
Towards random uniform sampling of bipartite

graphs with given degree sequence∗†

István Miklós1,2∗ and Péter L. Erdős1† and Lajos Soukup1‡

1Alfréd Rényi Institute of Mathematics,
Hungarian Academy of Sciences,

Budapest, P.O. Box 127, H-1364 Hungary
2Institute of Computer Science and Control

Hungarian Academy of Sciences,
Lágymányosi út 11, H-1111 Hungary
<miklosi,elp,soukup>@renyi.hu

Januar 21, 2013

Abstract

In this paper we consider a simple Markov chain for bipartite graphs
with given degree sequence on n vertices. We show that the mixing time
of this Markov chain is bounded above by a polynomial in n in case of
half-regular degree sequence. The novelty of our approach lies in the con-
struction of the multicommodity flow in Sinclair’s method.

1 Introduction

The degree sequence, d(G), of a graph G is the non-increasing sequence of its
vertex degrees. A sequence d = (d1, . . . , dn) is graphical iff d(G) = d for some
simple graph G, and G is a graphical realization of d.

Already at the beginning of the systematic graph theoretical research (late
fifties and early sixties) there were serious efforts to decide whether a non-
increasing sequence is graphical. Erdős and Gallai (1960, [3]) gave a necessary
and sufficient condition, while Havel (1955, [6]) and Hakimi (1962, [5]) indepen-
dently developed a greedy algorithm to built a graphical realization if there exists
any. (For more details see for example [8].)

Generating some (or all possible) graphs realizing a given degree sequence or
finding a typical one among the different realizations are ubiquitous problems
∗This research was supported in part by the Hungarian Bioinformatics MTKD-CT-2006-

042794, Marie Curie Host Fellowships for Transfer of Knowledge.
†IM and PLE acknowledge financial support from grant #FA9550-12-1-0405 from the U.S.

Air Force Office of Scientific Research (AFOSR) and the Defense Advanced Research Projects
Agency (DARPA).
∗Partly supported by Hungarian NSF, under contract Nos. NK 78439 and PD84297
†Partly supported by Hungarian NSF, under contract Nos. NK 78439 and K68262
‡Partly supported by Hungarian NSF, under contract Nos. NK 83726 and K68262

1

in network modeling, ranging from social sciences to chemical compounds and
biochemical reaction networks in the cell. (See for example the book [10] for a
detailed analysis, or the paper [8] for a short explanation.)

When the number of different realizations is small, then the uniform sampling
of the different realizations can be carried out by generating all possible ones and
choosing among them uniformly.

However in cases where there are many different realizations this approach
can not work. In these cases some stochastic processes can provide solutions.
Here we mention only one of the preceding results: Molloy and Reed (1995,
[9]) applied the configuration model (Bollobás (1980, [1]) for the problem. (In
fact, Wormald had used it already in 1984 to generate random regular graphs
of moderate degrees [14].) They successfully used the model to generate random
graphs with given degree sequences where the degrees are (universally) bounded.
It is well known that this method is computationally infeasible in case of general,
unbounded degree sequences.

A different method was proposed by Kannan, Tetali and Vempala (1995,
[7]), which is based on the powerful Metropolis-Hastings algorithm: some local
transformation generates a random walk on the family of all realizations. They
conjectured that this process is rapidly mixing i.e. starting from an arbitrary
realization of the degree sequence the process reaches a completely random real-
ization in reasonable (i.e. polynomial) time. However, they could prove it only
for bipartite regular graphs. Their conjecture was proved for arbitrary regular
graphs by Cooper, Dyer and Greenhill (2007, [2]).

The original goal of this paper was to attack Kannan, Tetali and Vempala’s
conjecture for arbitrary bipartite degree sequences, performing a more subtle
choice of multicommodity flow. We obtained the following result:

Theorem 1.1. The Markov process - defined by Kannan, Tetali and Vempala - is
rapidly mixing on each bipartite half-regular degree sequence. (In these bipartite
graphs the degrees in one vertex class are constant.)

Actually, we achieved somewhat more: our construction method can be used
as a plug-in to a more advanced method for general degree sequences: if two
particular graphical realizations at hand differ in edges which can be partitioned
into alternating cycles, such that no cycle contains a chord which is an edge of
another cycle in the partition, then our friendly path method provides a good
multicommodity flow.

2 Basic definitions and preliminaries

Let G = (U, V ;E) be a simple bipartite graph (no parallel edges) with vertex
classes U = {u1, . . . , uk}, V = {v1, . . . , vl}. The (bipartite) degree sequence of G,
bd(G) is defined as follows:

bd(G) =
((
d(u1), . . . , d(uk)

)
,
(
d(v1), . . . , d(vl)

))
,

where the vertices are ordered such that both sequences are non-increasing. From
now on when we say “degree sequence” of a bipartite graph, we will always mean
the bipartite degree sequence. We will use n to denote the number of vertices,
that is n = k + l.

2

A pair (a,b) of sequences is a (bipartite) graphical sequence (BGS for short)
if (a,b) = bd (G) for some simple bipartite graph G, while the graph G is a
(graphical) realization of (a,b).

Next we define the swaps, our basic operation on bipartite graphs.

Definition 2.1. Let G = (U, V ;E) be a bipartite graph, u1, u2 ∈ U , v1, v2,∈ V ,
such that induced subgraph G[u1, u2; v1, v2] is a 1-factor, (i.e. (u1, vj), (u2, v3−j)
∈ E, but (u1, v3−j), (u2, vj) /∈ E for some j.) Then we say that the swap
on (u1, u2; v1, v2) is allowed, and it transforms the graph G into a graph G′ =
(U, V ;E′) by replacing the edges (u1, vj), (u2, v3−j) by edges (u1, v3−j) and (u2, vj),
i.e.

E′ = E \ {(u1, vj), (u2, v3−j)} ∪ {(u1, v3−j), (u2, vj)}. (2.1)

So a swap transforms one realization of the BGS to another (bipartite graph)
realization of the same BGS. The following proposition is a classical result of
Ryser (1957, [11]).

Theorem 2.2 (Ryser). Let G1 = (U, V ;E1) and G2 = (U, V ;E2) be two realiza-
tions of the same BGS. Then there exists a sequence of swaps which transforms
G1 into G2 through different realizations of the same BGS.

Ryser’s result used the language of 0 - 1 matrices. Here, to make the paper self
contained, we give a short proof, using the notion of swaps. The proof is based
on a well known observation of Havel and Hakimi ([6, 5]):

Lemma 2.3 (Havel and Hakimi). Let G = (U, V ;E) be a simple bipartite graph,
and assume that d(u′) ≤ d(u), furthermore (u′, v) ∈ E and (u, v) 6∈ E. Then
there exists a vertex v′ such that the swap on (u, u′; v, v′) is allowed, and so it
produces a bipartite graph G′ from G such that ΓG′(v) = (ΓG(v) \ {u′}) ∪ {u},
where, as usual, ΓG(v) is the set of neighbors of v in G.

Proof: By the pigeonhole principle there exists a vertex v′ 6= v such that (u, v′) ∈
E and (u′, v′) 6∈ E. So the swap defined on vertices (u, u′; v, v′) is allowed. �

We say that the previous operation is pushing up the neighbors of vertex v.
Applying the pushing up operation d times we obtain the following push up
lemma.

Lemma 2.4 (Havel and Hakimi). If G = (U, V ;E) is a simple bipartite graph,
d(u1) ≥ d(u2) ≥ · · · ≥ d(uk) and v ∈ V , d = d(v). Then there is a sequence S of d
many swaps which transforms G into a graph G′ such that ΓG′(v) = {u1, . . . , ud}.

This pushing-up lemma also suggests (and proves the correctness of) a greedy
algorithm to construct a concrete realization of a BGS

(
a,b

)
.

Proof of Theorem 2.2: We prove the following stronger statement:

(z) there exists a sequence of 2e swaps which transforms G1 into G2, where e
is the number of edges of Gi.

We will show that any particular realization can be transformed into the same
canonical realization with at most e swaps. We will do it recursively: taking one
by one the vertices v1, v2, . . . , vl from V we will define their neighbors in U. After

3

every step of the process we update the remaining degree sequence of U , and
reorder its actual content.

To do so we introduce the following lexicographic order on the actual re-
maining d(u) degree sequence. We always take them non-increasing order, and
whenever two vertices have the same actual degree, then we take first the vertex
with bigger subscript.

So take v1 and by multiple applications of the Push-up Lemma 2.4 there is
a sequence T1 of at most d = d(v1) many swaps which transforms G1 into a G′1
such that ΓG′1(v1) = {u1, . . . , ud} (The actually required push up operations can
be smaller if some of the first d vertices were originally adjacent to v1.)

We consider the bipartite graphs G′′1 = G′1 \ {v1} i.e. we remove the vertex
v1 and all the edges connected to v1. Now we reorder the vertices in the actual
U according to our lexicographic order, and repeat the recursive operation.

In this way after at most
∑l
i=1 d(vi) = e swaps we transformed G1 into a

well defined canonical realization R, furthermore this R is independent from the
original realization.

Now we can easily finish the proof of Theorem 2.2 observing that if a swap
transforms H into H ′, then the “inverse swap” (choosing the same four vertices,
and changing back the edges) transforms H ′ into H. So if the swap sequence T1

transforms G1 into R then it has an inverse swap-sequence T ′1 which transforms
R into G1. �

We use this upper bound for convenience: for us a linear upper bound on this
value is enough to show the polynomial upper bound of the sampling process. If
somebody wanted to get tight (or at least better) upper bounds on the sampling
process, then a better estimation is necessary for the swap-distance. Recently it
was shown that the swap-distance dist(G1, G2) for any two realizations is smaller
than

∆ :=
1
2

∣∣E(G1)∆E(G2)
∣∣.

In the forthcoming paper [4] a formula for dist(G1, G2) is determined: this is in
the form of ∆−α where the parameter α ≥ 1. Unfortunately the parameter α is
hard to determine.

3 The Markov chain (G, P)

For a bipartite graphical sequence
(
a,b

)
(on the fixed vertex bipartition (U, V))

- following Kannan, Tetali and Vempala’s lead - we define a Markov chain (G, P)
in the following way. G is a graph, the vertex set V (G) of the graph G consists
of all possible realizations of our BGS, while the edges represent the possible
swap operations: two realizations are connected if there is a swap operation
which transforms one realization into the other one (and, recall, the inverse swap
transforms the second one to the first one as well).
Let P denote the transition matrix, which is defined as follows: if the current re-
alization (state of the process) is G then with probability 1

2 we stay in the current
state (namely, we define a lazy Markov chain) and with probability 1

2 we choose
uniformly two-two vertices u1, u2; v1, v2 from classes U and V respectively and
perform the swap if it is possible and move to G′. Otherwise we do not perform

4

a move. The swap moving from G to G′ is unique, therefore the probability of
this transformation (the jumping probability from G to G′ 6= G) is:

Prob(G→ G′) := P (G′|G) =
1

2
(
k
2

)(
l
2

) . (3.1)

The probability of transforming G′ to G is time-independent. The transition
probabilities are time and edge independent and they are also symmetric. There-
fore P is a symmetric matrix, where all off-diagonal, non-zero elements are the
same, while the entries in the main-diagonal are non-zero, but (probably) differ-
ent values.

We use the convention that upper case letters X,Y and Z stands for vertices
of V (G).

The graph G clearly may have exponentially many vertices (that many dif-
ferent realizations of the degree sequence). However, by the statement (z) (in
the proof of Theorem 2.2), its diameter is always relatively small:

Corollary 3.1. The swap distance of any two realizations is at most 2e, where
e is the number of edges.

As we observed, the graph G is connected, therefore the Markov process is
irreducible. Since our Markov chain is lazy, it is clearly aperiodic. Finally since,
as we saw, the jumping probabilities are symmetric, that is P (G|G′) = P (G′|G),
therefore our lazy Markov process is reversible with the uniform distribution as
the globally stable stationary distribution.

4 Sinclair’s Method

To start with we recall some definitions and notations from the literature. Since
our Markov chain converges to the uniform distribution, we write all theorems
for the special uniform distribution case even if the theorem holds for more gen-
eral distribution, to simplify the notations. Let P t denote the tth power of the
transition probability matrix and define

∆X(t) :=
1
2

∑
Y ∈V (G)

∣∣P t(Y |X)− 1/N
∣∣ ,

where X is an element of the state space of the Markov chain and N is the size
of the state space. We define the mixing time as

τX(ε) := min
t

{
∆X(t′) ≤ ε for all t′ ≥ t

}
.

Our Markov chain is said to be rapidly mixing iff

τX(ε) ≤ O
(

poly
(
log(N/ε)

))
for any X in the state space. Consider the different eigenvalues of P in non-
increasing order:

1 = λ1 > λ2 ≥ · · · ≥ λN ≥ −1.

5

The relaxation time τrel is defined as

τrel =
1

1− λ∗

where λ∗ is the second largest eigenvalue modulus,

λ∗ := max{λ2, |λN |}.

However, the eigenvalues of any lazy Markov chain are non-negative, so we do
know that λ∗ = λ2 for our Markov chain. The following result was proved
implicitly by Diaconis and Strook in 1991, and explicitly stated by Sinclair: [12,
Theorem 5’]

Theorem 4.1 (Sinclair). τx(ε) ≤ τrel · poly
(
log(N/ε)

)
. �

So one way to prove that our Markov chain is rapidly mixing is to find a poly-
nomial upper bound on τrel. We need rapid convergence of the process to the
stationary distribution otherwise the method cannot be used in practice.

Kannan, Tetali and Vempala in [7] could prove that the relaxation time of
the Markov chain (G, P) is a polynomial function of the size n := 2k of

(
a,b

)
if it is a regular bipartite degree sequence. Here we extend their proof to show
that the process is rapidly mixing for the half-regular bipartite case.

There are several different methods to prove fast convergence, here we use -
similarly to [7] - Sinclair’s multicommodity flow method ([12]).

Theorem 4.2. Let H be a graph whose vertices represent the possible states of
a time reversible finite state Markov chain M, and where (U, V) ∈ E(H) iff the
transition probabilities of M satisfy P (U |V)P (V |U) 6= 0. For all X 6= Y ∈ V (H)
let ΓX,Y be a set of paths in H connecting X and Y and let πX,Y be a probability
distribution on ΓX,Y . Furthermore let

Γ :=
⋃

X 6=Y ∈V (H)

ΓX,Y

where the elements of Γ are called paths. We also assume that there is a sta-
tionary distribution π on the vertices V (H). We define the capacity of an edge
e = (W,Z) as

Q(e) := π(W)P (Z|W)

and we denote the length of a path γ by |γ|. Finally let

κΓ := max
e∈E(H)

1
Q(e)

∑
X,Y ∈V (H)

γ∈ΓX,Y : e∈γ

π(X)π(Y)πX,Y(γ)|γ|. (4.1)

Then
τrel(M) ≤ κΓ (4.2)

holds. �

6

We are going to apply Theorem 4.2 for our Markov chain (G, P). Using the
notation |V (G)| := N , the (uniform) stationary distribution has the value π(X) =
1/N for each vertex X ∈ V (G). Furthermore each transition probability has the
property P (X|Y) ≥ 1/n4 (recall that n = k + l, that is n denotes the number of
the vertices of any realization). So if we can design a multicommodity flow such
that each path is shorter then an appropriate poly(n) function, then simplifying
inequality (4.1) we can turn inequality (4.2) to the form:

τrel ≤
poly(n)
N

 max
e∈E(H)

∑
X,Y ∈V (H)

γ∈ΓX,Y : e∈γ

πX,Y(γ)

 . (4.3)

If Z ∈ e, then ∑
X,Y ∈V (H)

γ∈ΓX,Y : e∈γ

πX,Y(γ) ≤
∑

X,Y ∈V (H)
γ∈ΓX,Y : Z∈γ

πX,Y(γ), (4.4)

so we have

τrel ≤
poly(n)
N

 max
Z∈V (H)

∑
X,Y ∈V (H)

γ∈ΓX,Y : Z∈γ

πX,Y(γ)

 . (4.5)

We make one more assumption. Namely, that for each X,Y ∈ V (G) there is
a non-empty finite set SX,Y (which draws its elements from a pool of symbols)
and for each s ∈ SX,Y there is a path Υ (X,Y, s) from X to Y such that

ΓX,Y = {Υ (X,Y, s) : s ∈ SX,Y }. (4.6)

It can happen that Υ (X,Y, s) = Υ (X,Y, s′) for s 6= s′, so we consider ΓX,Y as a
“multiset” and so we should take

πX,Y (γ) =

∣∣{s ∈ SX,Y : γ = Υ (X,Y, s)
}∣∣

|SX,Y |

for γ ∈ ΓX,Y .

Putting together the observations and simplifications above we obtain the
Simplified Sinclair’s method:
For each X 6= Y ∈ V (G) find a non-empty finite set SX,Y and for each s ∈ SX,Y
find a path Υ (X,Y, s) from X to Y such that

• each path is shorter than an appropriate poly(n) function,

• for each Z ∈ V (G)

∑
X,Y ∈V (G)

∣∣{s ∈ SX,Y : Z ∈ Υ (X,Y, s)
}∣∣

|SX,Y |
≤ poly(n) ·N. (4.7)

Then our Markov chain (G, P) is rapidly mixing.

7

5 Multicommodity flow - general considerations

Our construction method for multicommodity flow commences on the trail of
Kannan, Tetali and Vempala ([7]), and Cooper, Dyer and Greenhill ([2]). How-
ever the main difference among these papers lies in the method of the construction
of the multicommodity flow.

We fix a bipartite graphical sequence
(
a,b

)
, and consider the graph G where

the vertices of G are the realizations of
(
a,b

)
, while the edges correspond to the

possible swap operations. Therefore if X ∈ G, then X is a simple bipartite graph
(U, V ;E(X)), where U and V are fixed finite sets.

We can outline the construction of the path system from X ∈ G to Y ∈ G as
follows:

(Step 1) We decompose the symmetric difference ∆ of E(X) and E(Y) into
alternating circuits:

W1,W2 . . . ,Wks .

The construction uses the method of [2] to parameterize all the possible
decompositions (see Subsection 5.1). Roughly speaking, the parameter
set SX,Y will be the collection of all pairings of edges E(X) \E(Y) and
E(Y) \ E(X) adjacent to w, for all w ∈ U ∪ V .

(Step 2) We decompose every alternating circuit Wi into alternating cycles

Ci1, C
i
2 . . . , C

i
ki ,

and we will construct the canonical path from X to Y in such a way
that first we switch the edges E(X) \ E(Y) and E(Y) \ E(X) in Ci1,
then in Ci2, etc.

Let Z denote an arbitrary vertex along the canonical path. To ap-
ply Sinclair’s method we will need that the elements of SX,Y can be
reconstructed from elements of S∆∩E(Z),∆\E(Z) (using another small
parameter set). In [2] the authors could prove that the elements of
SX,Y are “almost” in S∆∩E(Z),∆\E(Z). Unfortunately, it is not true for
our construction. This is the reason that we should introduce a much
more complicated “reconstruction” method in Subsection 5.2 below.

5.1 Alternating circuit decompositions

Before we start this subsection we should recall some definitions:

Definition 5.1. In a simple graph, a sequence of pairwise disjoint edges e1, . . . , et
forms a circuit iff there are vertices v1, . . . , vt such that ei = (vi, vi+1) (the sum-
mation is performed modulo t). This circuit is a cycle iff the vertices v1, . . . , vt
are pairwise distinct.

Now let K = (W,F ∪ F ′) be a simple graph where F ∩ F ′ = ∅ and assume
that for each vertex w ∈ W the F -degree and F ′-degree of w are the same:
d(w) = d′(w) for all w ∈ W . An alternating circuit decomposition of (F, F ′) is a
circuit decomposition such that no two consecutive edges of any circuit are in F or
in F ′. Next we are going to parameterize the alternating circuit decompositions.

8

The set of all edges in F (in F ′) which are incident to a vertex w is denoted
by F (w) (by F ′(w), respectively).

If A and B are sets, denote by [A,B] the complete bipartite graph with classes
A and B. Let

S(F, F ′) =
{
s : s is a function, dom(s) = W , and for all w ∈W

s(w) is a 1-factor of the complete bipartite graph [F (w), F ′(w)]
}
. (5.1)

Lemma 5.2. There is a natural one-to-one correspondence between the elements
of S(F, F ′) and the family of all alternating circuit decompositions of (F, F ′).

Proof. If C = {C1, C2, . . . , Cn} is an alternating circuit decomposition of (F, F ′),
then define sC ∈ S(F, F ′) as follows:

sC(w) :=
{(

(w, u), (w, u′)
)
∈ [F (w), F ′(w)] :

(w, u) and (w, u′) are consecutive edges in some Ci ∈ C
}
. (5.2)

On the other hand, to each s ∈ S(F, F ′) assign an alternating circuit decomposi-
tion

Cs = {W s
1 ,W

s
2 . . . ,W

s
ks}

of (F, F ′) as follows: Consider the bipartite graph F =
(
F, F ′, R(s)

)
, where

R(s) =
{(

(u,w), (u′, w)
)

: w ∈W and
(
(u,w), (u′, w)

)
∈ s(w)

}
.

F is a 2-regular graph because for each edge (u, v) ∈ F ∪ F ′ there is exactly one
(u,w) ∈ F ∪ F ′ with

(
(u,w), (u,w)

)
∈ s(u), there is exactly one (t, v) ∈ F ∪ F ′

with
(
(u, v), (t, v)

)
∈ s(v), therefore the F-neighbors of (u, v) are (u,w) and (t, v).

F is a 2-regular, so it is the union of vertex disjoint cycles {W s
i : i ∈ I}. Now

W s
i can also be viewed as a sequence of edges in F ∪ F ′, which is an alternating

circuit in 〈W,F ∪ F ′〉, so {W s
i : i ∈ I} is an alternating circuit decomposition of

(F, F ′). Since
sCs = s,

we proved the Lemma. �

If the F -degree sequence (and therefore the F ′-degree sequence) is d1, . . . dk, then
write

tF,F ′ =
k∏
i=1

(di!). (5.3)

Clearly ∣∣S(F, F ′)∣∣ = tF,F ′ .

9

5.2 Cycle decompositions and circuit reconstructions

In this subsection we make preparations for constructing our multicommodity
flow: we describe how we decompose an alternating circuit into alternating cycles.

The problem of this venture is the following: we know along the process the
symmetric difference of the edge sets of realizations X and Y but we do not
know the distribution of the edges among E(X) and E(Y). If the alternating
circuit under investigation is large then its cycle decomposition can contain a
linear number of alternating cycles. Each cycle consists of an even number of
edges, equally distributed between X and Y . Along the process each cycle needs
a parameter representing whether that particular cycle was already processed or
not (which, in turn, tells which edges belong to X and Y). Therefore along all
decompositions the set of all possible parameter values can be exponentially big,
which is not suitable to prove fast mixing property. Therefore we need to find
another way to deal with the reconstruction problem. We can proceed as follows:

Let x = (x1, x2, . . . , xm) be a sequence, then we write ←−x = (xm, . . . , x2, x1) for
the oppositely ordered sequence. (Here we consider ←−. to be an operator.)

Assume that K = (W,F ∪ F ′) is a simple bipartite graph where F ∩ F ′ = ∅
(in our applications we have |F | = |F ′|), and the sequence

e = (e1, e2, . . . , em)

of edges is an (F, F ′)-alternating trail in K, (i.e. no two consecutive edges from e
are in F or in F ′, moreover the edges in e are pairwise different). In this subsec-
tion we also use extensively the notation e = e1e2 · · · em for the same sequence.
When e′ and e′′ are two sequences, then e′e′′ stands for their concatenation. We
will write ei = vivi+1. We will also use b(ei) = vi (for the bottom of the edge) and
t(ei) = vi+1 (for the top of the edge, considering the actual orientations along
the trail). So b(ei+1) = t(ei), and t(em) = b(e1) iff e is a circuit.

We will use the notations e(i) = ei and ve(j) = vj for 1 ≤ i ≤ m and
1 ≤ j ≤ m + 1 (the ith edge and the jth vertex of the trail). If c = ei · · · ej is
a consecutive subsequence of e, we will also write b(c) = b(ei) and t(c) = t(ej).
Finally first(e′) denotes the first edge, while last(e′) denotes the last edge of trail
e′.

Now let f be a coloration of the edges along the trail f : e → {green, red}.
One can imagine it as an indicator whether the edges were processed already
along the transformation of the realization X into realization Y. (Green edges
are ready for processing while red edges are processed already.)

For 1 ≤ i < j ≤ m denote greenf [ei, ej] the (not necessarily consecutive)
subsequence of greenf edges from the sequence ei · · · ej . (The notation greenf
is a shorthand for greenf [e1, em], and the notations redf [ei, ej] are defined anal-
ogously.) We will maintain the following property along our algorithm:

(£) any maximal consecutive red subsequence in e forms a closed alternating
trail.

Let f be a coloration on the current alternating trail e satisfying property (£).
Furthermore let

j = min{j : ∃i < j greenf [ei, ej] is a cycle}, (5.4)

10

and let
i = max{i : greenf [ei, ej] is a cycle}. (5.5)

Since e is not necessarily a closed trail therefore such j does not always exist.
However if e is a closed trail and greenf is not empty, then such j exists. Indeed,
if a closed trail is deleted from a bigger closed trail then the remnant is a closed
trail. Furthermore it is clear that integer j determines uniquely the green cycle
ending at ej . However before this cycle (along the original circuit) there may be
several red edges. Therefore there may be several different integer i defining the
same green cycle. One way to handle this fact is equation (5.5).

Now we are ready to introduce our main tool to control the decomposition of an
alternating circuit into alternating cycles.

For that end we define the operator T on the edges of trail e and the current
coloration f (satisfying condition (£)) as follows:

Definition 5.3. T(e, f) will be a triple (e′, f ′, C′), where

(i) C′ is the alternating cycle in e defined by equalities (5.4) and (5.5), so

C′ = greenf [ei, ej];

(ii) e′ is an alternating trail obtained by rearranging the edges from e as ex-
plained below;

(iii) f ′ : e′ → {green, red} is defined with

redf ′ = redf ∪ C′.

If j is undefined, then T(e, f) is undefined. Let us remark that the length of C′
is even, because (K,F ∪ F ′) was a bipartite graph, so C′ is an alternating cycle.

We introduce the following notation:

T(e, f) = e′, f(e, f) = f ′, and C(e, f) = C′.

What is missing is the description of the new alternating trail e′. Next we
do just that. (Let’s recall that two sequences written next to each other denotes
their concatenation.) Write

[ei, ej] = g1r1 · · · rk−1gk,

where
greenf [ei, ej] = g1g2 · · ·gk−1gk

and
redf [ei, ej] = r1r2 · · · rk−1.

In words: the gi and ri represent the maximal consecutive greenf and redf
subsequences. Let

i′ =

{
min
`
{` < i : [e`, ei−1] is redf}, if f(ei−1) = redf ,

i, otherwise.

11

Furthermore let

j′ =

{
max
`
{` > j : [ej+1, e`] is redf}, if f(ej+1) = redf ,

j, otherwise.

We define

r− =
{

[ei′ , ei−1], if i′ < i,
∅, if i′ = i;

and

r+ =
{

[ej+1, ej′], if j′ > j,
∅, if j′ = j.

Let
e′ = e1 · · · ei′−1r+←−gkrk−1

←−−gk−1 · · · r1
←−g1r−ej′+1 · · · em. (5.6)

This last formula requires some explanation: the cycle C′ consists of the greenf
segments of [ei, ej]. All the redf segments form alternating closed trails that were
processed earlier. We may assume without loss of generality, that the very first
edge ei belongs to F, consequently the last edge ej belongs to F ′.

When we finish the required swap operations exchanging the edges from F
into edges from F ′ along cycle C′ (and transferring the actual degree realization
closer to realization Y), then listing the edges of C′ in the same way as before
would not produce an alternating closed trail anymore. To form an alternating
trail again we must consider the edges of C′ in the opposite order. This is done
by the subsegments ←−gis. Listing C′ in opposite order must list the closed trails
ris also in opposite order (see (5.6)), which in turns takes care automatically for
keeping the alternating order of edges from F and F ′.

One can ask the reason to exchange r− and r+ since this is not necessary to
keep the trail alternating. This reason lies in equation (5.10).

By induction on i ∈ N, we can define Ti(e, f) and f i(e, f) as follows: T0(e, f) :=
e, f0(e, f) := f , and

Ti(e, f) := T
(
Ti−1(e, f), f i−1(e, f)

)
and f i(e, f) := f

(
Ti−1(e, f), f i−1(e, f)

)
for i > 0. Let us remark that Ti(e, f) and f i(e, f) are not necessarily defined.

Now we are ready to describe the control mechanism to govern the swap sequence
to change the edges of the current realization belonging to F into the edges
belonging to F ′ along the alternating closed trail e. For that end denote g the
constant green function on e, i.e. greeng = [e1, em], furthermore let e0 := e
and f0 := g. Now we define the sequence

(e1, f1, C1), (e2, f2, C2), . . . , (en, fn, Cn)

by the formula
(e`+1, f`+1, C`+1) := T(e`, f`)

for ` = 0, 1, We stop when T(en, fn) is undefined. We define n(e) := n and
observe that

Ti(e, g) = ei and f i(e, g) = fi for 0 ≤ i ≤ n(e). (5.7)

12

We also define the sequence

(F0, F
′
0), (F1, F

′
1), . . . , (Fn, F ′n)

of partitions of F ∪ F ′ as follows:

(1) let F0 := F and F ′0 := F ′,

(2) let Fi+1 := Fi ∪ (Ci+1 \ Fi) \ (Ci+1 ∩ Fi) and F ′i+1 := (F ∪ F ′) \ Fi+1.

It is easy to see, and we will show formally in Lemma 5.5, that if e is a circuit
then C1, . . . , Cn(e) will be a circuit decomposition of e. Later we will use this
decomposition to obtain our canonical path system.

We will prove a series of observations. We start with some easy direct conse-
quences of definitions (5.4), (5.5) and (5.6):

Lemma 5.4. Using the notation ei = Ti(e, g) and fi = f i(e, g) for 0 ≤ i ≤ n(e),
during the algorithm, at any given iteration κ we have:

(i) in the current alternating trail eκ−1 the edge ejκ is after all redfκ−1 edges,
where jκ denotes the value j used in the κth iteration of the construction;

(ii) for any red edge the size of the maximal red subsequence containing it cannot
decrease;

(iii) the number of maximal red subsequences can be increased by at most one,
but can drop to 1. �

Lemma 5.5. Using the notation ei = Ti(e, g) and fi = f i(e, g) for 0 ≤ i ≤ n(e),
for each 0 ≤ ν ≤ n(e) we have:

(i) maximal redfν intervals [eν(k), eν(`)] in eν are circuits (recall, eν(d) is the
dth edge along eν);

(ii) the edge sequence eν is a trail which alternates between Fν and F ′ν ;

(iii) veν (1) = ve(1) and veν (m+ 1) = ve(m+ 1) (these are the very first and
very last vertices in e);

(iv) greenfν [eν] is a trail from ve(1) to ve(m+ 1) (while only just a part of the
edges of eν are green they still provide an alternating trail between those
vertices).

(v) if e is circuit, then fn(e) is the constant red function, i.e. we processed all
edges, while C1, . . . , Cn is an alternating cycle decomposition of e.

Proof. We prove the statements by induction on ν. For ν = 0 the statements are
trivial because greenf0 = [e1, em]. Consider now the inductive step ν − 1 → ν.
Assume that

eν−1 = e1 · · · ei′−1r−g1r1 · · ·gk−1rk−1gkr+ej′ · · · em (5.8)

and
eν = e1 · · · ei′−1r+←−gkrk−1

←−−gk−1 · · · r1
←−g1r−ej′ · · · em.

13

(Here it is important to recall, that when r− and/or r+ is empty, then i′ = i− 1
and/or j′ = j + 1. If some of these cases apply, then the corresponding remarks
on r− and r+ are void.)
(i) The intervals r` are maximal red intervals, so by the inductive assumption
they are circuits, i.e. b(r`) = t(r`). Moreover, by the construction, the first
vertex of g1 and the last vertex of gk are the same: b(g1) = t(gk), and g` is a
path from b(g`) to t(g`). Since t(g`) = b(r`) = t(r`) = b(g`+1), we have that

c = ←−gkrk−1
←−−gk−1 · · · r1

←−g1

is a redfν circuit.
To finish the proof of (i) there is only one remaining case: if the maximal redfν

interval [el, e`] in eν properly contains the interval [ei, ej]. (This is the case when
at least one of r− and r+ are not empty.) Then both [el, ei−1] and [ej+1, e`] are
maximal redfν−1 intervals in eν−1 so [el, ei−1] = r− and [ej+1, e`] = r+, therefore
[el, ei−1] = r−[ei, ej]r+ is the concatenation of at most three circuits (since r−

or r+, but not both, can be empty), so it is also a circuit.
(ii) The vertices vr−(1) = vr+(1) = vg1(1) are identical in eν−1. Therefore ei′ ∈
Fν−1 if and only if ej+1 ∈ Fν−1, and the same applies for the edges lastν−1(r−) =
ei−1 and lastν−1(r+) = ej′ . (Here the index in lastν−1() refers to the order of
the trail eν−1.) So, since e1 · · · ei′−1r− an alternating trail in eν−1 therefore the
same applies for e1 · · · ei′−1r+ (and analogously for r−ej′+1 · · · em) in eν . In other
words it makes no difference in the behavior (relating to the sub-trail [ei, ej]) of
the trails [e1, ei−1] and [ej+1, em] whether r− and/or r+ is/are empty.

Furthermore we have

t(e1 · · · ei′−1r+) = b(g1) = b(c) = t(gk) = t(c) = b(r−ej′+1 · · · em),

so eν is a trail.
Next we check whether eν alternates between Fν and F ′ν . Since we have Fν ∩

{e0 · · · ei′−1∪r+} = Fν−1∩{e0 · · · ei′−1∪r+}, the interval e0 · · · ei′−1r+ alternates
between Fν and F ′ν and the analogous statements holds for r−ej′+1 · · · em.

We know that

ei−1 ∈ Fν−1 ⇔ ei ∈ F ′ν−1 ⇔ ej ∈ Fν−1,

since [ei, ej] is a circuit in eν−1. We also have that

ej′ ∈ Fν ⇔ ei ∈ Fν ⇔ ej ∈ F ′ν .

Since ej is the first edge of ←−gk, the path e0 · · · ei′−1r+←−gk alternates between Fν
and F ′ν .

Assume that rk−1 = ep · · · er. Then

ep ∈ Fν−1 ⇔ er ∈ F ′ν−1 ⇔ er+1 ∈ Fν−1.

Thus
ep ∈ Fν ⇔ er ∈ F ′ν ⇔ er+1 ∈ F ′ν .

Therefore the path e1 · · · ei′−1r+←−gkrk−1 alternates between Fν and F ′ν because
lastν(←−gk) is er+1 and firstν(rk−1) is ep.

14

Repeating the arguments above we obtain that the whole path eν alternates
between Fν and F ′ν which finishes the proof of (ii).
(iii) Here everything is trivial - except if i = 1 and/or j = m. By symmetry, it
is enough to study one of these, let say j = m. Then the last segment of eν is
r+←−gk · · ·←−g1r− which is a circuit, so the current end point of eν is the same as the
original end point of eν−1.

(iv) All maximal redfν intervals are circuits, therefore removing them one by
one from eν does not destroy the connectivity in greenfν from b(eν) to t(eν) (as
far as there are green edges).
(v) It follows immediately from (iii) and (iv): a non-empty green remainder is a
circuit, so the process will not finish while there still exists some green remainder.
Consequently ν < n(e). �

Lemma 5.6. Using the notation ei = Ti(e, g) and fi = f i(e, g) for 0 ≤ i ≤ n(e),
the followings hold.

(a) For each 0 ≤ ν ≤ n and 1 ≤ r < s ≤ m, if eν(r) is greenfν and eν(s) is
redfν , then b(eν(r)) 6∈ eν(s).
(b) Furthermore if eν(r′) is also greenfν where r < r′ < s, then b(eν(r)) 6=
t(eν(r′)).

Proof. To prove (a) assume on the contrary that for some 1 ≤ r < s ≤ m we
have b(eν(r)) ∈ eν(s), eν(r) is greenfν and eν(s) is redfν .

Consider a counterexample where ν is minimal. Assume that

eν−1 = e1 · · · ei′−1r−g1r1 · · ·gk−1rk−1gkr+ej′+1 · · · em

and
eν = e1 · · · ei′−1r+←−gkrk−1

←−−gk−1 · · · r1
←−g1r−ej′+1 · · · em.

The edge sequence g1r1 · · ·gk−1rk−1gk (in eν−1) is a circuit.
Since eν(r) is unprocessed in eν therefore eν(r) ∈ e0 . . . ei′−1 ∪ ej′+1 · · · em.

Furthermore eν(s) ∈ ←−gk ∪←−−gk−1 ∪ · · · ∪ ←−g1 otherwise its color would be the same
under fν−1 and fν therefore ν would not be a minimal counterexample. But then
the property r < s infers that eν(r) ∈ e0 . . . ei′−1.

Moreover b(eν−1(r)) = b(eν(r)) 6= b(ei) = t(ej). Indeed, if r− is not empty,
then eν−1(r) and ei−1 would form a counterexample to 5.6(a) in eν−1, which
contradicts the minimality of ν (the other case is similar). If both r− and r+

are empty, then [eν−1(r), eν−1(i− 1)] would be a circuit and it would contain a
greenfν cycle, a contradiction to the definition of Cν (in eν−1).

Therefore b(eν(r)) must be an inner vertex of the cycle ei . . . ej . Now if
this vertex is not the last vertex of a ←−g`, that is we have b(eν(r)) = b(eν(s))
then greenfν−1

[eν−1(r), eν−1(s)] would be a circuit, containing a greenfν−1
cycle

with smaller maximal element than ej , which contradicts to the definition of Cν
in eν−1. Finally, if this vertex is the last vertex of a ←−g` then it is also the first
vertex of r`−1 therefore edges (eν(r)) and first(r`−1) would form already in eν−1

the forbidden configuration of the statement, contradicting the minimality of ν.
The proof of (b) uses a similar argument. �

Lemma 5.7. Assume that for some r ≥ 0,

Tr(e, g) = g1r1g2r2 . . . rkgk+1, (5.9)

15

where the first and/or the last green subsequence can be empty. Then

e = g1
←−r1g2

←−r2 . . .
←−rkgk+1, (5.10)

so we obtain back the original edge sequence e.

It is important to understand that here we do not have any realization in the
background (and no alternation is considered on the edges), we consider only the
order of the edges. The operations above are nothing else, just turning back all
maximal redfr(e) intervals in Tr(e, g).

Proof. We apply mathematical induction on r. For r = 0 the statement is trivial
because T0(e, g) = e = g1.

Now we assume that the statement is true for (r − 1) and we are going to
prove it for r. For that end assume that

Tr−1(e, g) = g1r1 · · · r−gtrt · · · ru−1gur+︸ ︷︷ ︸gu+1 · · · · · · rkgk+1. (5.11)

where the formulas 5.4 and 5.5 select the intervals r−gtrt · · · ru−1gur+ to process
(where r− and/or r+ can be empty).

To compute Tr(e, g) we should check if r− and r+ are empty or not. Al-
together there are four cases to investigate, however the properties of one end
of the sequence of Cr does not influence the other end, therefore it is enough to
consider one “generic case”, say, when r− is empty but r+ is not empty. Then

Tr(e, g) = g1r1 · · · r+←−guru−1
←−−−gu−1 · · · rt←−gt︸ ︷︷ ︸

red in fr(e, g)

gu+1 · · · · · · rkgk+1. (5.12)

Now r+←−guru−1
←−−−gu−1 · · · rt←−gt is a maximal red interval in fr(e, g). When we “turn

back” the fr(e, g)-red maximal intervals in Tr(e, g) we get:

g1
←−r1 · · ·gt−1

(←−−−−−−−−−−−−
r+←−guru−1 · · · rt←−gt

)
gu+1

←−−ru+1 · · · · · ·←−rkgk+1 =

g1
←−r1 · · ·gt−1

(
gt←−rt · · ·gu−1

←−−ru−1gu
←−
r+
)
gu+1 · · · · · ·←−rkgk+1 =

g1
←−r1 · · ·gt−1gt←−rt · · ·gu−1

←−−ru−1gu
←−
r+gu+1 · · · · · ·←−rkgk+1 = e (5.13)

where (5.13) is just the inductive assumption. �

Lemma 5.8. Let e′ = Tr(e, g) for some r ≥ 0, and assume that (5.9) holds, and
define n` := n(r`) for 1 ≤ ` ≤ k. Furthermore let t0 = 0 and t` := n1 + · · ·+ n`
for all 1 ≤ ` ≤ k. Then

Tt`(e′, g) = g1
←−r1 . . .g`←−r`g`+1r`+1 · · · rkgk+1.

Remark 5.9. It is important to emphases that there is no reason that the algo-
rithm running on e′ would provide the same cycle decompositions of circuits ri
as the the same algorithm, running on the original e would do. As a matter of
fact one can construct example where this is not the case.

16

Proof of the Lemma 5.8. We apply induction on `. For ` = 0 there is no pro-
cessed edge in e′, moreover t0 = 0, so nothing to prove. So assume that ` ≥ 1
and we know the statement for `− 1. For v = 0, . . . , n` let τv := t`−1 + v. We are
going to show that

Tτv (e′, g) = g1
←−r1 · · ·←−−r`−1g`Tv(r`, g)g`+1r`+1 · · ·gk+1. (5.14)

In words: iterations t`−1 +1, . . . , t` of our algorithm work on r` and completely
process it, furthermore at each iteration we have

fτv (e′, g)
∣∣
r` = fv(r`, g). (5.15)

We prove it with induction on v. When v = 0 then we have nothing to prove,
since case τ0 coincides with t`−1. Assume now that (5.14) and (5.15) hold for
τv−1 and prove it for τv = τv−1 + 1.

Now we compute

Tτv (e′, g) = T
(
Tτv−1(e′, g), fτv−1(e′, g)

)
.

Let jτv and iτv be the natural numbers j and i given by formulas (5.4) and (5.5)
for Tτv−1(e′, g) and fτv−1(e′, g)).

By Lemma 5.4 (i) the current ejτv , the jτv th element of Tτv−1(e′, g), is after
all redfτv−1 (e′,g)) edges. However it is within r` since the original execution of
our algorithm producing e′ fully processed the closed trail r` while in Tτv−1(e′, g)
it is not achieved yet: there exists at least one unprocessed cycle. Finally, for the
same reason, eiτv , the iτv th element of Tτv−1(e′, g), also should be in [r`]. So we
know that [eiτv , ejτv] (computed in Tτv−1(e′, g)) is inside r`.

Thus, by the inductive hypothesis (5.15), the operation T described in Defini-
tion 5.3 pick the same circles for Tτv−1(e′, g) and fτv−1(e′, g), and for Tv−1(r`, g)
and fv−1(r`, g), i.e.,

C
(
Tτv−1(e′, g), fτv−1(e′, g)

)
= C

(
Tv−1(r`, g), fv−1(r`, g)

)
.

which, in turns, proves (5.15) and (5.14) for τv. �

Now we are ready to formalize the center piece of our control mechanism to govern
the construction of the required multicommodity flow (or, in other words, the
swap sequences between different realizations). With the previous definitions one
can quantify the size of a parameter set to follow the current status of the cycles
in the decomposition of the alternating circuit e. It clearly can be exponentially
big, so this cannot prove fast mixing time.

However, we do not need to know the status of those cycles. What we really
have to know is the original trail e. And, surprisingly enough, we can determine
it with high probability. More precisely the following property holds:

Theorem 5.10. If e is a circuit, and 0 ≤ s ≤ n(e), then

Ts(Tr(e, g), g) = e (5.16)

for some 0 ≤ s ≤ n(Tr(e), g).

17

Proof. Write e′ = Tr(e, g) and assume (5.9) that is

e′ = g1r1g2r2 . . . rkgk+1.

The application of Lemma 5.8 for ` = k proves the statement noting Lemma 5.7.
�

What this statement says is the following. Assume that we performed a
certain amount of swaps along the cycle decomposition of the original alternating
circuit (using our decomposition algorithm) and we have the alternating circuit
Tr(e, g) in our hands. Then, if we consider this alternating circuit as a totally
fresh one and we use our decomposition algorithm, furthermore we perform our
swap operations along this decomposition, then this procedure will process the
red r` subsequences one by one. But our problem here is that we do not know -
yet - when this procedure processes fully all necessary rks. In other words: when
we should halt the algorithm.

However knowing the number of processed edges in the fully processed circuits
of e′ completely solves this problem, since we can use this parameter to halt
our algorithm on e′. And the size of the set of the possible numbers is simply
quadratic. This set together with the polynomial running time of the algorithm
named in (5.16) provides a polynomial means to determine e with its alternations.

One can ask the reason why this newly developed method is so effective. In
the attempted approach described shortly at the beginning of Subsection 5.2 we
tried to deal with all possible cycle decompositions of the circuits (this consist
of all cycles and all their order). Analysis of the new method only requires
consideration of a quadratic number of possible cycle decompositions.

5.3 Construction

If X,Y ∈ V (G) let E(X4Y) be the symmetric difference of the edge sets E(X)
and E(Y), set E(X − Y) = E(X) \ E(Y), and E(Y −X) = E(Y) \ E(X).

Before we describe the construction of our multicommodity flow we need some
further definitions:

Definition 5.11. For T ∈ V (G) let MT be the bipartite k× l adjacency matrix
of T . For X,Y, Z ∈ V (G) write M̂(X + Y − Z) = MX +MY −MZ . (As we will
see in the proof of the Key Lemma, these k × l matrices essentially encode the
paths from X to Y along Z.)

If M and M ′ are m×m′ matrices then let d(M,M ′) be the number of non-zero
elements in M −M ′ (the well-known Hamming distance).

Outline of the construction of the path system. Fix a total order � on
U × V. This will induce a total order �′ on all subsets of that product (namely
we take the induced lexicographic order), in particular also on circuits in [U, V].
This will also induce a total order �∗ on all sets of circuits in [U, V] (we can take
again the induced lexicographic order).

For each X 6= Y ∈ V (G) do the following.

18

(A) Let SX,Y = S(E(X−Y), E(Y −X)). (This notation was introduced at (5.2).)
To each s ∈ S(E(X − Y), E(Y − X)) consider the unordered alternating
circuit decomposition Cs of (E(X − Y), E(Y − X)). (This is described in
Lemma 5.2.)

(B) Order Cs using �′ to obtain the ordered alternating circuit decomposition

W s
1 ,W

s
2 . . . ,W

s
ks

of (E(X − Y), E(Y −X)).

(C) Every W s
i is an alternating circuit in the bipartite graph (U ∪ V,E(X −

Y) ∪ E(Y − X)). Consider the enumeration e1 . . . em of W s
i , where e1 is

the ≺′-minimal edge in W s
i , and e2 is the smaller edge for ≺′ among its

two neighboring edges, while em is the bigger. (This fixes uniquely the trail
which traverses this circuit.) Now we can apply the method of Subsection
5.2 to determine the cycle decomposition of W s

i for 1 ≤ i ≤ ks:

Cs,i1 , Cs,i2 , . . . , Cs,i`s,i .

Actually, we obtain cycle Cs,ij as a sequence of edges. We keep this order to
process Cs,ij further in (F).

(D) Let
C1, C2, . . . , Cms .

be the short hand notation for the (alternating) cycle decomposition

Cs,11 , Cs,12 , . . . , Cs,1`s,1 , C
s,2
1 , Cs,22 , . . . , Cs,2`s,2 , . . . , C

s,ks
1 , Cs,ks2 , . . . , Cs,ks`s,ks

of E(X 4 Y). We will call it a canonical cycle decomposition.

(E) For each cycle C in this decomposition we inherit an enumeration of that
cycle (see (C)), which also determines a direction on the cycle. So for a, b ∈ C
we can define [a, b]C as the trail from a to b in C according to this fixed
direction.

The following observation plays a crucial role in our method:

Observation 5.12. The function s itself determines this canonical decomposi-
tion, and also determines the direction of the cycles in the decomposition. So
we do not need to know E(X − Y) and E(Y −X) to compute the Cs,ij , or even
[a, b]Cs,ij from s.

(F) Let Υ (X,Y, s) be a path of realizations

X = G0, G1, . . . , Gn1 , Gn1+1, . . . , Gn2 , . . . , Gnms = Y (5.17)

in G from X to Y such that

(a) nms ≤ c · n2,

(b) E(Gni) =
(
E(Gni−1) ∪ (E(Y) ∩ E(Ci)

)
\
(
E(X) ∩ E(Ci)

)
for i =

1, 2, ...,ms,

19

(c) if for i < ms we denote the first vertex of the cycle Ci+1 in the order
inherited from the construction by ai+1, then for each ni ≤ j ≤ ni+1

there is is a vertex bj in Ci+1 such that∣∣E(Gj)4 F
∣∣ ≤ Ω1,

where

F =
(
E(Gni) ∪

(
[ai+1, bj]Ci+1 ∩ E(Y)

)
\
(
[ai+1, bj]Ci+1 ∩ E(X)

))
,

(d) for each j = 1, 2, . . . , nms there is T ∈ V (G) such that

d
(
M̂(X + Y −Gj),MT

)
≤ Ω2,

where c,Ω1 and Ω2 are fixed “small” natural numbers. (Recall here, that
by the definition of the Markov chain, in this path each graph G`+1 is con-
structed from the previous one G` by a valid swap operation.)

Key Lemma 5.13. Let X 6= Y ∈ G. If we can assign paths〈
Υ (X,Y, s) : s ∈ S(E(X − Y), E(Y −X)), X, Y ∈ V (G)

〉
according to (A)-(F) then (4.7) holds and so our Markov chain is rapidly mixing.

Proof of the Key Lemma: Fix Z ∈ V (G). We need to prove (4.7):

∑
X,Y ∈V (G)

∣∣{s ∈ SX,Y : Z ∈ Υ (X,Y, s)
}∣∣

|SX,Y |
≤ poly(n) ·N.

Let

M =
{
M̂(X+Y −Z) : Z ∈ Υ (X,Y, s) for some X,Y ∈ V (G) and s ∈ S(X,Y)

}
.

By (F)(d) for each M̂ = M̂(X + Y − Z) ∈ M there is T ∈ V (G) such that
d(M̂(X + Y − Z),MT) ≤ Ω2, i.e. there are at most Ω2 positions where MT and
M̂(X + Y − Z) are different, so we have at most (n2)Ω2 = n2Ω2 difference sets.
Furthermore every entry of M̂(X + Y −Z) lies in the set {−1, 0, 1, 2}, so a fixed
difference set we have most 3Ω2 possibilities. So

|M| ≤ |V (G)| · n2Ω2 · 3Ω2 ≤ poly(n) · |V (G)| = poly(n) ·N.

For M̂ ∈M let

X(Z, M̂) =
{

(X,Y, s) : s ∈ S(X,Y), Z ∈ Υ (X,Y, s), M̂(X + Y − Z) = M̂
}
.

(5.18)
Since |M| ≤ poly(n) ·N , if we can prove that∑

(X,Y,s)∈X(Z,cM)

1
|SX,Y |

≤ poly(n) (5.19)

20

for all M̂ ∈M, then (4.7) holds.

To verify (5.19) fix M̂ ∈ M. Let (X,Y, s) ∈ X(Z, M̂) be arbitrary. Since MZ +
M̂ = MX +MY , we can compute

∆ = E(X 4 Y)

from Z and M̂ . Denote by (2d1, . . . , 2dh) the degree sequence of E(X4Y). Put

t∆ =
h∏
1

(di!).

Clearly
t∆ = |SX,Y | ,

and so ∑
(X,Y,s)∈X(Z,cM)

1
|SX,Y |

=
∑

(X,Y,s)∈X(Z,cM)

1
t∆

=

∣∣∣X(Z, M̂)
∣∣∣

t∆
.

Thus to prove (5.19) we need to show that∣∣∣X(Z, M̂)
∣∣∣ ≤ poly(n) · t∆. (5.20)

Let
S =

{
s : for some (X,Y) we have (X,Y, s) ∈ X(Z, M̂)

}
. (5.21)

To get (5.20) it is enough to show the following statement.

Lemma 5.14. For each possible Z and the corresponding set S we have:

(a) |S| ≤ poly(n) · t∆,

(b) for each s ∈ S we have∣∣∣{(X,Y) : (X,Y, s) ∈ X(Z, M̂)
}∣∣∣ ≤ poly(n). (5.22)

To prove this lemma fix (X,Y, s) ∈ X(Z, M̂). We should recall the construction
of the path Υ (X,Y, s) which can be demonstrated as:

W1, · · · · · · Wk, · · · · · · Wks︷ ︸︸ ︷
Ck1 , · · · , Ck` , · · · , Ck`k︷ ︸︸ ︷
Gk,`1 , · · · , Gk,`m , · · · , Gk,`mk,` (5.23)

where

(1) we consider first the circuit decomposition of (E(X − Y), E(Y −X)) deter-
mined by s:

W1,W2 . . . ,Wks ;

21

(2) then, using the method of subsection 5.2 for each 1 ≤ k ≤ ks we define an
alternating circuit decomposition of Wk:

Ck1 , C
k
2 , . . . , C

k
`k

;

(3) then in (F) for each 1 ≤ k ≤ ks and 1 ≤ ` ≤ `k we define a sequence of
elements of G:

Gk,`1 , . . . , Gk,`m , . . . Gk,`mk,` ,

such that

E
(
Gk,`1

)
=

[
E(Y) ∩

(⋃
k′<k

E(Wk′) ∪
⋃
`′<`

E
(
Ck`′
))] ⋃

E(X) ∩
(⋃
k′>k

E(Wk′) ∪
⋃
`′≥`

E
(
Ck`′
)) , (5.24)

and Gk,`mk,` = Gk,`+1
1 if ` < `k, Gk,`kmk,`k

= Gk+1,1
1 if k < ks, and G

ks,`ks
mks,`ks

= Y

(the equation 5.24 is just a reformulation of (F)(b));

(4) finally Υ (X,Y, s) is the path

X = G1,1
1 , G1,1

2 , . . . , Gk,`m , . . . , G
ks,`ks
mks,`ks

= Y (5.25)

in G from X to Y (see (5.17)). As we observed in (3) above, Gk,`mk,` = Gk,`+1
1

if ` < `k, Gk,`kmk,`k
= Gk+1,1

1 if k < ks. We include just one copies of these
graphs in the sequence above.

Fix k, `, m such that Z = Gk,`m , which means that we are processing the `th cycle
from the kth circuit.

By (F)(c) there are two vertices a and b in Ck` such that∣∣E(Gk,`m)4 F
∣∣ ≤ Ω1, (5.26)

where

F =
(
E
(
Gk,`1

)
∪
(
[a, b]Ck` ∩ E(Y)

)
\
(
[a, b]Ck` ∩ E(X)

))
. (5.27)

To prove Lemma 5.14 (b) we show that

(†) there is a function Ψ and a parameter set B such that B has poly(n) ele-
ments, and for each (X,Y, s) ∈ X(Z, M̂) there is B ∈ B such that

Ψ
(
Z, M̂(X + Y − Z), s, B

)
= (X,Y). (5.28)

Recall that Z = Gk,`m so we have E
(
Gk,`m

)
. If we choose the parameter B as

the quadruple
(
i, a, b, E

(
Gk,`m

)
∆F

)
, then using this parameter we can compute

22

F = E(Gk,`m)∆
(
E(Gk,`m)∆F

)
, and so

E(X) \ E(Y) =
(

[a, b]Ck` \ F
)⋃(

[b, a]Ck` ∩ F
)⋃

[(⋃
k′<k

E(Wk′) ∪
⋃
`′<`

E
(
Ck`′
))
\ F

]⋃F ∩ (⋃
k′>k

E(Wk′) ∪
⋃
`′≥`

E
(
Ck`′
)) .

(5.29)

Since i ≤ n2, a, b ≤ n and
(
E(X) \ E(Y)

)
4 F is an at most Ω1 element subset

of [U ∪ V]2, the size of the parameter set is polynomial:

|B| ≤ n2 · n · n · (n2)Ω1 .

Since Z and M̂(X + Y − Z) determine E(X) ∩ E(Y), we can compute E(X).
Similarly we can compute E(Y). So we verified (†), and so Lemma 5.14 (b) holds.

Now we turn to prove Lemma 5.14 (a). We will do it in steps (a1) – (a3).

(a1) Each function s ∈ S, which corresponds to the circuit decomposition

W1, . . .Wk−1,Wk,Wk+1 . . . ,Wks

(see Lemma 5.2), is computable - using a small parameter set - from func-
tion s′ corresponding circuit decomposition

W1, . . .Wk−1,T`−1(Wk, g),Wk+1 . . . ,Wks .

Indeed, by Theorem 5.10, Tt(T`−1(Wk, g), g) = Wk for some t. So, as we de-
scribed after Theorem 5.10, the parameter k and the number of the processed
edges in circuit Wk together determine fully e, and k ≤ n2 and the number of
processed edges is also ≤ n2. So (a1) holds. �(a1)

We need some preparation before we can formulate and prove (a2): Recall that
Lemma 5.5 (ii) infers

s′ ∈ S
(

∆ ∩ E
(
Gk,`1

)
,∆ \ E

(
Gk,`1

))
.

The sequence
e′ = e1e2 . . . eµ = T`−1(Wk, g)

is an alternating circuit in Gk,`1 . (All circuits of the decomposition with k′ < k
are already fully processed. No circuit after Wk is touched yet. So it is enough
to consider only this.) We use the notations f = f `−1(Wk) and

e′ = g1r1 . . .gu

where gs are maximal greenf , and ro are maximal redf intervals. We know
that the current cycle:

Ck` = greenf [ei, ej]

(for some 0 ≤ i < j ≤ n) is undergoing a series of swaps operations which will
exchange its edges between the realizations X and Y. When this swap sequence is

23

completed then the processing of this cycle in the cycle decomposition of circuit
Wk will be done, and the coloration of its edges will become redf` . Now the
assumption (F)(c) about our swap sequence generation, applying for Gk,`m , gives
us an interval

[a, b]Ck` = greenf [ei, ej′],

for some i ≤ j′ ≤ j.
Assume that ei ∈ go and ej′ ∈ gt. Write go = go,0go,1, where ei is the first

edge of go,1, and write gt = gt,0gt,1, where ej′ is the last edge of gt,0.
Consider the sequence

e′′ = g1r1 . . . ro−1go←−rogo+1 . . .
←−−rt−1gtrt . . .gu.

Now e′′ is the concatenation of three (∆ ∩ F,∆ \ F)-alternating paths. They
are g1r1 . . . ro−1go,0 and go,1←−rogo+1 . . .

←−−rr−1gt,0 finally gt,1rt+1 . . .gu. However
in general this trail is not necessarily alternating, because on the border of gt,0
and gt,1 furthermore on the border of gt,0 and gt,1 is not alternating anymore.
(However, if one or both of the red circuits r− and/or r+ exist then this problem
will not occur there (see equation (5.11)).

(a2) The trail e′ is computable (using a small parameter set) from e′′.

Indeed, e+ = go,1←−ro . . .←−r t−1gt,0 is computable from e′′ because it is a subse-
quence. Since

[ei, ej] = go,1ro . . . rt−1gt,0gt,1 . . . rt+1 . . . ej

is a circuit, we can apply Theorem 5.10 to find some v ≤ n2 such that Tv(e+, g) =
go,1ro+1 . . . rt−1gt,0. Thus [ei, ej] (in e′) is computable from e′′. Since e′ and e′′

agree outside [ei, ej], we proved (a2).
We turn our attention now to the third obstacle: till now we showed that

knowledge of [a, b]Ck` would determine fully s from s′. However we do not know
exactly the sequence s′, since the assumption of (F) (c) allowed that

∣∣E(Gj)4
F
∣∣ ≤ Ω1, so a small number of edges of the current realization are not on the

alternating path determined by s′. Next we will deal with this problem:

(a3) The sequence s′′ corresponding to the circuit decomposition

W1, . . . ,W`−1, e′′,W`+1, . . . ,Wk

is “almost” in S (∆ ∩ E (Z) ,∆ \ E (Z)), (see formula 5.30 below) so it is
computable from some element of S (∆ ∩ E (Z) ,∆ \ E (Z)) using a small
parameter set.

Recall first that Z = Gk,`m . Let

E∗ = (E (Z)4 F) ∪ Ck` (b(ei)) ∪ Ck` (t(ej′)).

The last two expressions stand for the two edge pairs which are adjacent to the
vertices b(ei) and t(ej′) in the actual cycle Ck` . Since Ck` is a cycle indeed, we
have |E∗| ≤ Ω1 + 4 (due to (5.26)).

For w ∈ U ∪ V , let

t(w) = s′′(w) ∩ [(∆ ∩ E (Z)) (w), (∆ \ E (Z)) (w)] ,

24

i.e t(w) is those elements of s′′(w) which alternate between ∆ ∩ E (Z) and ∆ \
E (Z). Since t(w) is a set of independent edges in

H = [(∆ ∩ E(Z)) (w), (∆ \ E (Z)) (w)] ,

we can find a perfect matching extension s∗(w) of t(w) in the complete bipartite
graph H because both side of the H have the same number of vertices. Then for
this perfect matching we have

s∗ ∈ S (∆ ∩ E (Z) ,∆ \ E (Z)) .

Next we show that the difference between s′′ and s∗ is small, namely∑
w∈U∪V

|s′′(w)4 s∗(w)| ≤ 4Ω1 + 16. (5.30)

For that end let w ∈ U ∪ V and (e, e′) ∈ s′′(w) such that e, e′ /∈ E∗. Then, by
the definition of E∗, we have

e ∈ ∆ ∩ E(Z)⇔ e ∈ ∆ ∩ F and e′ ∈ ∆ ∩ E(Z)⇔ e′ ∈ ∆ ∩ F.

So since (e, e′) alternates between ∆∩F and ∆\F , (e, e′) also alternates between
∆∩E(Z) and ∆\E(Z). So (e, e′) ∈ t(w) ⊂ s∗(w), and so (e, e′) /∈ s′′(w)4s∗(w).
Thus∑

w∈U∪V
|s′′(w) \ s∗(w)| ≤∣∣∣ ⋃

w∈U∪V

{
(w, e, e′) : (e, e′) ∈ s′′(w), e ∈ E∗ or e′ ∈ E∗

}∣∣∣ ≤
2 · |E∗| ≤ 2Ω1 + 8. (5.31)

Since |s′′(w)| = |s∗(w)|, we have 2 · |s′′(w) \ s∗(w)| = |s′′(w)4 s∗(w)|, so (5.31)
gives (5.30).

Therefore s∗ together with a small parameter set which describes the sym-
metric differences s′′(w)4 s∗(w) for w ∈ U ∪ V determines completely s′′, thus
(a3) is true as well.

Putting together (a1)–(a3) we obtain

|S| ≤ poly1(n) · poly2(n) · poly3(n) ·
∣∣S(∆ ∩ E(Z),∆ \ E(Z)

)∣∣
= poly(n) · t∆.

So Lemma 5.14 (a) holds, which in turns completes the proof of the Key
Lemma. �

We try to carry out the plan we just described. So:

• Fix X 6= Y ∈ V (G).

• Pick s ∈ S(X,Y).

25

• s gives an alternating cycle decomposition

C0, C1, . . . , C` (5.32)

of E(X 4 Y).

We want to define a path

X = G0, . . . , Gi, . . . , Gm = Y (5.33)

from X into Y in G - denoted by Υ (X,Y, s) - such that

(i) the length of this path is ≤ c · n2 (where c is a suitable constant),

(ii) for some increasing indices 0 < n1 < n2 < . . . n` we have Gni = Hi, where

E(Hi) = E(X)4

(⋃
i′<i

E(Ci′)

)
. (5.34)

So we have certain “fixed points” of our path Υ (X,Y, s), and this observation
reduces our task to the following:

• for each i < ` construct the path

Hi = G′0, G
′
1, . . . , G

′
m′ = Hi+1 (5.35)

between Gni and Gni+1 such that m′ ≤ c · |Ci| and (F)(d) holds, i.e. for

each j there is Kj ∈ V (G) such that d
(
M̂(X,Y,G′j),Kj

)
≤ Ω2.

From now on we work on that construction. To simplify the notation we write
G = Hi and G′ = Hi+1. We know that the symmetric difference of G and G′ is
just the cycle Ci. Now we are in the following situation:

Generic situation - construction of a path along a cycle

(i) X,Y,G,G′ ∈ V (G).

(ii) The symmetric difference of E(G) and E(G′) is a cycle C.

(iii) the symmetric differences E(X4G), E(G4G′) and E(G′4Y) are pairwise
disjoint.

Construct a path
G = G0, . . . , Gm = G′ (5.36)

in the graph G of all realizations such that

(I) m ≤ c · |C|, and the requirement of (F)(c) also holds,

(II) for each j there is Kj ∈ V (G) such that d
(
M̂(X,Y,Gj),MKj

)
≤ Ω2.

26

We will carry out this construction in the next sections. The burden of such a
construction is to meet requirement (II). In [7] and in [2] the regularity of the
realizations was used.

The “friendly path method”.
In the next sections we describe a new general method based on the notion of
friendly paths (see Definition 6.3) to construct the paths Υ (X,Y, s).

The novelty of our friendly path method can be summarized as follows:

• if our bipartite degree sequence is half-regular then the paths Υ (X,Y, s)
satisfy the previous condition (II)

• if our bipartite degree sequence is arbitrary, then Υ (X,Y, s) satisfies (II)
provided the symmetric difference of X and Y is a cycle.

Originally we conjectured, that our friendly path method always produces paths
which satisfy (II). However we were unable to prove it, and now we think that
essentially new ideas are needed to prove the case of general bipartite degree
sequences.

6 Multicommodity flow - along a cycle

Let X,Y and Z be three realizations of a given bi-graphical degree sequence.
Assume that E(X) ∩ E(Y) ⊂ E(Z), furthermore E(Z) ⊆ E(X) ∪ E(Y). Then
the realization Z is an intermediate realization between X and Y.

In this section we describe the construction a path along an alternating cycle
C. Here we have the intermediate realizations G and G′ between X to Y , and
these two realizations differ only in this cycle C, where G ∩ C = X ∩ C and
G′ ∩ C = Y ∩ C. At the beginning of this phase our canonical path is between
X and G. Along the process we extend it to reach realization G′. Within the
process all swaps will happen between vertices V (C) of the cycle C and the end
of the process each chord will be at the same state as it was at the beginning,
except the edges along the cycle, where the X-edges will be exchanged by the
Y -edges.

In what follows we will imagine our cycles as convex polygons in the plane, and
we will denote by the vertices of any particular cycle of 2` edges with u1, v1, u2,
v2, . . . , u`, v`. The edges of the cycle are (u1, v1), (v1, u2), . . . , (u`, v`), (v`, u1) and
they belong alternately to X and Y. All the other (possible, but not necessarily
existing) edges among vertices of a particular cycle are the chords. (In other
words we will use the notion of chord if we want to emphasis that we do not
know whether the two vertices form an edge or not in the current graph.) A
chord is a shortest one, if in one direction there are only two vertices (that is
three edges) of the cycle between its end points. The middle edge of this three
is the root of the chord.

W.l.o.g. we may assume that (u1, v1) is an edge in G while (v1, u2) belongs to
G′. We are going to construct now a sequence of graphical realizations between
G and G′ such that any two consecutive elements in this sequence differ from
each other in one swap operation. The general element of this sequence will be
denoted by Z.

We have to control which graphs belong to this sequence. For that purpose we
assigned a matrix M̂ to each graph Z. If G is a vertex in G then MG denotes the

27

adjacency matrix of the bipartite realization G where the columns are indexed by
the vertices of V , numbered from left to right, and the rows are indexed by the
vertices of U, numbered from bottom to top. Hence the entry in row i, column j
of the matrix will be written as (j, i) and corresponds to the chord (vj , ui). With
some abuse of notation we also will use the word “chord” to refer to the matrix
position as well. This is nonstandard notation for the entries of a matrix, but
matches the Cartesian coordinate system. Then let

M̂(X + Y − Z) = MX +MY −MZ .

By definition each entry of an adjacency matrix is 0 or 1. Therefore only−1, 0, 1, 2
can be the entries of M̂. An entry is −1 if the corresponding edge is missing from
both X and Y but it exists in Z. The entry is 2 if the corresponding edge is
missing from Z but exists in both X and Y. The entry is 1 if the corresponding
edge exists in all three graphs (X,Y, Z) or it is there only in one of X and Y
but not in Z. Finally it is 0 if the corresponding edge is missing from all three
graphs, or the edge exists in exactly one of X and Y and is also present in Z.
(Therefore if a chord denotes an existing edge in exactly one of X and Y then
the entry corresponding to this chord is always 0 or 1.)

Observation 6.1. Let X,Y and Z be some realizations of a bipartite degree
sequence.

(i) The row and column sums of M̂(X + Y − Z) are the same as the row and
column sums in MX (or MY or MZ).

(ii) If Z is an intermediate realization between X and Y then M̂(X + Y − Z)
is another realization of the same degree sequence (and all entries are 0 or
1).

Before we define some further notions we introduce our main tool that we will use
later in this paper to illustrate different procedures in our current realizations.

Usually each cycle under processing is small comparing with the full graph,
therefore we always consider a “comfortably reordered” adjacency matrix (in
other words, we apply a suitable permutation on the vertices) such that the
vertices forming the cycle will be associated to an ` × ` submatrices of our ad-
jacency matrices, and our figures will show only these submatrices. The posi-
tions (1, 1), . . . , (`, `) form the main-diagonal while the positions right above the
main-diagonal as well as the rightmost bottom one (these are (1, 2), (2, 3), . . . ,
(`− 1, `) finally (`, 1)) form the small-diagonal. (This placement was our goal
using this numbering system for rows and columns. For example, the element
(1, 2) corresponds to the chord (v1, u2). If this is 1, then there is an edge there,
otherwise the edge is missing.)

Now we introduce a new tool to give a slightly different view about this
“central region”. This tool is the ` × ` matrix FZ : for a realization Z where all
chords are equal to the chords G not completely within V (C). In V (C) (so at his
central region) for i, j = 1, . . . , ` we have:

FZ(j, i) =

{
MZ(j, i) if (j, i) ∈ main- or small-diagonals,
[MG +MG′ +MZ] (j, i) otherwise.

28

In that way in the main- and small-diagonal’s elements are 0 or 1 while the
others (the off-diagonal entries) can be 0, 1, 2, 3. There is an easy algorithm
to construct FZ from the corresponding M̂(G + G′ − Z) and vice versa (please
recognize that here we use G and G′ instead of X and Y): In the main-diagonal
and in the small-diagonal the zeros and ones must be interchanged. Outside of
these diagonal entries −1, 0, 1, 2 of M̂(G + G′ − Z) become 1, 0, 3, 2 in FZ . (In
case we need a second realization, similar to Z, we will denote it with Z ′.)

Since G and G′ coincide outside the alternating cycle C therefore the off-
diagonal elements in FZ are odd when the edge exists in the actual Z and even
otherwise. When Z = G then the main-diagonal entries are 1 while the small-
diagonal elements are 0. This matrix FZ will be used in our illustrating figures
and also to conduct the construction of our canonical path system.

We are ready now to introduce the central notions of our proof:

Definition 6.2. The type of a chord is 1 if it is present in G, and 0 otherwise.
Note that a chord is present in G if and only if it is present in G′. Let (vβ , uα)
be a chord so δ 6∈ {β, β + 1}. A chord (vβ , uα) is a cousin of a chord (vδ, uε),
if the other two corners of the submatrix, which is spanned by this position and
the chord are on the main- or on the small-diagonals of FZ (see Figure 1). We
can describe it with formulae as well: this chord (vβ , uα) is a cousin of a chord
(vδ, uε), if α 6∈ {β, β + 1} and one of the following holds:{

ε < δ, α ∈ {δ, δ + 1} and β ∈ {ε− 1, ε},
ε > δ, α ∈ {δ − 1, δ} and β ∈ {ε, ε+ 1}.

A chord e is friendly if at least one of its cousins has the same type as e itself,
otherwise it is unfriendly. (Please recall that here “chord” also refers to the
position itself within the matrix therefore we also say that the position is friendly.)

Now Figure 1 illustrates the cousins of the chord (v6, u2) in the initial realiza-
tion Z = G. (They are (v1, u6), (v1, u7), (v2, u6), finally (v2, u7) and let’s recall
that the word chord indicates that the definition does not depend on the actual
existence or non-existence of that edge.)

Figure 1: A chord and its cousins

1

1

1

1

2

2

1

3

3

1

4

4

1

5

5

1

6

6

1

7

7

1

8

8

0

0

0

0

0

0

0

0

•

x

x

x

x

Before the next important definition we introduce a metric on pairs of positions
of this matrix: ‖A, Ā‖ says how many steps are necessary to go from A to Ā if in

29

every step we can move to a (horizontally or vertically) neighboring position, we
cannot cross the main-diagonal, finally the position (i, 1) is neighboring to (i, `)
and analogously (`, i) is neighboring to (1, i).

Definition 6.3. A sequence of pairwise distinct positionsA1, . . . , Aj is a friendly
path in FG if

(i) each position is friendly (in the matrix FG),

(ii) ‖Ah, Ah+1‖ = 1,

(iii) the chords e1 and ej - defined by the positions A1 and Aj - are shortest
chords and the root of e1 belongs to G while the root of ej does not.

Figure 2: A friendly path

1

1

1

1

2

2

1

3

3

1

4

4

1

5

5

1

6

6

1

7

7

1

8

8

0

0

0

0

0

0

0

0

A friendly path goes from the main-diagonal to the small-diagonal and it can
be quite complicated, and it is important to remark that such a friendly path is
NOT a path in a particular graph. Furthermore the friendly path is fixed for the
entire process determining the swap sequence from realization G to realization
G′, while the notions of chord or cousin apply for each matrix FZ along the swap
sequence.

The name is justified by the image of the friendly path in the illustration of
FG, shown in Figure 2. (It shows the path itself, but it does not show why the
individual elements of the path are friendly.) The figures like this are not for
illustration only: whenever we consider a friendly path we always work on the
matrix itself.

6.1 The case that a friendly path exists

In this subsection we describe the construction of the path along this cycle in the
case that a friendly path exists. Fix one friendly path: if there are more than
one, then take, say, the lexicographically smallest one (relative to the subscripts
of the positions). Let the chords of the existing friendly path correspond to the
positions A1, . . . , AΛ where Aj = (a1

j , a
2
j).

30

By definition our friendly path has the following properties: (i) a1
j 6= a2

j and
a1
j + 1 6= a2

j , (ii) ‖Aj , Aj+1‖ = 1, and finally (iii) A1 is at distance 1 from the
main-diagonal, while AΛ is at distance 1 from the small-diagonal.

First we introduce two new structures:

Definition 6.4. Let 1 ≤ α, β ≤ ` with β 6∈ {α, α + 1}. We say an ` × `-matrix
FZ = (mi,j) is (α, β)-OK matrix iff

(i) mα,β = 2,

(ii) mi,i =

{
0 for i = α+ 1, α+ 2, . . . , β − 1,
1 for i = β, β + 1, . . . , α− 1, α,

(iii) mi,i+1 =

{
1 for i = α, α+ 1, . . . , β − 2, β − 1,
0 for i = β, β + 1, . . . , α− 2, α− 1.

(See the LHS of Figure 3.) Please recall that the entry 2 in FZ is an edge which
is missing from Z but exists in both G and G′ (the off-diagonal entries are the
same in MG and MG′).

Figure 3: An (α, β)-OK matrix and an (β, α)-KO matrix

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1 α β 10

1

α

β

10

2

1

1

1

0

0

0

1

0 1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1 α β 10

1

α

β

10

10

1

1

1

0

0

0

01

0

Definition 6.5. Let 1 ≤ α, β ≤ ` with β 6∈ {α − 1, α}. We say an ` × `-matrix
FZ = (mi,j) is (β, α)-KO matrix iff

(i) mβ,α = 1,

(ii) mi,i =

{
0 for i = α, α+ 1, . . . , β − 1, β,
1 for i = β + 1, . . . , α− 1,

(iii) mi,i+1 =

{
1 for i = α, α+ 1, . . . , β − 1,
0 for i = β, β + 1, . . . , α− 2, α− 1.

(See the RHS of Figure 3.) Please recall that the entry 1 in FZ is an edge which
exists in Z but missing from both G and G′.

31

Lemma 6.6. Let FZ = (mi,j) be an (α, β)-OK matrix and mα−1,β+2 = 3.
Assume that FZ′ = (m′i,j) is an (α−1, β+2)-OK matrix such that

(1) m′α,β = 3,

(2) m′i,j = mi,j if i 6= j, i+ 1 6= j, and (i, j) 6= (α, β), (α− 1, β + 2).

Then there exists an absolute constant Θ such that one can transform Z to Z ′ by
at most Θ swaps (and, meanwhile, transform FZ into FZ′).

FZ

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1 α β 10

1

α

β

10

2

1

1

1

0

0

0

1

3

0

=⇒

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1 α β 10

1

α

β

10

3

1

1

1

0

0

0

1

2

1

1

1

0

0

0

0

FZ′

Proof: : It is enough to observe that the symmetric difference of Z and Z ′ is
a single alternating cycle. Indeed, in the next figure the entry 1 indicates edges
in E(Z ′ − Z) and the entry 0 indicates edges in E(Z − Z ′). (The non-empty
positions of this figure are the circled positions in the previous matrix FZ′ .)

E(Z ′ − Z) ∪ E(Z − Z ′)

1 0

0

1 0

1 0

1

α

β Therefore
(α− 1, α), (α, α), (α, β),
(β, β), (β, β + 1), (β + 1, β + 1),
(β + 1, β + 2), (α− 1, β + 2) is
an alternating cycle of length 8.

So the difference of the realizations lay in the subgraphs induced by V̄ , which
subset contains 8 vertices. The subgraphs Z[V̄] and Z ′[V̄] induced by V̄ have the
same (bipartite) degree sequence and they contain alternately the edges of the
cycle. By Theorem 2.2 we know one of them can be transformed by swaps into
the other one. Since the cycle contains four-four vertices from both classes, and
there are at most 12 edges, therefore the canonical swap sequence (by Corollary

32

3.1) is at most 2× 12 long therefore Θ = 24 is an upper bound on the number of
the necessary swaps. �

Clearly the same argument gives the following more general lemma.

Lemma 6.7. For each natural number u there is a natural number Θu with
the following property: assume that FZ = (mi,j) is an (α, β)-OK matrix and
mα′,β′ = 3 where ∥∥(α, β); (α′, β′)

∥∥ = u,

furthermore FZ′ = (m′i,j) is an (α′, β′)-OK matrix such that

(1) m′α,β = 3,

(2) m′i,j = mi,j if i 6= j, i+ 1 6= j, and (i, j) 6= (α, β), (α′, β′).

Then at most Θu swaps transform Z into Z ′ (and along this FZ is transformed
into FZ′).

Proof: The only difference is that here the symmetric difference of Z and Z ′ is
a cycle of length at most 2 + 2u which alternates between Z and Z ′. �

We also have the analogous general result for KO matrices.

Lemma 6.8. For each natural number u there is a natural number Θ′u with
the following property: assume that FZ = (mi,j) is an (β, α)-KO matrix and
mβ′,α′ = 0 where ∥∥ (β, α); (β′, α′)

∥∥ = u,

furthermore FZ′ =
(
m′i,j

)
is an (β′, α′)-KO matrix such that

(1) m′β,α = 0,

(2) m′i,j = mi,j if i 6= j, i+ 1 6= j, and (i, j) 6= (β, α), (β′, α′).

Then at most Θ′u swaps transform Z into Z ′ (and FZ is transformed into FZ′).

Proof: The proof is very similar to the proof of Lemma 6.7 which is left to the
diligent reader. �

Lemma 6.9. Assume that FZ = (mi,j) is (α, β)-OK matrix and mβ+2,α−1 = 0.
Assume that FZ′ = (m′i,j) is a (β + 2, α− 1)-KO matrix such that

(1) m′α,β = 3,

(2) m′i,j = mi,j if i 6= j, i+ 1 6= j, and (i, j) 6= (α, l), (β + 2, α− 1).

Then there exists a natural number Ω such that one can transform Z into Z ′ by
at most Ω swaps (and FZ goes into FZ′).

33

FZ

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1 α β 10

1

α

β

10

2

1

1

1

0

0

0

1

0

0

=⇒

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1 α β 10

1

α

β

10

3

1

1

1

1

0

0

0

1

0

01

01

0

0

1

0

FZ′

Proof: It is enough to observe that the symmetric difference of Z and Z ′ is a
single alternating cycle. Indeed, in the next figure values 1 indicate edges in
E(Z ′ − Z) and values 0 indicate edges in E(Z − Z ′).

E(Z ′ − Z) ∪ E(Z − Z ′)

0 1

01

01

01

01

α

β

Therefore
(α− 1, α− 1), (β + 2, α− 1),
(β + 2, β + 2), (β + 1, β + 2),
(β + 1, β + 1)(β, β + 1),
(β, β), (α, β),
(α, α), (α− 1, α)
is an alternating cycle of
length 10.

The proof goes like the proof of Lemma 6.6: The difference of the realizations lies
in the subgraphs induced by V̄ , which subset contains 10 vertices. The subgraphs
Z[V̄] and Z ′[V̄] induced by V̄ have the same (bipartite) degree sequence and they
contain alternately the edges of the cycle. By Theorem 2.2 we know one can be
transformed by swaps into the other one. Since the cycle contains five vertices
from both classes, and there are at most 20 edges, the number of the necessary
swaps (by Corollary 3.1) is at most 2×20 therefore there exists a constant upper
bound Ω ≤ 40 on the number of the necessary swaps. �

Lemma 6.10. For each natural number u there is a natural number Ωu with the
following property: assume that FZ = (mi,j) is (α, β)-OK and mβ′,α′ = 0 where∥∥(α, β); (α′, β′)

∥∥ = u,

and FZ′ = (m′i,j) is a (β′, α′)-KO matrix such that

(1) m′α,β = 3,

(2) m′i,j = mi,j if i 6= j, i+ 1 6= j, and (i, j) 6= (α, `), (β′, α′).

34

Then at most Ωu swaps transform Z into Z ′ (and FZ into FZ′).

Proof: Similar to Lemma 6.7. �

Now using our friendly path we are going to define a sequence of OK- and KO-
matrices, such that we can achieve the required edge changes in G obtaining G′

along this sequence, using operations described in the previous Lemmas. At first
we define a new sequence A′1, . . . , A

′
Λ from A1, . . . , AΛ in the following way:

A′i =
{
Ai, if FG(Ai) = 0,
Cousin(Ai), if FG(Ai) = 3, (6.1)

where Cousin(A) denotes one of the cousins of A. If there are more than one
positions of the same type among the corresponding positions, then we choose
the lexicographically-least one. We will use the following notation: the mirror
image of the position (α, β) to the main-diagonal is Mirror(α, β) = (β, α).

Observation 6.11. By definitions,

(i) if FG(Ai) = FG(Ai+1) then
∥∥A′i, A′i+1

∥∥ ≤ 3,

(ii) if FG(Ai) 6= FG(Ai+1) then
∥∥Mirror(A′i), A

′
i+1

∥∥ ≤ 3.

Definition 6.12. We define the matrix sequence FG = L0, L1, . . . , LΛ, LΛ+1 =
FG′ and the corresponding realizations Z1, . . . , ZΛ, where Li = FZi for each i as
follows:

The matrix Li (i = 1, . . . ,Λ) is defined from the matrix Li−1 by the formulae:

Li =
{

the (A′i)-OK matrix, if Li−1(Ai) = 3,
the (A′i)-KO matrix, if Li−1(Ai) = 0.

Here all positions (u, v) which are NOT determined by the definitions of the OK-
and KO-matrices satisfy Li(u, v) = L0(u, v). �

It is quite clear that (Λ− 1) consecutive applications of (the appropriate) Lem-
mas 6.6 - 6.10 will take care the definition of the required swap sub-sequences
between L1 and LΛ. However, the swap-sequence transforming L0 into L1 fur-
thermore the one transforming LΛ into LΛ+1 require special considerations:

• If L0(A1) = 3 then there are two possibilities - depending on the position
of the Cousin(A1). (The squares denoted with dashed lines contain the
possible positions of friendly cousins.)

Case I:

0

0

0

1

1

3

3

=⇒
0

1

1

1

0

3

2

and Case II.

0

0

0

1

1

3

3

=⇒
1

0

1

1

1

2

2

=⇒
1

1

1

0

0

3

2

35

• If, however, L0(A1) = 0 then there is only one case:

0

0

0

1

1

0

=⇒
0

1

0

0

0

1

The connecting swap-sequence from the matrix LΛ to LΛ+1 (which is FG′) can
be defined analogously to the previous one. This completes the definition of the
canonical path Γ(X,Y, s).

Next we will analyze the behavior of the current matrices M̂(G,G′, Z) along
these sub-sequences. At first we consider those Z’s which correspond to matrices
Li.

Let M be an integer matrix and let M ′ be a 2× 2 submatrix of it. If we add
1’s to the values of the positions of one diagonal in M ′ and −1’s to the values of
the positions of the other diagonal, then the acquired matrix has the same row
and column sums as M had. Such an operation is called a switch. When our
matrix M is the adjacency matrix of a degree sequence realization, then any swap
clearly corresponds to a switch of that matrix. We say that the two matrices are
in switch-distance 1 from each other. It is clear that bounded switch-distance
between two matrices also means bounded Hamming distance between them (as
it was required in (F)(d)).

The following lemma is an auxiliary result, which help us to handle the num-
bers of different paths (in our canonical path system) which cover the same edge.
It has no role in the definition of our path system, but it helps to show that this
path system obeys the rules outlined in (A) – (F) is Section 5.

Lemma 6.13. For i = 1, ...,Λ there exist realizations G1, . . . , GΛ in V (G) for
which MGi is in switch-distance 1 from the matrix M̂(G+G′−Zi) for i = 1, ...,Λ.

Proof: We show here the statement for such an Li where Li(Ai) = 0 therefore Li
itself is an (A′i)-KO matrix, and where - by definition - Ai = A′i (the other case is
similar). Due to the definitions Ai originally is not an edge either in G or in G′.
It belongs to the friendly path, therefore we also know that FG(Cousin(Ai)) =
FG′(Cousin(Ai)) = 0 hold. In Li this value is 1, so Ai is an edge in Zi. Therefore
Li which is = FZi looks like the matrix to the left in the following figure (the
circled element is the cousin of Ai). The corresponding M̂(G+G′−Zi) is shown
on the right hand side:

FZi M̂(G+G′ − Zi)

36

1

1

1

1

2

2

1

3

3

1

4

4

1

5

5

1

6

6

0

0

0

0

0

0

1

0

0

0

1

1

1

1

2

2

1

3

3

1

4

4

1

5

5

1

6

6

0

0

0

0

0

0

-1

0

0

0

0

0

1

1

1

1

1

1

It is clear that adding 1 to the values of the positions Ai and Cousin(Ai) of
M̂(G + G′ − Zi) and subtracting 1 from the other two corners of the spanned
submatrix constitutes the required switch. �
(In the figures above Ai is (5, 2). Here one can also recall that outside our `× `
submatrix every entry is 0 or 1 and after the switch the same applies inside the
submatrix. Therefore, due to the row- and column-sum conditions, the acquired
matrix is a realization indeed.)

Lemma 6.14. The realization G can be transformed into the realization G′

through realizations Zi (i = 1, . . . ,Λ) in such a way that the lengths of the swap
sub-sequences leading from each Zi to Zi+1 (where 0 = 1, . . . ,Λ) can be bounded
from above by the absolute constant max{Θ3,Θ′3, Ω3}. In this process, each arisen
matrix M̂(G+G′−Zi) is within a constant switch-distance from some vertex in
V (G) (that is some realization of the bipartite degree sequence).

Proof: By Observation 6.11 for each i the positions A′i and A′i+1 or Mirror(A′i)
and A′i+1 are at most distance 3. Therefore for each i (where i = 2, . . . ,Λ) the
corresponding process chosen among Lemma 6.7, Lemma 6.8 and Lemma 6.10
will describe the desired swap sub-sequences. The length of any such swap-
subsequence is bounded from above by max{Θ3,Θ′3,Ω3}.

Furthermore when in the process the current realization Zi corresponds to
an FZi = Li, then Lemma 6.13 applies, and matrix M̂(G+G′ − Zi) has switch-
distance 1 from the adjacency matrix of some realization ∈ V (G).

Let now Z be a realization in the process, say, on the path between the
matrices Li and Li+1: then M̂(G+G′−Zi) can be transformed through swaps into
M̂(G+G′−Zi+1) (assume, this end is the closer one to Z). As we know all swaps
are specialized switches, and they keep the row and column sums. Combining
this with the previous paragraph, we have for every Z that M̂(G+G′ −Z) is at
most

⌈
1
2 max{Θ3,Θ′3,Ω3}

⌉
+ 1 switch distance from some realization ∈ V (G). �

Key problem

37

One can say that we are very close to proving the rapidly mixing property of our
Markov process on all bipartite degree sequences: we should prove, that in the
case when there exists a friendly path from G to G′ then for each intermediate
Z the matrix M̂(X + Y − Z) is in a constant distance from some realization
∈ V (G). If we can manage this then we must handle the cases when there are
no friendly paths. It is somewhat surprising that this second requirement can
be satisfied successfully (as it will be shown in Subsection 6.2).

However, we cannot manage to prove the first requirement. The problem is
the following: we can try to repeat the proof of Lemma 6.14, but, unfortunately,
it is not true anymore that for each graph Z, corresponding to a particular
matrix Li, the matrix M̂(X+Y −Z) is also in distance 1 from some realization
in V (G).

In the realizations G and G′ all chords have the same types, but this is not
the case for realizations X and Y. The edges in E(X − Y) ∪E(Y −X) belong
to only one of them. Therefore if a swap turns an entry to 2 in M̂(G+G′−Z)
then this entry originally was 1: the edge belonged to G and G′ and Z as well.
Therefore its cousin bears the entry 1 (also belonged to G and G′ and Z as well).
So this entry was appropriate to perform a switch to turn the matrix under
investigation into the adjacency matrix of a realization. However, if the cousin
entry is 0 in M̂(X+Y −Z) (this edge belongs only to one of realizations X and
Y , say, it belongs to X only), then the required switch cannot be performed.
(The value −1 can cause a similar problem and can be handled similarly as
this case.)

A good solution for this particular problem would probably end up in a
complete proof of the rapidly mixing property.

The following observation is enough to handle the switch-distance problem for
M̂(X + Y − Z) in half-regular bipartite degree sequences. Recall, a bipartite
degree sequence (a,b) is half-regular if in a all degrees are the same, while the
entries in b can be anything.

Lemma 6.15. Assume that our bipartite degree sequence (a,b) is half-regular
and the matrix FG under investigation contains a friendly path. Then the state-
ment of Lemma 6.14 applies for the matrices M̂(X + Y − Zi) as well.

Proof: We follow the proof of Lemma 6.14. To do so the only requirement is
to show (somewhat loosely) that the matrices M̂(X + Y − Li) are in a constant
switch-distance from the adjacency matrix of some realizations. As we know any
of these matrices contains exactly one entry of value different from 1 and 0. So
consider a particular Li and assume that this “extra” value in this case is a 2.
If the switch, described in the proof of Lemma 6.13, is also a possible switch in
M̂(X + Y −Z) then we are done. If this not the case then the entry (with value
1 in matrix M̂(G + G′ − Li)) has value 0 in M̂(X + Y − Li). (In this case, as
we discussed it previously, the corresponding edge is missing from Y.) Let this
corresponding edge be (u, v), then this entry in M̂(X + Y − Li) is 0. Since the
column sums are fixed in these matrices, they are the same (and equal to entries
in a).

Now vertex v has degree at least 2 (it is a vertex on cycle C and it also end
point of at least one chord of C in X). Therefore the column v contains some
1s. One of them is (w, v) (this w cannot be the row of the 2, since the entry

38

there is 0 due that it belongs to the originally intended switch). Now by the
pigeonhole principle (since all row sums are the same) there is a column z such
that M̂(w, z) = 0 and M̂(u, z) = 1. Therefore the u,w; v, z switch (actually this
is a swap) will change M̂(u, v) into 1, and now the original switch finishes the job.
The matrix M̂(X + Y − Li) is in switch-distance at most 2 from the adjacency
matrix of some realization. �

6.2 The case that no friendly path exists

In the previous subsection we discussed the situation when – processing one by
one the cycles in the canonical decomposition of the symmetric difference – the
cycle under investigation possesses a friendly path. All definitions, statements,
reasonings were valid for any arbitrary bipartite degree sequence – except the
situation described in the Key Problem and in Lemma 6.15 where we have to use
the half-regularity condition.

Here we discuss the case where there exists no friendly path in the cycle under
investigation. Nothing that we define here, state here or prove here requires
the half-regularity condition. So here our general assumptions are: we have
realizations G and G′ of the same (arbitrary) bipartite degree sequence, where
the symmetric difference of the two edge set forms exactly one cycle, which, in
turn does not possesses a friendly path.

Our plan is this: at first we show that the non-existence of the friendly paths
yields a strong structural property of the matrix FG. Using this property we
can divide our problem into two smaller ones, where one of the smaller matrices
possesses a suitable friendly path. So we can solve our original problem in a
recursive manner.

This recursive approach must be carried out with caution: a careless “greedy”
algorithm can increase the switch-distances very fast. We will deal with this prob-
lem using a simple “fine tuning” (which is described at the end of this subsection).

We start with some further notions and notations.

Definition 6.16. In an `× ` matrix the sequence of positions (i+ 1, i− 1), (i+
2, i− 2), . . . , (i+ b`/2c − 1, i− b`/2c+ 1) form the ith down-line of the matrix.
(The arithmetic operations are thought to be considered modulo `, that is, for
example, 1−3 = `−2. Therefore if the down-line reach the edge of the matrix at
position, say, (`, k) then the next position is (1, k − 1). Similarly, if the position
on the edge is (k, 1) then the next position is (k+1, `). If 2i > ` then the first case
applies, in case of 2i < ` the second case applies. Finally if, by chance, 2i = `
then the positions in questions are (`, 1) and (1, `). Analogously the sequence of
positions (i− 1, i+ 1), (i− 2, i+ 2), . . . , (i−d`/2e+ 1, i+ d`/2e− 1) form the ith
up-line of the matrix. (Let us mention that in case of even ` the length of the
up-lines and the down-lines are equal. However, in case of odd ` the up-lines are
longer by one position.)

Since the lines are sequences therefore by definition they have orientations
along which the algorithm will traverse them. Also, by definitions, in case of
even `, the ith down-line equals the j th up-line (for some j) as sets. However,
as sequences, they are of course different.

Definition 6.17. A set T of positions of an `×`matrix is called rook-connected
if a chess rook, staying inside T , can visit all elements of T . Here the chess rook

39

is allowed to wrap around cyclically on the rows and columns (that is the rook
is moving on a torus). We use the expression king-connected analogously.

The following lemma is a well-known version of the classical Steinhaus lemma
(see [13]).

Lemma 6.18. Assume that the off-diagonal positions of an ` × ` matrix are
arbitrarily colored white and black. Then either the rook has a white path which
starts at distance 1 from the small-diagonal and ends at distance 1 from the
main-diagonal, and avoids both diagonals, or there is a king-connected set T of
black positions which intersects all rook’s paths from the main-diagonal to the
small-diagonal. �

We use the previous result without proof. The set T of black positions,
which was identified in the previous lemma, will be called a Steinhaus set. So a
Steinhaus set is a king-connected set of positions which intersects all rook’s paths
from the main-diagonal to the small-diagonal.

Definition 6.19. The cousin-set C(u, v) is the set of the off diagonal cousins of
the position (u, v). If T is a set of positions, then the cousin set C(T) is defined
as
⋃
{C(e) : e ∈ T}.

We will use Lemma 6.18 as follows: We color the off-diagonal positions of
the matrix FG with white and black: the friendly positions are white while the
unfriendly ones are black. If the matrix does not posses any friendly path, then
there exists no white rook’s path from the small diagonal to the main diagonal
(since that would be in fact a friendly path). Consequently, by Lemma 6.18,
there exists an all-black Steinhaus set T (so it consists of unfriendly positions
only). While the Steinhaus set T is (only) king-connected, but as we will show in
Lemma 6.20 the derived cousin-set C(T) is rook-connected, moreover the type of
all positions in the cousin-set C(T) are the same, furthermore, by Lemma 6.21,
C(T) intersects all down-lines and up-lines. Finally we will put together these
observations in Lemma 6.22 and Corollary 6.23 to find a smaller submatrix which
possesses a friendly path.

Lemma 6.20. Assume that T is a king-connected set in the matrix FG. Then
the cousin-set C(T) is rook-connected. Moreover, if the positions in T are all
unfriendly, then the type of all positions in C(T) are the same, and all positions
in T have the opposite type.

Proof: Let P be a position in T . For each other position P ′ in T , which can be
reached from P in one king step, the cousin sets C(P) and C(P ′) have at least
one common position. Therefore the neighboring cousin sets are rook-connected,
so C(T) is rook-connected.

Assume now that the positions in T are all unfriendly. W.l.o.g. we may
assume that a position P in T has type 0, then all positions in its cousin-set
must have type 1. However, for each other position P ′ in T , which can be
reached from P in one king step, the cousin sets C(P) and C(P) have at least one
common position, therefore all types in those two cousin sets must be the same
(1), therefore both positions P and P have the same type (0) as well. �

Lemma 6.21. Let T be a Steinhaus set in FG, then its cousin-set C(T) intersects
all down-lines and up-lines.

40

Proof: Actually we prove more: namely that any king-path P from the main-
diagonal to the small-diagonal intersects the cousin-set C(T).

Indeed, by Lemma 6.20, the set C(P) is rook-connected, so C(P) intersects
the Steinhaus set T . However, if x ∈ C(P) ∩ T , then x ∈ C(y) for some y ∈ P .
But then y ∈ C(x), so C(T) intersects P .

Finally it is clear, that every down- and up-line forms a required king-path.
�

Lemma 6.22. We assume that in the matrix FG there is no friendly path. Then
for each i (i = 1, . . . , `) there exists a t ∈ {0, 1} and a pair of indices j, j′ ∈
{1, . . . d`/2e − 1} such that one of the following holds:

• entries (i+ 1, i− 1), . . . , (i+ j, i− j) and (i− j′, i+ j′) have the same type
t, furthermore the entries (i− 1, i+ 1), . . . , (i− j′ + 1, i+ j′ − 1) have the
type 1− t, and all entries belong to a down- or up-line;

• entries (i− 1, i+ 1), . . . , (i− j, i+ j) and (i+ j′, i− j′) have the same type
t, furthermore the entries (i+ 1, i− 1), . . . , (i+ j′ − 1, i− j′ + 1) have the
type 1− t, and all entries belong to a down- or up-line.

Proof: Color the friendly positions white, and the unfriendly positions black.
Since a white rook path from the small diagonal to the main diagonal would be
a friendly path, by Lemma 6.18 there is a Steinhaus set T containing only black,
i.e. unfriendly positions. Now, by Lemma 6.20, the type of all positions of the
cousin-set C(T) are the same. Moreover, by Lemma 6.21, the cousin-set C(T) of
T intersects all down-lines and up-lines.

Assume for a contradiction that there is no such j for a particular i. W.L.O.G.
we may assume, that FG(i + 1, i − 1) = 0. Then, by the assumption, FG(i −
1, i + 1) = FG(i − 2, i + 2) = 1 must hold. Then, again by our assumption,
FG(i + 2, i − 2) = 0 must hold, etc. All entries along the down-line are 0, while
all entries along the up-line must be 1. However, as we observed in the previous
paragraph, both lines intersect the cousin-set C(T) of the Steinhaus set T . But,
by Lemma 6.20, all its entries have the same type. A contradiction. �

Corollary 6.23. If conditions of Lemma 6.22 hold, and j′ ≥ 2 for a particular
i, the submatrix spanned by (i + j, i − j) and (i − j, i + j) contains at least one
friendly path. (Let us recall that the bottom-right position (i+ j, i− j) belongs to
the small-diagonal by definition.)

Proof: We argue by contradiction: assume that the submatrix does not contain
a friendly path. Then - due to Lemma 6.18 - it contains a Steinhaus set T . Due
to Lemma 6.20, in its cousin-set C(T) - which intersects all down- and up-lines
- all positions have the same type. But this contradicts to the fact, that in the
ith down-line all positions have type t, while in the ith up-line all positions have
type 1− t. A contradiction, again. �

That finishes the preliminaries that are needed to describe our recursive algo-
rithm, which is essentially a divide and conquer approach. Due to the previous
fact here we should handle separately two possibilities: when j′ = 1 (and j = 1
as well) and when j′ ≥ 2. For sake of simplicity we will assume that in our cycle
the first condition described in Lemma 6.22 holds. We start with the

41

First possibility: assume that, for a particular i, we have j′ = 1. Then we also
have j = 1. We should take care of two cases:

Case 1: If both FG(i+1, i−1) and FG(i−1, i+1) = 3 (that is both chords belong
to both G and G′) then we are in an easily handleable situation: at first we swap
the quartet ui, ui+1; vi, vi+1. (The dashed square in our illustration. Here we use
the matrix FG.) The entries (i− 1, i), (i, i) and (i, i+ 1) have the required types.
However, entry FG′(i − 1, i + 1) = 2 therefore during the procedure we should
take care to change it back to its original value. Indeed, during the procedure
we should guarantee that the matrix M̂(X + Y − Z) contains at most Ω2 many
2-s and −1-s, i.e. the corresponding F -matrix contains at most Ω2 many 1-s and
2-s (see). Since we want to apply our method recursively, therefore during the
procedure we should take care to change it back to its original value otherwise
the 2-s could accumulate in the F -matrices. We will handle this problem during
the “fine tuning”.

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

i

i

3

3

0 1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

i

i

3

2

01

1

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

i

i

3

0

0

The remaining subproblem, indi-
cated by thick black lines, fortu-
nately is already in the required
form. Indeed: its main-diagonal
contains only 1s, while its small-
diagonal is full with 0s. (We have
to keep it in our mind that the
shown matrix of the remaining
smaller subproblem is FZ where
the element of the main- and
small-diagonals came from Z.)

Denote the alternating cycle of this smaller problem by C ′. The (recursive)
subproblem C ′ may contain a friendly path which will process it completely in
one step, and will switch the value of FG(i − 1, i + 1) automatically back to 1.
If, however, it does not contain a friendly path, then the recursive procedure can
use any down- and up-lines, including (i− 1, i + 1) (see Lemma 6.21), therefore
we can take care that this switch-back will happen in the next recursion.

It is important to recognize that matrices M̂(G+G′−Z) and M̂(X+Y −Z)
may contain 2 at the position (i− 1, i+ 1). Fortunately this “problematic” entry

42

will be present only along one recursive step. Furthermore this entry will increase
the switch-distance of the current M̂ by at most one: the positions (i−1, i), (i, i)
and (i, i+1) (outside of our subproblem), provide a suitable switch to handle the
entry 2 at position (i− 1, i+ 1) .

Case 2: Now we have FG(i + 1, i − 1) = 0 and FG(i − 1, i + 1) = 0. Here
we perform two swaps, the places of the swaps are denoted (shown below) with
dashed squares:

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

0

0

0

⇒

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

1

1

0

0

0

If M̂(X + Y − Z)(i+ 1, i− 1) = −1 holds, then it increases the switch-distance
of the current M̂ by at most one (since it can be directly back-swapped). The
result of the second swap (after which the previous problem is just solved auto-
matically), together with our further strategy is shown below:

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

1

0

0

0

1

1

0

x

0

Here we distinguish between two
cases, according to the value

FZ(i− 2, i+ 2) = x.

This value can be x = 3 or x = 0.

In

the case of x = 3 we perform one more swap, which results in a subproblem with
a friendly path (the swap shown on the left side of Figure 4, while the right hand
side indicates the two new subproblems):

43

Figure 4: The case of x = 3

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

1

0

0

0

1

1

0

3

0

⇒

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

0

0

0

0

1

1

0

1

12

0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

0

0

0

0

1

1

0

1

10

0

Here we have redrawn the RHS of
Figure 4 to show that one subprob-
lem is already solved: the cross
shaped midsection is in the required
state: the main-diagonal (within the
midsection) contains all 0’s, while
each entry in the small-diagonal is 1
and the off-diagonal positions are in
their original states. Here is nothing
more to do.

The second subproblem (indicated with the thick black lines, the four pieces fit
together to a square matrix) is in the right form for further processing. The
position (2, 6) changed into 0 since we described the subproblem in the language
of (the now smaller) FZ : the positions in the small-diagonal depend on the edges
of Z only.

We will process this second subproblem along the up-line, containing position
(i − 2, i + 2), so the only currently improper entry will have the right value at
the end of the next recursion step (that is it will be swapped back to its original
value). (Here we can argue the same way as in Case 1.)

As it happened before M̂(X+Y −Z) may contain 2 at the position (i−2, i+
2). Again this increases the switch-distance by at most one, since the positions
(i− 2, i− 1), (i+ 1, i− 1) and (i+ 1, i+ 2) are not in our subproblem.

Finally it can happen, that x = 0. Then we can define the following subproblem:

44

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

1

0

0

0

1

1

0

0

0

This figure shows the new sub-
problem (indicating with thick
black lines) is in the right form (for
further processing) again. We will
process the subproblem along the
up-line, containing position (i −
2, i+ 2) (so the only currently im-
proper entry will have the right
value at the end of the next re-
cursion step).

Here, again, we may confront the fact, that M̂(X +
Y − Z)(i + 1, i − 1) = −1. Then we should con-
sider the alternating cycle shown in the figure. All
elements of the cycle, except (i + 1, i − 1), are in
the main- and small-diagonal, therefore along this
cycle we can swap that entry into range within a
small number (say δ) of steps. This will increase the
switch-distance of M̂ by at most δ.

1

1

1

0

0

i

i

0

0

0

1

1

1

We run the first recursion on the subproblem along the ith up-line, therefore the
sub-subproblem with friendly path will contain the position (i−2, i+2). Therefore
when we finish the first recursion, our matrix FG will be in the following form:
(the figure on the left):

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

1

0

0

0

1

1

0

1

0

01

0

1 0

0

0

1

1

1

⇒

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

1

0

01

0

1

0

0

1

1

0

1

0

0

0

0

1

1

1

We have seen how one can handle the switch-distance of our matrix, if position
(i+ 1, i− 1) is problematic with M̂(i+ 1, i− 1) = −1 but position (i− 2, i+ 2)
is correct. On the other hand if M̂(X + Y −Z)(i− 2, i+ 2) = −1 then the swap
on the positions (i− 2, i− 1), (i+ 1, i+ 2); (i+ 1, i− 1), (i− 2, i+ 2) changes both
(i+ 1, i− 1) and (i− 2, i+ 2) into 0. For (i+ 1, i− 1) that was the original type
- so it cannot be wrong in M̂.

45

After that we perform the swap on the positions (i−
2, i− 1), (i+ 1, i+ 2); (i+ 1, i− 1), (i− 2, i+ 2) (these
are the corners of the dashed square in the figure on
the upper right). The result is shown to the right: 1

1

1

1

0

0

0

i

i 0

0

0

0

0

0

0

0

This completes our handling on the First Possibility, that is when for our i we
have the value j′ = 1. Now we turn to the other (and probably more common)
configuration:

Second Possibility: We have j′ ≥ 2. Unfortunately, the situation can be more
complicated in this case due to the possible switch-distances of M̂. We overcome
this problem by showing at first the general structure of the process, and later
we give the necessary fine-tuning to ensure the bounded switch-distance. (Recall
again, that the bounded switch distance is necessary to have a good upper bound
on the number of different matrices M̂ appearing along the algorithm.)

In our current alternating cycle (lying in the symmetric difference of G and G′)
there is no friendly path, therefore there is a Steinhaus set T in FG. Now fix
a particular i and assume that the j′ corresponding to this i is ≥ 2. We should
distinguish between two cases: where the down-line starts with the value t = 3
or with t = 0.
Case 1: t = 3 The first figure below shows the structure of matrix FG. The
dashed square is the first subproblem to deal with, while the thick black lines
indicate the second subproblem. However, before we start the processing the
subproblems, we have to perform a swap. The corners of the thin black square
shows the positions of the swap.

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

3

3

0

0

3

0

⇒

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

3

2

0

0

2

1

1

0

After this swap (see the figure above, right), the first subproblem (indicated by
the dashed square) is in the right form. Indeed, the left figure below shows the
two separate subproblems.

46

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

3

0

0

0

0

1

1

1

1

0 1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

3

3

0

0

0

1

1

0

0

0

0

0

1

1

1

1

0

Finishing the first subproblem, we have the FZ matrix (above, right). As it can
be seen, after the first phase, all entries in the midsection are in their required
types: the small-diagonal consists of 1s (including position (i+ 2, i− 2) which in
that way is back to its original type), while the main-diagonal consists of only
0s.

The second subproblem (indicated by the thick black lines) in the right form
now to process (including position (i − 3, i + 3) which is sitting on the small-
diagonal).
After completing the solution of the black subproblem, all entries in the matrix
will be in exactly the required type. We start processing the black subproblem on
the ith up-line, therefore the actual types of positions (i−3, i+3) and (i+2, i−2)
can be described as follows: Position (i+2, i−2) has opposite type after the very
first swap, then while processing the dashed subproblem it may change between
0 and 1. Finishing the dashed subproblem, it will be in the same type as it starts.

Position (i− 3, i+ 3) will be in type 0 all the way in the dashed phase, while
within the black phase it will change between 0 and 1. At the end, as we already
mentioned, is 1.

Case 2: t = 0 The first figure below shows the structure of matrix FG. The
dashed square is the first subproblem to deal with, while the thick black lines
indicate the second subproblem. They can process without any preprocessing.

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

0

0

3

3

0

0

0

0

⇒

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

0

1

3

3

0

0

0

0

0

0

0

0

1

1

1

1

0

At the end everything will be in the right type, except the four positions, showed
by the thin black square (below, left side). We can finish the process with that

47

swap.

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

0

1

3

3

1

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

⇒

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

i

i

0

0

3

3

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

While the overall structure of our plan is clear, we may meet problems along this
procedure. The reason is that we must be able to control the switch-distance of
our M̂(X + Y − Z) (we will use here simply M̂) from the adjacency matrix of
some realization. There are two neuralgic points: both the positions (i+ j, i− j)
and (i− j′, i+ j′) may contain −1, or both may contain 2. When we start a new
subproblem, then their types always provide a suitable switch for the control (as
it was seen before). However, when we proceed along our subproblem, then it
can happen that one of the problematic positions changes its value, while the
other does not. But in this case the switch which was previously available is not
useable anymore. Next we describe how we can fine tune our procedure to avoid
this trap.

As we know the first subproblem contains a friendly path (by Corollary 6.23),
and for easier reference let call its problematic position P1. We also know that
second subproblem contains a problematic position, P2, and probably we have
to divide this subproblem into two smaller ones. If so, then the first of them
becomes the new second subproblem, which contains P2 and possesses a friendly
path, while the third subproblem contains another problematic position, P3.

Fine tuning:

1. We begin our swap sequence along the first subproblem but we stop just
before we face the swap which changes the value of P1.

2. Next we continue with the swap sequence of the second problem and we
stop before we should perform a swap on P2.

3. Now we finish the swap sequence of the first subproblem.

4. After that we focus on the second subproblem. Dealing effectively with
this, we need to prepare the third subproblem similarly as we did with the
second one, when we were working on the first one. Therefore we begin the
swap sequence of the third subproblem but we stop it before the first swap
would be carried out on P3.

5. And if now we just rename our two active subproblems as first and second
subproblem, we are back to a situation, which is equivalent to the beginning
of the third stage.

48

Along this algorithm, at each point we have two “active” subproblems. When
a subproblem has a friendly path, then along this path we define the necessary
swap sequence (as described in Subsection 6.1) and we have an upper bound
on its length. When the subproblem is without a friendly path, then we divide
it into two, and one (or both) of them have a friendly path, etc. The sum of
the sizes of the subproblems is at most the size of the original cycle. Finally
we put together the final swap sequence from these swap sequences and some
short sequences we get from the (sometimes) necessary preprocessing. Since we
have bounded switch distances all along (one or two at preprocessing stages, and
those given in Subsection 6.1), therefore all together we have a good control of
the overall number of used M̂ ’s. �

7 Acknowledgement

The authors would like to thank to the anonymous referee, whose comments
and suggestions improved the manuscript significantly. We are most grateful to
Catherine Greenhill for her tremendous help to prepare this manuscript.

References

[1] Bollobás, B.: A probabilistic proof of an asymptotic formula for the number
of labelled regular graphs. European J. Comb. 1 (1980), 311–316.

[2] Cooper, C. - Dyer, M. - Greenhill, C.: Sampling regular graphs and a peer-
to-peer network, Comb. Prob. Comp. 16 (4) (2007), 557–593.

[3] Erdős, Paul - Gallai, T.: Gráfok elő́ırt fokú pontokkal (Graphs with pre-
scribed degree of vertices), Mat. Lapok, 11 (1960), 264–274. (in Hungarian)

[4] Erdős, Péter L. - Király, Z. - Miklós, I.: On graphical degree sequences and
realizations, manuscript (2012).

[5] Hakimi, S.L.: On the realizability of a set of integers as degrees of the
vertices of a simple graph. J. SIAM Appl. Math. 10 (1962), 496–506.

[6] Havel, V.: A remark on the existence of finite graphs. (in Czech), Časopis
Pěst. Mat. 80 (1955), 477–480.

[7] Kannan, R. - Tetali, P. - Vempala, S.: Simple Markov-chain algorithms
for generating bipartite graphs and tournaments, Rand. Struct. Alg. 14 (4)
(1999), 293–308.

[8] Hyunju Kim - Toroczkai, Z. - Erdős, P.L. - Miklós, I. - Székely, L.A.: Degree-
based graph construction, J. Phys. A: Math. Theor. 42 (2009) 392001 (10pp)

[9] Molloy, M. - Reed, B.: A critical point for random graphs with a given
degree sequence, Rand. Struct. Alg. 6 (2-3) (1995), 161–179.

[10] Newman, M.E.J. - Barabasi, A.L. - Watts, D.J.: The Structure and Dynam-
ics of Networks (Princeton Studies in Complexity, Princeton UP) (2006), pp
624.

49

[11] Ryser, H. J.: Combinatorial properties of matrices of zeros and ones, Canad.
J. Math. 9 (1957), 371–377.

[12] Sinclair, A.: Improved bounds for mixing rates of Markov chains and mul-
ticommodity flow, Combin. Probab. Comput. 1 (1992), 351–370.

[13] Steinhaus, H.: Mathematical Snapshots, Oxford University Press, New York,
1950. pp 30.

[14] Wormald, N.C.: Generating random regular graphs, J. Algorithms 5 (1984),
247–280.

50

