the model

M . We will call each Gm an optimal median. This set will be denoted by

OM (G1, G2, . . . Gk).

• Most parsimonious median scenarios Given a series of genomes, G1,

G2 . . . Gk, and one of the rearrangement models, M , how many optimal me-

dian scenarios exist. That is, count for all optimal medians the number of

Miklós and Smith Page 6 of 21

Reversal DCJ SCJ

Pairwise
rearrangement

C: #P-complete
C: in FPRAS

C: #P-complete
T: in FPRAS [30]

T: in FP [31]

Median T: not in FP‡

T: not in FPRAS‡
T: not in FP‡

T: not in FPRAS‡
T: in FP?

Median
scenario

T: not in FP‡

T: not in FPRAS‡
T: not in FP‡

T: not in FPRAS‡
T: #P-complete[28]
U: in/not in FPRAS

Tree labeling T: not in FP‡

T: not in FPRAS‡
T: not in FP‡

T: not in FPRAS‡
U: FP/#P-complete
U: in/not in FPRAS

Tree
scenario

T: not in FP‡

T: not in FPRAS‡
T: not in FP‡

T: not in FPRAS‡
T: #P-complete[28]
T: not in FPRAS [31]

Table 1 The computational complexity of five specific counting problems under three different
rearrangement models as described in details in the text. Notations: T: theorem, C: conjecture, U:
unknown complexity, and there is no evidence to set up a conjecture favoring one of the
possibilities. All theorems are referenced except: ‡: based on the fact that the corresponding
optimization problem is NP-hard, ?: proved in this paper. In all cases, “not in FP” should be
considered under the assumption that P 6= NP. Similarly, “not in FPRAS” should be considered
under the assumption that RP 6= NP.

possible rearrangement scenarios. With a formula, we are looking for

∑
Gm∈OM (G1,G2,...Gk)

k∏
i=1

nM (Gi, Gm).

• Most parsimonious labeling of evolutionary trees Given one of the

rearrangement models, M , a rooted binary tree, T (V,E), where V is the

disjoint union of leaves L and internal nodes I. Furthermore, given a function

f : L→ G that labels the leaves, where G denotes the set of possible genomes.

We are looking for how many functions g : V → G exist such that for any

v ∈ L, g(v) = f(v) and g minimizes∑
(u,v)∈E

dM (g(u), g(v)).

We will denote this set of functions by O′
M (T, f).

• Most parsimonious scenarios on evolutionary trees Given one of the re-

arrangement models, M , a rooted binary tree T (V,E) and a labeling function

f as described above, we are looking for∑
g∈O′

M (T,f)

∏
(u,v)∈E

nM (g(u), g(v)).

For each model, we introduce the state-of-the-art of our knowledge. It is also

summarized in Table 1.

3.1 The reversal model

The reversal model is the computationally most complicated among the three con-

sidered models. Finding one optimal median is NP-hard, therefore even an FPRAS

Miklós and Smith Page 7 of 21

approximation is not possible for counting the optimal medians assuming that RP

6= NP. Similarly, counting the optimal medians is not in FP, assuming that P 6=
NP. It is easy to see that finding an optimal median of three genomes is polynomi-

ally reducible to finding most parsimonious labelings for evolutionary trees. Indeed,

given three genomes G1, G2 and G3, label the leaves of a rooted binary tree with

three leaves with G1, G2 and G3, and any most parsimonious labeling of the inter-

nal nodes will provide an optimal median: the genome labeling the internal node,

which is not the root, is an optimal median. Therefore finding a most parsimonious

labeling of evolutionary trees under the reversal model is also NP-hard, and thus,

counting the solutions does not admit an FPRAS approximation assuming that RP

6= NP and it is not in FP assuming that P 6= NP. Similarly, any most parsimonious

median scenario provides a most parsimonious median, as well as, any most par-

simonious scenario on an evolutionary tree provides a most parsimonious labeling,

therefore these problems are also NP-hard, and the number of solutions does not

have FPRAS approximations assuming that RP 6= NP and not in FP assuming that

P 6= NP.

The only open question is the complexity of #REV, namely, counting the most

parsimonious scenarios between two genomes. No polynomial time algorithm exists

for #REV. Siepel [34] developed a method to count all optimal next steps, namely,

what are the reversals ρ for which

dREV (G1ρ,G2) = dREV (G1, G2)− 1,

but this cannot give a polynomial time algorithm to calculate the number of most

parsimonious sorting scenarios between G1 and G2. Since nobody was able to come

up with a fast counting algorithm in the last 15 years, #REV is conjectured to be

in #P-complete.

Several attempts have been made to develop a rapidly mixing Markov chain con-

verging to the uniform distribution of the most parsimonious scenarios. Such a

Markov chain would provide an FPAUS algorithm, and since #REV is self-reducible,

this would immediately imply that #REV is in FPRAS. Unfortunately, the only

theorem proved here is a negative result: Miklós et al. [27] proved that the most

commonly used window-resampling Markov chain [10, 20, 26] is torpidly mixing.

The high level explanation why the window-resampling Markov chain is torpidly

mixing is the following. There exist (an infinite series of) genomes G1 and G2 hav-

ing large subsets of most parsimonious rearrangement scenarios R1 and R2 such

that for any r1 ∈ R1 and r2 ∈ R2 scenarios it is impossible to transform r1 into r2

by changing only an o(|r1|)[= o(|r2|)] window in each step. With other words, “big

jumps” are necessary to move from R1 to R2. These big jumps happen to have ex-

ponentially small acceptance ratios in the Metropolis-Hastings algorithm for almost

all r1 and r2, making the Markov chain torpidly mixing.

However, this does not imply that #REV is not in FPRAS, since other methods

might lead to rapidly mixing Markov chains. Miklós and Darling [25] and Miklós

and Tannier [29] developed parallel Markov chain methods as candidates for rapidly

mixing Markov chains for #REV. It is still open whether or not these Markov chains

are rapidly mixing.

Miklós and Smith Page 8 of 21

3.2 The DCJ model

Finding an optimal DCJ median is also NP-hard, therefore – similar to the reversal

model – four of the listed problems do not have an FPRAS approximation assuming

that RP 6= NP. On the other hand, Miklós and Tannier [30] proved that #DCJ is

in FPRAS and in FPAUS. They used a Markov chain that walks on subsets of DCJ

scenarios and rapidly converges to the distribution proportional to the size of the

sets. Each set is such that sharp uniform sampling from them is possible in polyno-

mial time. Combining the rapidly mixing Markov chain and uniform sampler from

the sets provides an FPAUS algorithm. Since the #DCJ problem is self-reducible,

it also gives an FPRAS algorithm.

A simpler Markov chain directly converging to the uniform distribution of all

DCJ scenarios is also possible. Braga and Stoye [6] proved that any DCJ scenario

can be obtained from any other DCJ scenario by successive transformations where

each transformation changes only two consecutive DCJ operations. Therefore a

Markov chain that randomly changes two consecutive DCJ operations in a DCJ

scenario explores the entire solution space and, using standard Metropolis-Hastings

techniques [23, 16], it will converge to the uniform distribution. Since this Markov

chain uses small perturbations, it is easy to see that the chain has a small diameter

(O(n2) perturbations is sufficient to get from any DCJ scenario to any other),

this chain is also a candidate for rapid mixing and thus for an FPAUS algorithm.

However, giving a formal proof of rapid mixing of this chain seems to be surprisingly

hard and is still a remaining problem to be solved.

Ouangraoua and Bergeron [32] and Braga and Stoye [6] gave polynomial algo-

rithms to count the number of DCJ scenarios for co-tailed genomes or when the

number of even length paths in the adjacency graph is limited. However, when the

number of even length paths in the adjacency graph is not bounded, there is no fast

algorithm to count the number of DCJ scenarios, and thus #DCJ is conjectured to

be #P-complete.

3.3 The SCJ model

The Single Cut or Join model is computationally the simplest genome rearrange-

ment model [13]. The decision/optimization counterpart of all the listed five prob-

lems are in P, therefore computational intractability of the counting versions cannot

be directly concluded from the complexity of decision/optimization problems. Some

of the counting problems under the SCJ model are easy (are in FP), some of them

are computationally intractable (are in #P-complete and have no FPRAS approxi-

mations assuming that RP 6= NP), and some of them have unknown computational

complexity as described below.

Counting the number of most parsimonious SCJ operations is in FP as proved in

[31]. Feijão and Meidanis [13] proved that there is a unique optimal SCJ median for

3 genomes. Their proof trivially extends to show that the optimal median remains

unique for an arbitrary odd number of genomes: the optimal median contains the

set of adjacencies that can be found in the majority of the genomes. Indeed, the SCJ

distance between two genomes G1 and G2 is simply |Π1∆Π2|, where Πi is the set of

adjacencies in Gi. The key observation is that it is impossible that two conflicting

adjacencies are present in more than half of the genomes, therefore the genome that

Miklós and Smith Page 9 of 21

contains exactly the adjacencies that are present in the majority of the genomes is

a valid genome.

When the number of genomes is even, each extremity is in at most two adjacencies

that are present in exactly half of the genomes. It is easy to see that an optimal

median contains the set of adjacencies that are present in more than half of the

genomes and any conflict-free subset of the adjacencies that are present in exactly

half of the genomes. The number of optimal medians can be counted in the following

way.

Given a set of genomes G = {G1, G2, . . . G2k} having the same synteny blocks, we

define the conflict graph C(V,E) in the following way: The vertex set V is the set

of extremities present in G and there is an edge between v1 and v2 if and only if the

adjacency (v1, v2) is present in exactly half of the genomes.

Observation 1 The maximum degree of any vertex in C is 2.

Proof This follows from the fact that any extremity can be in at most two adjacen-

cies which are present in exactly half of the genomes.

The consequence of Observation 1 is that C can be decomposed into isolated

vertices, paths and cycles. Any conflict-free subset of the adjacencies is a matching

(non-necessary maximum and possibly empty) of C. The number of matchings is

the product of the number of matchings on each component. Therefore it suffices to

count this number. It is well-known [22] that the number of matchings in a length

n path is

bn
2 c∑

k=1

(
n− k
k

)
and the number of matchings in a length n cycle is

bn
2 c∑

k=1

n

n− k

(
n− k
k

)
.

Since obtaining the conflict graph, decomposing it into paths and cycles, counting

the number of matchings on each component and multiplying these numbers all can

be done in polynomial time, we can announce the following theorem:

Theorem 1 The number of optimal medians under the SCJ model is in FP.

Although calculating the number of optimal medians is easy, recently Miklós and

Smith [28] proved that the number of most parsimonious median scenarios is in

#P− complete. The proof uses a technique (modulo prime number calculations)

that is typically used in those #P− complete problems that admit an FPRAS

approximation. Define a simple Markov chain that walks on the optimal median

genomes by adding or removing a random adjacency and converges to the distri-

bution proportional to the number of scenarios that the median genome has by

applying the Metropolis-Hastings algorithm [23, 16]. Miklós and Smith proved that

Miklós and Smith Page 10 of 21

this Markov chain is torpidly mixing even if the number of genomes are fixed to 4,

and only the size of the genomes are allowed to grow (unpublished result). Therefore

it is absolutely unclear whether the number of most parsimonious median scenarios

under the SCJ model has an FPRAS approximation or an FPRAS approximation

would imply RP = NP. If the problem is in FPRAS, one will need a deeper un-

derstanding of the solution space to employ a more a sophisticated Markov chain

method.

The number of most parsimonious scenarios on evolutionary trees under the SCJ

model is known to be computationally intractable. Miklós and Smith [28] proved

that it is #P-complete and Miklós, Tannier and Kiss [31] proved that it does not

have an FPRAS approximation assuming RP 6= NP. On the other hand, counting

the number of most parsimonious labelings of evolutionary trees has an unknown

computational complexity. One optimal labeling can be found by applying the Fitch

algorithm [12] on each adjacency and choosing the absence of the adjacency at the

root when the Fitch algorithm says that both the presence and absence of the ad-

jacency give the minimum number of necessary SCJ mutations for that particular

adjacency. Feijão and Meidanis [13] proved that the so-obtained genomes will always

be valid. It is known that the Fitch algorithm cannot find all most parsimonious

solutions for a particular character. The Sankoff-Rousseau algorithm [33] is a dy-

namic programming algorithm that is capable of finding all optimal solutions for

a particular character, in the case of the SCJ model. However, it is easy to show

that some solutions might be invalid, as conflicting adjacencies might be assigned

to a genome labeling an internal node (making the genome and thus the solution

invalid). Therefore, the solution space of optimal labelings is only a subset of the set

that the Sankoff-Rousseau algorithm gives. It is known, when there is no constraint

among the characters, the number of optimal labelings is in FP [11] and the num-

ber of most parsimonious scenarios is not in FPRAS assuming that RP 6= NP [31].

Therefore the computational intractability of counting the number of most parsi-

monious scenarios on binary trees under the SCJ model by no means implies that

counting thef most parsimonious labelings would be a hard computational problem.

On the other hand, the constraints among the adjacencies make the counting prob-

lem more complicated than the constraint-free version. It is unclear if this particular

counting problem is in FP or #P-complete and, if it is in #P-complete, whether or

not it has an FPRAS approximation. In the next section we give a Gibbs sampler,

exploring the solution space of the most parsimonious labelings, that seems to be

rapidly mixing on some real life data. However, these examples can give only ex-

perimental evidence of rapid mixing only suggesting that the problem might have

an FPRAS approximation.

4 Gibbs sampling of most parsimonious labeling of evolutionary
trees under the SCJ model

Gibbs sampling is a special version of Markov chain Monte Carlo when the multi-

variate target distribution is hard to sample from, however, the conditional distri-

bution of each variable is easy to sample [14]. This is exactly the case for the most

parsimonious labelings of an evolutionary tree under the SCJ model, as we show

below.

Miklós and Smith Page 11 of 21

4.1 Description of the Gibbs sampler

Let a rooted binary tree, T (V,E) be given, together with a function f mapping

genomes under the SCJ model to the leaves of the tree, L. We assume that all

genomes appearing as an image for some leaf have the same labels for their edges.

Let A represent the set of all adjacencies in ∪v∈Lf(v). Let an arbitrary indexing

on A be given, then each genome G can be represented as a 0-1 vector x where xi

is 1 if and only if ai ∈ A is in G. A length |A| 0-1 vector, x, is called valid if for all

pairs of coordinates satisfying xi = xj = 1, adjacencies ai and aj do not share an

extremity. Each valid vector represents a valid genome.

Genomes labeling the vertices of T are represented by such 0-1 vectors, and the

Gibbs sampler works on these representations. The target distribution is the uni-

form distribution of the possible most parsimonious labelings. Consider any most

parsimonious labeling as a set of vectors representing the genomes labeling the ver-

tices of T . Choose one coordinate, i, then Gibbs sampling is to sample uniformly

from all possible most parsimonious labelings that match the current labeling in all

coordinates except coordinate i.

Formally, given a most parsimonious labeling of the internal nodes, a Gibbs sam-

pling step is the following:

1 Draw a random coordinate i uniformly from 1, 2, . . . |A|.
2 Consider the ith coordinates of the vector representations of the genomes

labeling the leaves, and on these 0-1 characters, do the Sankoff-Rousseau

dynamic programming algorithm. For each leaf l, assign the value s(l, k) = 0

if k is the character assigned to l and s(l, k) =∞ otherwise.

For each vertex v with children u1 and u2, the recursion is

s(v, 0) = min {s(u1, 0), s(u1, 1) + 1}+

min {s(u2, 0), s(u2, 1) + 1} (3)

s(v, 1) = min {s(u1, 0) + 1, s(u1, 1)}+

min {s(u2, 0) + 1, s(u2, 1)} (4)

3 Create a directed metagraph M whose vertices are s(v, 0) for each vertex v

of the tree and also those s(v, 1) for which writing 1 into the ith coordinate

of the vector representing the genome labeling vertex v still a valid vector.

Draw a directed edge from s(u, k) to s(v, k′) if s(u, k) gives the minimum for

s(v, k′) in Equations (3) and (4). See also Fig. 1. c) and d).

4 Do an enumeration dynamic programming on M . Let m(w) = 1 if w = s(l, k),

k ∈ {0, 1} and l is a leaf. For other nodes, do the following. Let w = s(v, k),

k ∈ {0, 1}, and let the two children of v in the tree T be u1 and u2. Let U1
denote the set of in-neighbors of w that are of the form s(u1, k) for k ∈ {0, 1}
and U2 denote the set of in-neighbors of w that are of the form s(u2, k) for

k ∈ {0, 1}. Then

m(w) =

(∑
z1∈U1

m(z1)

)
·

(∑
z2∈U2

m(z2)

)
(5)

where m(w) is called the weight of w.

Miklós and Smith Page 12 of 21

0 1 1 0 0

{0,1}

{1}

{0,1}

{0}

0 1 1 0 0

1

1

0

0

0 1 1 0 0
s(0)=0 s(1)=0 s(1)=0 s(0)=0 s(0)=0

s(1)=1 s(0)=1

s(1)=1 s(0)=2

s(0)=2

s(0)=2

0 1 1 0 0

0

0

0

0

a) b)

c) d)

Figure 1 A rooted binary tree with two most parsimonious labelings of internal nodes. a) The B
functions of the Fitch algorithm calculated in the bottom-up phase. b) The (canonical) Fitch
solution. c) The values calculated in the Sankoff-Rousseau algorithm and the edges in the
metagraph M (see text for details). For readability, only those values are indicated that contribute
in estimating the number of most parsimonious solutions. Also, vertices of the tree are not
indicated, i.e. s(k) is written instead of s(v, k). From positioning, it should be obvious which s
value belongs to which vertex. d) The most parsimonious solution that can be obtained only by
the Sankoff-Rousseau algorithm and not by the Fitch algorithm.

5 If there is only one vertex in the metagraph M that is s(root, k), k ∈ {0, 1},
choose that one at the root. Otherwise, choose randomly from the two vertices

following the distribution proportional to their weights. For the chosen vertex

w, m(w) is not 0, therefore it has at least 1 in-neighbor from both U1 and

U2. From both in-neighbor sets, choose a random vertex from the distribution

proportional to their weight, or the only one if only one vertex is in a set.

Propagate down this process along the tree, thus one vertex from M is se-

lected for each vertex of the tree T . Update the ith coordinates of the vectors

according to the selected metagraph vertices: if w = s(v, k) was selected for

vertex v then write k into the ith coordinate of the vector representing the

genome labeling vertex v.

It is well-known that the number of most parsimonious labelings by one character

can be calculated by Equation (5) [11], and when some of the solutions should be ex-

cluded due to some constraints, they simply should be omitted from the calculations.

This is how the metagraph M was constructed. It is also a folklore that following

the distribution proportional to the weights calculated in a recursion leads to the

uniform distribution over the cases that the recursion calculates, and the uniform

distribution is the one that we would like to sample from in the Gibbs sampling.

Miklós and Smith Page 13 of 21

4.2 Irreducibility of the Gibbs sampler

The Gibbs sampler, as a Markov chain, will converge to the prescribed distribution

if the Markov chain is irreducible, that is, any most parsimonious labeling can be

transformed into any another by a finite number of Gibbs sampling steps. Due to

the constraints on the coordinates, it is not trivial. Below we prove irreducibility

by proving that any most parsimonious labeling can be transformed to a canonical

labeling, the one described by Feijaõ and Meidanis [13]. Below we formally define

this most parsimonious labeling. First, we recall the Fitch algorithm.

Definition 10 The Fitch algorithm [12] is a greedy algorithm for finding a most

parsimonious labeling of a tree, given a rooted binary tree, and the leaves of the

tree are labeled by characters from some finite set. It has two phases (see also

Fig. 1 a) and b)).

1 (Bottom-up phase) For each leaf v, assign a set B(v) = {c} where c labels v.

Then for each internal node v with children u1 and u2

B(v) =

B(u1) ∩B(u2), if B(u1) ∩B(u2) is not empty

B(u1) ∪B(u2), otherwise.
(6)

2 (Top-down phase) Choose any member from B(root) to label the root. This is

denoted by F (root). Then propagate down characters labeling internal nodes

on the tree using the following recursion, where v is the parent of u,

F (u) =

F (v) ∩B(u), if F (v) ∩B(u) is not empty

any member from B(u), otherwise.
(7)

Although Equation (7) might be ambiguous for alphabets with size larger than

2, for 0-1 alphabet, there is no ambiguity. Ambiguity for 0-1 alphabet can happen

only at the root when B(root) = {0, 1}.

Definition 11 Let T (V,E) be a rooted binary tree with genomes labeling the leaves

of the tree. Assume that each genome is represented as a 0-1 vector indicating

which adjacency can be found in the genome, as described above. Then the canonical

solution for the most parsimonious labeling of the tree under the SCJ model is given

by applying the Fitch algorithm for each position of the representing vectors, and

choosing 0 at the root whenever B(root) = {0, 1}. The so-obtained values are the

coordinates of the vectors representing the genomes labeling the internal nodes of

the tree.

Feijaõ and Meidanis proved that the so-obtained vectors are always valid, thus

they indeed give a most parsimonious labeling of the internal nodes [13]. Below

we show that any solution to the most parsimonious labeling of the internal nodes

under the SCJ model (which might be a solution that cannot be obtained by the

Fitch algorithm just by the Sankoff-Rousseau algorithm, see for example, Fig. 1. d))

can be transformed into the canonical solution by a finite series of Gibbs sampling

steps. First we have to prove a lemma regarding the values calculated in the Fitch

algorithm and the Sankoff-Rousseau algorithm.

Miklós and Smith Page 14 of 21

Lemma 1 Assume T is an arbitrary rooted binary tree with leaves labeled by 0s

and 1s. Then for any internal node v, B(v) = {0, 1} if and only if s(v, 0) = s(v, 1).

Proof The ⇒ direction was proved in [31]. The ⇐ direction is proved by strong

induction on h, the height of v. We prove the equivalent form B(v) 6= {0, 1} =⇒
s(v, 0) 6= s(v, 1). When h = 0, v is a leaf, and the statement is true as s(v, 0) 6=
s(v, 1) and B(v) 6= {0, 1}.

For any node h ≥ 1, assume that the statement holds for any node with height

k < h. If B(v) 6= {0, 1} then either B(v) = {0} or B(v) = {1}. The two cases are

symmetric, so we might assume that B(v) = {0}, the proof for the other case is

symmetric.

If B(v) = {0} and u1 and u2 are the children of v, then either B(u1) = B(u2) =

{0} or B(u1) = {0}, B(u2) = {0, 1} or B(u1) = {0, 1}, B(u2) = {0}.
If B(u1) = B(u2) = {0}, then by the induction, s(u1, 0) 6= s(u1, 1), and since

the Fitch algorithm gives a most parsimonious solution, s(u1, 0) < s(u1, 1). Sim-

ilarly for the other node, s(u2, 0) < s(u2, 1). Then s(v, 0) < s(v, 1), according to

Equations (3) and (4).

If for one of the children, the B function takes {0, 1}, then for that node u,

s(u, 0) = s(u, 1). For the sibling node u′, s(u′, 0) < s(u′, 1), and it is easy to check

(by considering Equations (3) and (4)) that s(v, 0) < s(v, 1).

Lemma 2 Let L be a most parsimonious labeling of a tree T (V,E) under the

SCJ model. Assume that the genomes are given in a binary vector representation

as described above. Let v be the minimum height node for which some adjacency α,

Bα(v) = {0}, however, α is present in the genome labeling v (Bα(v) is the set that

the Fitch algorithm calculates for the vertex v when the algorithm is applied to the

presence/absence of adjacency α). Change the current labeling in the following way.

Remove α from the genome labeling the node v and propagate down the presence-

absence of adjacency α below the subtree rooted in v according to the Fitch algorithm

as v was the root of the tree. Then the so obtained new labeling L′

a) contains valid genomes and

b) is also a most parsimonious labeling.

Proof Changing any presence to absence cannot turn a valid genome into invalid.

The only case when the genome might become invalid is when an absence is turned

into presence (a possible example for this is on Fig. 1. d) and b), d) is a Sankoff-

Rousseau solution, b) is the canonical Fitch solution). This might be the case when

• for some node u below v, Bα(u) = {1} or

• on connected parts C of the tree where for all nodes, u ∈ C, Bα(u) = {0, 1},
except for the root of C, r, for which Bα(r) = {1}.

If Bα(u) = {1} then for all adjacencies β being in conflict with α, Bβ(u) = {0}
(Lemma 6.1. in [13]). But then β must be absent in the genome labeling u otherwise

it would contradict the minimum height of v.

For any connected part C with the above described property, we prove that for

any adjacency β, which is in conflict with α, β is absent in the genomes labeling the

vertices of C. For the root r, it holds as Bα(u) = {1}, thus Bβ(u) = {0}. For any

Miklós and Smith Page 15 of 21

node u ∈ C, for whose parent w, we showed that β is absent in the genome labeling

w, we show that β is also absent in the genome labeling u. If Bβ(u) = {0}, then β

is absent in the genome labeling u due to the minimal height of v. If Bβ = {0, 1},
then sβ(u, 0) = sβ(u, 1). Then in a most parsimonious labeling, it cannot be the

case that β is absent in the genome labeling w but is presented in the genome

labeling u. Indeed, such a labeling would have a parsimony score 1 for the edge

(u, v), and a cost sβ(u, 1) below the subtree rooted in u. On the other hand, if we

change the labeling at the node u that β is absent in the genome labeling u, and on

the subtree below u, we can change the presence/absence of β to get a parsimony

score sβ(u, 0). Then the parsimony score regarding β for the edge (u, v) is 0, hence

this new labeling has a smaller total cost on the tree compared to the current one,

a contradiction. By induction, on the whole connected part C, β is absent in the

genomes labeling the vertices of C.

We proved that the new labeling L′ contains valid genomes. We are going to prove

that it is also a most parsimonious labeling. Since Bα(v) = {0}, it follows that

sα(v, 0) < sα(u, 1). Hence, in the old labeling L, the parsimony score regarding

α on the subtree rooted in v was greater than in the modified labeling. On the

edge connecting v to its parent, the new score might be 1, the old score might

be 0, and then here the parsimony score might increase by 1, however, this loss

cannot be greater than the gain we obtained on the subtree rooted at v. (And if

the old labeling L was most parsimonious it turns out that the old parsimony score

regarding α on edge connecting v to its parent was 0.)

Since the number of adjacencies as well as the height of the tree is finite, in a

finite number of steps, any labeling can be transformed into a labeling such that

for all vertices v and all adjacencies α, Bα(v) = {0} indicates that adjacency α is

absent in the genome labeling v. Next, we consider transforming such labelings.

Lemma 3 Let L be a most parsimonious labeling of a tree T (V,E) under the

SCJ model. Assume that the genomes are given in a binary vector representation

as described above. Furthermore, assume that for all vertices w and all adjacencies

α, Bα(w) = {0} indicates that adjacency α is absent in the genome labeling w.

Let v be the minimum height node for which there is an adjacency α with Bα(v) =

{1}, however α is absent in the genome labeling v. Change the current labeling in

the following way. Add α to the genome labeling the node v and propagate down the

presence-absence of adjacency α below the subtree rooted in v according to the Fitch

algorithm as v was the root of the tree. Then the so obtained new labeling L′

a) contains valid genomes and

b) is also a most parsimonious labeling.

Proof The proof of validity in Lemma 3 is exactly the same as the proof of Lemma 2

with one replacement. Each argument that said “if Bβ(u) = {0}, then β is absent in

the genome labeling u due to the minimal height of v” should be replaced with “if

Bβ(u) = {0}, then β is absent in the genome labeling u due to the given conditions.”

Proving that the new labeling L′ is also most parsimonious is exactly the same

as the proof of Lemma 2, just switching 0 and 1.

Miklós and Smith Page 16 of 21

Hence any most parsimonious labeling can be transformed to a most parsimonious

labeling such that for each node v and each adjacency α, Bα(v) = {0} indicates the

absence of α in the genome labeling v, and Bα(v) = {1} indicates the presence of

α in the genome labeling v. Furthermore, each transformation is a possible Gibbs

sampling step since one coordinate is changed from a most parsimonious labeling

to another most parsimonious, valid labeling. During these transformations, when

the labeling is changed below a vertex v, for which Bα(v) 6= {0, 1} for some α, the

new labeling is the canonical Fitch labeling. What about the subtrees below the

vertices v and the adjacencies α for which Bα(v) = {0} where the adjacency α was

absent in the initial labeling or Bα(v) = {1} where the adjacency α was present in

the initial labeling? The following lemma claims that, for such subtrees, the initial

labeling was already the Fitch labeling.

Lemma 4 Assume that in a most parsimonious labeling, Bα(u) = {0, 1} and α

is present (respectively, absent) in the genome labeling the parent of u. Then α is

present (respectively, absent) in the genome labeling u.

Proof Assume that the presence/absence of α in u and its parent is different. Then

the parsimony score on the edge connecting u to its parent is 1. However, sα(u, 0) =

sα(u, 1), hence switching the presence/absence of α is possible without changing

the parsimony score on the subtree rooted at u (changing the presence/absence

of α in genomes labeling vertices below u might be needed). On the other hand,

the parsimony score on the edge connecting u to its neighbor could decrease by

1, a contradiction to the assumption that we started with a most parsimonious

labeling.

The consequence of the Lemma 4 is that we can transform, by finite series of

Gibbs sampling steps, any most parsimonious labeling to a labeling L′ such that for

all vertices u and all adjacencies α, for which Bα(u) 6= {0, 1} or a vertex v above u

(v is not necessarily the parent of u, but may be an arbitrary node which is higher,

but still above, u) exists such that Bα(v) 6= {0, 1}, the genome labeling u is the

Fitch canonical solution regarding adjacency α. These labelings are almost in the

Fitch canonical solutions, except for connected parts C containing the root of the

tree on which for some α, Bα(v) = {0, 1}, ∀v ∈ C. The next lemma claims that

they can be transformed into the Fitch canonical solution.

Lemma 5 Let L be a most parsimonious labeling of a tree T (V,E) under the

SCJ model. Assume that the genomes are given in a binary vector representation

as described above. Furthermore, assume that for all vertices w and all adjacencies

α, Bα(w) = {0} indicates that adjacency α is absent in the genome labeling w and

Bα(w) = {1} indicates that the adjacency is present in the genome.

Consider any adjacency α, and let C denote the connected subset C containing

the root for which Bα(v) = {0, 1}, ∀v ∈ C. (C might be the empty set.) Change the

current labeling L such that in the new labeling L′ adjacency α be absent in each

genome labeling any vertex v ∈ C, and do not change the labeling otherwise. Then

the new labeling

Miklós and Smith Page 17 of 21

a) is a valid labeling and

b) is also a most parsimonious labeling

Proof Changing the presence to absence cannot make an invalid genome, therefore

proving the validity is trivial.

For any vertex v, B(v) = {0, 1}, either the B function for both children is also

{0, 1} or for one of the children it is {1} and for the other child it is {0}. Extend

C to C ′ such that we add to C all the cherry motifs (a pair of children) for which

the Bα function is {1} for one of the children and {0} for the other child. We know

from the condition that α is present in the genome labeling one of the children and

is absent in the genome labeling the other child. If we do not change the current

labeling at the leaves of C ′, there are two possible most parsimonious labelings

regarding adjacency α: i) α is presented in all genomes labeling the internal nodes,

ii) α is absent in all genomes labeling the internal nodes. The latter is what L′

contains.

We are ready to prove the main lemma.

Lemma 6 Let L be a most parsimonious labeling of a tree T (V,E) under the SCJ

model. Then L can be transformed into the canonical Fitch solution by finite series

of Gibbs sampling steps.

Proof In the first phase, while there is a vertex v and adjacency α such that Bα(v) =

{0} and α is present in the genome labeling vertex v, find the α and v with the

minimal height and do the Gibbs sampling indicated in Lemma 2.

After the first phase, in the second phase, while there is a vertex v and adjacency

α such that Bα(v) = {1}, however, α is absent in the genome labeling v, find the α

and v with the minimal height, and do the Gibbs sampling indicated in Lemma 3.

After the second phase, in the third phase, while there is an adjacency α, for

which we have a nonempty connected part C containing the root with the property

that ∀v ∈ C, Bα(v) = {0, 1} and α is present in any of the genomes labeling any of

the vertices v ∈ C, choose one of these adjacencies, and remove it from all genomes

labeling the vertices in C. Since it yields a most parsimonious labeling, it is also a

Gibbs sampling step.

After the third phase, the labeling is the Fitch canonical labeling.

The main lemma directly leads to the following theorem.

Theorem 2 Any most parsimonious labeling of a tree under the SCJ model can

be transformed into any another most parsimonious labeling by finite series of Gibbs

sampling steps.

Proof A most parsimonious labeling L1 can be transformed into the canonical la-

beling Lc and also labeling L2 can be transformed into Lc by Gibbs sampling steps.

Note that the inverse of a Gibbs sampling step is also a Gibbs sampling step, thus

L1 can be transformed into L2 by first transforming L1 into Lc then transforming

Lc into L2 by the inverse transformation that moves L2 into Lc.

Miklós and Smith Page 18 of 21

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

1 101 201 301 401 501 601 701 801 901
-0,2

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 2 Inferring the performance of the Gibbs sampler on 8 Vertebrates genomes. See the text
for detailed description of the data and the method. Left: The number of SCJ operations of the
14 edges of the evolutionary tree in the samples of the Gibbs sampler. Samples were collected
after each 10000 Gibbs sampling steps, 1000 samples were collected. For readability, the numbers
of SCJ operations falling onto edges have been shifted such that the average of them be
20, 40, 60, . . . 280. Right: Autocorrelations of the number of SCJ operations on edges in the
samples. One unit on the first axis means 10000 Gibbs sampling steps.

4.3 Testing the Gibbs sampler on real life data

The Gibbs sampler method has been implemented in Java programming language,

downloadable from http://www.renyi.hu/~miklosi/SCJ-Gibbs/. The genomes of

8 Vertebrate species were used to test the Gibbs sampler: Gallus gallus, Monodelphis

domestica, Bos taurus, Canis familiaris, Rattus norvegicus, Mus musculus, Homo

sapiens, Rhesus macaque. Synteny blocks were obtained as described in [8]. Only

those synteny blocks were kept that could be found in all the 8 species. The tree

topology applied was in agreement with the tree topology in [8]. The initial most

parsimonious labeling was obtained using the Fitch algorithm. 107 Markov chain

steps (Gibbs sampling steps) were applied, samples were collected after each 10000

steps. No burn-in phase was applied as the aim was the investigation of the mixing

of the Markov chain and not calculating any statistics from the samples.

Each sampled most parsimonious labeling has the same sum of edge lengths (num-

ber of mutations on an edge), however, the individual edge lengths vary during the

Monte Carlo simulation. These lengths were used as traces of the Markov chain to

empirically check the mixing of the Markov chain, see Fig. 2. Note that the target

distribution is the uniform distribution, thus the usual log-likelihood trace would

be a constant line, and therefore, it could not be used for convergence analysis of

the chain. As can be seen, the traces suggest good mixing: burn-in phase cannot

be recognized on the trace plot. The autocorrelations quickly approach to 0, also

suggesting good mixing of the Markov chain.

5 Discussion and conclusions
In this paper, we overviewed the state-of-the-art knowledge on the computational

complexity of counting and sampling genome rearrangement scenarios. Most of the

counting problems fall into one of the following three categories: i) easy to compute,

i.e., the number of solutions can be exactly calculated in polynomial time, ii) hard

to count exactly in polynomial time, however, stochastic approximations exist that

http://www.renyi.hu/~miklosi/SCJ-Gibbs/

Miklós and Smith Page 19 of 21

are just as good in practice than exact calculations iii) hard to count both exactly

and approximately.

Unfortunately, all counting problems whose decision/optimization counterparts

are NP-hard fall into the third category. Surprisingly, counting the SCJ scenarios

on a phylogenetic tree also falls into the third category, although its optimization

counterpart is in P. Counting the number of SCJ scenarios between two genomes as

well as counting the number of most parsimonious medians under the SCJ model is

easy. Counting the number of most parsimonious DCJ scenarios has a good stochas-

tic approximation. That approximation is given via a rapidly mixing Markov chain.

This is a general phenomenon that sampling and counting have the same computa-

tional complexity and a solution to one of the problems explicitly gives a solution

to the other problem. In applications, sampling is usually more important than

counting, however, theoretical results on the computational complexity on counting

naturally tells the limit of possibilities of sampling algorithms.

The most important open questions are:

• Is it possible to sample (almost) uniformly most parsimonious reversal sce-

narios between two genomes in polynomial time?

• Is it possible to sample (almost) uniformly most parsimonious SCJ median

scenarios in polynomial time?

• Is it possible to sample (almost) uniformly most parsimonious labelings of an

evolutionary tree under the SCJ model in polynomial time?

• Is it easy or hard to count exactly the most parsimonious labelings of an

evolutionary tree under the SCJ model?

• Is it easy or hard to count exactly most parsimonious reversal scenarios?

• Is it easy or hard to count exactly most parsimonious DCJ scenarios?

Above giving an overview of the computational complexity of counting genome

rearrangement scenarios, we also gave a Gibbs sampler for sampling most parsimo-

nious labelings of evolutionary trees under the SCJ model. Sampling and counting

such labelings have unknown computational complexity. Our sampler works well in

practice on real life data, and these experiments suggest the conjecture that at least

good stochastic approximation exists for these problems. Although the SCJ model

is one of the least realistic genome rearrangement models, there is a strong corre-

lation between SCJ and DCJ distances. Therefore a rapidly mixing Markov chain

on SCJ phylogenies could open the possibility to develop Monte Carlo methods for

approximate DCJ phylogenies.

We considered only five special counting problems in this paper, each of them un-

der three possible rearrangement models. There are further genome rearrangement

problems like genome halving [2], guided genome halving [40], genome aliquoting

[39]. Some of them are computationally easy as decision problems [37], therefore,

it is a natural question what can we say about the computational complexity of

counting the solutions of these problems.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
IM and HS considered the counting and sampling problems, set up the conjectures and proved the theorems. IM

implemented the Gibbs sampler and tested it on real life data.

Miklós and Smith Page 20 of 21

Acknowledgements

HS acknowledges support from DARPA and AFOSR under contract #FA9550-12-1-0405, the NSF DMS contract

1300547, and a SPARC Graduate Research Grant from the Office of the Vice President for Research at the

University of South Carolina.

Author details
1MTA Rényi Institute, Reáltanoda u. 13-15, 1053 Budapest, Hungary. 2 MTA SZTAKI, Lágymányosi u. 11, 1111

Budapest, Hungary. 3University of South Carolina, 1523 Greene Street, Columbia, SC, 29208 USA.

References
1. Ajana, Y, Lefebvre, JF, Tillier ERM, El-Mabrouk, N (2002) Exploring the set of all minimal sequences of

reversals – an application to test the replication-directed reversal hypothesis.Proceedings of the Second

International Workshop on Algorithms in Bioinformatics, 300–315.

2. Alekseyev, MA, Pevzner, PA (2007) Colored de Bruijn Graphs and the Genome Halving Problem, IEEE/ACM

Trans. Computational Biology Bioinformatics, 4(1):98–107.

3. Alekseyev, MA, Pevzner, PA (2010) Comparative genomics reveals birth and death of fragile regions in

mammalian evolution, Genome Biol 11(11):R117.

4. Bergeron, A, Mixtacki, J, Stoye, J (2006) A Unifying View of Genome Rearrangements, Lecture Notes in

Bioinformatics, 4175:163–173.

5. Bergeron, A, Mixtacki, J, Stoye, J (2008) On computing the breakpoint reuse rate in rearrangement scenarios,

LNBI 5267:226–240.

6. Braga, DVM, Stoye. J (2009) Counting all DCJ sorting scenarios. Lecture Notes in Bioinformatics

5817:36–47.

7. Brightwell, G, Winkler, P (1991) Counting linear extensions. Order 8(3):225–242.

8. Chauve, C, Tannier, E (2008) A Methodological Framework for the Reconstruction of Contiguous Regions of

Ancestral Genomes and Its Application to Mammalian Genomes. PLoS Computational Biology,

4(11):e1000234.

9. Darling, A, Miklós, I, Ragan, M (2008) Dynamics of genome rearrangement in bacterial populations, PLoS

Genetics 4(7):e1000128.

10. Durrett, R, Nielsen, R, York, T (2004) Bayesian estimation of genomic distance. Genetics 166:621–629.

11. Erdős, P L, Székely, LA (1994) On weighted multiway cuts in trees. Mathematical Programming 65:93–105.

12. Fitch, W M 1(971) Toward defining the course of evolution: minimum change for a specified tree topology.

Systematic Zoology 20:406–416.

13. Feijão, P, Meidanis, J, (2011) SCJ: A breakpoint-like distance that simplifies several rearrangement problems.

IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5):1318–1329.

14. Geman, S, Geman, D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.

IEEE Transactions on Pattern Analysis and Machine Intelligence 12:609–628.

15. Hannenhalli, S, Pevzner, P (1999) Transforming cabbage into turnip: Polynomial algorithm for sorting signed

permutations by reversals. J. ACM 46:1–27.

16. Hastings W. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika.

57:97–109.

17. Jerrum, MR (2003) Counting, Sampling and Integrating: Algorithms and Complexity. Birkhauser Verlag,

Basel.

18. Jerrum, MR, Valiant, LG, Vazirani, VV (1986) Random Generation of Combinatorial Structures from a Uniform

Distribution Theoretical Computer Science 32:169–188.

19. Karzanov, A, Khachiyan, L (1991) On the conductance of order Markov chains, Order 8(1):7–15.

20. Larget B, Simon DL, Kadane JB, Sweet D. 2005. A Bayesian analysis of metazoan mitochondrial genome

arrangements. Mol Biol Evol. 22:486–495.

21. Liu, JS (2001) Monte Carlo strategies in scientific computing. Cambridge Univ Press.

22. Lovász, L, Plummer, MD (1986) Matching Theory. Amsterdam, Netherlands: North-Holland.

23. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E. (1953). Equations of state calculations by fast

computing machines. J Chem Phys. 21:1087–1091.

24. Miklós, I (2003) MCMC Genome rearrangement, Bioinformatics 19(Suppl.2):ii130-ii137.

25. Miklós, I., Darling, A. (2009) Efficient sampling of parsimonious inversion histories with application to genome

rearrangement in Yersinia Genome Biology and Evolution, 1(1):153-164.

26. Miklós I, Ittzés P, Hein J. (2005). ParIS Genome Rearrangement server.Bioinformatics, 21:817–820.

27. Miklós, I., Mélykúti, B., Swenson, K (2010) The Metropolized Partial Importance Sampling MCMC mixes

slowly on minimum reversal rearrangement paths ACM/IEEE Transactions on Computational Biology

and Bioinformatics, 4(7):763–767.

28. Miklós, I, Smith, H (2015) The computational complexity of calculating partition functions of optimal medians

with Hamming distance, http://arxiv.org/abs/1506.06107.

29. Miklós, I, Tannier, E. (2010) Bayesian Sampling of Genomic Rearrangement Scenarios via Double Cut and Join

Bioinformatics, 26: 3012–3019.

30. Miklós, I., Tannier, E. (2012) Approximating the number of Double Cut-and-Join scenarios, Theoretical

Computer Science, 439:30–40.

31. Miklós, I, Tannier, E, Kiss, ZS (2014) On sampling SCJ rearrangement scenarios Theoretical Computer

Science, 552:83–98.

32. Ouangraoua, A, Bergeron, A (2010) Combinatorial structure of genome rearrangements scenarios, Journal of

Computational Biology 17(9):1129–1144.

33. Sankoff, D, Rousseau, P (1975) Locating the vertices of a Steiner tree in an arbitrary metric space.

Mathematical Programming 9:240–246.

http://arxiv.org/abs/1506.06107

Miklós and Smith Page 21 of 21

34. Siepel, A.C. (2002) An Algorithm to Find All Sorting Reversals, RECOMB ’02 Proceedings of the sixth

annual international conference on Computational biology, 281–290.

35. Swenson, KM, Rajan, V, Lin, Y, Moret, BME (2009) Sorting Signed Permutations by Inversions in O(nlogn)

Time. Lecture Notes in Computer Science, 5541:386–399.

36. Tannier, E, Bergeron, A, Sagot, MF (2007) Advances on sorting by reversals. Discrete Applied

Mathematics 155(6–7):881–888.

37. Tannier, E, Yheng, C, Sankoff, D (2009) Multichromosomal median and halving problems under different

genomic distances, BMC Bioinformatics 10:120.

38. Valiant, LG (1979) The Complexity of Computing the Permanent. Theoretical Computer Science

8(2):189–201.

39. Warren, R, Sankoff, D (2009) Genome Aliquoting with Double Cut and Join, BMC Bioinformatics,

10(Suppl 1):S2.

40. Zheng, C, Zhu, Q, Adam, Z, Sankoff, D (2008) Guided Genome Halving: Hardness, Heuristics and the History

of the Hemiascomycetes, Bioinformatics, 24(13):i96–i104.

	Abstract
	Introduction
	Preliminaries
	Complexity classes
	Genome Rearrangement models
	The reversal model
	The DCJ model
	The SCJ model

	State-of-the-art of sampling and counting genome rearrangement scenarios
	The reversal model
	The DCJ model
	The SCJ model

	Gibbs sampling of most parsimonious labeling of evolutionary trees under the SCJ model
	Description of the Gibbs sampler
	Irreducibility of the Gibbs sampler
	Testing the Gibbs sampler on real life data

	Discussion and conclusions

