
Modulated String SearchingI
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Abstract

In his 1987 paper entitled Generalized String Matching Abrahamson introduced the concept of pattern
matching with character classes and provided the first efficient algorithm to solve this problem. The best
known solution to date is due to Linhart and Shamir (2009).

Another broad yet comparatively less intensively studied class of string matching problems is numerical
string searching, such as for instance ”less-than” or L1-norm string searching. The best known solutions for
problems in this class are based on FFT convolution after some suitable re-encoding.

The present paper introduces modulated string searching as a unified framework for string matching
problems where the numerical conditions can be combined with some Boolean/numerical decision conditions
on the character classes. One example problem in this class is the locally bounded L1-norm matching problem
with parameters b and τ : here the pattern ”matches” a text of same length if their L1-distance is at most
b and if furthermore there is no position where the text element and pattern element differ by more than
the local bound τ. A more general setup is that where the pattern positions contain character classes and/or
each position has its own private local bound. While the first variant can clearly be handled by adaptation of
the classic FFT method, the second one is far too complicated for this treatment. The algorithm we propose
in this paper can solve all such problems efficiently.

The proposed framework contains two nested procedures. The first one, based on Karatsuba’s fast
multiplication algorithm, solves pattern matching with character classes within time O

(
nm0.585

)
, where n

and m are the text and pattern length respectively (under some reasonable conventions). This is slightly
better than the complexity of Abrahamson’s algorithm for generalized string matching but worse than
algorithms based on FFT. The second procedure, which works as a plug-in within the first one and is
tailored to the specific problem variant at hand, solves the numerical and/or Boolean matching problem
with high efficiency. Some of the previously known constructions can be adapted to match or outperform
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several (but not all) problem variations handled by the construction proposed here. The latter aims to be a
general tool that provides a unified solution for all problems of this kind.

Key words: Pattern matching with character classes; Karatsuba’s fast multiplication algorithm; locally
bounded L1-norm string matching on character classes; truncated L1-norm string matching on character
classes

1. Introduction

String searching is a basic primitive of computation. In the standard formulation of the problem, we are
given a pattern and a text and are required to find all occurrences of the pattern in the text. Several variants
of the problem have also been considered, such as allowing mismatches, insertions, deletions, swaps and so
on.

In his paper [1] Abrahamson introduced the notion of pattern matching with character classes (or PMCC
for short) which is specified as follows. The pattern P of length m is given as a sequence of character classes
(P [j] ⊆ Σ) and the text T is a sequence from Σ∗ (that is T [i] ∈ Σ). Here P occurs at location i in T if
∀j : 1 ≤ j ≤ m, T [i+ j − 1] ∈ P [j]. The problem of PMCC for a (typically long) text is to find all positions
in the text T where the pattern P occurs. Standard string searching thus corresponds to the special case
where each character class consists of exactly one element. In the original formulation PMCC was called
generalized pattern matching.

Abrahamson proved that PMCC is harder than standard string searching and gave an algorithm for
it. Since the algorithm deals with unrestricted alphabets, both the text and the pattern are encoded over
the fixed auxiliary alphabet φ, 0, 1. More precisely the text alphabet Σ is presumed to be the infinite set
{φ, al, a2, . . .}, where ai is represented by the string #ı̄, where ı̄ is the binary representation of i, without
leading zeros. Symbol φ is represented by itself.

Now, let M̂ denote the number of symbols used over the original alphabet to describe the pattern
elements, and let M be the total length of the encoding of the pattern. Likewise, let n be the number of
symbols in the text sequence, and N the total length of the encoding of the text. Then the time complexity
of Abrahamson’s algorithm is

O
(
M +N + nM̂1/2polylog(m)

)
.

The state of the art for PMCC is due to Linhart and Shamir [7]. Their algorithm has the following impressive
time complexity: having set κ = log|Σ|(log n/ logm), then it is O(|Σ|1−κn logm) for κ ≤ 1, while for κ > 1
it becomes O(n log(m/κ)). Their approach can be extended to solve PMCC with mismatches and to PMCC
with subset matching. It is based on encoding the text and pattern using large prime numbers, and on an
FFT-based convolution process. It is suitable for checking ”element(s) in a subset relation” but not for more
complicated conditions.

The problem of searching for strings consisting of numerical values rather than characters arises in count-
less applications and some variants have already been studied in combinatorial pattern matching. In these
problems the fitting conditions are described in numerical terms. For example, in the less-than string search-
ing problem (Amir and Farach [2]), the pattern fits the text if at each positionof the alignment the pattern
value does not exceed the corresponding text value. Additional variants require the computation of the L1-
distance of the pattern from the text at each starting position (Amir, Landau and Vishkin [4], Lipsky [8]).
Yet another version, known as the k−L1-distance problem (Amir, Lipsky, Porat and Umanski [3]), consists
of computing approximate matching in the L1-metric.

These fast methods are also based on suitable encoding processes and on FFT, with corresponding time
complexity. These algorithms do not seem to be applicable to numerical string searching with character
classes and in general to those cases where a pointwise evaluation of individual comparisons is required.
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In the next section we introduce the modulated string searching framework (or MSS for short) which
combines the flexibility of PMCC with numerical calculations and/or more complicated Boolean conditions.
We will give first a simple and näıve solution for the problem. (See Section 2.)

Our proposed approach for MSS is by a pair of nested procedures. The first one (see Section 3) is an
algorithm to solve PMCC, based on Karatsuba’s fast multiplication method. Its complexity is

O
(
nm0.585

)
where n and m are the text and pattern lengths, respectively, provided that all other parameters involved
such as character class number etc. can be treated as constants. Here one could argue that the application
of the Toom-Cook or the Schönhage algorithms [5, 9] yields a better performance. This is true, however, only
for certain values of the text and pattern lengths. In addition, those algorithms require higher overheads,
offsetting the overall gain. The above complexity is also worse than the complexity achieved in, say, [7].
However, the present method allows us to design a second procedure which works as a plug-in within the
first one (see Section 4) and which solves a variety of numerical and/or Boolean problems. Indeed, the
first procedure of our framework is always the same, while the plug-in procedure and its complexity depend
heavily on specific matching conventions. Some of the previously known constructions can be adapted to
match or outperform several (but not all) problem variations handled by the method proposed here, which
therefore aims to be a general tool that provides a unified solution for all problems of this kind.

2. Modulated string searching framework

The framework for modulated string matching on character classes is as follows. The alphabet Σ is some set
of natural numbers and b denotes an absolute constant. The pattern is a string of character classes (each
class being a finite subset of Σ) whose length, that is the total number of the character classes, is denoted
by m and the text is a finite string over Σ. The matching conditions are dictated by two functions with the
following features. One of them depends on the particular variant of the problem and takes as arguments
a character class and a character, and returns in constant time a score of the match. The second function
takes as arguments the scores at the m positions of an alignment of the pattern against the text and returns
true in case they add up to at most b, false otherwise.
Examples: Consider first the locally bounded L1-distance string matching problems on character classes:
Assume we are given two strings of equal length m over the natural numbers. Then the L1-distance of these
strings is

∑m
i=1 |Pi − Ti|, as usual. When one of the strings is given with character classes, the L1-distance

on character classes at a given position is defined as the smallest L1-distance between the element of the
first string at that position and any of the elements in the effacing class. For given pattern and text strings,
the total distance at some starting text position is the sum of the above local distances. Let now b and
τ be absolute constants. We say that the pattern fits at a given position of the text in locally bounded
L1-distance with parameters b and τ if there is no position in the corresponding substring of the text where
the L1-distance from the pattern element is bigger than τ and, in addition, the total L1-distance of the two
strings is at most b. The locally bounded L1-distance string matching problem on character classes then is to
find all positions of the text where the pattern fits.

When each pattern class consists of only one element then one can easily design a two-phase FFT based
algorithm to solve this problem efficiently. However, if the classes are not singletons and / or each pattern
position has its own private local bound then this is not feasible anymore.

A closely related notion is the τ -truncated L1-distance. For two strings of length m this parameter is
defined as

∑m
i=1 min(|Pi−Ti|, τ). This can be visualized as testing a sequence of manufactured items against

a standard of reference: the difference at each position describes, e.g., the cost to repair a token in situ while
it is more economical to replace that token when the repair becomes too costly. When the pattern is given
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in form of character sets then the obvious analogous definition applies. Then the τ -truncated L1-distance
string matching problem on character classes becomes to find all positions of the text where the τ -truncated
L1-distance of the pattern is at most b. In particular, in case of singleton character classes in the pattern
and a big enough constant τ this yields the standard L1-distance problem.

We finally list a third example which can be called fitting assignment. Here we simply have a map A
from the pairs of text characters and pattern character classes (which may each specify its position within
the pattern), say, to the integers Z, or even more generally, to the reals R. In this case we have to store the
values for all possible pairs, but, in exchange, there is no need to calculate anything. It is clear that no FFT
based method can solve this problem. On the other hand, these and other problems can be described and
solved in the framework proposed here.

Modulated string searching can be solved easily by the following direct method. Align the pattern with the
text starting at every position of the text. Each text character is matched against its corresponding set Pi.
In most cases (like in the first two described above) finding out whether a text character fits into Pi can be
managed with the help of a simple merge operation and so requires roughly log |Pi| time. The algorithm
then compares the distance of the text element and the neighboring pattern elements against the threshold
τ . Adding up for all text characters this yields n

∑m
i=1 log

∣∣Pi∣∣ time.

Before proceeding further we specify a more convenient representation of the pattern elements. For each
pattern position i we have in general a character class Pi and we will represent this subset of the alphabet Σ
by a binary characteristic vector p̄i of length |Σ|. Since there are several kinds of ”length” in this paper, we
will use the term dimension for the length of a vector. So p̄i is a vector of dimension |Σ|. If we represent our
text symbols analogously by characteristic vectors t̄j for all j = 1, . . . , n, each one of which contains exactly
one non-zero element, then the text character Tj and the pattern character class Pi match if and only if the
scalar product 〈p̄i, t̄j〉 of the corresponding characteristic vectors is exactly 1.

With this notation, for each j = 0, . . . , n−m−1, the substring of T starting at position j+ 1 and ending
at j +m fits the pattern string if and only if

vj+1 :=
m∑
i=1

〈p̄i, t̄j+i〉 (1)

equals m exactly. Furthermore, when vj+1 = m− `, then we have exactly ` mismatches.
The direct computation of the above sums would require O(nm) scalar products where each one may

take O(|Σ|) time to compute. In the next section we show how one can speed up this algorithm for the MSS
problem using a convolution-type argument.

3. PMCC with Karatsuba’s fast multiplication algorithm

In this section we develop an algorithm to solve the PMCC problem based on Karatsuba’s fast multiplication
(Karatsuba and Ofman [6]). Recall that Karatsuba’s algorithm requires

O
(
mlog2 3

)
single digit multiplications and as many additions to multiply two polynomials of degree m − 1. Now if
we want to multiply two polynomials f and g of degrees n and m = n/q respectively we first split f into
segments f1, . . . , fq of length m, then carry out all multiplications fig and finally add up the results using
the corresponding place values for all results. In other words, we compute

f · g =
q−1∑
i=0

(fi · g)xim .
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We shall see (Expression 6) that for a constant number of different character classes this requires altogether
roughly O

(
nm0.585

)
time.

In conclusion, we carry out q = n/m polynomial multiplications and suitable combine the results into
our final answer. Therefore, at the heart of our application we face the following problem:

We are given two strings of equal length m consisting of binary vectors of dimension |Σ| where each
vector in the first sequence has exactly one non-zero element. We want to compute the ”product” of the
two strings in such a way that for each position j the result is exactly vj as defined above. Note that this
actually corresponds to solving an extension of exact search, since the vj ’s now yield as a byproduct also the
number of possible mismatches in correspondence with each alignment. For the simplicity of this discussion
it is convenient to assume that the length of the strings is a power of 2. This does not affect generality since
any string can be padded suitably with zeroes. We remark in passing that we could extend our approach by
allowing character classes in the text as well (that is, several 1s in the corresponding characteristic vectors).
Leaving such a generalization for an exercise, we will now establish the following fact:

Theorem 1. Under suitable bounds on the number of distinct character classes, numerical values and
position-specific thresholds, the problem of modulated string searching (with possible mismatches) can be
solved by an adaptation of Karatsuba’s multiplication algorithm in time O

(
nm0.585

)
.

A detailed analysis of complexity will follow after Equation (6).
The proof requires us to revisit Karatsuba’s algorithm carefully. Recall that this algorithm is based on the

following trick originally invented by Gauss for multiplying complex numbers: Let f, g be two polynomials
of degree 2k− 1, let a, b, c and d be polynomials of degree k− 1 and set f = axk + b and g = cxk + d. Then

(axk + b)(cxk + d) = ac · x2k + [(a+ b)(c+ d)− ac− bd] · xk + bd (2)

The algorithm computes all products recursively. Figure 1 displays the basic recursion. Its control structure
borrowed from the pseudocode in Weimerskirch and Paar [10] is reproduced here for the convenience of the
reader.

Algorithm KAM z = KAM(f, g)
Input: Polynomials f(x), g(x); 2k = degree(f) + 1 = degree(g) + 1.
Output: z(x) = f(x)× g(x)
if 2k = 1 return f × g
set f(x) = a(x)xk + b(x); g(x) = c(x)xk + d(x)
create r1(x) = a(x) + b(x), r2(x) = c(x) + d(x)
t1 ← KAM(a, c)
t2 ← KAM(b, d)
t3 ← KAM(r1, r2)
return t1x

2k + (t3 − t1 − t2)xk + t2

Thus, for suitable constants γ and δ the number of elementary operations performed by the algorithm is
governed by the recurrence

T (2k) = 3T (k) + 2γk + δ (3)

for which the Master Theorem gives the asymptotic bound T (k) = Θ(klog2 3). More specifically, the recursive
procedure requires altogether klog2 3 multiplications and not more than 6klog2 3−8k+2 elementary additions
and subtractions (see [10]).

The main idea behind our proposed nested procedure is to substitute the regular multiplications (over the
underlying number domain) performed in the leaves of our recursion tree with some symbolic computation
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Figure 1: The structure of Karatsuba’s algorithm.

(axk + b)(cxk + d)

acx2k

a1c1x
2k (a1 + a2)(c1 + c2)xk a2c2

(a+ b)(c+ d)xk bd

over a not necessarily commutative ring structure R over the ring Z of integers. Strictly speaking, this
symbolic computation constitutes our plug-in procedure and provides the flexibility of our proposed approach.
However, once the Karatsuba algorithm is extended in this way to work on the polynomials in R[x], the
complexity analysis above does no longer apply automatically. We thus need to take a closer look at the
original algorithm’s mechanics and complexity.

Observe that before issuing the recursive calls, the procedure needs only to perform two additions of
polynomials. When control returns from the recursion, it needs to perform 4 such operations (2 additions
and 2 subtractions), whence a total of 6. The mechanism of the original Karatsuba algorithm within the
recursive calls can be subdivided into three phases:

Phase 1 Proceeding top-down, the procedure computes the items at each branching point and (finally) at
the leaves of the recursion tree. At each of the 3h vertices at level h it performs additions of two
polynomials of length k/2h, each requiring k/2h elementary additions over the ring R. So the
actual time complexity of these operations in our generalized Karatsuba algorithm will depend on
the complexity of the coefficients from R and their representations.

Phase 2 At each of the klog2 3 leaves, the procedure performs the required pairwise product between monomial
coefficients. (Again this cost depends on the actual formal ring.)

Phase 3 Proceeding now bottom-up, the rocedure computes the actual polynomial values in correspondence
with each branching vertex. This is done by shifting the values of the three children by 0, ` and 2`
positions accordingly, and performing two addition and two subtraction polynomials of length 4`.

In Phase 1 the original algorithm performs roughly 2klog2 3 elementary additions (over the underlying number
domain) while in Phase 2 there are klog2 3 elementary pairwise products and additions. Finally, in Phase 3
roughly 4klog2 3 elementary additions of R[x]-elements are performed.

We give next a formal description of the objects of our algorithm: Let the set Ω consist of one symbol for
each subset of Σ that appears anywhere in the pattern. Furthermore let Γ := Σ ∪ Ω. In what follows, the
generic elements of these sets are denoted by γ, σ and ω and we adopt these symbols as the appropriate
characteristic vectors of the subsets. When, like in the case of locally bounded L1-distance problem, the
pattern positions contain their private local bounds as well, then we have ω’s representing the same subset
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but containing different private local bounds. Next we consider the free ring R = ZΓ with generators Γ over
the integers4.

Recall that we are representing any pair formed by the pattern P and a corresponding segment T ′ of
length m from our text T by the polynomials

T ′(x) ∈ ZΓ[X], T ′(x) =
m∑
i=1

µix
m−i, (4)

and

P (x) ∈ ZΓ[X], P (x) =
m∑
i=1

νix
i−1; (5)

where each µi ∈ Σ and νi ∈ Ω. In Phase 1, in the ”middle” child of each vertex, we need to evaluate the
sum of two polynomials. The coefficients of these polynomials are elements of the free ring, that is, they are
formal linear combinations of the generators since, except at the leaves, along the algorithm no (symbolic)
multiplication takes place among ring elements. Furthermore these combinations never consist of more than
|Σ| generators in the left polynomials (coming from the text) and more than |Ω| generators in the right
polynomials (coming from the pattern).

For the sake of our argument we perform these symbolic summations by representing a general element
γ of the free ring by a formal characteristic vector v(γ): this contains the (integer) coefficients of the
generators (and there are |Σ| formal generators in the left polynomial and |Ω| formal generators in the
right polynomials). To perform the addition of two general elements we add the corresponding characteristic
vectors component-wise. Therefore the complexity of such a formal summation is O(|Γ|) elementary additions
over the integers. Therefore, the overall complexity of our ”generalized” Phase 1 would be O(|Γ| ·mlog2 3)
elementary operations over the integers. Fortunately, as will be seen shortly, we can organize this step much
more efficiently.

In our Phase 2, we must compute at each leaf the product of two general integer elements of the free
ring. This amounts to computing the pairwise products, each accompanied by the product of the two integer
coefficients. At each leaf there are at most |Σ||Ω| such pairs.

Instead of evaluating these standard products, we apply a map Ψ from the products of any two generators
into the ring Z of integers. We take, as an example, the case where a fit happens when the text character
belong to the subset in the pattern. Then each double product σω maps to 1 iff the text symbol matches to the
pattern element and 0 otherwise. This is exactly Equation (1), just the scalar product of the corresponding
t̄ and p̄ characteristic vectors. Then we extend this map to the product of two general elements in the usual
way: the Ψ-image of each double product will be accompanied by the product (over the integers) of the two
coefficients. (If the fitting conditions are different, then the definition -and the computing method- of the
pair-wise product of one element from Σ and one from Ω will differ accordingly.)

In fact, it is easy to see that this is a group homomorphism from the additive group of the free ring to
the additive group of Z. In this way, each coefficient in the final product, which is a linear combination of
double products, is mapped into Z.

We remark that by the distributive and commutative laws for integer numbers the formal linear combina-
tion of generator elements and the double products of the generators at the bottom are fully interchangeable.
Therefore, in Phase I, instead of using formal linear combinations of generating elements, we can perform
the standard linear combinations of vectors of dimension |Σ| and |Ω| over Z. Thus, in each step of Phase I,

4As is well known, the elements of this ring are formal linear combinations of finite words over Γ with coefficients in Z.
The additive group is commutative. The multiplication of two finite words is the concatenation of the words and hence is
non-commutative. This multiplication extends distributively to the ring. The multiplication by scalars is distributive.
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we have to calculate the linear combination of two (integer) characteristic vectors of dimension O(|Γ|) and
store the result as a new integer vector over Z.

In conclusion, instead of introducing the formal characteristic vectors v(γ) we just keep the original
representations of our text symbols and pattern elements and treat them as integer vectors. Therefore, we
need O(|Γ|) space to store the current polynomials at each step in Phase I, and the time complexity of Phase
I is altogether O(|Γ|mlog2 3).

Clearly, a perfect match occurs if and only if the coefficient equals m. On the other hand, if this coefficient
is m′ < m then there are exactly m−m′ mismatches between T ′ and P .

In Phase 2 of KAM we perform O(mlog2 3) pairwise multiplications between elements of the free ring. In our
case the pairwise multiplication is simply the scalar product of two characteristic vectors of dimension |Σ|,
whence our Phase 2 charges O

(
|Σ||Ω||Σ|mlog2 3

)
multiplications over Z and the same number of additions

overall.

In Phase 3 we compute the Ψ-image of every addition instead of the additions of general elements of the
free ring. In all such steps we have thus just integers as factors. Therefore, Phase 3 has exactly the same
complexity as in the original Karatsuba algorithm, that is, O(mlog2 3).

We can conclude that the overall product of T ′(x) and P (x) involves no more than 3rmlog2 3 + 4mlog2 3

additions and O(|Σ||Ω|mlog2 3) pairwise products. Running the algorithm for all consecutive non-overlapping
segments of the text and putting together the resulting product polynomials will complete the procedure,
resulting in

O
( n
m
|Σ|2|Ω|mlog2 3

)
= O

(
n|Σ|2|Ω|mlog2 3−1

)
= O

(
n|Σ|2|Ω|m0.585

)
. (6)

In cases when |Ω| is not too big (say it remains constant while n becomes longer) then this term is
O
(
nm0.585

)
. It is also possible to calculate all possible fitting scores in advance: taking all possible text

characters against all possible pattern character classes (including the local numerical values), calculating
and storing all occurring values in a corresponding two dimensional array. Then, at the cost of |Σ|2|Ω| extra
space we can reduce the time complexity from O

(
n|Σ|2|Ω|m0.585

)
to O

(
n|Σ|m0.585 + |Σ|2|Ω|

)
which is again

only O
(
nm0.585

)
.

This concludes the discussion of our claim.

4. The plug-in procedure

In this section we detail two additional plug-in procedures in order to exemplify the variety of incarnations of
modulated string searching. Consider first a simple solution for the τ -truncated L1-distance string matching
on character classes in which we assume an infinite value for the constant b (see the detailed description at
the beginning of Section 2). We examine the formal multiplications between elements of Σ and Ω, found at
the bottom of the recursion tree. Their representative characteristic vectors were called t and p, respectively.
Each text element (a characteristic vector) contains one character, while the pattern class may contain several
characters. To calculate the ”product” of these characteristic vectors, one should find the two characters
in the pattern class which are closest to the text character (using, for example, a standard merge), then
calculate the smaller L1-distance, and finally truncate it with the constant τ. Instead we can check the
closed τ -ball around the text element to see whether it contains elements of the pattern class and, if the
answer is affirmative, perform the necessary calculation. This requires no more than 2τ + 1 steps at each
multiplication. The subsequent steps are obvious. The solution of the locally bounded L1-distance string
matching on character classes is similar.

Next, to demonstrate the method in a more complex context, we compute the L1-distances at points
where pattern and text meet modulated pattern matching conditions such as the above. For this we will
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need to manage a second characteristic vector pair for text and pattern, respectively, which will store the
actual text and pattern elements in form of symbolic linear combinations.

We revisit the multiplication of the largest linear combinations found at the bottom of the recursion
tree. These were called t and p, respectively. They consist of two characteristic vectors storing min(m, |Σ|)
elements from the text and min(m, |Ω|) terms from the pattern. This time, our multiplication consists of
computing the sum of the differences (`i − `j) that can be formed by taking one symbol from t and one
from p. Consider first pattern elements such that `i ≥ `j . Letting r and r′ be the number of symbols in
p and t respectively, we assume the existence of index tables I and I ′ that take from the value of `h to h,
respectively for 1 ≤ h ≤ r′ and 1 ≤ h ≤ r. We need the array S containing at the h-th position the value

Sh−1 =
r∑

j=h

(`j − `h−1)fj , (7)

where fj denotes the multiplicity of run length `j . Clearly,

(`j − `j−1)(fr + ...+ fj) = Sj−1 − Sj

so that S can be filled in linear time using

Sj−1 = Sj + (`j − `j−1)× Fj

where Fj = fr + ...+fj is obtained for all values of j by a single suffix computation on the frequencies. With
the array S in place, the cumulative distance ∆ of a text run length ` from the pattern runs is computed as
follows. Let `j−1 ≤ ` < `j . Then,

∆ = Sj + (`j − `)× Fj .

We deal with the cases `i ≤ `j analogously. The overall procedure results in no increase in the time
complexity.

It is easy to formulate many additional variants of the problem. For instance, assume that we are still
interested in the L1-distance between the pattern and the text at each possible starting position. However,
we require now in addition that at each position the text element must fall within a possibly varying, specified
neighbourhood of the pattern element. For example, their difference must be never bigger than some a priori
assigned value τ (the previous problem), or it must be always an even number, or, it must be even whenever
the difference is at most h, odd otherwise. And so on.

Acknowledgement We are indebted to Amihood Amir for his encouragement and for enlightening discus-
sions.
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