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ABSTRACT
Motivation: When comparing the organization of two genomes, it is
important not to draw conclusions on their modes of evolution from a
single most parsimonious scenario explaining their differences. Better
estimations can be obtained by sampling many different genomic
rearrangement scenarios. For this problem, the Double Cut and Join
(DCJ) model, while less relevant, is computationally easier than the
Hannenhalli-Pevzner (HP) model. Indeed, in some special cases, the
total number of DCJ sorting scenarios can be analytically calculated,
and uniformly distributed random DCJ scenarios can be drawn in
polynomial running time, while the complexity of counting the number
of HP scenarios and sampling from the uniform distribution of their
space is unknown, and conjectured to be #P-complete. Statistical
methods, like MCMC for sampling from the uniform distribution of
the most parsimonious or the Bayesian distribution of all possible HP
scenarios are required.
Results: We use the computational facilities of the DCJ model
to draw a sampling of HP scenarios. It is based on a parallel
MCMC method that cools down DCJ scenarios to HP scenarios. We
introduce two theorems underlying the theoretical mixing properties
of this parallel MCMC method. The method was tested on yeast and
mammalian genomic data, and allowed us to provide estimates of the
different modes of evolution in diverse lineages.
Availability: The program implemented in Java 1.5 programming
language is available from http://www.renyi.hu/˜miklosi/

DCJ2HP/.
Contact: miklosi@renyi.hu

1 INTRODUCTION
Although genome rearrangement was the very first clearly stated
computational problem in biology introduced by Sturtevant and
Novitski (1941), and many computational methods finding one most
parsimonious rearrangement scenario have been published in the
last 15 years, the statistical tools available for analysing genome
rearrangements are still very limited. Hannenhalli and Pevzner
(1999) published the first polynomial running time algorithm that
finds a most parsimonious scenario transforming one genome
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into another using reversals. The method has been extended
to transforming multichromosomal genomes by reversals and
translocations (Hannenhalli and Pevzner, 1995). This general model
is called the Hannenhalli-Pevzner model, or HP model for short.
Having a single parsimonious scenario is usually not enough to
draw conclusions on the evolution of the genomes. For example,
Bergeron et al. (2008) have computed different values of the
breakpoint reuse rate for different scenarios transforming a human
genome into a mouse genome, which tell different stories about their
evolution. Exact counting or sampling in the space of parsimonious
HP scenarios seems to be difficult and has only been achieved
for very small examples (Braga et al., 2008). Several authors
published Markov chain Monte Carlo methods that sample from a
Bayesian distribution of genome rearrangement scenarios (Larget
et. al., 2002; Durrett et al., 2004; Miklós, 2003), but these Markov
chains have very poor mixing (Darling et al., 2008), and it has
been proved that there are series of data (pair of genomes) for
which the mixing time of these Markov chains grows exponentially
with the size of the data (Miklós et al., 2010). This means that
billions of MCMC steps are necessary to get a sufficient number
of low-correlated samples from the Markov chain, making the
approach computationally infeasible for large datasets. Miklós and
Darling (2009) introduced a massively parallel MCMC method
that samples from the uniform distribution of most parsimonious
reversal scenarios, and approximately counts the number of such
scenarios. By applying the method on real biological data, they
showed that it is superior to other available methods. However,
they could not prove that fast mixing of their Markov chain is
guaranteed for any input. Furthermore, their method works only
for most parsimonious reversal scenarios, and it is not clear how to
extend it to sampling from the Bayesian distribution of all possible
HP scenarios.

The double cut and join (DCJ) model was introduced by
Yancopoulos et al. (2005) and in a slightly different version
by Bergeron et al. (2006). This model allows all types of
mutations of the HP model, together with mutations that are
rarely observed in biological data. In particular, the formation of
circular chromosomes, which is frequent in the DCJ model, is
never observed in the evolution of Eukaryote genomes. A few
big transpositions possibly issued from such a mechanism are
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hypothesized (Ross et al., 2005), and some cancer karyotypes carry
circular chromosomes. However, observed as well as predicted
rearrangements are almost always of HP type. For example, Gordon
et al. (2009) infer a scenario with 144 rearrangements on the yeast
genome we also use in this study, all of them being HP mutations. So
a current convention, supported by past observations, which might
be refuted in the future, assumes that the DCJ scenarios have lower
biological relevance than translocations and reversals scenarios.
On the other hand, the algorithmics of DCJ is much simpler.
Indeed, not only can the DCJ distance be calculated in linear time
(Yancopoulos et al., 2005) (as well as the HP distance), but also it
is possible to quickly count the number of most parsimonious DCJ
scenarios of co-tailed genomes (Braga and Stoye, 2009; Ouangraoua
and Bergeron, 2009). Furthermore, it is also possible to quickly
sample from the uniform distribution of DCJ scenarios of co-tailed
genomes. (Ouangraoua and Bergeron, 2010). The computational
simplicity on its own would not be sufficient to intensively study
the DCJ model, however, it opened a new perspective in developing
novel methods for inferring genome rearrangements. Indeed, the
DCJ model has turned to be a computationally useful concept, for
example, the genome rearrangement distance under the HP model
can be calculated in linear time via the DCJ distance (Bergeron et
al., 2009).

2 APPROACH
In this paper, we explore further how the DCJ model
helps developing computational tools for inferring genome
rearrangements. We conjecture that counting the number of
most parsimonious HP scenarios is hard (#P-complete), and
hence, sampling exactly from the uniform distribution of most
parsimonious scenarios or from the Bayesian distribution of all
possible scenarios is also hard. However, approximate stochastic
counting or sampling could be possible, and one way to do it is to
use the computationally simpler DCJ model.

We introduce a parallel Markov chain Monte Carlo method
sampling DCJ scenarios transforming one genome into another.
Each Markov chain has its fixed temperature, and the distribution
of the rearrangement scenarios depends on the temperature of the
chain in the following way. We define an energy function mapping
from the scenarios to real numbers. Scenarios containing many
DCJs that are not in the HP model get a high energy, and the
energy minimum is taken on the scenarios that have only HP-type
mutations. At infinite temperature, all types of mutations of the DCJ
model are equally probable. The probability of DCJ mutations that
are not in the HP model decreases with the temperature, and at zero
temperature, only the mutations in the HP model have non-zero
probability. See the Methods section for details.

We implemented the method in the Java programming language,
and tested it on yeast and mammalian data. In the Results section we
show how our method can provide quantitative estimates of the ratio
of different types of rearrangements. Such numbers were previously
inferred by hand (Gordon et al., 2009) with a lot of uncertainties, or
from a single parsimonious scenario, which, given the huge number
of equivalent ones, is unsound. We correct the manual estimate
of Gordon et al. (2009) on yeast data, and show that the rates of
reversal/translocation are very different among studied taxa.

In addition to this demonstration of the applicability of our novel
approach, we prove in the Appendix that

1. Any DCJ scenario can be transformed into an HP scenario
using the small changes of the Markov chains, such that
the energy is monotonously decreasing. This means that the
surface of the energy function we defined is smooth in the sense
that all local minima are global minima.

2. With an appropriately chosen number of parallel chains
and temperatures, the probability of exchanging information
between any two neighbour chains is above 1

2
. Furthermore,

the highest temperature can be chosen to infinite, and the lowest
temperature can be chosen such that the probability of an HP
scenario in its distribution is at least 1

2
.

The first theorem guarantees that the MCMC cannot be trapped in
a local minimum. The second theorem shows that the MCMC will
not be trapped even in a global minimum, it can break out from
a global minimum to visit another global minimum. Such break
out is essential for fast mixing, as Miklós et al. (2010) proved that
these global minima might be far from each other, thus causing slow
mixing.

In summary, we build theoretically founded and biologically
sound rearrangement scenarios. This allows to observe some modes
of evolution in different taxa, as well as to provide analyses for the
construction of more precise models of structural evolution.

3 METHODS

3.1 Definitions and notations
3.1.1 Genomes. A gene a is an oriented sequence of DNA, identified
by its tail at and its head ah. Tails and heads are the extremities of the genes.
An adjacency is an unordered pair of gene extremities. A genome is a set of
adjacencies on a set of genes, where a gene extremity belongs to at most one
adjacency. Each adjacency in a genome means that two gene extremities are
consecutive on the DNA molecule. In a genome, a gene extremity g which
does not belong to an adjacency is called a telomere.

For a genome Π on a set of genes, we define the graph GΠ: its vertex set
is the set of all gene extremities, and its edge set is composed of atah for
every gene a, plus the adjacencies of Π.

The graph GΠ is composed of disjoint cycles and paths. Each component
of GΠ is called a chromosome of Π. A chromosome is linear if it is a
path, and circular if it is a cycle. A genome is linear if it has only linear
chromosomes, and circular if it has only circular chromosomes.

3.1.2 DCJ and HP operations. If G is the set of gene extremities, let
G∗ = G∪{T} be the same set extended with an additional null element T . A
Double Cut-and-Join (DCJ) ρ is an oriented pair ((pq, rs), (pr, qs)), where
p, q, r, s are elements of G∗, and couples pq, rs, pr, qs, as well as couples
(pq, rs) and (pr, qs) are not oriented. A DCJ is valid for a genome Π if pq
and rs are either adjacencies of Π, of type Tx where x is a telomere of Π,
or of type TT . Applying a valid DCJ on Π removes the two adjacencies pq
and rs if they exist, and creates the two adjacencies pr and qs or telomeres
x if pr or qs equals xT . The result of applying a valid DCJ ρ on a genome
Π is denoted by Π/ρ.

A DCJ scenario between two genomes Π and Γ on the same set of
genes is a sequence ρ1 . . . ρk of valid DCJ operations (ρi is valid for
Π/ρ1/ . . . /ρi−1) such that Π/ρ1/ . . . /ρk = Γ. The length of a shortest
DCJ scenario between two genomes Π and Γ is the DCJ distance, denoted
by dDCJ (Π,Γ). Given two genomes Π and Γ, a valid DCJ operation for
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Π falls into one of these three categories: decreasing the distance by 1, not
changing the distance and increasing the distance by 1. These three types
will be denoted by -1-DCJ, 0-DCJ and +1-DCJ, respectively.

In a scenario S, two consecutive DCJs ((pq, rs), (pr, qs)) and
((ab, cd), (ac, bd)) are said to commute if the intersection between
{p, q, r, s} and {a, b, c, d} is empty or is the singleton {T}. It is easy to
check that if two consecutive DCJ commute, then it is possible to swap their
positions in the scenario, and obtain a valid scenario again.

A DCJ operation can change the structure of a genome in several ways.
If it acts on one or two linear chromosomes and does not create any circular
chromosome, then it is called an HP operation. The DCJs that are also HP
operations are the following: reversals, changing the order and orientation
of the genes in a segment of a chromosome, reciprocal translocations, where
two chromosomes exchange an arm (possibly one of the arms is empty),
fusions of two linear chromosomes, and fissions of one linear chromosome
into two linear ones. The DCJs that are not HP operations are: fusions of
one linear and one circular chromosome or of two circular chromosomes,
fissions of one chromosome into a linear and a circular chromosome or into
two circular chromosomes, circularization or linearization of chromosomes.

The number of valid HP operations for a genome Π will be denoted by
v(Π).

3.1.3 Breakpoint graphs. The breakpoint graph of two genomes Π
and Γ on the same set of genes, denoted by BP (Π,Γ), is the graph which
vertex set is the set of extremities of the genes, and in which there is an edge
between two vertices x and y if xy is an adjacency in either Π (these are
Π-edges) or Γ (Γ-edges).

The breakpoint graph of two genomes is a set of disjoint paths and cycles.
The DCJ-distance is immediately readable from the breakpoint graph.

THEOREM 1. (Bergeron et al., 2006) For two genomes Π and Γ,

dDCJ (Π,Γ) = n− (c(Π,Γ) +
pe(Π,Γ)

2
),

where n is the number of genes, c(Π,Γ) is the number of cycles of the
breakpoint graph and pe(Π,Γ) is the number of paths with an even number
of edges (possibly trivial paths with zero edges).

3.2 MCMC
We apply a parallel MCMC method, where there are several Markov
chains, each converging to a prescribed distribution. Each chain has a fixed
hypothetical temperature, the target distribution of the chain depends on the
temperature. Unlike the usual Parallel Tempering method (Geyer, 1991),
the distribution is not simply a Boltzmann distribution. In section 3.2.1 we
precisely define the target distribution of a chain at a particular temperature.
The chains are coupled in a Metropolis Coupling way described in
section 3.2.2.

3.2.1 The probability distribution of a chain at a particular
temperature. The states of the Markov chains are the tuples {R, r},
where R is a DCJ scenario between genomes Π and Γ, and r is the rate
of any DCJ mutation. To reach a distribution over this state space, we first
introduce a Markov model on HP scenarios.

We model genome evolution with a continuous-time Markov model,
where any valid HP mutation can happen with a rate r. Since we cannot
measure the evolutionary time and the rate of mutations independently,
w.l.o.g. we can set the evolutionary time to unit 1, and let only the
evolutionary rate vary.

The probability density that the first HP mutation happens after time t is

e−v(Π)rt (1)

The probability of a particular scenario R = ρ1, ρ2, . . . ρk starting from
genome Π given parameter r is given by the integral

P (R|Π, r) =

Z 1

tk=tk−1

Z 1

tk−1=tk−2

. . .

Z 1

t1=0
e−v(Π)rt1r×

×e−v(Π/ρ1)r(t2−t1)r × . . .× e−v(Π/ρ1ρ2...ρk−1)r(tk−rk−1)r× (2)

×e−v(Γ)r(1−tk)dt1dt2 . . . dtk

Although there is no closed formula for Eqn. 2, it can be analytically
calculated by an efficient algorithm introduced by Miklós et al. (2004). We
can define the likelihood of parameter r using the data augmentation on the
possible scenarios:

L(r) = P (Γ|r,Π) =
X

R|(Π,Γ)

P (R|r,Π) (3)

where R|(Π,Γ) means a summation over scenarios R transforming Π into
Γ. By setting the prior distribution of r to the exponential distribution with
expectation 1, we arrive to the posterior distribution of {R, r}:

P ({R, r}) ∝ P (R|Π, r)e−r (4)

We extend the formula in Eqn. 2 to DCJ scenarios. Note that in this case,
P (R|Π, r) is not a probability distribution in the sense that the equationX

Γ

X
R|(Π,Γ)

P (R|Π, r) = 1 (5)

holds only if we restrict the summation to HP scenarios. However,
P ({R, r}) in Eqn. 4 is still a well-defined distribution when R can be any
DCJ scenario. Furthermore, if we restrict this extended distribution to the
HP scenarios, we get back the proper Bayesian distribution. This restriction
can be done by omitting the non-HP scenarios from the MCMC samples.

For each scenario, we define the DCJ energy function, c(R), as the
sum of the number of circular chromosomes along the scenario. The target
distribution of the Markov chain is

πi({R, r}) ∝ P ({R, r})× e−
c(R)
Ti (6)

where Ti is the temperature of chain i. The restriction of this distribution
to the HP-scenarios is exactly the Bayesian distribution defined in Eqn. 4.,
which is our aim.

3.2.2 MCMC steps. There are two types of steps in the global MCMC,
composed of k parallel chains:

• chain-swapping steps

• in-chain steps.

The probability of both types of steps is 0.5. In chain-swapping steps, a
random i is drawn from the uniform distribution on [1..k − 1]. The two
states of the two chains i and i+ 1 are swapped with probability

min

8><>:1,
e
− c(Ri)

Ti+1 × e−
c(Ri+1)

Ti

e
− c(Ri)

Ti × e
−

c(Ri+1)
Ti+1

9>=>; (7)

Swapping the two states with this probability guarantees the convergence of
the chains to their prescribed distribution (Geyer, 1991). Eqn. 7 shows that
all hidden normalizing constants introduced by extending the HP scenarios
to DCJ scenarios and by defining distributions up to unknown normalizing
constants in Eqn. 4 and 6 cancel out.

When an in-chain step is chosen, a random i is drawn from the uniform
distribution on [1..k]. With probability 1

2
, a random window w is chosen

from state of chain i, and a new scenario is proposed for this window,
independently from the current scenario in the window. The new scenario is
constructed by iteratively proposing a new valid DCJ for the current genome.
For each valid DCJ to be chosen, the type is first determined according to
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Table 1. Probabilities for the sampling strategy. There are only 5 different
cases because it is easy to prove that if there is no−1-DCJ then there is no
0-DCJ, and in this case there must be at least one +1-DCJ. In all runs, we
set α = 0.95, β = 0.04, γ = 0.01. See text for details.

there are sampling
−1-DCJs 0-DCJs +1-DCJs −1-DCJs 0-DCJs +1-DCJs

yes yes yes α β γ

yes yes no α β + γ 0.0
yes no yes α 0.00 β + γ

yes no no 1.00 0.00 0.00
no no yes 0.00 0.00 1.00

Table 1. Then we choose one DCJ of this type uniformly, and apply this
mutation to the genome. If the result is not the genome Γ, then the outcome
will be the input of the next step. If the result is Γ, then we stop with
probability 0.99, and with probability 0.01 we propose Γ as the input of the
next step. Since we know the cardinality of all the three subsets of mutations,
we can calculate the proposal and backproposal probabilities easily. The
probability of accepting the new scenario is defined by the Metropolis-
Hasting ratio (Metropolis et al., 1953; Hastings, 1970). With probability
1
2

, mutation rate r is changed following a standard Metropolis-Hastings
algorithm (Liu, 2001).

The method has been implemented in Java 1.6 and its correctness has been
tested on some toy examples.

4 RESULTS
4.1 MCMC diagnosis
Theorem 3 in Appendix B provides an upper bound on the number
of chains which are necessary to guarantee an intensive exchange
of states between the Markov chains. In practice, we used a
significantly lower number of chains, only 10 parallel chains. Also,
we used a different temperature scaling than the theoretical one in
the Theorem 3. The inverse of the temperature for the kth chain was
set to

1

Tk
= k2 × s (8)

where s was set to 0.01 for the two yeast analyses and both to
0.01 and 0.04 in several runs of mammalian analyses. In this way,
the temperature of the 0 index chain was set to infinity, and the
coldest chain’s temperature was set to 1 or 0.25. The empirical
swap probabilities for the mammalian analysis are shown on Fig. 1.
Although the swap probabilities between high temperature chains
were relatively small, there was still a reasonable swap frequency,
providing hundreds of swaps in a 200000 step long MCMC run.

While this setup for the temperatures and number of chains
provided reasonable mixing of the chains, we cannot say by any
mean that these protocols are optimal. In general, the smaller the
difference between neighbour chains, the higher the acceptance
probability of accepting a swap between two chains, furthermore,
the smaller the temperature of the coldest chain, the higher
the fraction of HP scenarios in it. However, a smaller coldest
temperature as well as smaller differences between the temperatures
of neighbour chains call for a larger number of chains, hence
increased computational time to perform one in-chain step on all
chains. Furthermore, the increased number of chains also increases
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Fig. 1. The frequency of swapping the states between chains i and i + 1 in
the MCMC run. The lower indexed chain is the hotter chain.
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Fig. 2. The invasion of the hottest chain. See text for more details.

the hitting time of the coldest chain from the hotter chain (in terms
of accepted swaps).

We opted for the quadratic function in Eqn. 8. because according
to our experience, the acceptance probabilities of swapping two
chains decrease more with the temperature gap at high temperatures.
The heuristic explanation for this is that the energy function varies
more at high temperatures, and thus, ∆c in Lemma 5 takes high
values more frequently than at low temperatures.

To show that the state swaps indeed influence all Markov chains,
we calculated how many MCMC steps were needed to have a
given number of chains whose state was at least once in the hottest
chain during the MCMC run, see Fig. 2. As expected, the number
of necessary steps is smaller when the temperature difference is
smaller. Similar results were obtained for the yeast analysis (data
not shown).

Each MCMC run took 200000 MCMC steps, each chain was
sampled after each 200 steps, making 1000 samples for each chain.
Among these samples, we found thousands of HP-scenarios ranging
from 1957 till 3354 in the mammalian analyses, and above 3000,
ranging up to 4736 samples in the yeast analyses, showing that
the higher indexed chains were cold enough to have HP-scenarios
in their target distributions with non-negligible probabilities. The
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Fig. 3. The empirical distribution of the parameter r estimated from two
different MCMC runs (dashed line: s = 0.01, straight line: k = 0.01) on
the euarchontoglire-human data.

minimum were taken on one of the runs with s = 0.01, showing
that the HP scenarios are less frequent at high temperature.

We also would like to mention that the hottest chains almost
never sampled HP scenarios, the empirical frequency of HP
scenarios in the hottest chain is below 0.0003. This shows that it
is computationally inefficient to sample DCJ scenarios and restrict
the samples to HP scenarios. Tempering is needed to sample HP
scenarios frequently.

MCMC runs on each input data were repeated at least three times
with different random seeds, and the convergence was also checked
by comparing the samples from different runs, see for example,
Fig. 3. showing the empirical distribution of parameter r estimated
from two different runs.

4.2 Biological data analysis
We tested the MCMC sampler on two datasets. One is the
comparison of the yeast Saccharomyces cerevisiae with its ancestral
genome pre-dating the whole genome duplication that occurred
in that lineage 100 million years ago. This dataset was manually
analysed by Gordon et al. (2009) using parsimony principles and it
is interesting to compare their results with the automatic method.
The other one is a human mouse genome comparison, which is
interesting for two purposes. The first is a possibility of comparing
the modes of structural evolution in different lineages, i.e. in
yeast versus mammals. The second arises from a debate on the
computation of the breakpoint reuse rate, which is sometimes
computed independently from any scenario (Pevzner and Tesler,
2003) or from an ad-hoc parsimonious scenario (Bergeron et al.,
2008), and has very different values according to the method, which
drives opposite biological conclusions. Sampling among scenarios
allows the computation of a mean breakpoint reuse.

For the yeast genome, we used as “genes” the markers constructed
by Gavranovic and Tannier (2010) using a double synteny principle.
These markers cover 97% of the genes used by Gordon et al. (2009),
from which we take the ancestral pre-duplication configuration
(the ancestral genomes vary only by one DCJ (a non reciprocal
translocation) from one method to the other). Gordon et al.
(2009) estimated the number of rearrangements from the ancestor
to Saccharomyces cerevisiae to be 73 inversions, 66 reciprocal

translocations, and 5 non reciprocal translocations. Our results are
summarized in Table 2. The ratio of reversals/translocations is lower
than in Gordon et al. (2009) (0.66 vs. 1.03 ), confirming the
propensity of yeasts to evolve mainly by translocations. This is also
confirmed by the comparison of the same ancestral configuration to
the non duplicated genome Lachancea kluyveri, where the ratio is
about 24% (the manual study of Gordon et al. (2009) was limited to
the scenario in the Saccharomyces cerevisiae branch).

In contrast, for mammalian genomes, we used the Pecan
alignment coordinates from the release 58 of the Ensembl-Compara
database Paten et al. (2008), retrieving the seeds that were present in
the Human, Macaca, Mouse, Rat, Dog, Horse, Cow, and Opossum
genomes. By joining consecutive alignments and discarding the
groups covering less than 100kb in at least one species, we obtained
915 universal orthology blocks covering approximately 70% of the
chosen mammalian genomes. We used the euarchontoglire (human-
mouse ancestor) ancestral genome reconstruction using the method
of (Chauve and Tannier, 2008), and compared its organization with
the extant genomes. The results, reported on Table 2 for human and
mouse, show that the modes of evolution are very different from
yeast ones, and even can be very different among lineages. The
presence of fusions and fissions contrasts with the evolution of yeast
species, even if the ratio between the two is biased because of a
reconstruction of an ancestral genome with 27 contiguous ancestral
regions, which are probably fused into 23 or 24 proto-chromosomes
in reality. The reversal/translocation ratio is surprisingly variable,
the human lineage evolving mainly by reversals, whereas in mouse,
as in yeasts, reciprocal translocations are the dominant mechanism.

If we count one break for a fission, one for a translocation
and two for reversals and reciprocal translocations, we arrive at
a breakpoint reuse rate of 1.46 for the human branch, and 1.59
for the mouse branch. Such a rate, which can have consequences
on the construction of models of structural evolution, cannot be
analysed on its own, its significance depends on the sizes of the
chromosomal regions affected by the rearrangement breakages, thus
on the properties of the constructed orthology blocks. Such an
analysis is beyond the scope of this paper, which nevertheless
provides a way to have a good estimation of this value.

Table 2. Mean numbers of rearrangements according to their types: fusion,
fission, reciprocal translocation, non reciprocal (telomeric) translocation,
reversals.

Fus. Fis. Rec. Transl. Transl. Rev.
Yeast anc.→ Scerevisiae 0 0 86.5 6.7 61.3
Yeast anc.→ Skluyveri 0 0 66.9 5.2 17.6
Euarch anc.→ Human 3.3 0.3 7.8 10.9 61.5
Euarch anc.→Mouse 6.6 0.6 112.9 53.4 34.5

5 DISCUSSION
The estimation of rates of different rearrangements, as well as
the breakpoint reuse rate, are important to devise a model of
genome structural evolution, just like the estimation of a substitution
matrix is necessary to use a model of nucleotide or amino acid
sequence evolution. Up to now, most models are limited to one
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kind of rearrangements, or provide only parsimonious solutions,
giving an equal probability to any kind of event. The analysis of
rearrangements for distant species is thus rarely possible.

We arrived at estimations of the ratio of different kinds of
rearrangements, showing that fusions and fissions are usual
modes of evolution in mammalian genomes, but not in yeasts.
Reversals are also much more frequent in mammals, compared
to translocations. However, non-reciprocal translocations, called
telomeric translocations in Gordon et al. (2009), are quite frequent
in both taxa. The significance of the breakpoint reuse rate for
refuting or not the Random Breakage Model is beyond the scope of
this study, which can however propose a solution to the problem of
its computation. These observations of different rates for different
types of rearrangements, or the possible preferential usage of
some breakpoints might be included as parameters in a more
general model in a future work. We could also use this kind of
work to test the hypothesis that non-HP DCJ, with or without
immediate reincorporation of circular chromosomes, are indeed rare
or irrelevant, by sampling from low but non zero temperature, and
compute the probabilities of the inferred scenarios. We leave this
large debate to a future work.

We introduced a promising approach for inferring genome
rearrangement evolution. The previous best method (Miklós and
Darling, 2009) was able to sample only from the uniform
distribution of all most parsimonious reversal scenarios. Our new
method provides a radically different approach that can sample also
from the Bayesian distribution of all possible reversal scenarios.
The MCMC we constructed has a theoretical ground, however
Theorems 2 and 3 work for more particular types of data than
the MCMC itself, as they are limited to unichromosomal co-tailed
hurdle-free genomes, and parsimonious scenarios. However, we
conjecture they are true for a more general case, if not the most
general one in which the MCMC stands. This new method also has
the potential to be extended to multiple genome rearrangements.
So far, no efficient method is available for the Bayesian inferring
of genome rearrangement phylogenies. BADGER, the best method
available for Bayesian rearrangement phylogenies (Larget et.al.,
2005) needs tens of millions of MCMC steps to converge on
moderate data containing less than 80 syntheny blocks (Darling et
al., 2008). We conjecture that the torpid mixing of BADGER is
caused by the bottlenecks in the state space discovered by Miklós
et al. (2010). As Miklós et al. (2010) already realized, the usual
parallel tempering that heats up the distribution towards suboptimal
scenarios cannot eliminate these bottlenecks. The new heating
protocol introduced in this paper, which heats the distribution
towards DCJ scenarios can eliminate these bottlenecks.

ACKNOWLEDGEMENT
ET is funded by the Agence Nationale pour la Recherche (ANR-
08-GENM-036-01 and ANR-08-EMER-011-03). The authors thank
Wei Xu, Krister Swenson, Haris Gavranovic, Renaud Lenne and
Jens Lagergren for fruitful discussions. The collaboration has been
funded by an ECO-NET project funded by the french ministry
of foreign affairs. The anonymous referees are thanked for their
constructive criticisms.

REFERENCES
Bergeron, A., Mixtacki, J., Stoye, J. (2006) A Unifying View of Genome

Rearrangements. LNCS, 4175, 163-173
Bergeron, A., Mixtacki, J., Stoye, J. (2009) A new linear time algorithm to compute the

genomic distance via the double cut and join distance. Theor. Comput. Sci., 410(51),
5300–5316.

Bergeron, A., Mixtacki, J., Stoye, J. (2008) On Computing the Breakpoint Reuse Rate
in Rearrangement Scenarios. LNCS, 5267, 226-240

Braga, MDV, Sagot, M-F, Scornavacca, C, Tannier, E (2008) Exploring the Solution
Space of Sorting by Reversals with Experiments and an Application to Evolution,
IEEE-ACM Transactions on Computational Biology and Bioinformatics, 5, 348-356

Braga, M.D.V., Stoye, J. (2009) Counting All DCJ Sorting Scenarios. LNCS, 5817,
36–47.

Darling, A., Miklós, I., Ragan, M. (2008) Dynamics of genome rearrangement in
bacterial populations. PLoS Genetics, 4(7), e1000128.

Durrett, R., Nielsen, R., York, T.L. (2004) Bayesian estimation of genomic distance.
Genetics, 166, 621–629.

Gavranovic, H., Tannier, E. (2010) Guided genome halving: provably optimal solutions
provide good insights into the preduplication ancestral genome of Saccharomyces
cerevisiae Proceedings of PSB, 15, 21–30.

Geyer CJ (1991) Parallel tempering: Theory, applications, and new perspectives. In:
Keramidas E, editor. Computing Science and Statistics: Proceedings of the 23rd
Symposium on the Interface. 156–163.

Gordon JL, Byrne KP, Wolfe KH (2009) Additions, Losses, and Rearrangements on the
Evolutionary Route from a Reconstructed Ancestor to the Modern Saccharomyces
cerevisiae Genome. PLoS Genetics 5(5), e1000485.

Hannenhalli, S., Pevzner, P.A. (1995) Transforming men into mice (polynomial
algorithm for genomic distance problem). Proceedings of FOCS, 581–592.

Hannenhalli, S., Pevzner, P.A. (1999) Transforming Cabbage into Turnip: Polynomial
Algorithm for Sorting Signed Permutations by Reversals. J. of ACM, 46(1), 1–27.

Hastings, W.K. (1950) Monte Carlo sampling methods using Markov chains and their
applications Biometrica, 67(1), 97–109.

Larget, B., Simon, D.L., Kadane, B.J. (2002) Bayesian phylogenetic inference from
animal mitochondrial genome arrangements. J. Roy. Stat. Soc. B., 64(4), 681–695.

Larget, B., Simon, D.L., Kadane, J.B., Sweet, D. (2005) A Bayesian Analysis of
Metazoan Mitochondrial Genome Arrangements. Mol. Biol. Evol. 22(3), 485–495.

Liu, J.S. (2001) Monte Carlo strategies in scientific computing. Cambridge Univ Press.
Metropolis, N and Rosenbluth, AW and Rosenbluth, MN and Teller, AH, Teller, E

(1953) Equations of state calculations by fast computing machines. J. Chem. Phys.,
21(6), 1087–1091.

Miklós, I. (2003) MCMC Genome Rearrangement. Bioinformatics, 19, ii130–ii137.
Miklós, I., Darling, A. (2009) Efficient sampling of parsimonious inversion histories

with application to genome rearrangement in Yersinia. Genome Biology and
Evolution, 1(1), 153–164.

Miklós, I., Lunter, G. A., Holmes, I. (2004) A ’long indel’ model for evolutionary
sequence alignment. Mol. Biol. Evol., 21(3), 529–540.
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APPENDIX A
In this appendix, we prove in a particular case that all local minima on the
energy surface defined by the sum of the number of circular chromosomes
along a DCJ path are global minima. We conjecture the same result for the
general case (multichromosomal genomes).

Unichromosomal hurdle-free co-tailed genomes
A unichromosomal genome is a genome with only one chromosome. A
couple of genomes is said to be co-tailed if they share the same telomeres.
The DCJ distance between two unichromosomal linear co-tailed genomes is
n− (c(Π,Γ) + 1).

On unichromosomal linear genomes, DCJs are either reversals, or fusions
or fissions of chromosomes involving at least one circular chromosome. A
fission of a chromosome into two, immediately followed by the fusion of
these two chromosomes (with different points of fusions) is called a block-
interchange.

A Π-edge (resp. Γ-edge) of the breakpoint graph of two genomes Π and
Γ is said to be oriented if it joins two gene heads or two gene tails. It is
unoriented if it joins a head and a tail. A cycle is said to be oriented if it has
an oriented edge.

Two cycles A,B of a breakpoint graph of unichromosomal co-tailed
genomes Π and Γ are said to cross if the minimal path of GΠ containing
the extremities of A also contains extremities from B, and vice-versa.

The interleaving graph of two genomes Π and Γ is the graph with vertex
set the set of cycles of the breakpoint graph, and two cycles are linked by an
edge if they cross. A component of Π and Γ is the set of genes extremities of
the cycles of a connected component of the interleaving graph of Π and Γ if
this set has cardinality at least 4.

A component is said to be oriented if at least one edge of a cycle of the
component has an oriented edge. It is unoriented otherwise. Π and Γ are
hurdle-free if they have no unoriented component.

The following two results are corollaries of the Hannenhalli-Pevzner
theorem (Hannenhalli and Pevzner, 1999).

RESULT 1. For two hurdle-free co-tailed unichromosomal genomes Π

and Γ, there is a DCJ scenario of size dDCJ (Π,Γ) which contains only
reversals.

RESULT 2. In any DCJ scenario between two co-tailed unichromosomal
genomes Π and Γ of size dDCJ (Π,Γ), there is no reversal involving gene
extremities of an unoriented component.

The number of different DCJ scenarios between two hurdle-free co-
tailed unichromosomal genomes Π and Γ can be easily computed, while
computing the number of DCJ scenarios containing only reversals, as well
as only reversals and block-interchanges, are open problems.

The theorem
For a DCJ scenario S between genomes Π and Γ, denote by S(i) the DCJ
at the ith position on S. Let ΠSi = Π/S(1)/ . . . /S(i) for 0 ≤ i ≤ dDCJ
(ΠS0 = Π and ΠSdDCJ

= Γ). For two scenarios S1 and S2, we define
d(S1, S2) as the smallest integer d such that there exists k verifying:

For all i 6∈ [k, k + d− 1], S1(i) = S2(i).

In other words, d(S1, S2) ≤ d if it is possible to replace d consecutive
DCJs of S1, by d other DCJs to obtain S2. For a genome Π, let circ(Π) be
the number of circular chromosomes of Π. Let c(S) =

Pk
i=0 circ(Π

S
i )

be the score of the scenario S. For any DCJ scenario S between two
unichromosomal co-tailed genomes, c(S) ≥ 0 and S is a scenario of
reversals if and only if c(S) = 0.

THEOREM 2. For two hurdle-free co-tailed unichromosomal genomes Π
and Γ, let S1 be a DCJ scenario transforming Π into Γ. There exists a finite
sequence S1S2 . . . Sk of DCJ scenarios, such that

• for all i, d(Si, Si+1) ≤ 3 and c(Si) ≥ c(Si+1);

• Sk is a reversal scenario.

Proof of Theorem 2
LetS1 = ρ1 . . . ρk be a scenario between unichromosomal co-tailed hurdle-
free genomes Π and Γ such that c(S1) > 0. We prove that there always
exists a finite sequence S1S2 . . . Sl such that c(Sl) < c(S1) and for all i,
d(Si, Si+1) ≤ 3 and c(Si) ≥ c(Si+1). This proves the theorem.

A DCJ scenario that is not a reversal scenario contains fissions and
fusions. If in a DCJ scenario every fission is immediately followed by a
fusion, then we say it is a reversal/block-interchange scenario. The first step
of our proof shows that any DCJ scenario can be transformed into a scenario
of this type. The second step of the proof shows that this can further be
transformed into a reversal scenario.

Case 1. Not all fission is immediately followed by a fusion.
Let ρp be the first (with minimum p) such fission in S1. So ΠS1

p−1 is a
unichromosomal genome. The DCJ ρp fissions the unique chromosome of
ΠS1
p−1 into two chromosomes C1 and C2. Let G1 (resp. G2) be the set of

gene extremities in C1 (resp. C2). Now let ρq be the first DCJ after ρp in
S1 which involves gene extremities both from G1 and G2. It exists as Γ is
unichromosomal, and by hypothesis q > p+ 1.

By hypothesis on ρq , ρq−1 involves either only gene extremities fromG1

or only gene extremities from G2. Suppose w.l.o.g. that it is G1. If ρq and
ρq−1 commute, let ρ′q−1 = ρq and ρ′q = ρq−1. If they do not commute,
denote ρq−1 by ((ab, cd), (ac, bd)) and ρq by ((ac, ef), (ae, cf)), with
a, b, c, d being gene extremities of G1 and ef being gene extremities from
G2. Now let ρ′q−1 = ((ab, ef), (ae, bf)) and ρ′q = ((cd, bf), (bd, cf)).
In both cases the scenario

S2 = ρ1 . . . ρq−2ρ
′
q−1ρ

′
qρq+1 . . . ρn

is composed of valid DCJ operations, we trivially have d(S1, S2) ≤ 2 and
we also have c(S2) ≤ c(S1) because

• For all i 6= q − 1, ΠS1
i = ΠS2

i ;

• Clearly |circ(Π)− circ(Π/ρ)| ≤ 1 for any genome Π and DCJ ρ, so
circ(ΠS1

q−1) ≥ circ(ΠS1
q−2)− 1;

• The DCJ ρ′q−1 is a chromosome fusion so circ(ΠS2
q−1) =

circ(ΠS2
q−2)− 1, yielding circ(ΠS1

q−1) ≥ circ(ΠS2
q−1).

Now in S2, ρ′q−1 is the first DCJ after ρp which involves gene extremities
both from G1 and G2. Applying this transformation again to S2 decreases
the index q of the first DCJ after ρp which involves gene extremities both
from G1 and G2. We may apply the same transformation until q = p + 1,
which means that ρpρp+1 is a block-interchange.

Applying the same transformation to every ρp fission which is the first
DCJ of a non-block-interchange type eventually gives a reversal/block-
interchange scenario.

Case 2. The scenario S1 is a reversal/block-interchange scenario.

Note that in that case the number of circular chromosomes in a scenario
— its score — is also the number of block-interchanges. So the goal will
be to get progressively rid of all block-interchanges and arrive at a reversal
scenario.

First, if for a block-interchange ρpρp+1 (both operations are DCJs), the
genomes ΠSp−1 and ΠSp+1 have an oriented component, then ρpρp+1 can
easily be replaced by two reversals, as a direct consequence of Result 1.
Doing this yields a scenario which is distant from the initial one of at most
two, and the number of circular chromosomes is deceased by one, proving
the theorem.

So we may assume that all block interchanges ρpρp+1 are unoriented,
which means the breakpoint graph of ΠSp−1 and ΠSp+1 has a only unoriented
components.
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Let now ρr and ρb be a reversal and a block interchange in the scenario S.
We note Π− the genome before the application of the first event among ρr
and ρb, and Π+ the genome after the application of the last one. We say that
ρr and ρb cross if the minimal path on GΠ− between the gene extremities
used by ρr contains extremities used by ρb, vice-versa, exchanging ρr and
ρb. It is easy to see that if they are consecutive and do not cross, then they
commute and swapping their position yields a scenario which is distant of 3
from the original one, and has the same score (the reversal stays a reversal,
the block-interchange stays a block interchange).

Choose now ρr and ρb which cross, and such that there are as few DCJs
as possible between them in S. These exist because else the reversals and
block-interchange would act on different components, which is not possible
because there is no unoriented component.

From now we assume that ρr is before ρb, but a symmetric reasoning
yields the proof for the opposite case.

Suppose there are rearrangements between ρr and ρb. If among those
rearrangements, there is a reversal which is immediately before a block
interchange, then by hypothesis on ρr and ρb, they do not cross. So
it is possible to swap them without changing the score of the scenario,
nor the crossing properties of any pair or reversal and block-interchange.
Iteratively applying this allows to assume that all reversals occur after all
block-interchanges between ρr and ρb.

Now ρr occurs before a block-interchange, and if it is not ρb, then
they don’t cross. So it is possible to swap them. This has the effect of
applying a block-interchange to Π−. As this block-interchange does not
cross any reversal applied before ρb, it cannot change the crossing properties
of reversals and block-interchanges, so it is possible to repeatedly apply this
procedure while there are block-interchanges between ρr and ρb, there are
only reversals left. In the same way, as ρb occurs after a reversal, if it is not
ρr then they don’t cross and it is possible to swap them without changing
the crossing properties of reversals and block-interchanges. After repeating
this procedure there are no rearrangement anymore between ρr and ρb and
they are immediately consecutive. The following lemma yields the theorem
in that case.

LEMMA 1. In a scenario S, let ρr and ρb be respectively a reversal and
a block-interchange that are consecutive (in any order) and crossing. Then
it is possible to replace them by three reversals in S.

Proof. By Result 2 the component of Π− and Π+ containing the gene
extremities involved in ρr and ρb is is oriented since there is a scenario
with a reversal transforming Π− into Π+. So by Result 1 there are three
reversals transforming Π− into Π+, which proves the result. �

APPENDIX B
In this appendix, we prove the following theorem, showing that with a non
negligible probability, the MCMC can diversify efficiently in the solution
space of HP scenarios:

THEOREM 3. For any pair of hurdle-free, co-tailed, linear genomes Π
and Γ with n genes, k = O(n3 log(n)) parallel chains sampling from most
parsimonious DCJ scenarios following target distributions given by

πi(R(Π,Γ)) ∝ e−
c(R(Π,Γ))

Ti (9)

can be defined with the following properties:

• The temperature of the 1st chain is infinite,

• The swapping probability between any two consecutive chains given by
Equation 7 is at least 1

2
,

• The probability of a HP scenario in the target distribution of the kth

chain is at least 1
2

.

The first property provides that all most parsimonious DCJ scenarios
are equally probable in the target distribution of the 1st chain. We proved

(Miklós and Tannier, manuscript in preparation) that it is easy to sample from
this distribution with Markov chains, and if the genomes are co-tailed, exact
sampling is also possible (Ouangraoua and Bergeron, 2010). The second
property provides that the information change between the parallel chains is
not negligible. The third property provides that a few samples from the kth

chain is sufficient to get HP scenarios. Although these together do not prove
fast mixing of our method, it is definitly takes us closer to a final proof.

The theorem is proved using the following lemmas.

LEMMA 2. For any most parsimonious DCJ scenario S between Π and
Γ,

c(S) ≤
n(n− 2)

4
(10)

Proof: Since Π and Γ are linear, circ(Π) = circ(Γ) = 0. |circ(Π′) −
circ(Π/ρ)| ≤ 1 for any genome Π′, thus c(S) is maximal, if the number
of circles increases till the middle of the path, and then dicreases. Since the
maximum length of the path is n− 1, Equation 10 immediately holds. �

LEMMA 3. The number of most parsimonious DCJ scenarios between Π

and Γ is at most (4n2 − n)n−1.

Proof: n genes have 2n extremities, forming at most 2n telomeres and
adjacencies. There are at most 2 DCJs acting on a given pair of telomeres
and/or adjacencies, having an upper bound of 2

`2n
2

´
DCJs acting on a

pair of telomers/adjacencies. Above these, there are fissions involving one
adjacency. The number of them is at most n, thus the number of DCJs
applicable for a genome with n genes cannot be more than 4n2 − n. The
length of a most parsimonious DCJ scenario is at most n−1, thus the number
of most parsimonious DCJ scenario is a most (4n2 − n)n−1. �

The following lemma sets the largest temperature we need.

LEMMA 4. If the inverse of the temperature of the Markov chain is greater
than (n − 1) log(4n2 − n), then the probability of the HP scenarios is at
least 1

2
in the target distribution.

Proof: c(S) is at least 1 for any non-HP path, thus the probabilty of any
non-HP path is at least (4n2 − n)n−1 times smaller than that of a HP path.
Since there are less than (4n2 − n)n−1 times more non-HP paths than HP
paths, the probability of the HP paths in the target distribution is at least 1

2
.

�
The following lemma tells what difference between the temperature of

neighbour chains is necessary for a swapping probability greater or equal
than 1

2
.

LEMMA 5. If the difference between the inverse temperatures is 4 log 2
n(n−2)

,

then the swapping probability given by Equation 7 is at least 1
2

.

Proof: Let ∆c denote the difference between c(Ri) and c(Ri+1) and let
∆T denote 1

Ti+1
− 1
Ti

. Equation 7 can be simplified as

min
n

1, e−∆c∆T
o

(11)

Since ∆c is at most n(n−2)
4

, the swapping probability is at least 1
2

. �
Proof of Theorem 3: We set the temperature of the first chain to infinite, as
prescribed, and the temperature of the i+ 1st chain as

Ti+1 :=
1

4 log 2
n(n−2)

+ 1
Ti

(12)

The swapping probability between two chains will be at least 1
2

, based on

Lemma 5. The chain with index
l
n(n−1)(n−2) log(4n2−n)

4 log 2
+ 1
m

will have

temperature at most 1
(n−1) log(4n2−n)

, and thus, the probability of the HP

scenarios in its target distribution is at least 1
2

. �
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