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Abstract. For a non-cyclic finite group X let σ(X) be the least number of
proper subgroups of X whose union is X. Precise formulas or estimates are
given for σ(S oCm) for certain nonabelian finite simple groups S where Cm is
a cyclic group of order m.

1. Introduction

For a non-cyclic finite group X let σ(X) be the least number of proper subgroups
of X whose union is X. Let S be a nonabelian finite simple group, let Σ be a
nonempty subset of S, and let m be a positive integer. Let α(m) be the number of
distinct prime divisors of m. Let M be a nonempty set of maximal subgroups of S
with the following properties (provided that such an M exists).

(0) If M ∈M then Ms ∈M for any s ∈ S;
(1) Σ ∩M 6= ∅ for every M ∈M;
(2) Σ ⊆ ⋃

M∈MM ;
(3) Σ ∩M1 ∩M2 = ∅ for every distinct pair of subgroups M1 and M2 of M;
(4) M contains at least two subgroups that are not conjugate in S;
(5) m ≥ 2 and

max
{

(1 + α(m))|S|m/`
, max
H 6∈M
H<S

|Σ ∩H||H|m−1
}
≤

≤ min
{( ∑

|Σ ∩M1||Σ ∩M2|
)
|S|m−2

, min
M∈M

|Σ ∩M ||M |m−1
}

where ` is the smallest prime divisor of m and the sum is over all pairs
(M1,M2) ∈M2 with M1 not conjugate to M2.

Let N denote a covering for S, that is, a set of proper subgroups of S whose
union is S.

Theorem 1.1. Using the notations and assumptions introduced above we have

α(m) +
∑

M∈M
|S : M |m−1 ≤ σ(S o Cm) ≤ α(m) + min

N

∑

M∈N
|S : M |m−1

.
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We state and prove two direct consequences of Theorem 1.1. Recall that M11 is
the Mathieu group of degree 11.

Corollary 1.2. For every positive integer m we have

σ(M11 o Cm) = α(m) + 11m + 12m.

Let PSL(n, q) denote the projective special linear group of dimension n over a
field of order q.

Corollary 1.3. Let p be a prime at least 11 and m be a positive integer with
smallest prime divisor at least 5. Then

σ(PSL(2, p) o Cm) = α(m) + (p + 1)m + (p(p− 1)/2)m
.

The ideas of the proof of Theorem 1.1 together with the ideas in [1] can be used
to find a formula for σ(PSL(n, q) oCm) holding for several infinite series of groups
PSL(n, q) o Cm for n ≥ 12. However, since such an investigation would be quite
lengthy, we do not pursue it in this paper.

Let An be the alternating group of degree n where n is at least 5. The ideas
of the proof of Theorem 1.1 together with the ideas in [9] can be used to find a
formula and some estimates for σ(An o Cm) in various cases.

Theorem 1.4. Let us use the notations and assumptions introduced above. Let n
be larger than 12. If n is congruent to 2 modulo 4 then

σ(An o Cm) = α(m) +
(n/2)−2∑

i=1
i odd

(
n

i

)m

+
1

2m

(
n

n/2

)m

.

Otherwise, if n is not congruent to 2 modulo 4, then

α(m) +
1
2

n∑

i=1
i odd

(
n

i

)m

≤ σ(An o Cm).

In some sense Theorem 1.4 extends a theorem of [9], namely that 2n−2 ≤ σ(An)
if n > 9 with equality if and only if n is congruent to 2 modulo 4.

Finally we show the following result using the ideas of Theorem 1.1.

Theorem 1.5. Let us use the notations and assumptions introduced above. Let
n be a positive integer with a prime divisor at most 3

√
n. Then σ(An o Cm) is

asymptotically equal to

α(m) + min
N

∑

M∈N
|An : M |m−1

as n goes to infinity.

Theorem 1.1 and Corollaries 1.2, 1.3 are independent from the Classification of
Finite Simple Groups (CFSG). Theorems 1.4 and 1.5 do depend on CFSG, but
with more work using [10] instead of [8] one can omit CFSG from the proofs.

There are many papers on the topic of covering groups with proper subgroups.
The first of these works [11] appeared in 1926. The systematic study of the invariant
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σ(X) was initiated in [3]. Since then a lot of papers appeared in this subject
including [12], [5], and [7].

A finite group X is called σ-elementary (or σ-primitive) if for any proper, non-
trivial normal subgroup N of X we have σ(X) < σ(X/N). σ-elementary groups
play a crucial role in determining when σ(X) can equal a given positive integer n
for some finite group X. The groups we consider in this paper are σ-elementary.
Giving good lower bounds for σ(X) for σ-elementary groups X will help answer the
problem of what the density of those positive integers n is for which there exists a
finite group G with n = σ(G).

2. On subgroups of product type

Let S be a nonabelian finite simple group, and let G = S o Cm be the wreath
product of S with the cyclic group Cm of order m. Denote by γ a generator of Cm.
If M is a maximal subgroup of S and g1, . . . , gm are elements of S, the normalizer
in G of

Mg1 × · · · ×Mgm ≤ Sm = soc(G)
is called a subgroup of product type. A subgroup of product type is maximal in G
(but we will not use this fact in the paper). In the following let the subscripts of
the gi’s and the xi’s be modulo m.

Lemma 2.1. Let M be a maximal subgroup of S, and let k ∈ {1, . . . , m− 1}. Let
g1, . . . , gm be elements of S with g1 = 1. Choose γ := (1, 2, . . . ,m). The element
(x1, . . . , xm)γk belongs to NG(M ×Mg2 × · · · ×Mgm) if and only if

xi−k ∈ g−1
i−kMgi ∀i = 1, . . . , m.

In particular, if t is any positive integer at most m and (x1, . . . , xm)γk belongs to
NG(M ×Mg2 × · · · ×Mgm), then

xtxk+tx2k+t · · ·x(l−1)k+t ∈ Mgt ,

where l = m/(m, k).

Proof. The element (x1, . . . , xm)γk normalizes Mg1 ×Mg2 × · · · ×Mgm if and only
if

(Mg1x1 ×Mg2x2 × . . .×Mgmxm)γk

= Mg1 ×Mg2 × · · · ×Mgm .

The permutation γk sends i to i + k modulo m, so the condition becomes the
following

Mg1−kx1−k ×Mg2−kx2−k × · · · ×Mgm−kxm−k = Mg1 ×Mg2 × . . .×Mgm .

That is,
gi−kxi−kg−1

i ∈ M ∀i = 1, . . . , m.

Multiplying on the right by gi and on the left by g−1
i−k we obtain

xi−k ∈ g−1
i−kMgi ∀i = 1, . . . , m.

Let t be a positive integer at most m. The line with xt on the left-hand side says
that xt ∈ g−1

t Mgk+t; the line with xk+t on the left-hand side says that xk+t ∈
g−1

k+tMg2k+t, and so on. By multiplying these together in this order we obtain that
xtxt+kxt+2k · · ·xt+(l−1)k ∈ Mgt , where l is the smallest number at most m such
that m divides lk, that is, l = m/(m, k). ¤
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3. An upper bound for σ(S o Cm)

Proposition 3.1. Let S be a nonabelian finite simple group, let N denote a cov-
ering for S, let m be a fixed positive integer, and let α(m) denote the number of
distinct prime factors of m. Then

σ(S o Cm) ≤ α(m) + min
N

∑

M∈N
|S : M |m−1

.

Proof. The bound is clearly true for m = 1. Assume that m > 1.

The idea is to construct a covering of S o Cm which consists of exactly

α(m) + min
N

∑

M∈N
|S : M |m−1

proper subgroups.

There are α(m) maximal subgroups of the group S o Cm containing its socle.
Choose all of these to be in the covering. Then we are left to cover all elements
of the form (x1, . . . , xm)γk where the xi’s are elements of S, where Cm = 〈γ〉, and
k is coprime to m. It suffices to show that such elements can be covered by the
subgroups of the form

NG(M ×Mg2 ×Mg3 × · · · ×Mgm)

where M varies in a fixed cover N of S and the gi’s vary in S, because for each
fixed M in N we have |S : M | choices for Mgi for each i ∈ {2, . . . ,m}.

By Lemma 2.1, (x1, . . . , xm)γk belongs to NG(M×Mg2×· · ·×Mgm) if and only
if

xi−k ∈ g−1
i−kMgi ∀i = 1, . . . , m,

with g1 = 1. The first condition is x1−k ∈ g−1
1−kM . Choose g1−k = x−1

1−k. Then
move to the condition xj−k ∈ g−1

j−kMgj with j = 1 − k, i.e. x1−2k ∈ g−1
1−2kMg1−k,

and rewrite it using the information g1−k = x−1
1−k: get x1−2kx1−k ∈ g−1

1−2kM .
Choose g1−2k = x−1

1−kx−1
1−2k. Continue this process for m/(m, k) = m iterations,

using Lemma 2.1 (recall that m is coprime to k). Choose

g1−jk = x−1
1−kx−1

1−2k · · ·x−1
1−jk, ∀j = 1, . . . , m− 1.

At the m-th time we get the relation

x1−mkx1−(m−1)k · · ·x1−2kx1−k ∈ g−1
1−mkM.

But g1−mk = g1 ∈ M , so to conclude it suffices to choose an M from N which
contains the element x1−mkx1−(m−1)k · · ·x1−2kx1−k. ¤

4. On subgroups of diagonal type

Let S be a nonabelian finite simple group. Let m be a positive integer at least 2
and let t be a divisor of m which is less than m. For positive integers i and j with
1 ≤ i ≤ t and 2 ≤ j ≤ m/t let ϕi,j be an automorphism of S. For simplicity, let us
denote the matrix (ϕi,j)i,j by ϕ. Let

∆ϕ = {(y1, . . . , yt, y
ϕ1,2
1 , . . . , y

ϕt,2
t , . . . , y

ϕ1,m/t

1 , . . . , y
ϕt,m/t

t )|y1, . . . , yt ∈ S}
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which is a subgroup of Sm = soc(G) where G = S o Cm. The subgroup NG(∆ϕ) is
called a subgroup of diagonal type.

Consider the restriction to NG(∆ϕ) of the natural projection of G onto Cm. Any
element of Cm has preimage of size at most |∆ϕ| ≤ |S|m/` where ` is the smallest
prime divisor of m.

5. Definite unbeatability

The following definition was introduced in [9].

Definition 5.1. Let X be a finite group. Let H be a set of proper subgroups of X,
and let Π ⊆ X. Suppose that the following four conditions hold on H and Π.

(1) Π ∩H 6= ∅ for every H ∈ H;
(2) Π ⊆ ⋃

H∈HH;
(3) Π ∩H1 ∩H2 = ∅ for every distinct pair of subgroups H1 and H2 of H;
(4) |Π ∩K| ≤ |Π ∩H| for every H ∈ H and K < X with K 6∈ H.

Then H is said to be definitely unbeatable on Π.

For Π ⊆ X let σ(Π) be the least cardinality of a family of proper subgroups of X
whose union contains Π. The next lemma is straightforward so we state it without
proof.

Lemma 5.2. If H is definitely unbeatable on Π then σ(Π) = |H|.

It follows that if H is definitely unbeatable on Π then |H| = σ(Π) ≤ σ(X).

6. Proof of Theorem 1.1

In this section we prove Theorem 1.1.

By Proposition 3.1, it is sufficient to show the lower bound of the statement of
Theorem 1.1.

Fix a positive integer m at least 2, let S be a nonabelian finite simple group, and
let Σ and M be as in the Introduction (satisfying conditions (0)-(5)). As before,
let G = S o Cm.

Let Π1 be the set consisting of all elements (x1, . . . , xm)γ of G with the property
that x1 · · ·xm ∈ Σ and let H1 be the set consisting of all subgroups NG(M×Mg2×
· · · ×Mgm) with the property that M ∈M. For fixed M ∈M put

ΣM = Σ ∩
( ⋃

s∈S

Ms
)
.

Note that, by Conditions (0) and (3) of the Introduction, ΣM ∩ ΣK = ∅ if M and
K are non-conjugate elements of M. Let Π2 be the set consisting of all elements
(x1, . . . , xm)γr of G with the property that r is a prime divisor of m and that
x1xr+1 · · ·xm−r+1 is in ΣM and x2xr+2 · · ·xm−r+2 is in ΣK where M and K are
not conjugate in S. Finally, let H2 be the set consisting of all maximal subgroups
of G containing the socle of G. Put Π = Π1∪Π2 and H = H1∪H2. By Lemma 5.2
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and the remark following Lemma 5.2, the following proposition finishes the proof
of Theorem 1.1.

Proposition 6.1. The set H of subgroups of G is definitely unbeatable on Π.

Proof. In this paragraph let us prove Condition (1) of Definition 5.1. Let H be
an arbitrary subgroup in H1. Suppose that H = NG(M × Mg2 × · · · × Mgm)
for some M ∈ M and g2, . . . , gm ∈ S. Let π be an element of Σ ∩ M . (Such
an element exists by Condition (1) of the Introduction.) Let x1 = g2, x2 =
g−1
2 g3, . . . , xm−1 = g−1

m−1gm, and xm = x−1
m−1 · · ·x−1

2 x−1
1 π. Then, by Lemma 2.1,

the element (x1, . . . , xm)γ is in H (and also in Π1). Let H be an arbitrary subgroup
in H2. Let the index of H in G be r for some prime divisor r of m. Then H contains
every element of Π2 of the form (x1, . . . , xm)γr.

In this paragraph let us prove Condition (2) of Definition 5.1. Let (x1, . . . , xm)γ
be an arbitrary element of Π1. We will show that there exists an H ∈ H1 which
contains (x1, . . . , xm)γ. We know that x1x2 · · ·xm ∈ Σ. By Condition (2) of
the Introduction, we see that there exists an M ∈ M with the property that
x1x2 · · ·xm ∈ M . Now let g2 = x1, g3 = x1x2, . . . , gm = x1x2 · · ·xm−1. Then
H = NG(M ×Mg2 × · · · ×Mgm) contains (x1, . . . , xm)γ by Lemma 2.1. Now let
(x1, . . . , xm)γr be an arbitrary element of Π2. This is contained in the maximal
subgroup H of index r in G containing the socle of G. We see that H is contained
in H2.

Now we show that Condition (3) of Definition 5.1 is satisfied. Notice that,
by construction (by the second half of Lemma 2.1 and by Condition (4) of the
Introduction), Π1 ∩ H2 = ∅ and Π2 ∩ H1 = ∅ for every H1 ∈ H1 and H2 ∈ H2.
Hence it is sufficient to show that Π1 ∩H1 ∩H2 = ∅ for distinct subgroups H1 and
H2 in H1 and also that Π2 ∩H1 ∩H2 = ∅ for distinct subgroups H1 and H2 in H2.
The latter claim is clear by considering the projection map from G to Cm, hence it
is sufficient to show the former claim. First notice that if M and K are two distinct
elements of M and g2, . . . , gm, k2, . . . , km are arbitrary elements of S, then

Π1 ∩NG(M ×Mg2 × · · · ×Mgm) ∩NG(K ×Kk2 × · · · ×Kkm) = ∅,

by Lemma 2.1 and by Condition (3) of the Introduction. Finally let M be fixed
and let

Π1 ∩NG(M ×Mg2 × · · · ×Mgm) ∩NG(M ×Mk2 × · · · ×Mkm) 6= ∅

for some elements g2, . . . , gm, k2, . . . , km of S. Then by Lemma 2.1, for every index
i with 2 ≤ i ≤ m, we have Mgi = Mki (just consider the products x1 · · ·xj for all
positive integers j with 1 ≤ j ≤ m− 1 where (x1, . . . , xm)γ is in the intersection of
Π1 with the two normalizers) from which it follows that Mgik

−1
i = M . This finishes

the proof of Condition (3) of Definition 5.1.

To show that Condition (4) of Definition 5.1 is satisfied, it is necessary to make
three easy observations based on the following folklore lemma.

Lemma 6.2. A maximal subgroup of G = S oCm either contains the socle of G, is
of product type, or is of diagonal type.



COVERING CERTAIN WREATH PRODUCTS WITH PROPER SUBGROUPS 7

If L is a maximal subgroup of G containing the socle of G then

|Π ∩ L| =
(∑

|Σ ∩M1||Σ ∩M2|
)
|S|m−2

where the sum is over all pairs (M1,M2) ∈ M2 such that M1 is not conjugate to
M2 in S. If L is of product type, then |Π ∩ L| = |Σ ∩M ||M |m−1 where M is such
that L = NG(M ×Mg2 × · · · ×Mgm) for some elements g2, . . . , gm of S. Finally if
L is of diagonal type, then |Π∩L| ≤ (1+α(m))|S|m/` where ` is the smallest prime
divisor of m. Putting these observations together, Condition (5) of the Introduction
gives Condition (4) of Definition 5.1. ¤

7. Proof of Corollary 1.2

Corollary 1.2 is clear for m = 1 by [9], so let us assume that m ≥ 2.

Let M be the set of all 11 conjugates of the maximal subgroup M10 of M11

together with all 12 conjugates of the maximal subgroup PSL(2, 11) of M11. It is
easy to check that M is a covering for M11, hence, by the upper bound of Theorem
1.1, we have σ(M11 o Cm) ≤ α(m) + 11m + 12m.

Let Σ be the subset of M11 consisting of all elements of orders 8 or 11. To prove
Corollary 1.2 it is sufficient to show that Σ and M satisfy the six conditions of the
statement of Theorem 1.1.

By [6] we know that the maximal subgroups of M11 are: M10, PSL(2, 11), M9 : 2,
S5, and M8 : S3, and that for these we have the following.

• M10 has order 720, it contains 180 elements of order 8 and no element of
order 11; no element of order 8 is contained in two distinct conjugates of
M10;

• PSL(2, 11) has order 660, it contains no element of order 8 and 120 elements
of order 11; no element of order 11 is contained in two distinct conjugates
of PSL(2, 11);

• M9 : 2 has order 144, it contains 36 elements of order 8 and no element of
order 11;

• S5 has order 120, it contains no element of order 8 and no element of order
11;

• M8 : S3 has order 48, it contains 12 elements of order 8 and no element of
order 11.

This shows that the first five conditions of the statement of Theorem 1.1 are
verified. Now let us compute the four expressions involved in Condition (5).

• (1 + α(m))|S|m/` ≤ (1 + α(m))|S|m/2 = (1 + α(m))(
√

7920)m;
• maxH 6∈M, H<S |Σ ∩H||H|m−1 = 36 · 144m−1;
• (

∑ |Σ ∩M1||Σ ∩M2|)|S|m−2 = 2 · 132 · 180 · 120 · 7920m−2 since we have
2 · 12 · 11 = 2 · 132 choices for the pair (M1,M2);

• minM∈M |Σ ∩M ||M |m−1 = 120 · 660m−1.

We have then to prove that

max((1 + α(m))7920m/2, 36 · 144m−1) ≤



8 MARTINO GARONZI AND ATTILA MARÓTI

≤ min(2 · 132 · 180 · 120 · 7920m−2, 120 · 660m−1).

Clearly the right-hand side is 120 · 660m−1 and it is bigger than 36 · 144m−1, so we
have to prove that

(1 + α(m))7920m/2 ≤ 120 · 660m−1.

After rearranging, taking roots, and using the fact that (1 + α(m))1/m ≤ √
2 we

obtain that it suffices to prove the inequality

√
2
√

7920
660

≤
(

120
660

)1/m

.

Since the right-hand side of the previous inequality is increasing with m, it suffices
to assume that m = 2. But then the inequality becomes clear.

8. Proof of Corollary 1.3

Note that Corollary 1.3 is clear for m = 1 by [2].

Let p ≥ 11 be a prime and assume that the smallest prime divisor ` of m is at
least 5.

Let M be the set of all p + 1 conjugates of the maximal subgroup CpoC(p−1)/2

of PSL(2, p) together with all p(p−1)/2 conjugates of the maximal subgroup Dp+1

of PSL(2, p). It is easy to check that M is a covering for PSL(2, p), hence, by the
upper bound of Theorem 1.1, we have

σ(PSL(2, p) o Cm) ≤ α(m) + (p + 1)m + (p(p− 1)/2)m
.

Let Σ1 ⊆ PSL(2, p) be a set of p2−1 elements each of order p with the property
that every element of Σ1 fixes a unique point on the projective line and that (Σ1 ∩
M)∪{1} is a group of order p for every conjugate M of CpoC(p−1)/2. Let Σ2 be the
set of all irreducible elements of PSL(2, p) of order (p+1)/2. Put Σ = Σ1∪Σ2. To
prove Corollary 1.3 it is sufficient to show that Σ and M satisfy the six conditions
of the statement of Theorem 1.1.

By [4] the maximal subgroups of PSL(2, p) are the following.

• Cp o C(p−1)/2;
• Dp−1 if p ≥ 13;
• Dp+1;
• A5, A4, and S4 for certain infinite families of p.

Since p ≥ 11, no element of Σ is contained in a subgroup of the form A5, A4, or
S4. Moreover since (p+1)/2 and p do not divide p−1, no element of Σ is contained
in a subgroup of the form Dp−1. Similarly, it is easy to see that no element of Σ1 is
contained in a conjugate of Dp+1 and no element of Σ2 is contained in a conjugate
of Cp o C(p−1)/2.

By the above and by a bit more, it follows that the first five conditions of the
statement of Theorem 1.1 hold. Now let us compute the four expressions involved
in Condition (5).
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But before we do so, let us note two things. If M is a maximal subgroup of the
form Dp+1, then |Σ ∩M | = ϕ((p + 1)/2) where ϕ is Euler’s function. Moreover, if
M is conjugate to Cp o C(p−1)/2, then |Σ ∩M | = p− 1.

•
(1 + α(m))|S|m/` ≤ (1 + α(m))((1/2)p(p2 − 1))m/5;

•
max
H 6∈M

|Σ ∩H||H|m−1 = 0;

•
(
∑

|Σ ∩M1||Σ ∩M2|)|S|m−2 =

= 2(p + 1)(p(p− 1)/2)ϕ((p + 1)/2)(p− 1)((1/2)p(p2 − 1))m−2;
•

min
M∈M

|Σ ∩M ||M |m−1 =

= min(ϕ((p + 1)/2)(p + 1)m−1, (p− 1)(p(p− 1)/2)m−1) =
= ϕ((p + 1)/2)(p + 1)m−1.

We are easily reduced to prove the following inequality

(1 + α(m))(p(p2 − 1)/2)m/5 ≤ ϕ((p + 1)/2)(p + 1)m−1.

Using the fact that (1 + α(m))1/m ≤ √
2 we obtain that it suffices to show that

√
2
(p(p2 − 1)/2)1/5

p + 1
≤

(
ϕ((p + 1)/2)

p + 1

)1/m

.

Since the right-hand side is increasing with m, it suffices to assume that m = 5.
By taking 5-th powers of both sides we obtain

2
√

2p(p2 − 1) ≤ (p + 1)4.

But this is clearly true for p ≥ 11.

9. Alternating groups

From this section on we will deal with the special case when S is the alternating
group An. We will repeat some of the definitions in more elaborate form.

For each positive integer n ≥ 5 which is not a prime we define a subset Π0 of An

and a set H0 of maximal subgroups of An. (These sets Π0 and H0 will be close to
the sets Σ and M of the Introduction.)

Let n be odd (and not a prime). In this case let Π0 be the set of all n-cycles of An

and let H0 be the set of all maximal subgroups of An conjugate to (Sn/p oSp)∩An

where p is the smallest prime divisor of n.

Let n be divisible by 4. In this case let Π0 be the set of all (i, n− i)-cycles of An

(permutations of An which are products of two disjoint cycles one of length i and
one of length n− i) for all odd i with i < n/2 and let H0 be the set of all maximal
subgroups of An conjugate to some group of the form (Si × Sn−i) ∩ An for some
odd i with i < n/2.

Let n be congruent to 2 modulo 4. In this case let Π0 be the set of all (i, n− i)-
cycles of An for all odd i with i ≤ n/2 and let H0 be the set of all maximal
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subgroups of An conjugate to some group of the form (Si × Sn−i) ∩ An for some
odd i with i < n/2 or conjugate to (Sn/2 o S2) ∩An.

Theorem 9.1 (Maróti, [9]). With the notations above H0 is definitely unbeatable
on Π0 provided that n ≥ 16.

10. Wreath products

Let m be a fixed positive integer (which can be 1). Let G = An o Cm and let γ
be a generator of Cm. Let Π1 be the set consisting of all elements (x1, . . . , xm)γ
of G with the property that x1 · · ·xm ∈ Π0 and let H1 be the set consisting of
all subgroups NG(M × Mg2 × · · · × Mgm) with the property that M ∈ H0. If
m = 1, then set Π = Π1 and H = H1. From now on, only in the rest of this
paragraph, suppose that m > 1. For n odd let Π2 be the set consisting of all
elements (x1, . . . , xm)γr of G with the property that r is a prime divisor of m and
that x1xr+1 · · ·xm−r+1 is an n-cycle and x2xr+2 · · ·xm−r+2 is an (n−2)-cycle. For
fixed M ∈ H0 put

Π0,M = Π0 ∩
( ⋃

g∈An

Mg
)
.

(Depending on M (and on the parity of n) Π0,M is the set of n-cycles or the set of
(i, n − i)-cycles with i ≤ n/2 contained in the union of all conjugates of some M
in H0.) For n even let Π2 be the set consisting of all elements (x1, . . . , xm)γr of G
with the property that r is a prime divisor of m and that x1xr+1 · · ·xm−r+1 ∈ Π0,M

and x2xr+2 · · ·xm−r+2 ∈ Π0,K where M and K are not conjugate in An. Finally,
let H2 be the set consisting of all maximal subgroups of G containing the socle of
G. Put Π = Π1 ∪Π2 and H = H1 ∪H2.

Proposition 10.1. If m = 1, then H is definitely unbeatable on Π for n ≥ 16. If
m > 1, then H is definitely unbeatable on Π for n > 12 provided that n has a prime
divisor at most 3

√
n.

For m = 1 there is nothing to show. Suppose that m > 1.

Along the lines of the ideas in Section 6, it is possible (and easy) to show that
Π and H satisfy Conditions (1), (2), and (3) of Definition 5.1. (Condition (3) of
Definition 5.1 is satisfied since, for example for n odd, no conjugate of (Sn/poSp)∩An

contains an (n−2)-cycle where p is the smallest prime divisor of n.) Hence, to prove
Proposition 10.1, it is sufficient to verify Condition (4) of Definition 5.1. This will
be done in the next three sections.

11. Some preliminary estimates

Some of the following lemma depends on the fact that a!(n − a)! ≥ b!(n − b)!
whenever a and b are integers with a ≤ b ≤ n/2.

Lemma 11.1. Let n be odd (and not a prime). Then

|Π ∩H1| = |Π1 ∩H1| = (1/(2m−1n))
(
(n/p)!pp!

)m

for H1 ∈ H1 where p is the smallest prime divisor of n, and

|Π ∩H2| = |Π2 ∩H2| = (2/(n(n− 2)))|An|m
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for H2 ∈ H2. Let n be divisible by 4. Then

|Π ∩H1| = |Π1 ∩H1| ≥ (((n/2)− 2)!)((n/2)!)
( (((n/2)− 1)!)(((n/2) + 1)!)

2

)m−1

for H1 ∈ H1. Let n be congruent to 2 modulo 4. Then

|Π ∩H1| = |Π1 ∩H1| ≥ (1/2m−1)(((n/2)− 1)!)2((n/2)!)2m−2

for H1 ∈ H1. Finally, let n be even. Then

|Π ∩H2| = |Π2 ∩H2| ≥ 4
3(n− 1)(n− 3)

|An|m

for H2 ∈ H2.

Proof. This follows from the above and from the observations made when dealing
with Condition (4) of Definition 5.1 while proving Theorem 1.1. The last statement
follows from counting (1, n− 1)-cycles and (3, n− 3)-cycles (twice). ¤
Lemma 11.2. Depending on n ≥ 5 we have the following.

(1) If n is odd (and not a prime), then

(1/(2m−1n))
(
(n/p)!pp!

)m

≤ (2/(n(n− 2)))|An|m,

hence minH∈H |Π ∩H| = (1/(2m−1n))
(
(n/p)!pp!

)m

.
(2) If n is divisible by 4, then

(((n/2)− 2)!)((n/2)!)
( (((n/2)− 1)!)(((n/2) + 1)!)

2

)m−1

≤ 4
3(n− 1)(n− 3)

|An|m,

hence

min
H∈H

|Π ∩H| = (((n/2)− 2)!)((n/2)!)
( (((n/2)− 1)!)(((n/2) + 1)!)

2

)m−1

.

(3) If n is congruent to 2 modulo 4, then

(1/2m−1)(((n/2)− 1)!)2((n/2)!)2m−2 ≤ 4
3(n− 1)(n− 3)

|An|m,

hence

min
H∈H

|Π ∩H| ≥ (1/2m−1)(((n/2)− 1)!)2((n/2)!)2m−2
.

Proof. (1) After rearranging, the inequality becomes n − 2 ≤ |Sn : (Sn/p o Sp)|m
which is clearly true.

(2) After rearranging, the inequality becomes

6(n− 1)(n− 3)
(n + 2)(n− 2)

< 6 ≤
( |Sn|
|S(n/2)−1 × S(n/2)+1|

)m

which is clearly true.

(3) After rearranging, the inequality becomes

6(n− 1)(n− 3)
n2

< 6 <

(
n

n/2

)m

which is clearly true. ¤
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12. The case when K is a subgroup of diagonal type

Let K be a subgroup of G of diagonal type. Note that K 6∈ H. We would like to
show that |Π∩K| ≤ |Π∩H| for every H ∈ H. We have |Π∩K| ≤ (1+α(m))|An|m/2.

We need Stirling’s formula.

Theorem 12.1 (Stirling’s formula). For all positive integers n we have
√

2πn(n/e)n
e1/(12n+1) < n! <

√
2πn(n/e)n

e1/(12n).

The declared aim of proving the inequality |Π ∩K| ≤ |Π ∩H| for every H ∈ H
is achieved through the next lemma. We also point out that the right-hand sides
of the inequalities of the following lemma come from Section 11.

Lemma 12.2. Let m ≥ 2. The following hold.

(1) Let n be odd with smallest prime divisor p at most 3
√

n. Then

(1 + α(m))(n!/2)m/2 ≤ (1/(2m−1n))
(
(n/p)!pp!

)m

.

(2) Let n be divisible by 4 and larger than 8. Then

(1 + α(m))(n!/2)m/2 ≤ (((n/2)− 2)!)((n/2)!)
( (((n/2)− 1)!)(((n/2) + 1)!)

2

)m−1

.

(3) Let n be congruent to 2 modulo 4 and larger than 10. Then

(1 + α(m))(n!/2)m/2 ≤ (1/2m−1)(((n/2)− 1)!)2((n/2)!)2m−2
.

Proof. (1) It is sufficient to show the inequality
(n

2
(1 + α(m))

)2/m

≤ ((n/p)!)2p
p!2

2n!
.

For this it is sufficient to see that

n(1 + α(m))2/m ≤ ((n/p)!)2p

n!
.

Substituting Stirling’s formula (Theorem 12.1) on the right-hand side, we see that
it is sufficient to show that

n(1 + α(m))2/m ≤ (2π(n/p))p(n/pe)2n

√
2πn(n/e)n

e1/(12n)
.

Since 3 ≤ p ≤ 3
√

n and e1/(12n) < 2, it is sufficient to prove

n(1 + α(m))2/m ≤ (2πn2/3)
3
(n2/3/e)

2n

2
√

2πn(n/e)n .

Since (1 + α(m))2/m ≤ 2 it is sufficient to see that
√

2π

2π3
≤ n(1/3)n+(1/2)

en
.

But this is true for n ≥ 27.
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(2) After rearranging the inequality and taking roots we get

(1 + α(m))2/m(n!/2) ≤
( 8

n2 − 4

)2/m( ((n/2)− 1)!((n/2) + 1)!
2

)2

.

Since (1 + α(m))2/m ≤ 2 and 8/(n2 − 4) ≤ (8/(n2 − 4))2/m, it is sufficient to see
that

n2 − 4
2

n! ≤ (((n/2)− 1)!((n/2) + 1)!)2.

Since
(

n
(n/2)−1

) ≤ 2n−1, it is sufficient to prove

(n2 − 4)2n−2 ≤ ((n/2)− 1)!((n/2) + 1)!.

But this is true for n ≥ 12.

(3) After rearranging the inequality and taking roots we see that it is sufficient
to show

4(1 + α(m))2/m(n/2)4/m(n!/2) ≤ ((n/2)!)4.

Since (1 + α(m))2/m ≤ 2 and (n/2)4/m ≤ (n/2)2, it is sufficient to see that

n2n! ≤ ((n/2)!)4.

But this can be seen by induction for n ≥ 14. ¤

13. The case when K is a subgroup of product type

Let K be a subgroup of G of product type such that K 6∈ H. We would like to
show that |Π ∩K| ≤ |Π ∩H| for every H ∈ H.

Suppose that K = NG(M ×Mg2 × · · · ×Mgm) where M is a maximal subgroup
of An. If M is an intransitive subgroup then Π ∩K = ∅, by construction of Π and
H, hence there is nothing to show in this case.

In the next paragraph and in Lemma 13.3 we will make use of the following fact
taken from [8].

Lemma 13.1. For a positive integer n at least 8 we have

((n/a)!)a
a! ≥ ((n/b)!)b

b!

whenever a and b are divisors of n with a ≤ b.

Let M be a maximal imprimitive subgroup of An conjugate to (Sn/a o Sa) ∩An

for some proper divisor a of n. Let n be odd (and not a prime). Then Π2 ∩K = ∅
since M does not contain an (n− 2)-cycle. In this case

|Π ∩K| = |Π1 ∩K| = (1/(2m−1n))
(
((n/a)!)a

a!
)m

≤ (1/(2m−1n))
(
((n/p)!)p

p!
)m

and we are done by part (1) of Lemma 11.2.

Now let n be even. In this case a ≥ 3.

Lemma 13.2. Let n be even and let a be the smallest divisor of n larger than 2.
If n > 10, then n((n/a)!)a

a! ≤ 2((n/2)!)2.
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Proof. If n = 2a, then we must consider the inequality 2a ≤ (a−1)!. This is clearly
true if a satisfies a > 5, hence if n > 10. This means that we may assume that
3 ≤ a ≤ n/4.

The lemma is true for 10 < n ≤ 28 by inspection. From now on we assume that
n ≥ 30.

Applying Stirling’s formula (see Theorem 12.1), we see that it is sufficient to
verify the inequality

n(
√

2π(n/a))
a
(n/ae)n

ea2/(12n)
√

2πa(a/e)a
e1/(12a) ≤ 2πn(n/2e)n

e2/(6n+1).

After rearranging factors we obtain

2n(2π(n/a))a/2
ea2/(12n)

√
2πa(a/e)a

e1/(12a) ≤ an2πe2/(6n+1).

After taking natural logarithms and rearranging terms we obtain

a
( ln(2π)

2
+

ln n

2
+

ln a

2
+

a

12n
−1

)
+

( ln a

2
+

1
12a

− ln(2π)
2

− 2
6n + 1

)
≤ n(ln a− ln 2).

By the assumption 3 ≤ a ≤ n/4 and by dividing both sides of the previous inequality
by ln n we see that it is sufficient to prove

a
(
1+

ln(2π)
2 lnn

+
1

48 ln n
− 1

ln n

)
+

(1
2
+

1
36 lnn

− ln(2π)
2 ln n

− 2
(6n + 1) lnn

)
≤ n

ln n
(ln a−ln 2).

Since
ln(2π)
2 lnn

+
1

48 ln n
− 1

ln n
< 0

and
1

36 ln n
− ln(2π)

2 lnn
− 2

(6n + 1) lnn
< 0,

it is sufficient to prove

(1)
a + 0.5

ln a− ln 2
≤ n

ln n
.

This is true for a = 3, 4, and 5 (provided that n ≥ 30). Hence assume that
7 ≤ a ≤ n/4.

The function x+0.5
ln x−ln 2 increases when x > 6, hence it is sufficient to show in-

equality (1) in case of the substitution a = n/4. But that holds for n ≥ 30. The
proof of the lemma is now complete. ¤

By Lemma 2.1, we have |Π ∩ K| ≤ (1 + α(m))|M |m. The left-hand sides of
Lemmas 13.3 and 13.4 are upper bounds for (1 + α(m))|M |m in various cases.

Lemma 13.3. Let n be even and let a be the smallest divisor of n larger than 2.
Let m ≥ 2. Then for n > 10 we have the following.

(1) If n is divisible by 4, then

(1+α(m))
( ((n/a)!)a

a!
2

)m

≤ (((n/2)−2)!)((n/2)!)
( (((n/2)− 1)!)(((n/2) + 1)!)

2

)m−1

.

(2) If n is congruent to 2 modulo 4, then

(1 + α(m))
( ((n/a)!)a

a!
2

)m

≤ (1/2m−1)(((n/2)− 1)!)2((n/2)!)2m−2
.
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Proof. By Lemma 13.2 it is sufficient to show that both displayed inequalities follow
from the inequality

n((n/a)!)a
a! ≤ 2((n/2)!)2.

Indeed, the first displayed inequality becomes

(1 + α(m))
( ((n/a)!)a

a!
2

)m

≤ 8
n2 − 4

( (((n/2)− 1)!)(((n/2) + 1)!)
2

)m

.

Since (1 + α(m))1/m ≤ √
2 and (2

√
2)/n ≤ (8/(n2 − 4))1/2 ≤ (8/(n2 − 4))1/m, it is

sufficient to see that

(n/2)((n/a)!)a
a! ≤ ((n/2)− 1)!((n/2) + 1)!.

But this proves the first part of the lemma since

((n/2)!)2 < ((n/2)− 1)!((n/2) + 1)!.

After rearranging the factors in the second displayed inequality of the statement
of the lemma, we get

(1 + α(m))
(
((n/a)!)a

a!
)m

≤ (8/n2)(n/2)!2m
.

By similar considerations as in the previous paragraph, we see that this latter
inequality follows from the inequality n((n/a)!)a

a! ≤ 2((n/2)!)2. ¤

Now let M be a maximal primitive subgroup of An. We know that |M | < 2.6n

by [8]. The following lemma is necessary for our purposes.

Lemma 13.4. For n > 12 and m ≥ 2 we have the following.

(1) Let n be odd with smallest prime divisor p at most 3
√

n. Then

(1 + α(m))2.6nm ≤ (1/(2m−1n))
(
(n/p)!pp!

)m

.

(2) If n is divisible by 4, then

(1 + α(m))2.6nm ≤ (((n/2)− 2)!)((n/2)!)
( (((n/2)− 1)!)(((n/2) + 1)!)

2

)m−1

.

(3) If n is congruent to 2 modulo 4, then

(1 + α(m))2.6nm ≤ (1/2m−1)(((n/2)− 1)!)2((n/2)!)2m−2
.

Proof. By Lemma 12.2, there is nothing to prove for n ≥ 17 since

(1 + α(m))2.6nm < (1 + α(m))(n!/2)m/2

holds for n ≥ 17. One can check the validity of the inequalities for n = 16 and
n = 14 by hand. ¤

Putting together the results of the previous three sections, the proof of Proposi-
tion 10.1 is complete by Lemma 6.2.
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14. A lower bound for σ(An o Cm)

In this section we show that if n > 12 and n is not congruent to 2 modulo 4,
then

α(m) +
1
2

n∑

i=1
i odd

(
n

i

)m

< σ(An o Cm).

To show this for n divisible by 4 and n > 12, notice that

α(m) +
1
2

n∑

i=1
i odd

(
n

i

)m

= σ(Π) ≤ σ(An o Cm).

Let n > 12 be odd. By [9] we may assume that m > 1. In this case we clearly
have

α(m) +
1
2

n∑

i=1
i odd

(
n

i

)m

< 2nm−m−1.

Hence it is sufficient to show that 2nm−m−1 ≤ σ(An o Cm).

We have |Π1| = (n − 1)!(n!/2)m−1. Let H = NG(M × Mg2 × · · · × Mgm) for
some maximal subgroup M of An and some elements g2, . . . , gm ∈ An. If M is
intransitive, then Π1 ∩H = ∅. If M is imprimitive, then, by Lemma 13.1,

|Π1 ∩H| ≤ (1/(n2m−1))(n/p)!mp
p!m

where p is the smallest prime divisor of n. If M is primitive, then, by the statement
just before Lemma 13.4, |Π1∩H| ≤ 2.6nm. Now let H be a subgroup of G of diagonal
type. Then |Π1 ∩H| ≤ (n!/2)m/2. If H is a maximal subgroup of G containing the
socle of G, then Π1∩H = ∅. Let M be a minimal cover (a cover with least number
of members) of G containing maximal subgroups of G. Let a be the number of
subgroups in M of the form NG(M ×Mg2 × · · · ×Mgm) where M is imprimitive.
Let b be the number of subgroups in M of the form NG(M ×Mg2 × · · · ×Mgm)
where M is primitive. Let c be the number of subgroups in M of diagonal type.
Then

a · (1/(n2m−1))(n/p)!mp
p!m + b · 2.6nm + c · (n!/2)m/2 ≥ (n− 1)!(n!/2)m−1

.

From this we see that

(n− 1)!(n!/2)m−1

max{(1/(n2m−1))(n/p)!mp
p!m, 2.6nm, (n!/2)m/2}

≤ σ(G)

if n is not a prime, and

(n− 1)!(n!/2)m−1

max{2.6nm, (n!/2)m/2}
≤ σ(G)

if n is a prime. Hence to finish the proof of this section, it is sufficient to see

Lemma 14.1. For n > 12 odd and for m > 1 we have the following.
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(1)

2nm−m−1 ≤ (n!)m

(n/p)!mp
p!m

where n is not a prime and p is the smallest prime divisor of n.
(2)

2nm−2 ≤ (n− 1)!(n!)m−1

2.6nm
.

(3)

2nm−(m/2)−2 ≤ (n− 1)!(n!)(m/2)−1
.

Proof. (1) It is sufficient to prove the inequality

2n−1 ≤ n!
(n/p)!pp!

for n ≥ 15. This is true by inspection for 15 ≤ n < 99. Hence assume that n ≥ 99.
Applying Stirling’s formula (see Theorem 12.1) three times to both sides of the
inequality

2n−1(n/p)!pp! ≤ n!

we obtain

2n−1
√

2π(n/p)
p
(n/pe)n

e1/(12(n/p))
√

2πp(p/e)p
e1/12p ≤

√
2πn(n/e)n

e1/(12n+1).

Since e1/(12(n/p))e1/12p < 2 and e1/(12n+1) > 1, it is sufficient to prove the inequality

2n
√

2π(n/p)
p
(n/pe)n

√
2πp(p/e)p ≤

√
2πn(n/e)n

.

After rearranging factors and applying the estimate 3 ≤ p ≤ √
n we see that it is

sufficient to prove

2n
√

2πn/3
√

n
√

2π
√

n(
√

n/e)
√

n ≤ 3n
√

2πn.

After taking logarithms of both sides of the previous inequality and rearranging
terms, we get

(
√

n/2) ln(2πn/3) + (1/2) ln(2π
√

n) +
√

n ln(
√

n/e) ≤ n ln(3/2) + (1/2) ln(2πn).

After further rearrangements we obtain

(
√

n− (1/4)) ln n ≤ ln(3/2)n +
√

n(1− (ln(2π/3)/2)).

After dividing both sides of the previous inequality by
√

n and evaluating the
logarithms we see that it is sufficient to prove lnn ≤ 0.4

√
n + 0.63 for n ≥ 99. But

this is clearly true.

(2) Rearranging the inequality we get (n/4)2nm ≤ (n!)m
/2.6nm. Hence it is

sufficient to see that (
√

n/2)5.2n ≤ n!. But this is true for n ≥ 13.

(3) Rearranging the inequality we get (n/4)2nm−(m/2) ≤ (n!)m/2. Hence it is
sufficient to see that (n/8)4n ≤ n!. But this is true for n ≥ 13. ¤
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15. Proofs of Theorems 1.4 and 1.5

Let us first show Theorem 1.4. Suppose that n is congruent to 2 modulo 4.
If n ≥ 10, then σ(An) = 2n−2, by [9]. Hence we may assume that m > 1 (and
n > 10). In this case, by Proposition 10.1, H is definitely unbeatable on Π and H0

is a covering for An. Hence

α(m) +
∑

M∈H0

|An : M |m−1 = |H| = σ(Π) ≤ σ(G) ≤ α(m) +
∑

M∈H0

|An : M |m−1
,

by Proposition 3.1. Finally, it is easy to see that

α(m) +
∑

M∈H0

|An : M |m−1 = α(m) +
(n/2)−2∑

i=1
i odd

(
n

i

)m

+
1

2m

(
n

n/2

)m

.

This (and the previous section) proves Theorem 1.4.

From now on assume that n is either at least 16 and divisible by 4 or odd
with a prime divisor at most 3

√
n. In this case H is definitely unbeatable on Π by

Proposition 10.1. This gives us the lower bound

α(m) +
∑

M∈H0

|An : M |m−1 ≤ σ(G).

Let the set H3 of maximal subgroups of An be defined as follows. If 4 divides n,
then let H3 be the set of all subgroups conjugate (in An) to (Sn/2 o S2) ∩ An. If n
is odd, then let H3 be the set of all subgroups conjugate (in An) to some subgroup
(Sk × Sn−k) ∩ An for some k with k ≤ n/3. Then H0 ∪ H3 is a covering for An.
Hence, by Proposition 3.1, this gives us the upper bound

σ(G) ≤ α(m) +
∑

M∈H0

|An : M |m−1 +
∑

M∈H3

|An : M |m−1
.

Hence to prove Theorem 1.5, it is sufficient to see that the fraction

f(n,m) =

∑
M∈H3

|An : M |m−1

∑
M∈H0

|An : M |m−1

tends to 0 as n goes to infinity.

If n is divisible by 4, then

f(n,m) =
((1/2)

(
n

n/2

)
)m

(1/2)
n∑

i=1
iodd

(
n
i

)m

which clearly tends to 0 as n goes to infinity.

Finally, if n is odd with smallest prime divisor p at most 3
√

n, then

f(n,m) =
∑[n/3]

i=1

(
n
i

)m

(n!/((n/p)!pp!))m ≤
∑[n/3]

i=1

(
n
i

)m

2nm−m
≤

( ∑[n/3]
i=1

(
n
i

))m

2nm−m

which again tends to 0 as n goes to infinity.

This proves Theorem 1.5.
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