
On the swap-distances of different realizations of a
graphical degree sequenceI

Péter L. Erdősa,1, Zoltán Királyb,2, István Miklósa,c,3

aAlfréd Rényi Institute, Reáltanoda u 13-15 Budapest, 1053 Hungary
email: <erdos.peter,miklos.istvan>@renyi.mta.hu

bDepartment of Computer Science and EGRES (MTA-ELTE), Eötvös University,
Pázmány Péter sétány 1/C, Budapest, 1117 Hungary

email: kiraly@cs.elte.hu
cInstitute of Computer Science and Control, Hungarian Academy of Sciences,

Lágymányosi út 11, H-1111 Hungary

Abstract

One of the first graph theoretical problems which got serious attention (al-
ready in the fifties of the last century) was to decide whether a given integer
sequence is equal to the degree sequence of a simple graph (or it is graphical
for short). One method to solve this problem is the greedy algorithm of Havel
and Hakimi, which is based on the swap operation. Another, closely related
question is to find a sequence of swap operations to transform one graphical
realization into another one of the same degree sequence. This latter prob-
lem got particular emphases in connection of rapidly mixing Markov chain
approaches to sample uniformly all possible realizations of a given degree se-
quence. (This becomes a matter of interest in connection of – among others
– the study of large social networks.) Earlier there were only crude upper
bounds on the shortest possible length of such swap sequences between two
realizations. In this paper we develop formulae (Gallai-type identities) for
these swap-distances of any two realizations of simple undirected or directed
degree sequences. These identities improves considerably the known upper
bounds on the swap-distances.
AMS classification (2010): Primary - 05C07, Secondary - 05C20, 05C45

Key words: graphical degree sequences, Havel-Hakimi algorithm, swaps,

IPLE and IM acknowledge financial support from grant #FA9550-12-1-0405 from the
U.S. Air Force Office of Scientific Research (AFOSR) and the Defense Advanced Research
Projects Agency (DARPA).

1PLE was supported in part by the Hungarian NSF, under contract NK 78439.
2ZK was supported by grants (no. CNK 77780 and no. CK 80124) from the National

Development Agency of Hungary, based on a source from the Research and Technology
Innovation Fund, and also by TÁMOP grant 4.2.1./B-09/1/KMR-2010-0003.

3IM was supported in part by a Bolyai postdoctoral stipend and by the Hungarian
NSF, under contract F61730.

1

swap-distance, triangular C6 cycle

1. Introduction

The comprehensive study of graphs (or more precisely the linear graphs,
as it was called in that time) began sometimes in the late forties, through
seminal works by P. Erdős, P. Turán, W.T. Tutte, T. Gallai and others. One
problem which received considerable attention was the existence of certain
subgraphs of a given graph G. Such a subgraph could be, for example, a
perfect matching in a (not necessarily bipartite) graph, or a Hamiltonian
cycle, etc. Generally these substructures are called factors. The first couple
of important and rather general results of this kind were due to Tutte (in
1952) who gave necessary and sufficient conditions for the existence of f -
factors [18, 19].

In cases where G is a complete graph, the f -factor problem becomes
easier: then we are simply interested in the existence of a graph with a
given degree sequence, and at least two solutions of different kind were de-
veloped around 1960. One was due to Havel [9] who constructed a famous
greedy algorithm to answer this degree sequence problem. His algorithm
was based on the notion of swap. It is interesting to mention the almost
completely forgotten paper of Senior ([17]) who studied the problem of gen-
erating graphs with multiple edges but without loops: his goal was to find
possible molecules with given composition but with different structures. He
also discovered the swap operation, but he called it transfusion. The other
approach was the equally famous Erdős-Gallai theorem ([2]) which gave a
necessary and sufficient condition in the form of a sequence of inequalities.
In this latter paper Havel’s method was an ingredient of the proof and the
authors also observed that their result is a consequence of Tutte’s f -factor
theorem.

In 1962 Hakimi studied the degree sequence problem in undirected graphs
with multiple edges and loops ([7]). He developed an Erdős-Gallai type result
for this much simpler case, and for the case of simple graphs he rediscovered
the greedy algorithm of Havel. Since then this algorithm is referred to as
the Havel–Hakimi algorithm.

Already from the general f -factor theorem of Tutte one can derive a
polynomial time algorithm to solve the degree sequence problem, but it was
not done that time. Havel’s algorithm provided a quadratic (in n) time
construction method of the required graphical realization.

The construction of – preferable ”typical” – graphical realizations of given
degree sequences became an important problem in the last two decades in
connection of the emergence of huge networks in social sciences, medicine,
biology or the internet technology, naming only some.

2

Mentioning just one example here, data is collected from anonymous
surveys in epidemics studies of sexually transmitted diseases, where the in-
dividuals specify the number of different partners they have had in a given
period of time, without revealing their identity. In this case, epidemiolo-
gists should construct typical contact graphs obeying the empirical degree
sequence to estimate epidemiological parameters.

To construct all possible realizations of a given degree sequence is typi-
cally very time consuming task since usually there are exponentially many
different realizations. Here we do not consider the computationally almost
hopeless isomorphism problem. In this paper the vertices are labeled (there-
fore distinguishable) and two isomorphic realizations where the isomorphism
changes the labels are considered to be different ones.

The methodology to construct all possible realizations is already not self-
evident: for example the Havel-Hakimi algorithm is not strong enough to
find all of them. It is also important that no particular realization should be
outputted more than once, and, finally, that the waiting times between two
consecutive outputs should not be too long. These concerns were addressed
in [11].

However when our goal is to find a ”typical” realization but there are ex-
ponentially many different ones then generating all of them and choose one
realization randomly is simple not feasible. One way to overcome this hard-
ness is to construct a good Monte Carlo Markov Chain (MCMC) method.
To that end we need a particular operation to walk on the space of the dif-
ferent realizations; this operation is called a swap, and it is essentially the
same as the operation in Havel’s algorithm: we choose four vertices, where
in the induced subgraph there is a one-factor, while an other one-factor is
missing, and we exchange the existing one-factor into the missing one. This
clearly preserves the degree sequence.

It is interesting to recognize, that – as one can learn this fact from Erdős
and Gallai – the swap operation for this purpose was originally discovered
by Petersen, already in 1891 ([15]).

The problem of Erdős-Gallai type characterization of bipartite degree
sequences were studied already in the mid-fifties by Gale (in [5]) using net-
work flow techniques. In the same year Ryser gave a direct proof for this
characterization, using a matrix theoretical language ([16]) and showed that
any particular realization of a bipartite degree sequence can be transformed,
using sequence of swaps, into any other realization. Both results were for-
mulated on the language of directed graphs without multiple edges but with
possible loops. (For the connection between bipartite and directed degree
sequence problems see Section 5.) The corresponding result for simple di-
rected graphs (no loops, no multiple edges) is due to Fulkerson ([4]).

Havel-Hakimi type results are part of the folklore in connection with
bipartite degree sequences but it is hard to find a definitive reference for
it (but book [20] discusses the problem in Exercise 1.4.32 and paper [10]

3

provides one proof as a by-product).
In case of simple directed graphs Havel-Hakimi type results were proved

by Kleitman and Wang ([13]) for an extension given by Kundu [12]. Swap
sequences between realizations of directed graphs were rediscovered in [3].
The situation here is more complicated than in the previous cases: using
only two edges for a swap is not always enough, sometimes we have to
use three-edge swaps. Moreover there are two different kinds of three-edge
swaps: in the type 1 swap the three edges form an oriented C3 and the
result of the swap is the oppositely oriented triangle. In the type 2 swap
the three involved directed edges determine four vertices (see [13, 3]).

In [3] a weak upper bound was proved for the swap-distance of two
realizations of directed degree sequences. In the proof all three types of
swaps were applied, and counted as one. However, as LaMar proved recently
(in [14]), swap sequences between any two realizations may omit completely
type 2 triple-swaps. In Section 5 we will strengthen this result (see Theorem
5.5). Finally Greenhill proved ([6]) that in case of regular directed degree
sequences (when all in-degrees and out-degrees are the same) all triple-swaps
can be omitted (if n > 3). The reason for the need for some type 2 swaps
in [13, 3] was simple: in the Havel-Hakimi situation (by analogy) it was
sought for one swap changing a particular directed edge to a particular non-
edge. However, when a transformation sequence is looked for, then this is
not a requirement. As it turned out, type 2 triple-swaps are so called non-
triangular C6-swaps (see Remark 5.1) and can be substituted by two regular
swaps.

These problems have long and lively history but we do not survey that
here. We just want to point out that knowing the maximum length of the
necessary swap sequences can lead to better estimations for the mixing time
of Markov chains using swap operations. Until now there were only weak
upper bounds on those lengths: they are surely shorter, than twice the num-
ber of edges in the realizations (which is equal to the sum of the values in the
degrees sequence). This applies for simple directed or undirected graphical
degree sequences (including bipartite ones as well). (See for example [3]).

The main goal of this paper is to determine a formula for the swap-
distance (that is the length of the possible shortest swap sequence) between
any two particular realizations G1 and G2. Here we will prove a Gallai-type
identity

dist(G1, G2) =
|E(G1)∆E(G2)|

2
−maxC(G1, G2), (1.1)

where ∆ denotes the symmetric difference and maxC is a positive integer
which depends on the realizations. In case of directed degree sequences
triple-swaps should count as 2 in the swap-distance. (For an explanation, see
the definitions after Lemma 5.3.) However, as it will turn out, we only need

4

type 1 triple-swaps. We can forbid type 2 triple-swaps while the equation
does not change.

It is very important to understand that while the right side of equation
(1.1) can be interpreted indeed as ”the exact value of the swap-distance” –
actually maxC is possibly (probably) not an efficiently computable value.
We think that the right goal here is to find good estimations for maxC. We
made the first steps into this direction, see Theorems 3.8, 4.1 and 5.6.

The structure of the paper is the following: in Section 2 we introduce
the definitions and recall some known facts and algorithms. In Section 3
we prove (1.1) for undirected degree sequences. In the very short Section
4 we describe the consequences of the previous results for bipartite degree
sequences. Finally in Section 5 we discuss the problem for directed degree
sequences based on further considerations on realizations of bipartite degree
sequences.

2. Definitions, notations

Throughout the paper G denotes an undirected simple graph with vertex
set V (G) = {v1, v2, . . . , vn} and edge set E(G). Consider a sequence of
positive integers d = (d1, d2, . . . , dn). If there is a simple graph G with
degree sequence d, i.e., where for each i we have d(vi) = di, then we call the
sequence d a graphical sequence and in this case we also say that G realizes
d.

The analogous notions for bipartite graphs are the following: if B is a
simple bipartite graph then its vertex classes will be denoted by U(B) =
{u1, . . . , uk} and W (B) = {w1, . . . , w`}, and we keep the notation V (B) =
U(B) ∪ W (B). The bipartite degree sequence of B, bd(B) is defined as
follows:

bd(B) =
((
d(u1), . . . , d(uk)

)
,
(
d(w1), . . . , d(w`)

))
.

Let G be a simple graph and assume that a, b, c and d are different
vertices. If G is bipartite graph B then we also require that for a, b ∈
U(B), c, d ∈ W (B). Furthermore assume that (a, c), (b, d) ∈ E(G) while
(b, c), (a, d) 6∈ E(G). Then

E(G′) = E(G) \ {(a, c), (b, d)} ∪ {(b, c), (a, d)} (2.1)

is another realization of the same degree sequence (and if G is a bipartite
graph then G′ remains bipartite). The operation described above is called a
swap. This operation is used in the Havel-Hakimi algorithm, and Petersen
proved [15] – and several authors later reproved – that any realization of a
degree sequence can be transformed into any another realization of the same
degree sequence using only consecutive swap operations.

5

As throughout the paper all graphs will be simple, from this point we
will omit the word “simple”.

A graph G, where the edges are colored by either red or blue, will be
called a red-blue graph. For vertex v denote by dr(v) and db(v) the degree
of vertex v in red and blue edges, resp. This red-blue graph is balanced if
for each v ∈ V (G) we have dr(v) = db(v).

A circuit in a graph G is a closed trail (each edge can be used at most
once). As the graph is simple, a circuit is determined by the sequence of the
vertices v0, . . . , vt, where v0 = vt. Note that there can also be other indices
i < j such that vi = vj . A circuit is called a cycle, if its simple, i.e., for any
i < j, vi = vj only if i = 0 and j = t.

A circuit (or a cycle) in a balanced red-blue graph is called alternating,
if the color of its edges alternates (i.e., the color of the edge from vi to vi+1

differs from the color of the edge from vi+1 to vi+2, and also edges v0v1 and
vt−1vt have different colors – consequently alternating circuits have even
length).

By Euler’s famous method one can easily prove the following

Proposition 2.1. If G is a balanced red-blue graph then the edge set can
be decomposed into alternating circuits. If B is a bipartite balanced red-blue
graph then the edge set can be decomposed into alternating cycles.

If two graphs, G1 and G2 are different realizations of the same degree se-
quence, then we associate with them the following balanced red-blue graph.
The vertex set is V (G1) = V (G2) and the edge set is the symmetric differ-
ence E(G1)∆E(G2). An edge is colored red, if it is in E(G1)− E(G2), and
it is colored blue, if it is in E(G2)− E(G1).

Definition 2.2. If G is a balanced red-blue graph then let maxCu(G) de-
note the number of the circuits in a maximum size (= maximum cardinality)
alternating circuit decomposition of G. If G1 and G2 are two realizations of
the same degree sequence then let maxCu(G1, G2) = maxCu(G), where G
is the associated balanced red-blue graph.

Definition 2.3. Let G1 and G2 be two given realizations of d. Denote by
distu(G1, G2) the length of the shortest swap sequence from G1 to G2.

A pair of vertices u and v will be called a chord, if it can hold an edge.
That is for non-bipartite graphs uv is a chord if and only if u 6= v, but for
a bipartite graph B, uv is a chord if and only if u ∈ U(B) and v ∈ W (B)
or vice versa. If a circuit C = v0 . . . , vt is given and vivj is a chord, then we
will also call the pair ij of subscripts a chord.

For directed graphs we consider the following definitions: Let ~G de-
note a directed graph (no parallel edges, no loops) with vertex set X(~G) =
{x1, x2, . . . , xn} and edge set E(~G). We use the bi-sequence

dd(~G) =
((
d+

1 , d
+
2 , . . . , d

+
n

)
,
(
d−1 , d

−
2 , . . . , d

−
n

))
6

to denote the degree sequence, where d+
i denotes the out-degree of vertex

xi while d−i denotes its in-degree. A bi-sequence of non-negative integers is
called a directed degree sequence if there exists a directed graph ~G such that
(d+,d−) = dd(~G). In this case we say that ~G realizes our directed degree
sequence.

A directed graph ~G is a balanced red-blue graph, if for every vertex the
red in-degree is the same as the blue in-degree, and moreover the red out-
degree is the same as the blue out-degree. Thus if ~G1 and ~G2 are different
realizations of the same directed degree sequence then the associated red-
blue graph (defined similarly as for the undirected case) is a balanced red-
blue graph.

The definition of alternating circuit differs from the one defined for undi-
rected graphs as follows. A circuit v0, . . . , vt in a balanced red-blue graph ~G
is alternating, if both the colors and the directions alternates (e.g., if vivi+1

is a red directed edge then vi+2vi+1 is a blue directed edge).
Again, by Euler’s method one can easily prove the following:

Proposition 2.4. If ~G is a balanced red-blue graph then the edge set can be
decomposed into alternating circuits.

Definition 2.5. Assume that ~G is a directed balanced red-blue graph and
let maxCd(~G) denote the number of the circuits in a maximum size alter-
nating circuit decomposition of ~G. If ~G1 and ~G2 are two realizations of
the same directed degree sequence then let maxCd(~G1, ~G2) = maxCd(~G),
where ~G is the associated balanced red-blue graph.

For directed graphs we use the old trick, applied already by Gale [5]: each
directed graph ~G can be represented by a bipartite graph B(~G), where each
class consists of one copy of every vertex. The edges adjacent to a vertex
ux in class U represent the out-edges from x, while the edges adjacent to a
vertex wx in class W represent the in-edges to x (so a directed edge xy is
identified with the edge uxwy). Note that the directed degree sequence of
~G is the same as the bipartite degree sequence of B(~G). If ~G is a directed
balanced red-blue graph then naturally we get B(~G) as a balanced red-blue
graph, and the alternating circuits of ~G corresponds to the alternating cycles
of B(~G). For an alternating circuit ~C of ~G we denote the corresponding
alternating cycle of B(~G) by C.

As loops are not allowed in ~G, edges of the form uxwx are also forbidden
in B(~G), so they will be called non-chords.

For two graphs G1 and G2 (or bipartite graphs or directed graphs) with
the same degree sequence (or bipartite degree sequence or directed degree
sequence, resp.) we will use H ′(G1, G2) for the halved Hamming distance
|E(G1)∆E(G2)|

2 . Note that H ′(G1, G2) is the same as the number of red (or
blue) edges in the associated balanced red-blue graph G.

7

3. Undirected degree sequences

In this Section, we prove equality (1.1) for undirected degree sequences.

Lemma 3.1. Let C = v0, v1, . . . v2t = v0 be an alternating circuit in a
balanced red-blue graph G, in which for some i < j < 2t, j − i is even and
vi = vj. Then the circuit can be decomposed into two shorter alternating
circuits.

Proof. Since both vi, vi+1, . . . vj and vj , vj+1, . . . v2t, v1, . . . vi contains even
number of edges, both of them form alternating circuits.

Definition 3.2. We call an alternating circuit C = v0, v1, . . . v2t elemen-
tary, if (i) no vertex appears more than twice in it, and if (ii) there exists
an integer 0 ≤ i < 2t, such that both vertices vi and vi+1 occur only once
in the circuit.

Lemma 3.3. Let C1, . . . , Ch be a maximum size alternating circuit decom-
position of a balanced red-blue graph G (that is h = maxCu(G)). Then each
circuit is elementary.

Proof. (i) First assume that a circuit Cz = v0, . . . , v2t contains the ver-
tex v three times. Then two of the occurrences have the same parity, and
Lemma 3.1 applies. But this contradicts to the maximality. Therefore any
vertex in any circuit of a maximum size decomposition occurs at most twice,
and the two subscripts of each repeated vertex (within any circuit) have dif-
ferent parities. We call a pair 0 ≤ i < j < 2t a non-chord, if vi = vj . The
length of a non-chord ij is defined to be min(|i− j|, 2t− |i− j|). We proved
that each index i is a part of at most one non-chord, and the length of any
non-chord is odd.

We next prove that non-chords cannot intersect. More precisely, if 0 ≤
i < k < j < ` < 2t then, if ij is a non-chord then k` is a chord. Let C ′ be
the following alternating circuit:

v0, . . . , vi = vj , vj−1, vj−2, . . . , vk, . . . vi+1, vi = vj , vj+1, . . . , v` . . . v2t.

In this new circuit (which consists of the same edges as the original circuit)
the new index of vertex vk is k′, where k − k′ is odd. Therefore if k − ` was
odd then k′ − ` is even. Thus for this circuit Lemma 3.1 applies – which
in turn shows that the original circuit decomposition is not a maximum size
one, a contradiction.

(ii) By re-indexing the vertices of the circuit we may assume that 0k is
the shortest non-chord of Cz. Since G is simple we have k > 2. Consequently
indices 1 and 2 cannot participate in any non-chord otherwise they would
induce crossing non-chords.

8

From the middle part of the proof one can deduce a much stronger
statement. Given a circuit C = v0, . . . , v2t we call a vertex unique, if it
appears exactly once in that circuit.

Theorem 3.4. Let C1, . . . , Ch be a maximum size alternating circuit de-
composition of a balanced red-blue graph G. Then

(i) each circuit Cz = v0, . . . , v2t contains at least 2t/3 + 2 unique vertices;

(ii) the length of each circuit in the decomposition is at most (3/2)(n− 1),
consequently

maxCu(G) ≥
⌈

2|E(G)|
3n

⌉
.

Proof. (i) Let µ denote the number of unique vertices of the circuit and let
ν denote the number of non-unique vertices (not indices). Since no vertex
appears more than twice in the circuit therefore 2t = µ+2ν and the number
of non-chords is exactly ν.

If t = 2 then non-chords do not exist so nothing to prove. Assume now
that t > 2 and consider the following planar graph P with 2t vertices. First
we draw a convex 2t-gon on the plane with vertices p0, . . . , p2t−1. Next for
each non-chord ij we connect pi to pj by a straight line segment. The proof
of Lemma 3.3 shows that there are no crossing non-chords therefore this is
a planar embedding.

Now we take the planar dual P ∗ and delete the vertex of the dual corre-
sponding to the infinite face of P . We call the resulting graph T .

It is easy to see that T is a tree. Indeed, we can argue by contradiction.
If T contains a cycle then the original planar graph contains a vertex v
within this cycle. But each original vertex of the graph is neighboring to
the ocean. Therefore vertex v is also next to the ocean, so the dual vertex
O corresponding the ocean must not be outside C. But that would imply
that O belongs to the cycle, a contradiction.

The edges of T correspond to the non-chords, so |E(T)| = |V (T)|−1 = ν.
The vertices of the tree correspond to the finite faces of P . We claim that
if v ∈ V (T) has degree at most 2 in the tree, then the corresponding face
contains at least 2 unique vertices. If a face is adjacent to one non-chord (it
corresponds to a leaf in T) then it has at least two unique vertices since G
is simple. Suppose there is a face of P adjacent to two non-chords, ij and
i′j′, where we may assume that i < i′ < j′ < j. As G is simple and the
non-chords have odd length, we can conclude that i′− i+ j− j′ ≥ 4, proving
the claim.

Let n≤r (and n≥r) denote the number of vertices of T having degree at
most r (at least r, resp.). It can be proved by induction on |V (T)| that
if |V (T)| > 1 then n≤1 ≥ n≥3 + 2. (If |V (T)| ≥ 3| and we delete a leaf
` then either none of n≤1 and n≥3 is changed [in case when the neighbor

9

of ` originally has degree two], or n≤1 decreases by exactly one and n≥3

decreases by at most one). Consequently n≤2 ≥ n≥3 + 2. So

µ ≥ 2n≤2 ≥ |V (T)|+ 2 = |E(T)|+ 3 = ν + 3.

As 2t = µ + 2ν, we have 2t ≤ 3µ − 6, consequently µ ≥ 2t/3 + 2, proving
our first statement.

(ii) To prove the second statement we only need a simple calculation.

t+ (t/3 + 1) ≤ µ/2 + ν + µ/2 = µ+ ν ≤ n,

so really 2t ≤ (3/2)(n− 1).

Now we are ready to analyze the minimum size swap sequences. We start
with the simplest case:

Lemma 3.5. Assume that G1 and G2 are two realizations of the same de-
gree sequence, and G is a balanced red-blue graph consisting of the edges in
E(G1)∆E(G2). Suppose that E(G) is one alternating elementary circuit C
of length 2t. Then there is a swap sequence of length t − 1 between G1 and
G2.

Proof. Let us call G1 the start and G2 the stop graph. We apply induction on
the size of the symmetric difference |C| of the actual start and stop graphs.
We may assume, that v0 occurs exactly once in C and the current v0v1 edge
belongs to the start graph (since this circuit is elementary, due to Lemma
3.3, we can always renumbering the vertices accordingly).

When t = 2 then the statement is clear, since C is an alternating
cycle of length four, so assume now that t > 2. Consider the chords
v0v1, v1v2, v2v3, v3v0. (Let’s recall: by definition we have v0v1, v2v3 ∈
E(G1) \ E(G2) and v1v2 ∈ E(G2) \ E(G1) while v3v0 6∈ E(G1)∆E(G2).)

When chord v3v0 is non-edge in the start (and therefore in the stop)
graph, then we can perform the v0v1, v2v3 ⇒ v1v2, v3v0 swap in the start
graph. After this operation the circuit will be shorter by two edges and
remains elementary. So we can apply the inductive hypothesis for the new
start/stop graph pair. If, however, the chord v3v0 is an edge both in the
start and stop graphs, then we can carry out the v1v2, v3v0 ⇒ v0v1, v2v3

swap in the stop graph, still maintaining all the necessary properties. So we
can proceed with the induction on the new start/stop graph pair.

Theorem 3.6. For all pairs of realizations G1, G2 of the same degree se-
quence, we have

distu(G1, G2) = H ′(G1, G2)−maxCu(G1, G2). (3.1)

10

Proof. (i/a) The inequality LHS ≤ RHS is a simple application of Lemma
3.5: take a maximal alternating circuit decomposition C1, ..., Ck where k =
maxCu(G1, G2), and define realizations G1 = H0, H1, . . . ,Hk−1, Hk = G2

such that for all i = 0, . . . , k − 1 realizations Hi and Hi+1 differ exactly in
Ci. Then by Lemma 3.3 all circuits are elementary, so the application of
Lemma 3.5 for each pair Hi, Hi+1 proves this inequality.

(i/b) One can find a recursive proof as well. This is based on the following
easy observation: assume that the shortest circuit C1 in the previous maxi-
mal decomposition has the shortest length among all circuits in all possible
maximal circuit decomposition. Then

Lemma 3.7. There exists no edge in any of the other circuits which would
divide C1 into two odd length trails.

Proof. Assume the opposite: the chord v1, v2` of C1 is an edge in C2. Then
this edge together with one of the trails of C1 form a shorter circuit, than C1

while the other trail together with the remaining part of C2 form another
alternating circuit. So we constructed another circuit decomposition with
the same number of circuits, but with a shorter shortest circuit, a contra-
diction. (It is still possible that a chord in C1 belongs to another circuit as
well – but this divides C1 into two even-length trails. However this will not
cause any problem.) �3.7

Now we can operate as follows: consider the (actual) symmetric differ-
ence, find a maximal circuit decomposition with a shortest elementary cir-
cuit. Apply the procedure in Lemma 3.5 for this circuit (by Lemma 3.7 we
can do it). Repeat the whole process with the new (and smaller) symmetric
difference.

(ii) We finish the proof of Theorem 3.6 by proving that LHS ≥ RHS. We
realign (3.1) into

maxCu(G1, G2) ≥ H ′(G1, G2)− distu(G1, G2).

Assume that the sequence G1 = H0, H1, . . . ,Hk−1, Hk = G2 describe a
minimum length realization sequence from G1 to G2 where for each i =
0, . . . , k− 1, the graphs Hi and Hi+1 are in swap-distance 1. It is clear that
any consecutive swap subsequence from Hi to Hj must be also a minimum
one. For each i we use the notation

∆i := E1∆E(Hi).

We are going to construct a circuit decomposition of E1∆E2 = ∆k into
≥ H ′(G1, G2)− distu(G1, G2) alternating circuits. By part (i) it will prove
also that the two sides are actually equal (otherwise the swap sequence

11

cannot be minimum). We proceed with induction: we will show that for all
i = 0, . . . , k we have

maxCu(G1, Hi) ≥ H ′(G1, Hi)− distu(G1, Hi). (3.2)

In case of i = 0 this is clearly true, if i = k then the main statement is
proved. Now we assume (3.2) for subscript i and we are going to prove it
for i + 1. By the hypothesis we know that distu(G1, Hi) = i. We are going
to distinguish cases upon the relations among E(Hi)∆E(Hi+1) = S and ∆i.

Assume at first that |S ∩ ∆i| = 0. Then the number of circuits in the
decomposition of ∆i+1 is increased by one (comparing to the maximum
decomposition of ∆i), the number of edges is increased by four, finally the
number of swaps is increased by one again. Inequality (3.2) is maintained.

Now assume that |S ∩ ∆i| = ` > 0. Since S is derived from the swap
transforming Hi into Hi+1 therefore the two existing edges among the four
chords defining S are edges in Hi and not edges in Hi+1 and the analogous
statement is true for the two missing edges. Therefore the chords in S ∩∆i

are in the same states in H0 and in Hi+1. Then

(a) if ` = 1 then this chord does not belong to ∆i+1 therefore the other
three chords of S extend the original circuit. Therefore the number of
circuits is the same as before, while |∆i+1| = |∆i| + 2 and the number
of necessary swaps is increased by one. Inequality (3.2) is maintained;

(b) if ` > 1 then the ` common chords can be in at most ` circuits. It can
happen, that some circuits meld into a smaller number of circuits after
the swap on S is performed, but this can decrease the number of circuits
with at most `−1. Furthermore |∆i+1| = |∆i|+4−2`, finally the number
of necessary swaps increased by one. Inequality (3.2) is maintained.

The proof Theorem 3.6 is finished.

As it was already mentioned the value maxCu seems to be not efficiently
computable. Therefore Theorem 3.6 does not help directly to find a shortest
swap sequence between two particular realizations. However good upper and
lower bounds on this value may be useful. It is clear, however, that these
bounds depend not only on the number of the edges (which is |E|) in one
realization but on the size of the symmetric difference. When |E| is small,
say |E| ≤ 1

2

(
n
2

)
then the size of the symmetric difference can be as big as

2|E|. If |E| is much higher then the symmetric difference becomes small.
Assume now, that the graphical degree sequence under investigation is

(1, 1, 1, . . . , 1). All realizations are perfect matchings, and if two of them form
one alternating Eulerian cycle, then the actual swap-distance, by Theorem
3.6 is |E| − 1. This is just the half of the old estimation. The consequence
is that the diameter of the corresponding Markov chain can be as big as
|E| − 1.

12

Next we give a general bound on the swap-distance (which is in some
sense sharp), and then we formulate some conjectures. For a given degree
sequence d = {d1, d2, . . . , dn} let m denote (

∑
di)/2, the number of edges

in any realization, and let m∗ denote
∑

min(di, n − di), an upper bound
on the number of edges in a balanced red-blue graph associated with two
realizations G1 and G2.

Theorem 3.8. For all pairs of realizations G1, G2 of the same degree se-
quence of length n, we have

distu(G1, G2) ≤ H ′(G1, G2) ·
(

1− 4
3n

)
≤ m∗

(
1
2
− 2

3n

)
≤ m

(
1− 4

3n

)
.

Proof. It is a simple calculation using Theorem 3.4 and the simple fact, that
H ′(G1, G2) ≤ m∗/2 ≤ m.

Conjecture 1. Let G be a balanced red-blue graph with n vertices and m
edges. Then (i) there exists an alternating circuit of length at most 3n2/m.
And (ii) maxCu(G) ≥ m2/(6n2).

Such upper bound would provide a lower bound on the distance, and thus
could be useful in practical applications.

Conjecture 2. For a degree sequence d = {d1, d2, . . . , dn} let m again
denote (

∑
di)/2, the number of edges in any realization, and let m∗ denote∑

min(di, n− di). Then we conjecture the following statements. The listed
inequalities arisen

(i) distu(G1, G2) ≤ H ′(G1, G2) · (1−m/(3n2)).

(ii) distu(G1, G2) ≤ m∗(1/2−m/(6n2)).

(iii) distu(G1, G2) ≤ m(1−m/(3n2)).

(iv) distu(G1, G2) ≤ 5n2/24.

4. Undirected bipartite degree sequences

It is easy to see that for bipartite degree sequences Theorem 3.6 applies
without any changes (note that in the proof we only used chords of odd
length, so they are also chords in the bipartite case). Even more, since there
is no odd cycle in a bipartite graph, the circuits in the maximal size alter-
nating circuit decomposition of the symmetric difference of two realizations
are cycles. As a consequence, for two realizations B1 and B2 of a bipartite
degree sequence, we can interpret maxCu(B1, B2) as the maximum number

13

of cycles in a decomposition into alternating cycles (which always exists) of
the associated balanced red-blue graph B. However, we think that even for
bipartite realizations the determination of maxCu might be hard.

Let bd =
(
(a1, . . . , ak), (b1, . . . , b`)

)
be a given bipartite degree sequence,

we assume ` ≤ k. Let n = k + `, n′ = 2`, m =
∑
ai, and let m∗ denote

2
∑

min(ai, ` − ai), an upper bound on the number of edges in a balanced
red-blue graph associated with two realizations B1 and B2. Using that any
alternating cycle has length at most n′, similarly to Theorem 3.8, we get the
following.

Theorem 4.1. For all pairs of realizations B1, B2 of the same degree se-
quence bd we have

distu(B1, B2) ≤ H ′(B1, B2) · (1− 2/n′)
≤ m∗(1/2− 1/n′) ≤ m(1− 2/n′). �

5. Directed degree sequences

In this section we discuss directed degree sequences. We will apply the
machinery of Section 4 to solve the directed degree sequence problem, using
the bipartite graph B(~G) defined in Section 2. However doing so we may
face a serious problem: since no loop is allowed in ~G, we cannot use edges
of form uxwx in the process. Recall that these pairs are called non-chords.
So at first we are going to analyze the alternating cycles we have to handle
along the process.

Let ~G be a directed balanced red-blue graph associated with two real-
izations ~G1 and ~G2 of the same directed degree sequence, let B = B(~G) be
the corresponding bipartite balanced red-blue graph, and let ~C be an al-
ternating circuit in ~G (recall, that C denotes the corresponding alternating
cycle in B). In this section we will mainly use the terminology about the
bipartite representation B, but, where it is interesting, we remark in italics
and in parenthesis the corresponding notions in the original directed graph.

Case 1: Let us start with the case, when there exists a vertex ux in the
cycle C such that wx is not contained in C (of course, by symmetry, the case
when wx is in C, but ux is not, can be handled by the same way). (This is
equivalent to saying that circuit ~C contains x only once.) We can work with
ux at each step of the process described in Lemma 3.5: we take the trail
of length 3 starting at ux, and interchange the start and stop graphs if the
first edge belongs to the stop graph (we will do this step again and again
as a routine, observe that if we are given a swap sequence from one graph
to another graph, then the reverse sequence transforms the second graph to
the first one). And at every step the vertex ux remain in the cycle and wx

will not become a vertex of the cycle.

14

Case 2: Next assume that for each vertex ux ∈ C we also have wx ∈ C, but
also assume that we have a vertex ux in C, such that the trail of length 3
(along the ordering of the cycle) starting at ux does not end at wx. Then we
can use vertex ux at the process as before. After the first swap, there will
be two vertices which will occur without their non-chord pairs in the new
cycle. So we are back to Case 1.

Case 3: Finally assume that neither Case 1 nor Case 2 applies. We can
handle this case as follows. Assume first that C is long enough, that is
|C| ≥ 8. As every vertex participates in one non-chord, one of the two
different vertices that are of distance 3 (along the cycle) from any fixed
vertex ux, must differ from wx. So we are back to Case 2 after reversing the
description of C and possibly interchanging the start and stop graphs.
From now on we will call these “usual” swaps as C4-swaps.

When our cycle is of length 6, then no such trick works. (In ~G1 we have
an oriented triangle and ~G2 is identical with ~G1 except that it contains the
other orientation of the same triangle. Then we have to use a new type of
swap: we exchange the first oriented triangle to the second one.) This means
that in the bipartite graph we swap a C6 with 3 non-chords in one step. For
obvious reason we will call this new swap as triangular C6-swap and the
cycle itself is called a triangular C6 cycle.

Remark 5.1. We can describe now the type 2 triple-swaps mentioned in
Section 1 and introduced in [13, 10]: they are simply non-triangular C6-
swaps that can be implemented by two C4-swaps.

Lemma 5.2. If C is a cycle in the decomposition that is not a triangular C6

cycle, then we can always perform the next swap without producing a new
triangular C6 cycle.

Proof. This is clearly the case when we are in Case 1. If we are in Case 3 or
in Case 2, then |C| ≥ 8 and after the first swap two neighboring vertices are
deleted from the cycle, resulting that we are back to Case 1 (two non-chords
disappear).

It is important to recognize that sometimes triangular C6-swaps are ab-
solutely necessary: for example let n ≥ 2 be an integer and consider the
following n + 1-element directed degree sequence: dd =

(
(n, n, . . . , n, n −

1, n − 1, n − 1); (n, n, . . . , n, n − 1, n − 1, n − 1)
)
. It is clear that there are

exactly two different realizations of this directed degree sequence: namely
this is a complete directed graph on n+ 1 vertices minus one oriented trian-
gle – and this oriented triangle can be of two different kinds. And for these
realizations there are exactly one possible swap: the triangular C6-swap on
that six vertices of the B(~Gi) realizations. (The simplest such example is
((1, 1, 1), (1, 1, 1)).)

15

With these observations we just proved, that any realization of a directed
degree sequence can be transferred to any other realization of the same
degree sequence using only C4- and triangular C6-swaps. Therefore from
now on – opposing papers [13] and [10] – we allow only these two types of
swaps, while three-edge swaps of type 2 are not allowed anymore.

Next we are going to analyze the structure of the triangular C6 cycles in a
maximal cycle decomposition with minimal number of triangular C6 cycles.
(Let us start with an example (see Figure 1): in this directed degree sequence
the realizations consists of two oriented triangles, sharing one vertex.)

Let the vertices be X = {a, b, c, d, e} and dd =
(
(2, 1, 1, 1, 1); (2, 1, 1, 1, 1)

)

b

c

a

d

e

(a) Realization ~G1

b

c

a

d

e

(b) Realization ~G2

Figure 1: Two realizations

Figure 2 shows the bipartite representation of the symmetric difference of the
corresponding B1 and B2. It is easy to see that there are two possible cycle
decompositions of this symmetric difference: one consists of two triangular
C6 cycles, but the other one contains none (see Figure 3).

ua

wb

uc wa

ub

wc

wd

ue

ud

we

Figure 2: The bipartite representation of the symmetric difference

It is a fortune that this is the typical behavior. We say that two cycles in
the decomposition of the bipartite representation are kissing, if there exists
a vertex x ∈ X such that both alternating cycles in the decomposition

16

contain both ux and wx. If one or both kissing cycles are triangular C6

cycles then we can transform these two cycles into a new decomposition,
without any triangular C6. For that end we consider the four trails defined
by ux and wx and pair them up in the right way.

ua

wb

uc wa

ub

wc

wa

ua

ud

we

wd

ue

(a) Decomposition into triangular C6s

ua

wb

uc wa

ud

we

ua
wb

uc

wa

ud

we

(b) and into non-triangular C6s

Figure 3: Two possible cycle decompositions

With this observation we just proved the following structural property:

Lemma 5.3. Assume that the alternating cycle decomposition C of the sym-
metric difference of B(~G1) and B(~G2) is a maximal one with minimum num-
ber of triangular C6 cycles. Then no triangular C6 cycle kisses any other
cycle.

We are ready now to define the swap-distance of two arbitrary realizations
of the same directed degree sequence. We consider a weighted swap-
distance: an ordinary C4-swap weighs one, but a triangular C6-swap weighs
two. (This convention is well supported with the fact that two kissing trian-
gular cycles can be transformed into two ordinary, length 6 cycles, each of
them transformable using two C4-swaps.) So distd(~G1, ~G2) denotes the min-
imum total weight of a swap sequence transforming ~G1 to ~G2. The definition
of maxCd(~G1, ~G2) is analogous to the undirected case: this is the possible
maximum number of directed cycles in an alternating directed cycle decom-
position of the symmetric difference of the edge sets. Using these definitions
we have the following result on the minimum directed swap-distance:

Theorem 5.4. Let dd be a directed degree sequence with realizations ~G1

and ~G2. Then

distd(~G1, ~G2) = H ′(~G1, ~G2)−maxCd(~G1, ~G2). (5.1)

17

Proof. We can prove that the LHS is at most as big as the RHS by recalling
the proof from Theorem 3.6 for bipartite graphs taking into consideration
the previous observations. And, by Lemma 5.2 we do not create any new
triangular C6 cycle.

Consider now the equivalent form of inequality (3.2). Fix a suitable
swap sequence of minimal weighted length and assume that this contains the
smallest possible number of triangular C6-swaps among all such sequences.
Denote by B(~G1) = H0, H1, . . . ,Hk−1, Hk = B(~G2) the bipartite graph
sequence which consists of the consecutive realizations generated by this
swap sequence (then for each i = 0, . . . , k − 1, the graphs Hi and Hi+1 are
in swap-distance 1 or 2, depending whether the swap was a simple C4-swap
or a triangular C6-swap). It is clear that

(A) any consecutive swap subsequence from Hi to Hj must be also a mini-
mum one, furthermore it must contain the smallest possible number of
triangular C6-swaps among all such subsequences.

For each i we use the following notation

∆i := E(H0)∆E(Hi).

We will now revisit the proof of Theorem 3.6 (ii). We will try to mimic
that proof. Whenever the swap under study is a triangular C6-swap, then
it cannot share a non-chord with any earlier generated cycle. (This comes
form a simple straightforward generalization of Lemma 5.3.)

Whenever the swap under investigation is a regular C4-swap, then we
can proceed as in the proof of Theorem 3.6 (ii). And this concludes the
proof of Theorem 5.4.

We can strengthen LaMar’s recent result ([14]):

Theorem 5.5. If we modify the definition of weighted swap-distance between
two realizations of a directed degree sequence such that any length 6 circuit
can be swapped in one step, and their weights are 2, then Theorem 5.4 still
holds, and there exists a shortest swap sequence between any two realizations,
~G1 and ~G2, of the same directed degree sequence which contains only C4-
swaps and triangular C6-swaps.

The novelty here is that there always exists shortest swap sequence which
is conform with LaMar’s idea.

Proof. Any length 6 circuit which is not a triangular C6 cycle falls in the
above-discussed Case 1 or 2, and can be transformed with two C4-swaps,
whose summed weight is also 2.

18

Theorem 4.1 transforms to the following. Let us given a directed degree
sequence dd =

(
(d+

1 , . . . , d
+
n), (d−1 , . . . , d

−
n)
)
. Let

m =
∑

d+
i and m∗ =

∑
i

[
min

(
d+

i , n− d
+
i

)
+ min

(
d−i , n− d

−
i

)]
where m∗ is an upper bound on the number of edges in a balanced red-blue
graph associated with two realizations ~G1 and ~G2. Then

Theorem 5.6. For all pairs of realizations ~G1, ~G2 of the same degree se-
quence dd we have

distd(~G1, ~G2) ≤ H ′(~G1, ~G2) ·
(

1− 1
n

)
≤ m∗

(
1
2
− 1

2n

)
≤ m

(
1− 1

n

)
.

To finish our paper, recall that Greenhill proved in [6, Lemma 2.2] that
in case of regular degree sequences any two directed realizations can be
transformed to each other using C4-swaps only. (In this case she calls these
C4-swaps switches.) A similar notion was studied by Berger and Müller-
Hannemann (see [1]). However consider the following example: let dd be a
two-regular directed degree sequence with six vertices. In Figure 4 we show
two realizations: The symmetric difference of these two realizations is one

a

b

c

d e

g

(a) Realization ~G1

a

b

c

d e

g

(b) Realization ~G2

Figure 4: Two realizations with a triangular C6 as symmetric difference

triangular C6 cycle. Therefore the swap sequence generated by Greenhill
cannot be a minimal one. (Of course in her application this was never
a requirement: she uses the above mentioned result successfully to prove
rapid mixing time of the sampling algorithm for regular directed bipartite
graphs.)

References

[1] A. Berger - M. Müller-Hannemann: Uniform Sampling of Digraphs
with a Fixed Degree Sequence, Graph Theoretic Concepts in Computer
Science LNCS 6410 (2010), 220–231.

19

[2] P. Erdős - T. Gallai: Graphs with prescribed degree of vertices (in
Hungarian), Mat. Lapok 11 (1960), 264–274.

[3] P.L. Erdős - I. Miklós - Z. Toroczkai: A simple Havel-Hakimi type
algorithm to realize graphical degree sequences of directed graphs, Elec.
J. Combinatorics 17 (1) (2010), R66 (10pp)

[4] D.R. Fulkerson: Zero-one Matrices with Zero Trace, Pacific J. Math.,
10 (1960), 831–836.

[5] D. Gale: A theorem on flows in networks, Pacific J. Math. 7 (2) (1957),
1073–1082.

[6] C. Greenhill: A polynomial bound on the mixing time of a Markov
chain for sampling regular directed graphs, Elec. J. Combinatorics 18
(2011), #P234.

[7] S.L. Hakimi: On the realizability of a set of integers as degrees of the
vertices of a simple graph. J. SIAM Appl. Math. 10 (1962), 496–506.

[8] S.L. Hakimi: On the degrees of the vertices of a directed graph, J.
Franklin Institute 279 (4) (1965), 290–308.

[9] V. Havel: A remark on the existence of finite graphs. (Czech), Časopis
Pěst. Mat. 80 (1955), 477–480.

[10] H. Kim - Z. Toroczkai - P.L. Erdős - I. Miklós - L.A. Székely: Degree-
based graph construction, J. Phys. A: Math. Theor. 42 (2009) 392001
(10pp)

[11] Z. Király: Recognizing graphic degree sequences and gener-
ating all realizations, EGRES Technical Report TR-2011-11
http://www.cs.elte.hu/egres (2012), 1–11.

[12] S. Kundu: The k-factor conjecture is true, Discrete Math. 6 (1973),
367–376.

[13] D.J. Kleitman - D.L. Wang: Algorithms for constructing graphs and
digraphs with given valences and factors, Discrete Math. 6 (1973), 79–
88.

[14] M.D. LaMar: Directed 3-Cycle Anchored Digraphs And Their Appli-
cation In The Uniform Sampling Of Realizations From A Fixed Degree
Sequence, in ACM & IEEE & SCS Proc. of 2011 Winter Simulation
Conference (Eds. S. Jain, R.R. Creasey et. al.) (2011), 1–12.

[15] J. Peteresen: Die Theorie der regularen Graphen, Acta Math. 15
(1891), 193–220.

20

[16] H.J. Ryser: Combinatorial properties of matrices of zeros and ones,
Canad. J. Math. 9 (1957), 371–377.

[17] J.K. Senior: Partitions and their Representative Graphs, Amer. J.
Math., 73 (1951), 663–689.

[18] W.T. Tutte: The factors of graphs, Canad. J. Math. 4 (1952), 314–328.

[19] W.T. Tutte: A short proof of the factors theorem for finite graphs,
Canad. J. Math. 6 (1954), 347–352.

[20] D.B. West: Introduction to Graph Theory 2nd Ed. Published by Pren-
tice Hall 2001. xx+588 pages.

21

