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Abstract

Background: A standard procedure in many areas of bioinformatics is to generate a single multiple sequence

alignment, using this for subsequent downstream analysis. However, there is often significant uncertainty in the

alignment, and neglecting this uncertainty can lead to significant bias in the resulting inference. A number of

approaches have been developed in recent years to sample alignments according to their probability, yielding

information about the distribution of alignments rather than simply reporting a single optimum. However,

currently this type of probabilistic information is not widely used in the context of downstream inference, since

most existing algorithms are set up to make use of a single alignment.

Results: In this work we present a framework for representing the space of sampled alignments as a directed

acyclic graph (DAG) whose nodes are alignment columns; each path through this DAG then represents a valid

alignment. Since the probabilities of individual columns can be estimated more reliably than whole alignments,

this approach allows for more accurate estimation of posterior alignment probabilities. Moreover, due to

conditional independencies between columns, the graph structure encodes a much larger set of alignments

than the original set of samples, such that the effective sample size is greatly increased. This framework can

be used to generate a statistically meaningful summary alignment from a collection of alignment samples.

While other published methods generate summary alignments whose accuracy scores are often similar to, and

in some cases worse than, a randomly chosen sample from the distribution, our methodology consistently

yields alignments that are significantly more accurate than the majority of the alignment samples, leading to

improvements in downstream tree inference.

Conclusions: The alignment DAG provides a natural way to represent a distribution in the space of multiple

sequence alignments, and allows for efficient computation of quantities of interest averaged over alignments,

as well as summaries of the distribution. This method is general-purpose, facilitating the incorporation of

alignment uncertainty into sequence analysis without the need to develop specialised tools for fully Bayesian

analysis for a particular problem of interest, such that many existing algorithms can easily and efficiently be

adapted to operate on a distribution of alignments. As an example, we show how the DAG-based approach

can be used to compute marginal probabilities for tree topologies, efficiently averaging over very large sets of

alignments.

Implementations of the methods described in this article are available at http://statalign.github.io/WeaveAlign.

Keywords: alignment graphs; statistical alignment; alignment uncertainty; multiple sequence alignment

*Correspondence: herman@stats.ox.ac.uk

1Department of Statistics, University of Oxford, 1 South Parks Road, OX1 3TG

Oxford, UK

2Division of Mathematical Biology, National Institute of Medical Research, The

Ridgeway, NW7 1AA London, UK

Full list of author information is available at the end of the article

Introduction

Sequence alignment is one of the most intensely studied

problems in bioinformatics, and is an important step in a

wide range of different analyses, including identification

of conserved motifs [1], analysis of molecular coevolu-

tion [2–4], estimation of phylogenies [5], and homology-

based protein structure prediction [6, 7].
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Many of the most popular alignment methods seek to

compute a single optimal alignment, using dynamic pro-

gramming algorithms [8, 9] as well as a variety of heuris-

tic procedures [10–15]. Similar approaches can be used to

find maximum likelihood alignments under certain proba-

bilistic models of insertion, deletion and substitution events

[16–20].

Effect of alignment on downstream inference

It has become increasingly clear in recent years that down-

stream analyses are often highly sensitive to the specific

choice of alignment. There may be many plausible but sub-

optimal alignments within the vicinity of the optimum, con-

taining additional—often complementary—information re-

garding the evolutionary relationships between the se-

quences [21]; selecting a single point estimate results in the

loss of this additional information, and fails to account for

the statistical uncertainty associated with different regions

of the alignment [22].

A number of studies have highlighted the impact of the

choice of alignment on subsequent phylogenetic inference

[23–31]; in many cases different alignment methods, or dif-

ferent guide trees, can give rise to very different phyloge-

nies [23, 32–36]. Sensitivity to the alignment is also ob-

served in the context of many other types of downstream

analysis, including homology modelling of protein struc-

tures [37–39], detection of correlated evolution [40, 41],

prediction of RNA secondary structure [42], and inference

of positive selection [36, 43–45].

Filtering methods

A common approach to tackling the issue of alignment un-

certainty has been to attempt to annotate particular regions

of the alignment as unreliable, and to remove these before

carrying out subsequent analysis. Filtering methods have in

some cases been observed to yield improved inference for

phylogenies [46–48] and positive selection [44, 45].

However, the specific choice of filtering method may

have a strong influence on the results [49], and uncertain

regions of the alignment may also contain important infor-

mation that is lost through the use of such methods. For ex-

ample, tree accuracy is not related in a straightforward fash-

ion to alignment uncertainty [27], and seemingly unreliable

regions may be important for accurately resolving phylo-

genies [50, 51]. Regions of high alignment uncertainty can

also correspond to sites with higher indel rates [22, 52], as

well as regions of structural variability [53] or intrinsic dis-

order [54] in protein structures, and filtering these out may

lead to unpredictable biases in subsequent analysis.

Joint sampling approaches

Within the Bayesian paradigm, alignment uncertainty can

be addressed in a more methodical fashion by consider-

ing alignments, along with other parameters of interest, as

samples from an unknown posterior distribution. In this

framework, regions of high alignment variability then cor-

respond to regions of high variance in the posterior. The last

decade has seen the development of several fully Bayesian

approaches for performing joint inference on alignments

along with other objects of interest, such as mutation rates

[55], phylogenetic trees [56–58], information about the

evolution of protein structure [59–61], and the locations

of putative regulatory elements [62–64]; inference on these

quantities after accounting for alignment uncertainty can

then be obtained by averaging over alignments according

to their posterior probability under the joint model.

However, although such approaches may be analytically

tractable for comparison of a small number of sequences

[62, 63, 65], the computational complexity involved in

analysing these hierarchical joint models typically does not

scale well with the number of sequences; procedures such

as Markov chain Monte Carlo can only increase the range

of tractability to a limited extent [56, 57, 64]. Moreover,

adding in another level of annotation or information may

require a new model to be formulated, such that in many

cases this fully Bayesian approach may be impractical for

problems of interest.

Alternatives to joint sampling

In this work we focus on a tractable alternative that can be

used when joint sampling approaches are impractical. This

approach takes a collection of alignments sampled accord-

ing to a particular model, and uses an efficient graph-based

representation to generate a much larger set of possible

alignments from the initial collection. The acyclic structure

of the graph allows many types of analysis to be easily car-

ried out on the whole ensemble of alignments rather than

just a single representative, such that the alignment uncer-

tainty quantified by the ensemble can be incorporated into

downstream analysis without the need for designing com-

putationally intensive joint sampling approaches. If a single

representative of the ensemble is required, this framework

also allows for the efficient computation of the single align-

ment that maximises the expected value of a variety of dif-

ferent accuracy scores.

The simple and computationally efficient nature of this

representation makes it practical to adopt a more princi-

pled, probabilistic approach to quantifying and making use

of alignment uncertainty, and we discuss examples of cases

where this may prove particularly useful.

Quantifying alignment uncertainty
A number of different approaches have been developed for

quantifying the uncertainty associated with a multiple se-

quence alignment. Many of these methods focus on the no-

tion of alignment reliability, i.e. the degree to which a par-

ticular alignment (or regions thereof) can be trusted as a

prediction of the homology between the sequences.
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One set of approaches involves computing scores or sum-

mary statistics on a single alignment of interest, using these

as a measure of reliability of the alignment. Some of these

approaches equate reliability of a particular alignment col-

umn with a high score under the model used to generate

the alignment [66], the justification being that low-scoring

columns are harder to distinguish from random noise, and

so are more likely to contain erroneous homology state-

ments; others generate the alignment using one scoring

scheme, and measure its ‘reasonableness’ based upon an-

other set of criteria [67, 68], which may involve looking

at the deviation of summary statistics from their expected

background distribution under the null hypothesis of no ho-

mology [69,70]. One potential issue with some of these ap-

proaches is that they introduce a bias towards highly con-

served regions, since they do not distinguish between evo-

lutionary variability and statistical uncertainty, often using

the term alignment quality as a synonym for reliability.

An alternative approach, first mentioned by [49], involves

generating a set of plausible alignments, and assessing the

alignment uncertainty by measuring the similarity between

the alignments in this set. This type of consistency- or

congruence-based approach has a more natural statistical

interpretation, but requires a method of generating alterna-

tive alignments, as well as a measure of alignment similar-

ity or distance; the interpretation of the resulting measures

of uncertainty may depend heavily on these two factors.

Generating sets of alignments

A variety of heuristic methods have been developed in

order to generate sets of alignments for the purposes of

measuring uncertainty. Perhaps the simplest of these is to

align the same sequences with the residue order reversed

[71], although the efficacy of this technique is question-

able [72, 73]. Another class of methods generates alterna-

tive alignments by perturbing parameters such as the guide

tree [74, 75], gap opening and extension penalties [76, 77],

and substitution matrices [78,79], and recomputing the op-

timal alignment with these alternative parameters. How-

ever, in all these cases the types of perturbations applied

to the parameters will affect the resulting estimates of un-

certainty in an unpredictable fashion [69].

Another approach is to look at a set of suboptimal align-

ments under a particular scoring scheme, given fixed pa-

rameters [80–82], using these to search for regions of con-

sistency [83–85]. The variability among these suboptimal

alignments can then be converted into a measure of sta-

tistical uncertainty, using an approximation to the distribu-

tion of scores, for example using an extreme value distribu-

tion [86].

A Bayesian approach

Within a Bayesian framework, the collection of plausible

alignments can be identified with the posterior distribu-

tion of the alignment given the sequences and other model

parameters; this leads to a probabilistic interpretation of

alignment uncertainty, whereby the fraction of alignments

containing a particular homology statement is a measure of

the posterior probability of that homology statement.

For the pairwise case, alignments can often be sampled

exactly from their posterior distribution under a particu-

lar evolutionary model using a dynamic programming ap-

proach [87–89]. However, for multiple sequences such ap-

proaches rapidly become computationally infeasible, and

other types of procedures must be used. A popular op-

tion is to use Markov chain Monte Carlo (MCMC) in

order to sample from the posterior distribution of align-

ments [55–58,60,61,64,90–93]. The main advantage of the

MCMC approach is that it is guaranteed to sample align-

ments from the correct probability distribution, provided

that the simulation is run for long enough to ensure con-

vergence, although this may require significant amounts of

runtime.

Representing the distribution of sampled

alignments
Once a set of plausible alignments has been generated, a

common issue that arises is how to represent and/or sum-

marise this set in a useful fashion. In a Bayesian context

this entails representing the approximation to the posterior

distribution over alignments, given a collection of samples.

We shall present here a graph-based formulation that allows

for a compact representation of this distribution, permitting

algorithms to be designed for efficient inference on expo-

nentially large sets of alignments derived from a collection

of samples.

Mapping columns to dynamic programming tables

A multiple sequence alignment can be represented as a path

through a multidimensional matrix; an edge from one cell

of the matrix to an adjacent cell represents a particular set

of homology statements, synonymous with a column in the

alignment. It is a straightforward extension to consider a set

of alignments as a set of paths in such a matrix [94].

To formalise this intuition, we introduce a bijection be-

tween the set of alignment columns and the set of edges

connecting cells in the multidimensional dynamic pro-

gramming matrix, based on the coding scheme described in

the supplementary section of Satija et al. [64]. More specif-

ically, a column X containing N rows can be mapped to an

N-tuple C(X) = (c(X1), . . . , c(XN)), where c(Xi) is defined

as

c(Xi) =















2 j − 1 if Xi = s
(i)

j

2 j if Xi = gap, between s
(i)

j
and s

(i)

j+1

(1)

where s
(i)

j
is the jth character of the ith sequence, such

that C(X) corresponds to the coordinates of the midpoint
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of an edge connecting two cells in the matrix. We will

also introduce initial and terminal columns, X(0) and X(T ),

which can be thought of as all-gap columns preceding the

first characters and following the last characters of the se-

quences, respectively. These will therefore be encoded as

C(X(0)) = (0, . . . , 0) and C(X(T )) = (2L1, . . . , 2Lm) where

Li is the length of the ith sequence.

It is then possible to map any global alignment, A, to a

path, C(A) = (X(0),C(A(1)), . . . ,C(A(L)), X(T )) through the

dynamic programming matrix (see Figure 1).

a)

– A
→

0 1

A – 1 2

A –
→

1 2

– A 0 1

b)

A

−

−

A

−

A

A

−

– A –

–

A

–

0 1 2

0

1

2

Figure 1 Correspondence between alignment columns and
edges connecting cells in a dynamic programming matrix,
illustrated for pairwise alignment. In order to permit a directed
acyclic graph representation of the space of possible alignments,
each column is given a code that distinguishes between gaps
based upon where they occur in the alignment. The coding for
each column for the two alignments shown in panel a) represents
a bijection to the midpoints of edges connecting cells in the
dynamic programming table in panel b). Cell boundaries are
indicated by thicker gridlines, and the finer gridlines indicate the
column coding corresponding to each position, as labelled on the
top and right axes. These codings are derived from the characters
shown on the bottom and left axes. The midpoint of each cell is
labelled with a circle, and each edge is annotated with a rectangle
denoting the corresponding column. Each path from X(0) to X(T )

(shown as dashed columns at (0, 0) and (2, 2), respectively)
represents a valid alignment.

Intersections between alignments

The paths corresponding to a particular set of alignments

may intersect at one or more points in the matrix; as first

discussed by Bucka-Lassen et al. [94], subpaths can be

‘spliced’ at these points in order to generate new align-

ments. This approach was originally used to create an aug-

mented search space for locating an optimal alignment

[94, 95], and more recently has been used as part of a pro-

gressive alignment algorithm that keeps track of subopti-

mal alignments [96].

The types of intersections fall into two categories, as il-

lustrated in Figures 2 and 3. The first of these, which we

term an interchange, results when two or more sampled

alignments contain the same column, but with a different

predecessor and successor, as shown in Figure 2. The sec-

ond type of intersection is termed a crossover, whereby

two or more sampled alignments contain pairs of equiv-

alent columns, as shown in Figure 3. Each interchange

or crossover can result in a multiplication of the num-

ber of possible ways of recombining the sampled align-

ments, such that the total number of alignments is greatly

increased.

As a result of this, an initial set of alignments sampled

according to a particular model can be used to generate

a much larger set of alignments sampled according to the

same distribution, as we shall examine in further detail in

the subsequent section.

Equivalence classes of columns

In order to delineate the ways in which a set of columns

can be recombined to form new alignments, we introduce

the predecessor and successor functions, fP and fS respec-

tively. The functions fP and fS take the coordinates of a

column X as input, and return the coordinates of an equiv-

alence class of columns, corresponding to the midpoint of

the predecessor (respectively successor) cell in the multi-

dimensional matrix. Each column mapping to a particular

fP- or fS -equivalence class can follow the same set of pre-

decessor or successor columns, respectively (see Figure 4).

Denoting the ith coordinate of the output by fP(X)i and

fS (X)i, the functions are defined such that

fP(X)i = c(Xi) − c(Xi) mod 2 (2)

fS (X)i = c(Xi) + c(Xi) mod 2 (3)

The original column coding is then uniquely recovered by

the backwards mapping

C(X) = ( fP(X) + fS (X))/2 (4)

The equivalence class EP(X) is then defined as the set

of columns, {X′ | fP(X′) = fP(X)}, with ES (X) similarly

defined.

Using the definitions above, a column X′ is a predeces-

sor of X if and only if fS (X′) = fP(X), since any path

connecting them must pass through the separating equiv-

alence class ES (X′) ≡ EP(X). We will use the notation

P(X) ≡ {X′ | fS (X′) = fP(X)} to denote the set of pre-

decessors of X.
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Figure 2 Interchanges between alignments can result in a
multiplication of the number of possible paths through the
DAG. a) Two alignments coded under the map C, as described
in equation (1). b) The resulting alignment DAG contains an
interchange column, such that there are four paths through the
DAG, arising from only two alignments. c) Correspondence
between alignment columns and edges connecting cells in a
dynamic programming matrix.
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Figure 3 Crossovers between two alignments containing
no interchange columns. a) Two alignments coded under the
map C, as described in equation (1). b) The resulting
alignment DAG allows for crossovers between these
alignments, such that there are four possible paths through the
DAG, two of which include pairs of columns that are not
observed in the input alignments (dashed lines). c)
Correspondence between alignment columns and edges
connecting cells in a dynamic programming matrix.

The alignment column graph

We can then define the alignment column graph,D(Ξ), of a

set of columns, Ξ, as a graph whose nodes are the columns

in Ξ, with a directed edge from column X to column X′ if

and only if fS (X) = fP(X′), which we write as X � X′.

From the definitions in equations (2) and (3), we have

fP(X) < fS (X) for all X, in the sense that fP(X)i ≤ fS (X)i

for all i, with no column having fS (X) = fP(X) unless it

consists of all gaps. This ensures that the alignment col-

umn graph is acyclic, since it is never possible to return to

the same equivalence class by following a set of directed

edges in the graph.

Each directed path through the column graph generates

a valid alignment; a global alignment is a valid alignment

that begins at X(0) and ends at X(T ), such that the number

of possible global alignments is equal to the number of dis-

tinct paths inD(Ξ) that lead from X(0) to X(T ). This is typi-

cally very large, growing rapidly with the number of inter-

section points between the alignments used to generate the

graph (see Figure 9).
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Implicit in the definition of the mapping in equation (1)

is a distinction between gaps based on their position in the

alignment, such that the two situations shown in Figure 1

represent distinct alignments, each yielding two different

pairs of columns. This assumption is necessary in order to

generate a sparse graph; treating all gaps as equivalent is

tantamount to replicating each gap-containing column onto

all parallels, such that the graph in general becomes maxi-

mally dense, making efficient algorithms difficult to imple-

ment (see Supplementary Figure S2).

YX

��

��

��(� )

��(� )

Figure 4 Predecessor and successor functions, and
equivalence classes of columns. The predecessor and
successor functions ( fP and fS respectively) map from columns
(edges) to nodes (circles) in the dynamic programming matrix. All
columns mapping to a particular node under fP share the same
set of possible predecessor columns, and are grouped together in
an equivalence class, denoted by EP (shown in red). An
analogous definition holds for ES (blue).

Probability distributions on alignment

DAGs
Due to the high-dimensional nature of the alignment space,

in any particular set each alignment will typically occur

with a very low frequency; even the most likely alignment

may only be sampled once, if at all [92, 97]. As such, the

relative probabilities of entire alignments are difficult—if

not impossible—to estimate directly by their observed fre-

quencies. However, a particular column may occur in many

different alignments, allowing the marginal probability of

each column, averaged over all alignments, to be estimated

much more efficiently [92, 98]. As we shall discuss, they

also represent useful summary statistics of the full distribu-

tion.

Alignment probabilities in terms of pair marginals

For general evolutionary models, the DAG can be used to

construct a factored approximation to the full distribution

over alignments; this factored distribution corresponds to a

graphical model with dependencies between neighbouring

columns defined by the edges in the DAG. Under this fac-

tored approximation, the probability of an alignment (cor-

responding to a path through the DAG) can be written in

the form

p(A) = p(A(1))

L


i=2

p(A(i) | A(i−1)) (5)

where

p(A(i) | A(i−1)) = p(A(i), A(i−1))/p(A(i−1)). (6)

For evolutionary models based on first-order hidden

Markov models (HMMs) (such as the one shown in Figure

S4), the pair-marginal representation is exact, since the de-

pendencies in the model are equivalent to those in the DAG.

For models with non-local dependencies between columns,

simply setting the pair marginals to be equal to the observed

pair marginals minimises the Kullback-Liebler divergence

from the full empirical distribution to the pair-marginal ap-

proximation (see Supplementary Section S4).

Motivations for using factored approximations

There are three main reasons for making use of factored

approximations of this type:

i) The number of possible column pairs is many orders

of magnitude lower than the number of alignments,

such that pair marginals can be estimated much more

reliably from observed frequencies. These can then be

used to construct more accurate estimates of the over-

all joint probability.

ii) Expression of the joint in terms of pair-marginals al-

lows for interchanges in the alignment DAG (cf. Fig-

ure 2), allowing many alternative alignments to be

generated from an initial collection of samples.

iii) Factorisation of the probability into a product of lo-

cal terms allows for efficient algorithms to be imple-

mented on the DAG structure.

We discuss these factors in further detail below.

Mean-field approximation

As well as distributions involving pair terms, we will also

consider a mean-field type approximation, whereby the

conditional distribution of each column is given a specific

predecessor [cf. equation (6)] is replaced by an average

over all predecessors:

p(X | P(X)) = p(X,P(X))/p(P(X)) (7)

= p(X)/


X′�X

p(X′) (8)

where p(X | P(X)) is the probability of column X given that

any one of its possible predecessors is in the alignment. The
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second line uses the identities p(X,P(X)) ≡ p(X) (since a

column can only be present if one of its predecessors is

present), and p(P(X)) ≡


X′�X p(X) (since only one mem-

ber of an equivalence class can be present in any particular

alignment).

An important corollary of the expression in equation (8)

is that single-column marginals are sufficient to reconstruct

the mean-field approximation to the joint probability; this

has several important consequences, as we shall discuss be-

low.

Motivations for using the mean-field approximation

The mean-field approximation described above is ex-

act for fully independent sites models, for example pair

HMMs with non-affine models for indels. For more gen-

eral HMMs, there are three major advantages associated

with using this approximation rather than the pair-marginal

formulation:

i) Since the number of possible columns is substantially

less than the number of possible column pairs, it is

easier to obtain reliable estimates of single-column

marginals from a collection of alignment samples.

Hence, the mean-field approximation is likely to be

more accurate for lower sample sizes.

ii) The use of single-column marginals allows for crossovers

in the alignment DAG (cf. Figure 3), whereas the pair-

marginal expression will assign a weight of zero to any

pairs that are not observed, hence only permitting in-

terchanges of the form shown in Figure 2. This allows

for a higher effective sample size for the alignments

under the mean-field approximation, with more alter-

native alignments generated from the same collection

of samples.

iii) Restricting to single-column marginals more efficient

algorithms to be constructed, involving one-step rather

than two-step recursions.

In the rest of this section, we examine these points in further

detail.

Estimating marginal probabilities

For a pairwise alignment, column marginals can be eas-

ily represented using a matrix in which the (i, j) entry con-

tains the marginal probability p(s
(1)

i
⋄ s

(2)

j
), where s

(1)

i
and

s
(2)

j
are the ith and jth characters in two sequences s(1)

and s(2), and the symbol ⋄ denotes homology. When only

two sequences are under comparison, dynamic program-

ming recursions allow for the exact computation of these

marginal probabilities under certain types of evolutionary

models [55, 99, 100].

In the multiple sequence case, such exact computations

are typically infeasible. However, if we are provided with a

set,A, of sampled alignments, an estimate of the marginal

probability of each column (after coding) can be computed

as the proportion of the alignments in A that contain the

column, weighted according to the alignment probability.

This can be written using the following indicator function

notation

p̂C(X) =


A∈A

p(A) �(C(X) ∈ C(A)) (9)

If we consider a multiset,A+, containing global alignments

sampled one or more times according to their probabil-

ity, then the factor p(A) can be replaced by the relative

frequencies of the sampled alignments. The estimator for

the marginal probability p̂C(X) is then proportional to the

fraction of sampled alignments containing a column X′ for

which C(X′) = C(X):

p̂C(X) = nC(X,A+)/|A+| (10)

with nC(X,A+) denoting the number of occurrences of

C(X) across all the alignments contained in the multiset

A+. If enough alignments are sampled from the correct

distribution, the above estimator will converge to the true

value pC(X). Although conditional marginals can also be

computed from local alignments (see Supplementary Sec-

tion S1), in this work we will consider only global align-

ments, in the interests of simplicity.

Since in most cases each sampled alignment will be

unique, due to the high dimensional nature of the state

space, in the rest of this manuscript we will refer only to

the set A rather than the multiset A+. However, for cases

where uncertainty is low, and the same alignment may be

sampled more than once, it is important to treat each replica

as an independent sample when computing marginal prob-

abilities.

Marginal probabilities can also be estimated for pairs

of columns using observed pair frequencies. However, the

space of possible pairs of columns can be much larger than

the space of columns; in the worst case this will be by a

factor of O(2N), where N is the number of sequences, since

this is the maximum size of an equivalence class. Hence, a

larger number of alignment samples will be needed to ob-

tain accurate estimates for pair marginals. As we shall see,

this means that pair-based reconstructions of joint probabil-

ities are typically less accurate unless a very large number

of samples is used.

Reconstructing alignment probabilities from marginals

Generally, with sampling-based procedures such as MCMC,

posterior probabilities are estimated via sampled frequen-

cies. However, in the case of a very high dimensional pa-

rameter such as a multiple sequence alignment, each point

in the space may only be visited once, such that it is not

possible to estimate posterior probabilities based on these

frequencies.
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As discussed above, the set of marginal probabilities for

each column (or pair of neighbouring columns) can be

used to reconstruct the posterior probability for any par-

ticular alignment, via equation (5). Although the likelihood

for each sampled alignment will often be known as a by-

product of the sampling procedure, the marginal posterior

probability of each alignment after integrating over other

unknown parameters (for example indel rates), will typi-

cally not be known. Hence, the DAG-based approach pre-

sented here represents a useful way to calculate posterior

probabilities in such cases. A similar approach has been

used recently to compute the posterior probabilities of phy-

logenetic trees based on the probabilities of each of the

constituent clades, under the assumption of conditional in-

dependence between clades [101].

As an illustration of this procedure, a set of pairwise

alignments were sampled from the pair-HMM in Supple-

mentary Figure S4, combined with the Dayhoff amino acid

rate matrix [102], for two globin sequences (sampled align-

ments illustrated in Supplementary Figure S3). As shown

in Figures 5 and 6, the DAG-based estimates of the poste-

rior probability converge towards the true probability as the

number of samples is increased, reaching a good agreement

after just 200 samples, as measured by the mean-squared

error of the logarithm:

MS E( p̂ || p) =
1

|A|



A∈A

(log p̂(A) − log p(A))2 (11)

For lower numbers of samples, the estimates are more

accurate for the more probable alignments, since the more

extreme regions of the space are sampled with lower prob-

ability, and hence converge more slowly.

Although both pair-marginal and mean-field estimates

converge in this case at a similar rate, closer analysis shows

that the mean squared error in the approximation to the

true posterior is considerably less for the mean-field ap-

proximation. This suggests that the improvement obtained

by summing over a larger number of paths (see Figure

9) outweighs the approximation introduced by averaging

over predecessor states, although eventually at around 2000

samples the pair-marginal estimates begin to dominate the

mean-field approximation (see Figure 5), since the true

pair-HMM involves neighbour-dependent terms. The pre-

cise location of this crossover point will depend on the

degree of neighbour dependency; for a completely site-

independent model (e.g. the pair-HMM in Supplementary

Figure S4 with δ = ǫ = σ), the single-column marginal

estimate always dominates (see Supplementary Figure S7).
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Figure 5 Mean squared error in the approximation to the true
posterior, as a function of the number of alignment samples.
Shown for the pairwise globin example. Although the pair-HMM
involves neighbour-dependent terms (leading to an affine gap
penalty), the mean-field approximation leads to a better estimate
of the true posterior until around 1000-2000 samples are taken.
This is due to the presence of intersections between paths in the
alignment DAG, which allows for a higher effective sample size to
be obtained from the same number of alignments.

This same pattern is observed in a more striking fashion

for a larger, 10-sequence alignment, as shown in Figure 7.

Moreover, since the space of possible alignments increases

very rapidly with the number of sequences, the benefit of

using the mean-field approach to boost the effective sam-

ple size is greater in the multiple-sequence case, resulting

in much faster convergence of the posterior estimates (see

Figure 7).

Approximate summation over all alignments

As well as computing the probability of individual paths in

the DAG, it is possible to sum over all alignments contained

within the DAG using a standard dynamic programming

algorithm (see Supplementary Section S5).

In the pairwise case, where it is possible to analytically

compute the sum over all alignments (by filling out the full

dynamic programming table), it is possible to examine how

much of the posterior mass is contained within the DAG

resulting from a particular set of samples.

While the probability mass contained within the individ-

ual samples increases relatively slowly, and encapsulates

only a very small fraction of the total, the proportion of

the posterior mass encapsulated in the set of paths through

the alignment DAG increases much more rapidly; the DAG

contains in the order of 10-15% of the total posterior mass
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Figure 6 As more alignment samples are taken, the DAG-based estimate of the log posterior probability for each alignment
converges towards the true value. The DAG-based probabilities already yield a good estimate when the number of alignments, N, is just
100. Shown on the top row are the reconstructed probabilities derived using pair marginals, and on the bottom using the mean field
approximation, with the line y = x overlaid in red. Since each sampled alignment is generally observed only once, the posterior probability
estimated directly from alignment frequency would be 1/N in each case above. The DAG methodology therefore offers a clear advantage for
the purposes of computing posterior alignment probabilities. The mean-field approximation results in a lower mean-squared error (MSE), due
to the higher effective sample size (see Figure 5).

over the entire set of possible alignments with just 100 sam-

ples, increasing to around 80% after including 2000 sam-

ples (see Figure 8 and Supplementary Figure S1).

A similar dynamic programming algorithm can be used

to calculate the total number of paths (i.e. alignments) con-

tained within the DAG. Examining the number of paths in

the DAG as a function of the number of alignment samples

shows a super-exponential relationship when crossovers are

allowed, whereas restricting to observed column pairings

increases close to exponentially (see Figure 9). In the pair-

wise case, the theoretical maximum can be computed an-

alytically; for the pairwise example discussed above, the

total number of paths in the DAG has an upper bound in

the order of 10113.

Summarising the alignment distribution
Although the set of alignments encoded by the DAG con-

tains a great deal of additional information beyond that con-

tained in any one alignment, there may be situations where

a single alignment is desired as a summary of the distribu-

tion. Due to the high-dimensional and constrained nature

of the state space, standard summary statistics such as the

mean are not applicable in this case [103].

Finding the MAP alignment

One of the simplest summaries of the distribution is the

maximum a posteriori (MAP) alignment. As mentioned

earlier, estimation of this quantity directly from sample fre-

quencies is typically very unreliable, since each alignment

is typically only sampled once, such that each sample has

the same empirical posterior probability. However, as dis-

cussed above, the DAG-based approach to estimating pos-

terior probabilities can be used to obtain good estimates of

the probability for each possible alignment contained in the

DAG. We can then use the fact that the DAG-based log pos-
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Figure 7 For a larger multiple sequence alignment, the mean-field approximation to the log posterior (bottom row) converges much
more quickly than the pair marginal estimate, despite the fact that the indel model used includes neighbour-dependent terms. This
is due to the fact that column marginals can be estimated more reliably than pair marginals, combined with the fact that allowing crossovers
in the DAG results in a higher effective sample size (see Figure 9). Results shown for the simulated dataset described later in the main text,
using the TKF92 indel model [17]. In this case the true posterior probability cannot be computed analytically, but the log likelihood
(conditional on specific values of the other unknown parameters) is known. Since the log likelihood is expected to be linearly related to the
log posterior, convergence can be gauged approximately by assessing the fit to a relationship of y = x + k (overlaid in red, with k, the
approximate normalising constant, chosen to match the distribution to which the mean-field approximation converges, here k = −9420).

terior is additive over the columns in the alignment

log p(A) = log p(A(1)) +

L


i=2

log p(A(i) | A(i−1)) (12)

such that the path with the maximum posterior can be

found using standard dynamic programming algorithms for

DAGs (see Algorithm 1).

Nevertheless, due to large size of the space of possible

alignments, there may be a large number of very similar

alignments with very similar posterior probability. Hence,

quantities such as the MAP can be poor summary statistics

of the distribution [58, 92, 93]. Instead, we will consider

alternative types of summary alignments that account for

the uncertainty contained within the DAG.

Loss function formulation

The problem of choosing a single summary alignment can

be approached within a decision theoretical framework,

whereby the choice of summary is designed to minimise

the expected value of a particular loss function, also known

as the posterior risk [103]. For a loss function defined in

terms of alignment accuracy, minimising the posterior risk

is equivalent to selecting the maximum expected accuracy

alignment [97, 104, 105].

The loss of an alignment, A, with respect to a reference

alignment, A′, will be denoted by L(A || A′), and represents

a penalty associated with choosing alignment A, given that

the true alignment is A′. The posterior risk associated with

A can then be defined as

R(A) = E


L(A || A′)


(13)

=


A′

p(A′)L(A || A′) (14)
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Figure 8 The proportion of the posterior mass contained in paths through the DAG increases rapidly with the number of samples.
For the pairwise example discussed in the text, the proportion reaches in the order of 10-15% of the total posterior mass with just 100
samples, increasing to over 80% after including 2000 samples (left panel). In contrast, the proportion of posterior mass contained within the
individual samples is very small (right panel).

where the sum over A′ includes all alignments. The

minimum-risk alignment is then Â = arg minA R(A).

For loss functions defined as a sum over columns (equiv-

alent to the pointwise gain functions discussed by Hamada

et al. [105]), we have

L(A || A′) = k


X∈A

L(X || A′) (15)

where k is independent of A. In order to define the loss for

a particular column, we will consider the following four

categories of columns in the predicted alignment, A:

True positives (TP) Columns correctly present

False positives (FP) Columns incorrectly present

True negatives (TN) Columns correctly absent

False negatives (FN) Columns incorrectly absent

such that T P∪ FP∪ T N ∪ FN = Ξ, the set of all observed

columns.

Generally we will not be interested in the number of neg-

atives (i.e. columns not included in the alignment), since

this will depend on how many alignment samples are used

to generate the DAG. We will therefore focus on loss func-

tions of the form

L f (X || A) =λFP(1 − �( f (X) ∈ f (A)))

− ρT P�( f (X) ∈ f (A))
(16)

=λFP − (ρT P + λFP)�( f (X) ∈ f (A)) (17)

where f is a bijective function operating on columns, with

f (A) = ( f (A(1), . . . , f (A(L))), and λFP and ρT P are loss/re-

ward functions associated with false positives and true pos-

itives respectively.

As shown in Supplementary Section S2, the posterior risk

can then be written as

R f (A) ∝

LA


j=1

[g − p f (A
( j))] (18)

where pf (X) =


A p(A) �( f (X) ∈ f (A)) is the marginal

probability of column X being present according to the

mapping specified by f , and g = λFP/(ρT P+λFP) is penalty

term that penalises longer alignments by a factor propor-

tional to the penalty on false positives. In contrast to an

arbitrarily chosen gap penalty, the penalty, g, has a direct

interpretation in this case. It is also a straightforward exten-

sion to allow λFP and ρT P, and hence g, to depend on the

specific column, X, for example penalising a false positive

proportionally to the number of non-gap characters con-

tained in the column.

Loss functions corresponding to common accuracy

measures

The simplest choice in equation (17) is to set f (X) = C(X)

as defined in equation (1), such that pf (X) is equal to the

marginal probability as defined in equation (9). The loss

function formulation can also be used to represent com-

monly used measures of alignment accuracy. Perhaps the

simplest of these is the so-called column score; this mea-

sures the proportion of correct columns, but without dif-

ferentiating between the positions of the gaps. This can be

defined more formally by first introducing an alternative

column mapping, C+(X) = (c+(X1), . . . , c+(XN)), which

groups together all columns that contain the same non-gap
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characters:

c+(Xi) =



2 j − 1 if Xi = s
(i)

j

0 if Xi = gap
(19)

The column score for an alignment, A, with respect to a

reference, A′, can then be defined as −LC+ (A || A′), with

λFP set to zero. Since we have

�(C(X) ∈ C(A))⇒ �(C+(X) ∈ C+(A)) (20)

and hence pC+ (X) ≥ pC(X) and p̂C+ (X) ≥ p̂C(X), the C+-

risk, i.e. RC+ , represents an upper bound to the C-risk, RC .

As shown in Figure 10, the alignment minimising the C+-

risk will not in general be the same as that minimising the

C-risk, although there may be considerable overlap.

As discussed in Supplementary Section S3, the above ap-

proach can easily be extended to make use of a function, f ,

which splits a column up into a set of pairwise homology

statements. This allows various pairwise accuracy scores to

be expressed in terms of similar types of loss functions.

Modeller scores

One other class of loss function worth mentioning here

is the so-called modeller version of each of the afore-

mentioned scores, Lm
f
(A || A′), which involve normalis-

ing L f (A || A′) by the length of the predicted alignment,

A. For example, the modeller C-score, corresponding to

Lm
C

(A || A′), was considered by Collingridge and Kelly [78];

as we shall see, the dependence on the length of the pre-

dicted alignment precludes the use of exact optimisation

algorithms for loss functions such as this.
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Figure 10 The minimum-risk path under the C-based loss
function (blue) may not be the same as that under the
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above (as frequencies from a total of 20 samples). In this case,
there are two equivalent paths with the same C+-score.

Efficient algorithms

In general, minimising the expectation of any of the afore-

mentioned loss functions over the space of all possible mul-

tiple alignments is a problem whose complexity grows ex-
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ponentially with the number of sequences [106]. For the

pairwise case, the minimum-risk/maximum expected accu-

racy problem can be implemented efficiently using stan-

dard dynamic programming algorithms [22, 60, 61, 87, 93,

97, 107–109]; for multiple sequences approximate tech-

niques have generally been used, including simulated an-

nealing [20,110,110,111], and greedy [112] or progressive

alignment algorithms [104, 113–115].

However, if the solution set is restricted to the (still very

large) space of alignments encoded in the DAG, any risk

function that is additive over columns [in the sense of equa-

tion (15)] can be minimised in time linear in the number of

columns in the DAG, by making use of efficient maximum-

weight path algorithms (see Algorithm 2; Figure 11). This

type of approach was first mentioned by Lunter et al. [92],

and an implementation described by Satija et al. [64], al-

though these previous studies did not examine the algo-

rithm in terms of loss functions.

The same approach cannot be applied to minimise the

risk under modeller variants, however, since the contribu-

tion of each column to the partial sum at each step in the

dynamic programming algorithm depends on the unknown

final alignment length. Collingridge and Kelly recently pre-

sented an algorithm, entitled MergeAlign, that proposed to

optimise a score of this type, but as shown in Supplemen-

tary Figure S5, it is possible to construct counter-examples

for which the algorithm does not compute the optimal solu-

tion. As we shall illustrate, this lack of optimality can result

in significant losses when summarising a set of alignments.

Moreover, the same objective, i.e. penalising longer align-

ments, can be achieved through the use of a non-zero g pa-

rameter as described above, such that the use of modeller

variant loss functions is unnecessary.

Efficient data structures
In representing the alignment DAG, it is essential to en-

sure that the space complexity of the data structure is less

than the total number of paths through the graph, which in-

creases very rapidly with the number of columns. The ob-

vious way to represent a graph is via a list of neighbours

for each node, which requires O(d̄|Ξ|) storage, where |Ξ| is

the number of observed columns and d̄ is the average node

in-degree.

However, within the mean-field setting, we can use the

predecessor and successor equivalence classes to signif-

icantly increase the space efficiency, since each column

need only record its predecessor and successor equivalence

class. Given the definitions of the predecessor and succes-

sor equivalence classes, we can see that each equivalence

class is of size at most 2N − 1, where N is the number of

sequences, since each row can take one of two possible

values (gap/character) in each equivalence class, with the

restriction that the column cannot be all gaps. In general,

the number of equivalence classes is therefore somewhat

Algorithm 1 MAP alignment (mean-field)

M = { } // Max. cumulative log posterior for each equivalence class
T = { } // Traceback hash
π = ( ) // List that will contain the MAP alignment
e // Vector indexing an equivalence class

function mapPathTo(e)
if M{e} undefined then

if e = 0 then
M{e}← 0

else
M{e}← −∞

for all X | fS (X) = e do
// Increment using mean-field approx. to conditional
m← mapPathTo( fP(X) ) + log(p(X)/p(EP(X)))
if m > M{e} then

M{e}← m

T {e}← X

return M{e}

end function

function traceback( )
e← fP(X(T ))
while e � 0 do

prepend(T {e}, π)
e← fP(T {e})

return π
end function

function mapAlignment( )
mapPathTo( fP(X(T )) )
return traceback( )
end function

Algorithm 2 Minimal risk alignment, arg minA R f (A)

M = { } // Max. negative cumulative risk for each equivalence class
T = { } // Traceback hash
π = ( ) // List that will contain the minimum risk alignment
e // Vector indexing an equivalence class
p f (X) //



A∈D(Ξ) p(A)p( f (X) ∈ f (A) )

g(X) // Penalty function, defined such that g(X(0)) = 1

function minRiskPathTo(e)
if M{e} undefined then

if e = 0 then
M{e}← 0

else
M{e}← −∞

for all X | fS (X) = e do
m← minRiskPathTo( fP(X) ) + p f (X) − g(X)
if m > M{e} then

M{e}← m

T {e}← X

return M{e}

end function

function minRiskAlignment( )
minRiskPathTo( fP(X(T )) )
return traceback( )
end function
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Figure 11 A collection of alignment samples can be combined into a DAG structure, and a summary algorithm generated using
efficient algorithms. The graph can be visualised by vertically ordering columns based on the longest path length to the end of the DAG (as
shown above). Each path represents a valid combination of the columns in the input alignments, with valid recombinations shown as grey
lines in the above figure. The maximum a posteriori or minimal-risk path can then be found efficiently using linear-time algorithms, yielding a
single summary alignment (shown in blue) that accounts for the uncertainty in the alignment set, and can be annotated with posterior
probabilities for each column (shown in orange).

less than the number of columns, with |Ξ| = d̄|E|, where

1 ≤ d̄ ≤ 2N − 1. Using an equivalence-class representation

of the DAG structure therefore results in O(d̄|E|) = O(|Ξ|)

space requirements, saving a factor of d̄.

Similar gains can be made in time complexity. Since any

column in a particular fP-equivalence class will have the

same set of possible predecessors, and similarly for succes-

sors, the partial sums required in dynamic programming al-

gorithms can be stored per equivalence class rather than per

node, which results in algorithms of O(|Ξ|) time complex-

ity rather than O(d̄|Ξ|) (see Algorithms 1 and 2 for exam-

ples). In the limit of a large number of short sequences with

high uncertainty, this results in going from approximately

quadratic time, to time linear in the number of columns.

Example application: summary alignments

for simulated and benchmark datasets
In order to illustrate the utility of the aforementioned pro-

cedure, we first simulated sequence data using the pro-

gram dawg [116], yielding sets of sequences for which

the true alignment is known. Details of the simulation are

provided in Supplementary Section S7. Data were simu-

lated under three parameter regimes, with indel rates set

to low, medium and high (see Supplementary Section S7

for further details); 50 datasets were generated for each

regime, yielding 150 datasets overall, each containing 10

sequences, with average sequence length equal to 905 nu-

cleotides.

As a biologically relevant example, we also considered

a set of 78 alignments taken from the BAliBASE database,

comprising the full-length alignments from the Reference 1

set [117]. This set further comprises two subsets, consist-

ing of low sequence identity (Ref 1a, ID < 25%) (short:

14, medium: 12, long: 12; average 6.8 sequences per align-

ment; average sequence length 309), and medium sequence

identity (Ref 1b, ID = 20 − 40%) (short: 14, medium: 16,

long: 10; average 9.0 sequences per alignment; average se-

quence length 351).

For each of these datasets, we ran the statistical alignment

software StatAlign [56], which jointly samples alignments

and trees under a stochastic model of substitution, inser-

tion and deletion [92]. 1000 alignment samples were gen-

erated from the posterior distribution, and a Java-based im-

plementation of Algorithm 2 was used to compute a sum-
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Indel rate
low medium high

MinRisk (C) 1.5 1.8 2.2
MinRisk (C+) 1.9 2.4 2.8
MergeAlign 12.0 17.6 22.9
S-Coffee 43.0 48.4 50.9

Table 1 Average time (in seconds) taken to generate a summary
alignment from 1000 samples, for the three simulated datasets. All
tests performed on a single AMD Opteron 2.3GHz core.

mary alignment minimising the risk under the C- and C+-

based loss functions.

It is also of interest to consider how the minimum-risk

summary approach scales to alignments containing larger

numbers of sequences. As a test dataset containing larger

alignments, we selected one of the largest alignments from

the OXBench suite [118], consisting of 122 immunoglobu-

lin sequences, with average length 113. To assess how the

method scaled with the number of sequences after control-

ling for other factors (such as amino acid content and se-

quence length), we subsampled smaller datasets from this

alignment, yielding datasets with 15, 33, 60 and 122 se-

quences. These subsets were sampled so as to maximise

dissimilarity within the subset, since the original alignment

contained several well-defined subgroups that would oth-

erwise skew the analysis. Since full posterior sampling of

alignments is only feasible for around 20-30 sequences, we

made use of an approximate method for sampling align-

ments for these datasets [79], generating 2000 alignment

samples for each dataset (see Supplementary Section S7 for

further details).

Comparison to other methods

For comparison, we also generated summary alignments

for each dataset using the MergeAlign method of Collingridge

and Kelly [78], and a consistency-based approach whereby

the alignment samples are used as a library for input to the

program T-Coffee [113], using the -aln option [119]. We

call the latter approach S-Coffee, with the ‘S’ signifying

that the T-Coffee method is being used on a library derived

from a set of sampled alignments.

As shown in Table 1, our DAG-based implementation is

substantially faster than the other methods. Increasing the

indel rate results in higher alignment uncertainty and longer

alignments, resulting in an increase in runtime for all meth-

ods, although the increase is small for the minimum risk

algorithm (henceforth referred to as MinRisk). Minimis-

ing the risk under the C+-based loss function incurs an ad-

ditional overhead due to the time needed to compute the

weighted marginal probabilities, pC+ (X), but this takes less

than half a second in all the examples we considered here.

Accuracy metrics

To assess the performance of each approach, we make use

of several measures of alignment accuracy, including the

AMA metric of Schwartz [111,120] (measuring the propor-

tion of correct pairwise homology statements), and the col-

umn score (equivalent to the C+-score, measuring the pro-

portion of correct columns). In addition, we use the mea-

sures shown in Table 2.

For the simulated data, accuracy is computed relative to

the known true alignments, and for the BAliBASE datasets,

relative to the benchmark alignment provided.

Since the minimal RC and RC+ alignments maximise the

expectation of the C- and C+-score respectively, it would

be expected that these methods perform best under the cor-

responding scores. The MergeAlign method seeks to max-

imise the Modeller C score, although as mentioned earlier,

the algorithm cannot guarantee an optimal solution. As a

pairwise progressive algorithm, the S-Coffee method might

be expected to perform best under a sum-of-pairs score,

such as the AMA metric.

Given that the absolute value of the accuracy varies sub-

stantially over the different datasets, we measure the perfor-

mance of each method by computing a rank score, which

indicates the rank of the accuracy of an alignment, Â, rela-

tive to the 1000 samples used as an input (A)

rankα(Â || A) =
1

|A|



A∈A

�(α(Â) > α(A)) (21)

A rank of 1 therefore indicates an alignment that is more

accurate under measure α than each of the individual sam-

ples, whereas a rank of 0 indicates an accuracy lower than

any of the individual samples.

Name Notation Definition

C-score αC(Â)


X∈Â �(C(X) ∈ C(A))/|A|

Modeller C αm
C

(Â)


X∈Â �(C(X) ∈ C(A))/|Â|

C+-score αC+ (Â)


X∈Â �(C+(X) ∈ C+(A))/|A|

Modeller C+ αm
C+

(Â)


X∈Â �(C+(X) ∈ C+(A))/|Â|

Table 2 Accuracy measures used to assess the relative performance
of the different summary methods. A denotes the true alignment and Â

an estimated alignment, and |A| represents the length of alignment A.

Results: simulated data

As shown in Table 3, the MinRisk method generally

yields summary alignments that are more accurate than the

majority of the samples, resulting in a rank score close to

1. As expected, minimising the risk under the C-based loss

function results in the highest accuracy under metric αC ,

and similarly minimising the risk under RC+ results in the

highest scores under measure αC+ . Interestingly, the Min-

Risk C+ method also results in the highest accuracy under

the AMA sum-of-pairs metric. In all cases setting g = 0

results in the best performance, since these accuracy met-

rics do not penalise false positives, although setting g = 0.5

does not result in a large loss of performance.
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Method         (mean, rank) 

MinRisk (C+) g=0   (0.66, 0.98)
MergeAlign            (0.57, 0.40)
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Figure 12 Accuracy of summary alignments for simulated data. Results for the MinRisk, MergeAlign and S-Coffee methods shown in
red, black and blue respectively, for low (top panel), medium (middle panel) and high (bottom panel) indel rates, with accuracy measured by
αC+ . The range of values covered by the 1000 samples is shown in grey, with lighter shading indicating greater distance from the median.

In contrast, on these datasets MergeAlign typically yields

a summary alignment whose accuracy is close to the me-

dian, with a rank score close to 0.5, although performance

is more reasonable under the αC measure. The progressive

heuristic S-Coffee algorithm performs consistently badly in

all cases, yielding summary alignments that are typically

worse than the majority of the samples used to build the

library, suggesting a conflict between the information con-

tained in the samples, and the heuristics used to construct

the alignment.

When the modeller variants of the scores are consid-

ered (Table 4), the general patterns stay much the same,

although there is now a benefit observed in increasing the g

parameter, since the modeller scores penalise longer align-

ments. For alignments with more gaps (higher indel rate),

the value of g yielding the highest accuracy under the mod-

eller scores tends to decrease (see Figure 13). This reflects

the fact that for cases where the true alignment contains

many gaps we may wish to be more lenient with the inclu-

sion of additional columns, allowing the alignment to in-

crease in length. Overall, setting g = 0.5 yields the best

average performance under the modeller variants, corre-

sponding to a loss function that equally penalises false pos-

itives and false negatives.

As might be expected, the performance of MergeAlign

improves when the accuracy is measured using the mod-

eller scores. However, better performance can still be ob-

tained under the modeller variants by using the MinRisk

method and a non-zero g parameter (see Table 4). As dis-

cussed earlier, the g parameter accomplishes the key aim

of the modeller score (i.e. to penalise longer alignments)

while maintaining computational tractability, and a mean-

ingful statistical interpretation.

Given the heterogeneity of the different datasets, it is also

useful to visualise the results for the individual datasets. As

shown in Figure 12 and Supplementary Figure S8, the re-

sults are consistent across all datasets, with the MinRisk

method yielding alignments that are significantly better

than the majority of samples, especially as the indel rate

is increased. Conversely, the MergeAlign method consis-

tently yields summary alignments that are close to the me-

dian accuracy of the sampled alignments, and the S-Coffee
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low indel rate medium indel rate high indel rate
αC αC+ AMA αC αC+ AMA αC αC+ AMA

MinRisk (C), g = 0 0.91 0.89 0.90 0.96 0.92 0.93 0.89 0.88 0.88
MinRisk (C), g = 0.5 0.89 0.73 0.84 0.93 0.50 0.78 0.84 0.09 0.40
MinRisk (C), g = 1 0.88 0.63 0.80 0.90 0.30 0.65 0.79 0.03 0.28
MinRisk (C+), g = 0 0.86 0.98 0.96 0.87 1.00 1.00 0.76 1.00 1.00
MinRisk (C+), g = 0.5 0.89 0.92 0.92 0.93 0.94 0.94 0.86 0.94 0.94
MinRisk (C+), g = 1 0.89 0.84 0.88 0.91 0.74 0.85 0.83 0.34 0.55

MergeAlign 0.65 0.40 0.48 0.80 0.46 0.58 0.73 0.36 0.45
S-Coffee 0.08 0.02 0.10 0.15 0.01 0.10 0.29 0.00 0.04

Table 3 Average rank scores for the different methods on simulated datasets, using the accuracy metrics described in the main text and in Table
2. Highest values for each column shown in bold.

low indel rate medium indel rate high indel rate
αm

C
αm

C+
αm

C
αm

C+
αm

C
αm

C+

MinRisk (C), g = 0 0.92 0.91 0.96 0.95 0.89 0.92
MinRisk (C), g = 0.5 0.93 0.88 0.97 0.80 0.90 0.35
MinRisk (C), g = 1 0.95 0.85 0.96 0.65 0.87 0.23
MinRisk (C+), g = 0 0.69 0.88 0.62 0.96 0.56 1.00
MinRisk (C+), g = 0.5 0.90 0.94 0.95 0.97 0.88 0.96
MinRisk (C+), g = 1 0.93 0.92 0.95 0.91 0.88 0.74

MergeAlign 0.74 0.57 0.85 0.67 0.78 0.63
S-Coffee 0.15 0.05 0.22 0.03 0.37 0.00

Table 4 Average rank scores for the different methods on simulated datasets, measured using the modeller scores. Highest values for each
column shown in bold.

Ref 1a ( < 25%) Ref 1b (20 − 40%)
αC αC+ AMA αC αC+ AMA

MinRisk (C), g = 0 0.94 0.77 0.88 0.88 0.85 0.82
MinRisk (C), g = 0.5 0.90 0.41 0.66 0.92 0.81 0.90
MinRisk (C), g = 1 0.88 0.41 0.63 0.94 0.83 0.93
MinRisk (C+), g = 0 0.67 0.92 0.77 0.71 0.87 0.66
MinRisk (C+), g = 0.5 0.86 0.86 0.88 0.85 0.91 0.89
MinRisk (C+), g = 1 0.88 0.64 0.78 0.90 0.88 0.93

MergeAlign 0.91 0.59 0.74 0.80 0.75 0.84
S-Coffee 0.45 0.14 0.26 0.52 0.32 0.52

Table 5 Average rank scores for the different methods on BAliBASE datasets, using the accuracy metrics described in the main text and in Table
2. Highest values for each column shown in bold.

Ref 1a ( < 25%) Ref 1b (20 − 40%)
αm

C
αm

C+
αm

C
αm

C+

MinRisk (C), g = 0 0.93 0.74 0.82 0.78
MinRisk (C), g = 0.5 0.95 0.70 0.96 0.96
MinRisk (C), g = 1 0.92 0.68 0.97 0.97
MinRisk (C+), g = 0 0.40 0.50 0.34 0.33
MinRisk (C+), g = 0.5 0.86 0.88 0.83 0.85
MinRisk (C+), g = 1 0.90 0.86 0.93 0.96

MergeAlign 0.93 0.74 0.85 0.86
S-Coffee 0.59 0.46 0.76 0.75

Table 6 Average rank scores for the different methods on BAliBASE datasets, measured using the modeller scores. Highest values for each
column shown in bold.
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Figure 13 Accuracy on the simulated datasets under the αC+ (left) and αm
C+

(right) measures as a function of the g parameter for low (◦),
medium (△) and high (+) indel rates.

method performs consistently worse than the majority of

samples.

Results: BAliBASE

For the BAliBASE datasets, the MinRisk method also con-

sistently yields summaries that are better than the major-

ity of samples, and outperforms the other methods exam-

ined here in all cases (see Tables 5 and 6). Nevertheless,

although still ranking behind most of the MinRisk com-

binations, MergeAlign performs somewhat better on the

BAliBASE datasets than on the simulated data, with ranks

scores consistently much higher than the median. This sug-

gests that these particular BAliBASE alignments contain

fewer of the types of features (for example large numbers

of indels) that are likely to lead to suboptimal solutions

under the MergeAlign algorithm. Similarly, the S-Coffee

method, although still often worse than the median accu-

racy of the samples, performs better than on the simulated

data, suggesting that the heuristics employed by T-Coffee

are tailored more towards aligning these types of datasets.

These heuristics may to some extent be overriding the in-

formation input via the library, which may explain the poor

performance on the simulated datasets.

We can see also that in general the optimal value of g

for the MinRisk method is higher for the Ref 1b dataset

reflecting the fact that these sequences are less diverged,

and hence likely to contain fewer indels. However, as with

the simulated data, a value of g = 0.5 gives results that

are close to optimal in all scenarios with the BAliBASE

datasets.

Results: approximate sampling on larger OXBench

alignments

Using the OXBench datasets, we can examine how the

above conclusions scale to alignments with larger numbers

of sequences. As discussed by Bucka-Lassen et al. [94],

the number of intersections between sampled alignments

may be expected to decrease as the number of sequences

is increased, due to the increased size of the state space.

Similarly, since the number of possible columns increases

exponentially with the number of sequences, it might be

expected that the marginal probabilities of each column

would decrease as the number of sequences is increased,

thereby making the minimum-risk alignment less reliable.

However, in the examples considered here, this effect

does not appear to be significant, since the alignment un-

certainty also decreases as more sequences are added to the

alignment, and this appears to more than compensate for

the increase in the size of the potential state space (see Ta-

ble 7). This is also highlighted by the fact that the average

number of columns per equivalence class—a measure of

the uncertainty surrounding the minimum-risk alignment—

does not increase as the number of sequences is increased.

As shown in Figure 14, although the marginal probabil-

ities derived by the approximate sampling procedure may

be less accurate than those from alignments obtained us-

ing StatAlign, the minimum-risk alignment for these align-

ments is still always better than the majority of samples,

with a rank score often above 0.8 (see Table 7).

Since the alignments are of length around 150, and the

DAGs contain in the region of 30, 000 unique columns,

2000 samples is approximately 10 observations per col-

umn. While this appears to be sufficient for estimating the

minimum-risk alignment, more samples will be needed in

order to accurately estimate the probabilities of the less

likely alignments, since these tend to converge more slowly

(cf. Figures 6 and 7).

Overall the rank scores are of comparable magnitude to

those observed with the BAliBASE datasets. Moreover, the

performance does not appear to degrade as the number of

sequences is increased, although the optimal value of g

does switch from 0.5 to 0 as the number of sequences is
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increased to 60 and 122. This is likely due to the fact that

the benchmark alignment increases in length as the number

of sequences is increased, and a lower value of g favours

longer alignments.

Number of sequences 15 33 60 122

Benchmark alignment length 144 150 152 157
Mean eq. class size 15.2 11.8 12.4 11.1
Average marginal 0.19 0.21 0.25 0.23

MinRisk rank, g = 0 0.67 0.85 0.84 0.92
MinRisk rank, g = 0.5 0.85 0.95 0.69 0.74

# columns in DAG 20288 26782 26221 30305
Time to read alignments (s) 0.5 0.8 1.2 2.1
Total runtime (s) 0.9 1.3 1.9 3.0

Table 7 Datasets with varying numbers of sequences were
constructed by subsampling from a 122-sequence dataset from
OXBench. The posterior over alignments does not become more
diffuse as the number of sequences is increased; this can be seen by
the decrease in mean equivalence class size, and slight increase in
the average marginal probabilities, as well as the decreased spread of
accuracy values in Figure 14. Timings were carried out using a single
AMD Opteron 2.3GHz core.
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Figure 14 Distribution of alignment accuracy scores for the
OXBench datasets. Minimum-risk summary alignments shown in
red, for g = 0 and g = 0.5. The summary alignments are generally
more accurate than the majority of samples, and this remains the
case as the number of sequences is increased.

Computational considerations

While the runtime does increase with the number of se-

quences, a breakdown of the contributions to these tim-

ings shows that the majority of the time is spent reading

in the alignments, which scales linearly with the number of

alignments multiplied by the number of sequences (cf. Sup-

plementary Figure S9). As discussed earlier, the minimum-

risk algorithm scales linearly with the number of columns

in the DAG, but this step contributes a very small propor-

tion of the total runtime in the examples shown in Table 7.

On our test systems the overall time taken to process and

summarise 2000 alignments is only 3 seconds for the 122-

sequence dataset (see Table 7), and around 10 seconds for

10, 000 alignments (data not shown). For a 20-sequence

dataset, analysing 500, 000 alignments takes 150 seconds

(see Supplementary Figure S9). Memory usage is also gen-

erally low, requiring less than 2Gb in all the cases we have

tested, even for 500, 000 alignments.

In all cases we have examined, the time taken to actually

generate the alignment samples is significantly larger than

the time required to analyse the samples. As such, large

gains in efficiency can be obtained by generating one set of

alignment samples and carrying out multiple downstream

analyses on this same set, compared to carrying out a full

joint sampling analysis.

Effect of alignment accuracy on tree estimation

As discussed in the introduction, a number of studies have

highlighted how biases in alignments may lead to mislead-

ing conclusions in the context of downstream tree infer-

ence. As such, any methodology that has the potential to

improve alignment accuracy, particularly in the presence of

high uncertainty, has the potential to improve subsequent

phylogenetic inference. Here we will provide a brief exam-

ple to reiterate this point.

For each of the simulated datasets discussed earlier, we

performed tree inference using the program DNAML from

version 3.69 of the PHYLIP package [121], using align-

ments generated by four commonly used programs, as well

as the summary alignments generated using the minimum-

risk procedure presented here. DNAML was run with the

default settings in each case, and the distance to the known

true tree was computed using the Robinson-Foulds dis-

tance, equal to the number of bipartitions that differ from

the true tree, with maximum value of 2(n − 3), where n is

the number of leaves in the tree [122].

As shown in Table 8 and Figure 15, the alignment accu-

racy under these different methods correlates strongly with

the accuracy of the resulting trees, with the most accurate

alignment methods giving rise to the fewest tree errors. In

all cases, the C+ version of the minimum-risk algorithm,

applied to alignments generated by StatAlign, yields the

highest tree accuracy. This example illustrates the types

improvements that can be obtained by using more robust

methods to generate alignments before carrying out tree in-

ference.
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Figure 15 Alignment accuracy is strongly correlated with the
number of errors in trees estimated by DNAML. Tree accuracy
was measured using the Robinson-Foulds distance [122]. Results
are shown for low (◦), medium (△) and high (+) indel rates, for the
different methods presented in Table 8. In each case, the MinRisk
results are highlighted in red (MinRisk C), and blue (MinRisk C+),
and tend to give the most accurate alignments and trees.

low medium high
AMA RF AMA RF AMA RF

MinRisk (C+), g = 0 0.84 0.12 0.67 0.12 0.59 0.44
MinRisk (C), g = 0 0.83 0.20 0.64 0.28 0.53 0.44

MAFFT 0.81 0.16 0.60 0.44 0.50 0.64
MUSCLE 0.80 0.36 0.61 0.48 0.49 0.48
T-Coffee 0.67 1.00 0.52 0.92 0.42 1.24
CLUSTALW2 0.62 1.04 0.44 1.32 0.35 1.36

Table 8 Results for tree inference on alignments generated using
different methods, on the simulated datasets, as shown in Figure 15.
Shown are alignment accuracy scores (according to the AMA metric),
and Robinson-Foulds tree distances (RF) for the DNAML tree,
averaged over all datasets in each group (low, medium and high indel
rates). Higher alignment accuracy is strongly predictive of tree
accuracy, with the most accurate alignments generating the trees with
the fewest errors. The MinRisk results were computed using samples
generated by StatAlign.

Predictive power of column marginals

As well as providing a way to approximate full alignment

probabilities, posterior column marginal probabilities can

also be good predictors of the presence or absence of a

column in the true alignment [22]. In all cases examined

here, the column marginals are excellent predictors of the

presence or absence of the column in the true alignment,

with an AUC close to 1, especially for the BAliBASE

datasets (see Table 9). The C+-weighted marginals (the

Simulated data BAliBASE
low medium high Ref 1a Ref 1b

pC → �(C(X) ∈ C(A)) 0.93 0.92 0.90 0.99 0.99

pG → �(C(X) ∈ C(A)) 0.80 0.78 0.82 0.92 0.93

pC+ → �(C+(X) ∈ C+(A)) 0.84 0.78 0.75 0.79 0.89

Table 9 Accuracy of marginal probabilities in predicting column
presence/absence, as measured by the area under a ROC curve
(AUC), including a comparison to results generated using the program
GUIDANCE [75] (indicated by the pG row in the table).

marginal probability of a column after grouping with all

other columns containing the same characters, regardless

of position in the alignment) are less accurate in predict-

ing the presence/absence of a column under the C+ defini-

tion, which may be due to the fact that the estimates of pC+

make stronger assumptions about the exchangeability of

columns, averaging over a larger set of possible predeces-

sors. In all cases, predictive power is higher for alignments

containing fewer indels, although the predictive power of

the marginals will depend largely on the suitability of the

evolutionary model for analysing the dataset.

Comparison to results generated by the widely-used pro-

gram GUIDANCE [75] indicate that column marginals are

typically a more reliable predictor of column presence/ab-

sence. However, it is important to note that the predictive

power of these column marginals is dependent on the qual-

ity of the alignments used to construct the DAG.

Propagating alignment uncertainty into

downstream inference
So far we have examined how the DAG facilitates the effi-

cient generation of accurate summary alignments, which

can then be used for subsequent analyses. However, for

many types of analyses it may be advantageous to jointly

sample alignments and other parameters of interest, such as

trees [56, 57], or sequence annotations [64], in order to ac-

count for the interdependence of these different quantities.

Since joint sampling approaches are typically computation-

ally intensive, it is also desirable to explore alternative ways

in which alignment uncertainty can be incorporated into

downstream inference in cases where joint analysis is not

feasible [29, 123].

Sequential approach

One way of accomplishing this is to carry out the down-

stream analyses separately on each of the sampled align-

ments, averaging or summarising the results as appropri-

ate. This type of sequential approach has been used to as-

sess the sensitivity of phylogenetic inference to the start-

ing alignment [26, 29, 33], as well as examining the ef-

fect of alignment uncertainty on estimates of positive se-

lection [36] and RNA secondary structure prediction [124].

However, as discussed earlier, a set of alignment samples

will typically contain only a small portion of the total prob-

ability mass, even for pairwise alignments with relatively
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low uncertainty (cf. Supplementary Figure S3). Hence, the

uncertainty quantified in the individual samples will be a

significant underestimate of the true alignment uncertainty.

Moreover, since the relative frequencies of whole align-

ments are a very poor estimator of posterior probabilities,

simply carrying out an independent analysis on each sam-

pled alignment and then averaging is likely to yield unre-

liable results. Reweighting procedures such as those dis-

cussed by Blackburne and Whelan [36] are only feasible

when the posterior probability of each alignment can be

computed exactly, which is not the case for many models

of interest.

DAG-based approach

In order to address these issues, we can make use of

the alignment DAG, making use of intersections between

alignments to increase the effective sample size.

Due to the acyclic structure of the graph, it is possible to

adapt many standard algorithms, such as forward-backward

algorithms for HMMs, to operate on the DAG structure

rather than an individual alignment. This allows for down-

stream inference to be averaged over a very large number of

alignments, weighted according to a more reliable estimate

of the posterior probability for each alignment, rather than

analysing only a small collection of individual samples.

As a specific example, we can consider the case of tree

inference under an independent-sites model. On a single

alignment the posterior probability of a tree, Υ, can be writ-

ten as a product of contributions from each column:

p(Υ | A,Θ) ∝ p(Υ)

LA


i=1

p(A(i) | Υ,Θ) (22)

where Θ represents the parameters of the evolutionary

model, and the proportionality involves the quantity


p(A,Υ)dΥ. It is a straightforward extension then to com-

pute the posterior averaged over all alignments in the DAG,

using a dynamic programming approach similar to the al-

gorithms discussed earlier. We first introduce the following

partial sum for a column X:

z(X | Υ,Θ) ∝ p(X | Υ,Θ)


X′�X

z(X′ | Υ,Θ)p(X | X′) (23)

such that the marginal posterior for the tree, Υ, summing

over all alignments in a DAGD(A), can be written as

p(Υ | D(A),Θ) ∝ p(Υ)


A∈D(A)

p(A)p(Υ | A,Θ) (24)

∝ p(Υ) z(X
(T )

A
| Υ,Θ) (25)

Example application: marginal probabilities for

topologies

As an illustration of the utility of this approach, we con-

sider here a 4-sequence example, for which there are three

possible unrooted topologies relating the sequences. The

specific example we consider consists of three human

globin sequences, α-haemoglobin (HbA), myoglobin (Mb),

and cytoglobin (Cygb), as well as a plant leghaemoglobin

(LegHb). Previous studies have shown significant uncer-

tainty as to the phylogenetic relationship between these dif-

ferent types of globins [125], hence this represents a good

test case to analyse the effect of alignment uncertainty on

topology inference. Here we restrict our analysis to four

sequences for the purposes of simplifying the example.

For these sequences, a set of alignment samples, A, and

tree samples, T , was generated using StatAlign (see Sup-

plementary Section S7 for further details), and the marginal

likelihood for each tree in the set was then computed as

a sum over all the alignments by evaluating the quantity

z(X
(T )

A
| Υ,Θ) for allΥ ∈ T . The parameters,Θ, were set us-

ing the Dayhoff substitution matrix [102], with gaps treated

as missing data. Assuming a uniform prior, the marginal

posterior probability for each topology, τ, was then com-

puted by averaging the marginal likelihoods for all trees in

T conforming to the particular topology:

p(τ | D(A),Θ) =
1

|T |



Υ∈T

�(Υ ∼ τ) p(Υ | D(A),Θ)

(26)

where �(Υ ∼ τ) indicates that tree Υ conforms to topology

τ. These marginal posteriors can then be compared to the

topology posterior computed on each alignment individu-

ally, replacingD(A) with A in equation (26) above.

Although the true tree is not known in this case, the trees

sampled by StatAlign place the majority of the posterior

mass on the left-most topology shown in the top panel of

Figure 16, placing a posterior probability of 0.12 on the

centre tree, and 0.09 for the right-most topology.

The bottom panel of Figure 16 shows posterior probabil-

ities computed using equation (26), indicating significant

variability depending on which alignment is used. While

some alignments result in a posterior probability of more

than 0.9 for the most favourable topology, others result in

a probability of less than 0.2 for this topology. Simply tak-

ing the mean posterior over all the individual alignments in

this case results in a posterior probability of only 0.56 for

the most favourable topology. However, combining all the

alignment samples into the DAG leads to a posterior prob-

ability of 0.94. This illustrates the fact that combining the

alignments into a DAG may result in additional information

being extracted from the same set of alignments, due to the

increased effective sample size arising from intersections in

the DAG.
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Figure 16 Posterior probabilities for three possible topologies, computed on individual alignment samples (bottom left), as well as
marginalising over the alignments within the DAG (bottom right). Top panel: The three unrooted topologies for the four globin
sequences discussed in the main text, ordered according to the posterior probability according to StatAlign (left to right, descending in
probability). The leghaemoglobin sequence is taken from L.luteus, and all others from H.sapiens. Bottom panel: Posterior probabilities
computed on individual alignment samples (left), and by marginalising over all alignments contained within the DAG (right). Bars in the lower
panel are colour-coded according to the shading of the tree topologies in the top panel. Also shown is the mean of the probability vectors
computed on the individual alignment samples.

Since the same DAG is used to compute the likelihood

for all trees in the set T , the majority of the runtime for

this procedure is not spent reading in the alignments from

disk (as it was for the minimum-risk summary procedure).

As such, the runtime scales linearly with the number of

columns in the DAG, as expected (see Supplementary Fig-

ure S10).

Conclusions
The approaches illustrated here provide a general frame-

work for dealing with alignment uncertainty in a statisti-

cally meaningful fashion. Encoding a set of sampled align-

ments in a DAG structure allows for more accurate esti-

mation of posterior probabilities based on column or pair

marginals. Due to interchanges and crossovers in the DAG,

the number of alignments encoded in the graph is typically

many orders of magnitude greater than the number of sam-

ples used to generate the DAG, such that the effective sam-

ple size is greatly increased by this representation.

Since the graph is acyclic, efficient algorithms can be

developed for summation over this very large number of

alignments, each weighted according to its probability. As

a specific example, we have considered algorithms for gen-

erating summary alignments that minimise the expected

value of various types of loss functions, observing that this

type of algorithm is generally very successful at minimis-

ing the loss on a set of test cases.

This approach provides a way to conduct many types of

sequence analysis on the very large set of alignments en-

coded in the DAG structure, allowing for alignment uncer-

tainty to be propagated into downstream inference in cases

where computationally expensive joint sampling proce-

dures are infeasible. In addition to the tree inference exam-

ple illustrated here, we are currently working on adapting

several other common algorithms to the alignment DAG

structure.

Combining the output of other alignment programs

The approaches detailed here are in theory applicable to

a set of alignments generated by any type of method, al-

though the quality of the probability estimates generated

by the DAG will depend on the quality of the underlying

model used to generate the alignments. Although this type

of method can be used to combine the output of several dif-

ferent alignment programs, in a similar fashion to the M-
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Coffee procedure [119], such an approach does not have a

probabilistic interpretation, and will depend heavily on the

choice of programs used to generate the input.

We have observed that this type of procedure usually

yields summary alignments that are similar in accuracy

to the program that typically generates the most accurate

alignments (data not shown); however, since the most ac-

curate alignment method is usually known from the out-

set, based on benchmarking results, there is not much to

be gained by employing such a procedure. Moreover, the

reliability of such an approach as a heuristic will depend

strongly on the degree of similarity between the different

alignment programs, which in turn is a function of the num-

ber of sequences in the alignment, hence we would recom-

mend against using alignment DAGs as a way of combining

the output of non-probabilistic alignment programs.

Alignment DAGs as generators of alignment samples

One other obvious application of the alignment DAG is as a

way of generating additional alignment samples, which can

be sampled by using a DAG-based version of the traditional

stochastic traceback algorithm (cf. Supplementary Section

S6).

One potential use for these alignment samples could be as

a source of proposals within an MCMC alignment sampler,

allowing for a new state to be efficiently generated, along

with a known proposal probability for use in a Metropolis-

Hastings accept/reject step. Although this type of approach

does not allow for the exploration of previously unobserved

columns, it could be useful as way to improve mixing, par-

ticularly once the key regions of the space have already

been explored.

Software availability

Java software implementing the minimum-risk alignment summary algorithm

and computation of marginal topology probabilities is available for download at

http://statalign.github.io/WeaveAlign
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