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Abstract. We describe all possible ways how a ring can be expressed as
the union of three of its proper subrings. This is an analogue for rings of
a 1926 theorem of Scorza about groups. We then determine the minimal
number of proper subrings of the simple matrix ring Mn(q) whose union is
Mn(q).

1. Introduction

No group is the union of two of its proper subgroups. It is a 1926 theorem
of Scorza [9] that a group G is a union of three of its pairwise distinct proper
subgroups A, B, C if and only if A, B, C have index 2 in G and G/(A ∩B ∩C)
is isomorphic to the Klein four group. This result was twice reproved in [6] and
[3].

No ring is the union of two of its proper subrings, however the following example
of I. Ruzsa [1] shows that a ring can be the union of three proper subrings. The
polynomial ring Z[x] is the union of the proper subrings S1, S2, S3 where S1

is the ring consisting of all polynomials f for which f(0) is even, S2 is the ring
consisting of all polynomials f for which f(1) is even, and S3 is the ring consisting
of all polynomials f for which f(0) + f(1) is even. It is easy to see that in this
example the ring S1 ∩ S2 ∩ S3 is an ideal in Z[x] and the corresponding factor
ring is isomorphic to Z/2Z⊕ Z/2Z.

Hence it is natural to ask: is there an analogue of Scorza’s result for rings?
Clearly, it is sufficient to classify all ring R and all proper subrings S1, S2, S3

of R with the property that R = S1 ∪ S2 ∪ S3 and that no non-trivial ideal of R
is contained in S1 ∩ S2 ∩ S3. This leads to the following definition.

We say that a 4-tuple (R,S1, S2, S3) of rings is good if S1, S2, S3 are proper
subrings of the ring R so that R = S1∪S2∪S3 and that no non-trivial ideal of R
is contained in S1 ∩ S2 ∩ S3. For any permutation π of {1, 2, 3} we consider the
good 4-tuples (R, S1, S2, S3) and (R,S1π, S2π, S3π) to be the same. Similarly, if
ϕ is an isomorphism between rings R and R̄ and (R, S1, S2, S3) is a good 4-tuple,
then the 4-tuples (R, S1, S2, S3) and (R̄, ϕ(S1), ϕ(S2), ϕ(S3)) are also considered
to be the same.

The first result of the paper is

Theorem 1.1. All good 4-tuples of rings (see above) are completely described by
Examples 2.1 - 2.10.
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We say that a ring R is good if there exists a good 4-tuple of rings (R, S1, S2, S3).
The following result is an analogue for rings of Scorza’s theorem about groups.

Theorem 1.2. A ring R is the union of three of its proper subrings if and only
if there exists a factor ring (of order 4 or 8) of R which is isomorphic to a good
ring of Example 2.1, 2.2, 2.3, 2.4, or 2.6.

Note that the setup of a ring expressed as the union of three proper subrings
appeared naturally in the paper [5] of Deaconescu.

For a ring R that can be expressed as the union of finitely many proper subrings
let σ(R) be the minimal number of proper subrings of R whose union is R. In
our last theorem we give a formula for σ(Mn(q)) where Mn(q) is the full matrix
ring of n-by-n matrices over the field of q elements where n ≥ 2.

Theorem 1.3. Let n be a positive integer at least 2. Let b be the smallest prime
divisor of n and let N(b) be the number of subspaces of an n-dimensional vector
space over the field of q elements which have dimensions not divisible by b and
at most n/2. Then we have

σ(Mn(q)) =
1
b

n−1∏

i=1
b-i

(qn − qi) + N(b).

Note that, by Theorem 1.3, σ(M2(2)) = 4.
Similar investigations to Theorem 1.3 for groups have been carried out in [2].
Finally we make an important remark. When trying to determine σ(R) for a

given ring R that can be expressed as the union of finitely many proper subrings,
it is sufficient to assume that R is finite. Indeed, suppose that k = σ(R) and
S1, . . . , Sk are proper subrings of R whose union is R. Then, by a result of
Neumann [8], every subring Si (i = 1, . . . , k) is of finite index in R (just by
considering the additive structures of all these rings). Hence S = S1 ∩ . . .∩ Sk is
also a ring of finite index in R. But then, by a result of Lewin [7], S contains an
ideal I of R of finite index in R. Hence R/I is a finite ring with σ(R/I) = σ(R).

2. Examples

Example 2.1. Let R be the subring
{(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)}

of M2(Z/2Z). This is a commutative ring of order 4 with a multiplicative identity.
Every non-zero element of R lies inside a unique subring of order 2. Hence there
are three proper non-zero subrings of R. Let these be S1, S2, and S3. Note that
R is isomorphic to Z/2Z⊕ Z/2Z.

Example 2.2. Let R be the subring






0 0 0
0 0 0
0 0 0


 ,




0 0 0
1 0 0
0 0 0


 ,




0 0 0
0 0 0
1 0 0


 ,




0 0 0
1 0 0
1 0 0








of M3(Z/2Z). This is a commutative ring of order 4. It has no multiplicative
identity since it is a zero ring. The ring R has exactly three subrings of order 2.
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Let these be S1, S2, and S3. Note that R is isomorphic to the subring{(
0 0
0 0

)
,

(
2 0
0 0

)
,

(
0 0
0 2

)
,

(
2 0
0 2

)}

of M2(Z/4Z).

Example 2.3. Let R be the subring{(
0 0
0 0

)
,

(
0 1
0 0

)
,

(
1 0
0 0

)
,

(
1 1
0 0

)}

of M2(Z/2Z). This is a non-commutative ring of order 4. It has no multiplicative
identity. The ring R has exactly three subrings of order 2. Let these be S1, S2,
and S3.

Example 2.4. Let R be the subring{(
0 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 1

)}

of M2(Z/2Z). This is a non-commutative ring of order 4. It has no multiplicative
identity. The opposite ring Rop of R is the ring R of Example 2.3. The ring R
has exactly three subrings of order 2. Let these be S1, S2, and S3.

Example 2.5. Let R be the subring of M3(Z/2Z) consisting of all matrices of
the form 


a 0 0
0 b 0
0 0 c




where a, b, c are elements of Z/2Z. The ring R is isomorphic to Z/2Z⊕Z/2Z⊕
Z/2Z. This is a commutative ring of order 8 with a multiplicative identity. The
ring R has three subrings of order 4 containing the multiplicative identity of R.
These are S1 defined by the restriction a + b = 0, S2 defined by the restriction
a + c = 0, and S3 defined by the restriction b + c = 0.

Example 2.6. Let R be the subring of M3(Z/2Z) consisting of all matrices of
the form 


a 0 0
b a 0
c 0 a




where a, b, c are elements of Z/2Z. This is a commutative ring of order 8. Note
that the subset of R obtained by imposing the restriction a = 0 is isomorphic to
the ring R of Example 2.2. Indeed R can be obtained from R of Example 2.2 by
adding a multiplicative identity 1 and imposing the relation 1 + 1 = 0. The ring
R has three subrings of order 4 containing the multiplicative identity of R. These
are S1 defined by the restriction b = 0, S2 defined by the restriction c = 0, and
S3 defined by the restriction b + c = 0.

Example 2.7. Let R be the subring of M2(Z/2Z) consisting of all upper trian-
gular matrices of the form (

a c
0 b

)

where a, b, c are elements of Z/2Z. This is a non-commutative ring of order 8
containing a multiplicative identity. The opposite ring Rop of R is the subring of

3



lower triangular matrices of M2(Z/2Z). The rings R and Rop are isomorphic.
The ring R contains exactly three subrings of order 4 containing the multiplicative
identity of R. These are S1 defined by the restriction c = 0, S2 defined by the
restriction a + b = 0, and S3 defined by the restriction a + b + c = 0.

Example 2.8. Let R be the subring of M4(Z/2Z) consisting of all matrices of
the form




0 b c d
0 e 0 0
0 0 e 0
0 0 0 e




where b, c, d, e are elements of Z/2Z subject to the restriction b + e = 0. This
is a non-commutative ring of order 8 without a multiplicative identity. Let S1

be the subring of R defined by the restriction c = 0, let S2 be the subring of R
defined by the restriction d = 0, and let S3 be the subring of R defined by the
restriction c + d = 0.

Example 2.9. Let R be the subring of M4(Z/2Z) consisting of all matrices of
the form




0 0 0 0
b e 0 0
c 0 e 0
d 0 0 e




where b, c, d, e are elements of Z/2Z subject to the restriction b + e = 0. This is
a non-commutative ring of order 8 without a multiplicative identity. The ring R
is the opposite ring Rop of the ring R of Example 2.8. Let S1 be the subring of R
defined by the restriction c = 0, let S2 be the subring of R defined by the restriction
d = 0, and let S3 be the subring of R defined by the restriction c + d = 0.

Example 2.10. Let R be the subring of M4(Z/2Z) consisting of all matrices of
the form




a 0 0 0
b e 0 0
c 0 e 0
d 0 0 e




where a, b, c, d, e are elements of Z/2Z subject to the restriction a + b + e = 0.
This is a non-commutative ring of order 16 with a multiplicative identity. The
rings R and Rop are isomorphic. The ring R can be obtained from R of Example
2.8 or R of Example 2.9 by adding a multiplicative identity 1 and imposing the
relation 1+1 = 0. Let S1 be the subring of R defined by the restriction c = 0, let
S2 be the subring of R defined by the restriction d = 0, and let S3 be the subring
of R defined by the restriction c + d = 0.

Let R be a good ring of Examples 2.3 or Example 2.8. Then Rop is a good
ring of Example 2.4 or Example 2.9 respectively. The rings R and Rop are not
isomorphic since their left and right annihilators have different sizes.
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3. Reductions

Let (R, S1, S2, S3) be a good 4-tuple of rings. Then R is a good ring. Let
S = S1 ∩ S2 ∩ S3. Note that by Scorza’s theorem, each (Si,+) (i ∈ {1, 2, 3}) has
index 2 in (R, +) and S1 ∩ S2 = S1 ∩ S3 = S2 ∩ S3 = S.

Let 2R denote the set of all elements of R of the form r + r for r ∈ R. It is
easy to see that 2R is an ideal of R. Moreover, by Scorza’s theorem, the abelian
groups S1, S2, S3 all have index 2 in R, hence r + r ∈ Si for all r ∈ R and
i ∈ {1, 2, 3}. Thus 2R is an ideal of R contained in S. This forces 2R = 0.

Since 2R = 0, we may assume that there exists elements x and y of R such
that

(R, +) = S ⊕ {x, y, x + y, 0},
(S1,+) = S ⊕ {x, 0}, (S2, +) = S ⊕ {y, 0}, (S3, +) = S ⊕ {x + y, 0}.

Lemma 3.1. For any s ∈ S we have sx ∈ S ⇔ sy ∈ S and xs ∈ S ⇔ ys ∈ S.

Proof. Assume, for example, for a contradiction, that sx ∈ S and sy 6∈ S. Then
there exists s1, s2 ∈ S with sx = s1 and sy = s2 + y. This implies s(x + y) =
s1 + s2 + y 6∈ S3 against the fact that S3 is a subring. ¤

Define SR := {s ∈ S | sx ∈ S}, SL := {s ∈ S | xs ∈ S}, and T := SL ∩ SR.
Notice that SR and ST are subgroups of (S,+) with index at most 2, so T is a
subgroup of (S, +) with |S : T | equal to 1, 2, or 4. Moreover, by Lemma 3.1, if
t ∈ T then {tx, xt, ty, yt} ⊆ S.

Lemma 3.2. If t ∈ T then xty ∈ S, ytx ∈ S, xtx ∈ S, and yty ∈ S.

Proof. Assume that t ∈ T . Since xt ∈ S, we must have xty ∈ S2 and since
ty ∈ S, we must have xty ∈ S1. Hence xty ∈ S1 ∩ S2 = S. The same argument
works for ytx. Notice that xt ∈ T implies also that xt(x + y) ∈ S3; moreover we
have that xtx = s1 + bx, xty = s2 with s1, s2 ∈ S, b ∈ {0, 1}. We must have
xt(x+y) = s1+s2+bx ∈ S3, hence b = 0. The same argument works for yty. ¤

Now assume that T 6= {0} and take 0 6= t ∈ T . We have RtR ⊆ S. Indeed for
any r1, r2 ∈ R we have r1 = s1 + a1x + b1y and r2 = s2 + a2x + b2y for some s1,
s2 ∈ S and a1, a2, b1, b2 ∈ {0, 1}. Hence r1tr2 is equal to

s1ts2 +a2s1tx+b2s1ty+a1xts2 +a1a2xtx+a1b2xty+b1yts2 +b1a2ytx+b1b2yty.

We would have that RtR is a non-trivial ideal of R contained in S, a contradiction.
(We may assume that RtR is non-trivial. There are three possibilities. If Rt 6=
{0}, then Rt is a non-trivial ideal of R contained in S, a contradiction. If tR 6=
{0}, then tR is a non-trivial ideal of R contained in S, a contradiction. Finally, if
Rt = tR = {0}, then the abelian group generated by t is an ideal of R contained in
S, a contradiction.) This means that T = {0} and this implies that |S| = |S : T |
is 1, 2, or 4.

We proved the following reduction.

Proposition 3.3. Let R be a good ring. Then |R| = 4, 8, or 16.

Suppose that M is a ring with or without a multiplicative identity. Then
consider the abelian group M∗ = M ⊕ 〈u〉 with u + u = 0. Now define a
multiplication on M∗ by setting u to be the identity on M∗ and extending the
product according to the distributive laws. Thus M∗ becomes a ring with a
multiplicative identity.
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Proposition 3.4. Let (R, S1, S2, S3) be a good 4-tuple of rings. Suppose that
R has no multiplicative identity. Then (R∗, S∗1 , S∗2 , S∗3 ) is also a good 4-tuple of
rings where a unique multiplicative identity was added to the four rings R, S1,
S2, and S3.

Proof. Clearly R∗ = S∗1∪S∗2∪S∗3 is again a union of proper subrings. Assume that
J is an ideal of R∗ with J ⊆ S∗ := S∗1 ∩S∗2 ∩S∗3 . Notice that I := J ∩S = J ∩R
is an ideal of R contained in S hence I = {0}. Since |R∗ : R| = 2, this implies
|J | ≤ 2. Assume, by contradiction, that J 6= {0}. Then there exists u 6= r ∈ R
such that J = 〈u − r〉. Notice that r 6= 0. Then for any non-zero z ∈ R we
have z(u − r) = z − zr and (u − r)z = z − rz. Both these expressions are in
R ∩ J = {0}, hence z = rz = zr, in other words r behaves as a multiplicative
identity in R. This is a contradiction. ¤
Proposition 3.5. Let (R, S1, S2, S3) be a good 4-tuple of rings. Suppose that R
contains a multiplicative identity, 1. Then either R ∼= Z/2Z ⊕ Z/2Z or 1 ∈ Si

for all i with 1 ≤ i ≤ 3.

Proof. If i is an index with 1 6∈ Si then Si is an ideal in R (since Si has index 2 in
R and (1+ s1)s2 ∈ Si and s2(1+ s1) ∈ Si for all s1, s2 ∈ Si). Suppose that there
exist indices i 6= j with 1 6∈ Si and 1 6∈ Sj . Then Si∩Sj = S1∩S2∩S3 is an ideal
in R. Hence Si ∩ Sj = {0} and so R ≤ R/Si ⊕ R/Sj . This forces |R| = 4 and
R = 〈1, x〉. Moreover 〈1+x〉 must be a subring and so (1 + x)2 = 1+x2 ∈ 〈1+x〉
hence x = x2. Thus R = 〈1, x〉 ∼= Z/2Z ⊕ Z/2Z. So we may assume, without
loss of generality, that 1 ∈ S1 ∩ S2 = S1 ∩ S2 ∩ S3 which finishes the proof of the
proposition. ¤

4. Rings with multiplicative identity

In this section we will classify all good 4-tuples of rings (R, S1, S2, S3) where
R is a ring with a multiplicative identity.

Proposition 4.1. Let (R, S1, S2, S3) be a good 4-tuple of rings. Suppose that R
has a multiplicative identity and that |R| = 4. Then (R, S1, S2, S3) is of Example
2.1.

Proof. We may assume that R = {0, 1, a, 1 + a}, that 1 + 1 = 0, that a2 = 0 or
1, and that (1 + a)2 = 0 or 1 + a. The latter two conditions force a2 = a. This
implies the result. ¤
Proposition 4.2. Let (R, S1, S2, S3) be a good 4-tuple of rings. Suppose that R
has a multiplicative identity and that |R| = 8. Suppose that the Jacobson radical
J(R) of R is trivial. Then (R,S1, S2, S3) is of Example 2.5.

Proof. Since |R| = 8 and J(R) = {0}, by the Artin-Wedderburn theorem, there
are three possibilities for R. The ring R can be isomorphic to GF (8), to GF (4)⊕
GF (2), or to GF (2) ⊕ GF (2) ⊕ GF (2). In the first case no proper subring of
R contains the primitive elements of R. Suppose that the second case holds.
Let a be a generator of the multiplicative group of GF (4). Then the element
(a, 1) must be contained in a proper subring of R = GF (4) ⊕GF (2), say in S1.
But then S1 cannot be a ring of order 4 since (1, 1) is also contained in S1 by
Proposition 3.5. This is a contradiction. Hence only the third case can hold. But
the third case can indeed hold as shown by Example 2.5. ¤
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We continue with two easy lemmas.

Lemma 4.3. Let R be a good ring of order 8. Suppose that R has a multiplicative
identity. Then for any r ∈ R different from 0 or 1, the elements 0, 1, r, 1 + r
form a subring of R.

Proof. Let r be an arbitrary element of R different from 0 or 1. Since R is a
good ring, there exists a subring S1 of order 4 containing r. By Proposition 3.5,
we know that 1 is also contained in S1. Hence S1 = {0, 1, r, 1 + r}. ¤

Lemma 4.4. Let R be a good ring of order 8 with a multiplicative identity. Then
u2 = 0 for every element u of J(R).

Proof. We may assume that u 6= 0, 1. Then, by Lemma 4.3, the elements 0, 1,
u, and 1 + u form a subring of R. Hence u2 is either 0, 1, u, or 1 + u.

Note that since u is in J(R) the elements 1 + zu and 1 + uz are invertible in
R for every element z of R.

Suppose that u2 = 1. Then (1 + u)2 = 1 + u2 = 0 contradicting the fact that
1 + u is invertible. Suppose that u2 = 1 + u. Then 1 + u2 = u is invertible
which would mean that J(R) = R, a contradiction. Suppose that u2 = u. Then
(1 + u)u = u + u2 = 0 contradicting the fact that 1 + u is invertible. ¤

We are now in the position to show Proposition 4.5.

Proposition 4.5. Let (R, S1, S2, S3) be a good 4-tuple of rings. Suppose that R
has a multiplicative identity and that |R| = 8. Suppose that |J(R)| = 2. Then
(R, S1, S2, S3) is of Example 2.7.

Proof. We may assume that R consists of the 8 elements 0, 1, x, 1 + x, y, 1 + y,
x + y, 1 + x + y. Without loss of generality, assume that J(R) = {0, y}. Then
y2 = 0 by Lemma 4.4. By Lemma 4.3, we know that x2 = a + bx for some
a, b ∈ {0, 1}. Similarly, since y ∈ J(R) and J(R) is an ideal of R, we have
xy = cy and yx = dy for some c, d ∈ {0, 1}. Now, again by Lemma 4.3, we have
(x + y)2 = x2 + y2 + xy + yx = a + bx + (c + d)y ∈ {0, 1, x + y, 1 + x + y}. Hence
b = c + d.

Suppose for a contradiction that b = 0. Then x2 = a. Without loss of gener-
ality, we may assume that a = 0, for otherwise (x + 1)2 = 0 and hence we could
replace x by 1+x. Since c+d = b = 0, the ring R is commutative. Hence for any
r ∈ R we have (1 + rx)2 = 1 + (rx)2 = 1. This means that 1 + rx is invertible
and so x ∈ J(R). This is a contradiction.

We conclude that b = 1. There are hence two possibilities for c and d. From
these two possibilities we get that in R we either have xy = y and yx = 0, or
xy = 0 and yx = y. In either case it can be shown that x2 = x. Since the two
arguments in the two cases are similar, we only give the proof in the first case.
From x2 = a + x we see that 0 = (yx)x = yx2 = y(a + x) = ay + yx = ay from
which we conclude that a = 0.

There are hence two possibilities for the good ring R of order 8. These two
possibilities give rise to opposite rings.

Let us consider the first possibility for R. In this case R is defined by the
relations y2 = 0, xy = y, yx = 0, and x2 = x. Identifying x with the matrix(

1 0
0 0

)
and y with the matrix

(
0 1
0 0

)
, we see that R is isomorphic to the ring
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of upper triangular matrices in M2(Z/2Z). The opposite ring of R is isomorphic
to the ring of lower triangular matrices in M2(Z/2Z) which in fact is isomorphic
to R.

By Proposition 3.5, we know that 1 ∈ Si for all i with i ∈ {1, 2, 3}. We also
know that the Si’s must have order 4. Hence there is essentially one possibility
for the Si’s. This proves that a good 4-tuple (R, S1, S2, S3) exists and it is of
Example 2.7. ¤

Proposition 4.6. Let (R, S1, S2, S3) be a good 4-tuple of rings. Suppose that R
has a multiplicative identity and that |R| = 8. Suppose that |J(R)| = 4. Then
(R, S1, S2, S3) is of Example 2.6.

Proof. As before, we may assume that R consists of the 8 elements 0, 1, x,
1 + x, y, 1 + y, x + y, 1 + x + y. Without loss of generality, assume that
J(R) = {0, x, y, x + y}.

By Lemma 4.4, we have that x2 = y2 = (x + y)2 = 0. Hence 0 = (x + y)2 =
xy + yx implies xy = yx. Now xy = ax + by for some a, b ∈ {0, 1} since J(R) is
an ideal. Hence 0 = x2y = x(ax + by) = bxy and 0 = xy2 = (ax + by)y = axy.
Thus a = b = 0 and so xy = yx = 0.

Such a ring R exists. By identifying x with the matrix




0 0 0
1 0 0
0 0 0


 and y with

the matrix




0 0 0
0 0 0
1 0 0


 we see that R is isomorphic to the ring R of Example

2.6.
By Proposition 3.5, we know that 1 ∈ Si for all i with i ∈ {1, 2, 3}. We also

know that the Si’s must have order 4. Hence there is essentially one possibility
for the Si’s. This proves that a good 4-tuple (R, S1, S2, S3) exists and it is of
Example 2.6. ¤

Proposition 4.7. Let (R, S1, S2, S3) be a good 4-tuple of rings. Suppose that
|R| = 16. Then (R, S1, S2, S3) is of Example 2.10.

Proof. Let S = S1 ∩ S2 ∩ S3. By the beginning of Section 3, we know that
(R, +) = S ⊕ {0, x, y, x + y} for some elements x and y. By Proposition 3.5,
1 ∈ S. Recall the definitions of SR, SL, and T = SR ∩ SL from Section 3. From
the proofs in Section 3 it is clear that |SR| = |SL| = 2 since |S| = 4. It is also clear
that |T | = 0. From this we see that there exists a unique a ∈ S with ax ∈ S and
xa 6∈ S. (It is clear that a is different from 0 and 1 and that S = {0, 1, a, 1 + a}.)

We claim that we may assume that x2 ∈ S. If x2 6∈ S then x2 = s+x for some
s ∈ S. (This follows from the fact that x and x2 must lie inside the subring of R,
say S1 of order 8, generated (as an abelian group) by (S, +) and x.) In this case
(x + a)2 = x2 + a2 + ax + xa = (s + a2 + ax) + x(1 + a) where both summands
are inside S. (The second summand is in S since SL = {0, 1 + a}.) Hence there
is no harm to substitute x with x + a.

Next we claim that a2 = a. Notice that a2x = a(ax) ∈ S hence a2 ∈ SR =
{0, a}. Write xa in the form s+x for some s ∈ S. (This can be done as explained
in the previous paragraph.) Then

xa2 = (xa)a = (s + x)a = sa + xa = sa + s + x 6∈ S.
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This implies that a2 6= 0.
Now we claim that xa = x + s with s ∈ {0, 1 + a}. Indeed,

x + s = xa = xa2 = (xa)a = (x + s)a = xa + sa = x + s + sa

implies sa = 0 which in turn implies the claim.
We claim that we may assume that xa = x. Indeed, if xa = x + a + 1 then

(x + 1)a = x + 1 + a + a = x + 1. Moreover (x + 1)2 = x2 + 1 ∈ S. Hence in this
case we may substitute x with x + 1.

We claim that ax ∈ {0, a}. Indeed, a(ax) = a2x = ax and ax ∈ S = {0, 1, a, 1+
a}. It can be checked that ax 6= 1 or 1 + a.

We claim that ax = 0. Let us assume for a contradiction that ax = a. Then
x2 = (xa)x = x(ax) = xa = x. But x2 ∈ S and x 6∈ S is a contradiction.

It follows that x2 = 0 since x2 = (xa)x = x(ax) = 0.
Analogues of the above claims can be stated and proved for y instead of x.

Hence, to summarize what we have obtained, we have the relations x2 = y2 = 0,
xa = x, a2 = a, ax = ay = 0, and ya = y.

We claim that xy ∈ S and yx ∈ S. We will only prove that xy ∈ S. The
argument for yx ∈ S is similar. We start with the observation that y2 = 0
implies (xy)y = 0. Assume that xy has the form s + αx + βy for some s ∈ S and
α, β from {0, 1}. By the previous observation we have

0 = (s + αx + βy)y = sy + αxy = sy + αs + α2x + αβy

from which it follows that α = 0. We continue with the observation that x2 = 0
implies x(xy) = 0. Then 0 = x(s + βy) = xs + β(s + βy) = xs + βs + β2y which
implies β = 0. This proves the claim.

Finally, we claim that xy = yx = 0. We will only show that xy = 0 since the
proof of the claim that yx = 0 is similar. By the previous claim, we know that
xy ∈ {0, 1, a, 1 + a}. Now x2y = x(xy) = 0 implies that xy ∈ {0, 1 + a}. But
xy = 1 + a would mean that 0 = (xy)y = (1 + a)y = y. A contradiction.

A unique ring R exists with the derived restrictions on the multiplications.
The above proof also shows that R is isomorphic to Rop.

Our ring R is isomorphic to the ring R of Example 2.10. To see this it is
sufficient to consider the map which sends x, y, a to the respective matrices




0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


 ,




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


 ,




1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 .

It remains to show that there exists exactly one good 4-tuple of rings
(R, S1, S2, S3) with R as above. (From Example 2.10 and also from the proof
above, it is clear that there exists at least one good 4-tuple of rings.) Since
|R| = 16 and S = S1 ∩S2 ∩S3 has order 4, a good 4-tuple of rings (R,S1, S2, S3)
is completely determined by the Aut(R)-automorphism class of S. Hence it is
sufficient to show that if (R, S1, S2, S3) and (R, S′1, S

′
2, S

′
3) are two good 4-tuples

of rings (with R as above) then there exists an automorphism ϕ of R such that
Sϕ

1 ∩Sϕ
2 ∩Sϕ

3 = S′1∩S′2∩S′3. Put S := S1∩S2∩S3 = {0, 1, a, 1+a} and suppose
that S′ := S′1∩S′2∩S′3 = {0, 1, r, 1+r} for some r ∈ R. Without loss of generality,
we may assume that r = εa + u for some ε ∈ {0, 1} and some u ∈ {0, x, y, x + y}.
But ε cannot be 0 since otherwise {0, r} would be an ideal of R inside S′. Thus
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r = a + u. But then the map sending the elements 0, 1, a, x, y to the elements
0, 1, a + u, x, y respectively can naturally be extended to an automorphism ϕ of
R sending S to S′. ¤

5. Rings with no multiplicative identity

In the previous section we classified all good rings with a multiplicative identity
and in this section we will use this classification to list all good rings without a
multiplicative identity. Our key tool in this project is Proposition 3.4.

In the first case we cannot have a good ring R without a multiplicative identity
such that R∗ is a good ring of order 8.

Proposition 5.1. Suppose that R′ is the good ring Z/2Z⊕Z/2Z⊕Z/2Z. Then
if R is a ring with R∗ = R′ then R ∼= Z/2Z⊕ Z/2Z.

Proof. The ring R must contain exactly one element of each of the following
sets: {(1, 0, 0), (0, 1, 1)}, {(0, 1, 0), (1, 0, 1)}, {(0, 0, 1), (1, 1, 0)}. The ring R can
only contain one vector with two 1’s. Moreover it must contain exactly one such
vector v. Without loss of generality v contains a 0 in the first entry. Hence the
ring R will be the ring consisting of all vectors with a 0 in the first entry. ¤

In the next case we find two good rings.

Proposition 5.2. Let R′ be the subring of M2(Z/2Z) consisting of all upper tri-
angular matrices. There exists two non-commutative rings R1 and R2 of order 4
without a multiplicative identity such that R∗1 = R∗2 = R′. These are of Examples
2.3 and 2.4.

Proof. A good subring of R′ of order 4 not containing a multiplicative identity
must contain the zero matrix and exactly one element of each of the following
sets of matrices:{(

1 1
0 1

)
,

(
0 1
0 0

)}
,

{(
1 1
0 0

)
,

(
0 1
0 1

)}
,

{(
0 0
0 1

)
,

(
1 0
0 0

)}
.

The square of the matrix
(

1 1
0 1

)
is the identity, so this matrix cannot lie inside

our good ring without a multiplicative identity. So a possible good ring must

contain the matrix
(

0 1
0 0

)
. We are hence left with two possibilities and these

lead us to Examples 2.3 and 2.4. ¤
The statement of the following proposition is a bit technical but its proof is

short.

Proposition 5.3. Let (R′, S′1, S
′
2, S

′
3) be a good 4-tuple of rings with R′ a ring

of order 8 with a multiplicative identity. Suppose also that |J(R′)| = 4. Then
there exist a unique good 4-tuples of rings (R, S1, S2, S3) with (R∗, S∗1 , S∗2 , S∗3 ) =
(R′, S′1, S

′
2, S

′
3) (where a unique identity is added to all four rings R, S1, S2, and

S3). This tuple is of Example 2.2.

Proof. Since |R′| = 8 it is sufficient to show that there is a unique good ring R
which in fact is a zero ring (since it would be of order 4). By Proposition 4.6, we
may assume that R′ is generated by the elements 1, x, y subject to the relations
x2 = y2 = xy = yx = 0. Since (1 + x)2 = (1 + y)2 = 1, the elements 1 + x and
1 + y cannot lie in R. Hence R = {0, x, y, x + y}. This is a zero ring. ¤
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Finally, we consider the good ring of order 16.

Proposition 5.4. Let (R′, S′1, S
′
2, S

′
3) be a good 4-tuple of rings with |R′| = 16.

Then there exist two good 4-tuples of rings (R, S1, S2, S3) with (R∗, S∗1 , S∗2 , S∗3 ) =
(R′, S′1, S

′
2, S

′
3) (where a unique identity is added to all four rings R, S1, S2, and

S3). One such tuple is of Example 2.8 and the other is of Example 2.9.

Proof. We use the notations of Proposition 4.7. Let R′ be the ring generated
by the elements 1, a, x, and y subject to the relations 1 + 1 = 0, x2 = y2 = 0,
ax = ay = xy = yx = 0, xa = x, a2 = a, and ya = y. We wish to construct
rings R1 and R2 with R∗1 = R∗2 = R′. To do this we need to pick exactly one
element from each set {1 + r, r} where r ∈ R′. Since (1 + x)2 = (1 + y)2 = 1,
the elements x and y must lie inside R1 and R2. Let R1 be the ring generated
by the elements a, x, y and let R2 be the ring generated by the elements 1 + a,
x, y. It is easy to see that R2 is isomorphic to R of Example 2.9. It is also clear
that R1 is the opposite ring of R2. Hence R1 is isomorphic to R of Example 2.8.
We noted at the end of Section 2 that the R’s of Examples 2.8 and 2.9 are not
isomorphic. To finish the proof of the proposition it is sufficient to show that
there is a unique good 4-tuple of rings (R1, S1, S2, S3). But this follows by the
argument given at the end of the proof of Proposition 4.7. We just note that
S = S1 ∩ S2 ∩ S3 must have the form {0, a + u} for some element u in the ideal
of R1 generated by x and y, and note also that the map sending x, y, a to x, y,
a + u respectively can be extended to an automorphism of R1. ¤

This proves Theorem 1.1.

6. Proof of Theorem 1.2

We break the proof of Theorem 1.2 up into a series of propositions. (It is easy
to see that it suffices to prove only these propositions.)

Proposition 6.1. The good ring of Example 2.5 has a factor ring isomorphic to
the good ring of Example 2.1

Proof. Let R be the good ring of Example 2.5. Then the set






0 0 0
0 0 0
0 0 0


 ,




1 0 0
0 0 0
0 0 0








is an ideal I of R such that R/I is isomorphic to the good ring of Example
2.1. ¤
Proposition 6.2. The good ring of Example 2.7 has a factor ring isomorphic to
the good ring of Example 2.1.

Proof. Let R be the good ring of Example 2.7. Then the set{(
0 0
0 0

)
,

(
0 1
0 0

)}

is an ideal I of R such that R/I is isomorphic to the good ring of Example
2.1. ¤
Proposition 6.3. The good ring of Examples 2.8 has a factor ring isomorphic
to the good ring of Example 2.4.
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Proof. The good ring of Example 2.8 is isomorphic to the good ring R1 introduced
in the proof of Proposition 5.4. The ring R1 is generated by the elements x, y, a
subject to the relations r + r = 0 for all r ∈ R1, x2 = y2 = ax = ay = xy = yx =
0, xa = x, a2 = a, and ya = y. There is an ideal I = {0, y} in R1. Then x and
a are different coset representatives in the factor ring R1/I. The map sending x
and a to the matrices (

0 1
0 0

)
,

(
0 0
0 1

)

respectively extends naturally to an isomorphism between R1/I and the good
ring of Example 2.4. ¤

Proposition 6.4. The good ring of Example 2.9 has a factor ring isomorphic to
the good ring of Examples 2.3.

Proof. The good ring of Example 2.9 is isomorphic to the good ring R2 introduced
in the proof of Proposition 5.4. The ring R2 is generated by the elements x, y,
1 + a subject to the relations r + r = 0 for all r ∈ R2, x2 = y2 = x(1 + a) =
y(1 + a) = xy = yx = 0, (1 + a)x = x, a2 = a, and (1 + a)y = y. There is an
ideal I = {0, y} in R2. Then x and 1 + a are different coset representatives in
the factor ring R2/I. The map sending x and 1 + a to the matrices

(
0 1
0 0

)
,

(
1 0
0 0

)

respectively extends naturally to an isomorphism between R2/I and the good
ring of Example 2.3. ¤

Proposition 6.5. The good ring of Example 2.10 has a factor ring isomorphic
to the good ring of Example 2.1.

Proof. Let R be the good ring of Example 2.10. Then the ideal I (of order 4) of
R generated by the matrices




0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


 and




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0




have the property that R/I is isomorphic to the good ring of Example 2.1. ¤

The last proposition is not needed for the proof of Theorem 1.2, however, for
the sake of completeness, we include it here.

Proposition 6.6. The good ring of Example 2.6 has no good proper factor ring.

Proof. The good ring of Example 2.6 is isomorphic to the ring R generated by
the elements 1, x, y subject to the relations x2 = y2 = xy = yx = 0. Suppose,
for a contradiction, that I is a non-trivial ideal of R such that R/I is a good ring.
Then |I| = 2. Moreover, since (1 + x)2 = (1 + y)2 = (1 + x + y)2 = 1, we have
I = {0, u} for some element u ∈ {x, y, x+y}. Let a be such that 〈x, y〉 = 〈u〉⊕〈a〉.
Then R/I ∼= 〈1, a〉. But the ring 〈1, a〉 is generated by a single element, 1 + a, so
it cannot be good. A contradiction. ¤
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7. Proof of Theorem 1.3

In this section we will prove Theorem 1.3.
Let V be the natural module for the ring Mn(q) where n ≥ 2 and q is a

prime power. For a non-trivial proper subspace U of V let M(U) be the subring
of Mn(q) consisting of all elements of Mn(q) which leave U invariant. For a
positive integer a dividing n the ring Mn/a(qa) can be embedded in Mn(q) in
a natural way. Hence we consider Mn/a(qa) as a subring of Mn(q). Note that
every GL(n, q)-conjugate of Mn/a(qa) is again a subring of Mn(q).

Lemma 7.1. Let n ≥ 2. Then the maximal subrings of Mn(q) are the M(U)’s
for all non-trivial proper subspaces U of V and the GL(n, q)-conjugates of the
ring Mn/a(qa) where a is a prime divisor of n.

Proof. Let R be a subring of Mn(q). If R leaves a non-trivial proper subspace U
of V invariant, then R ⊆ M(U). Hence we may assume that V is an irreducible
R-module. Let C be the centralizer of R in Mn(q). It is clear that C is a ring.
By a variation of Schur’s lemma we see that C is a finite division ring. Thus,
by Wedderburn’s theorem, C is a finite field of order qr, say. By the double
centralizer theorem, we know that R = EndC(V ) and that R is a GL(n, q)-
conjugate of Mn/r(qr). Let a be a prime divisor of r. Then there exists a subfield
D of C of order qa. But then R ⊆ EndD(V ). This proves that the listed subrings
in the statement of the lemma are the only possibilities for maximal subrings of
Mn(q). From the previous argument it also follows (just by considering centralizer
sizes) that the GL(n, q)-conjugates of the ring Mn/a(qa) are indeed maximal for
every prime divisor a of n. It is also easy to see that the subring M(U) is maximal
for every non-trivial proper subspace U of V . ¤

Lemma 7.2. The number of GL(n, q)-conjugates of the ring Mn/a(qa) is
|GL(n, q)|/|GL(n/a, qa).a|.
Proof. Put X = Mn/a(qa). Let N be the normalizer of X in GL(n, q) and C
be the centralizer of X in GL(n, q). It is clear that GL(n/a, qa) is contained
in N . The Frobenius automorphism of order a of the field of order qa is also
contained in N . Hence the group GL(n/a, qa).a is contained in N . On the other
hand, N/C is a subgroup of the full automorphism group of X, which, by a result
of Skolem and Noether (see Theorem 3.62 of Page 69 of [4]), has order equal to
|GL(n/a, qa).a|/(qa−1). Hence |N | = |GL(n/a, qa).a| and the result follows. ¤

Let b be the smallest prime divisor of n and let N(b) be the number of subspaces
of V which have dimensions not divisible by b and at most n/2.

Proposition 7.3. Let n ≥ 2. Then we have

σ(Mn(q)) ≤ 1
b

n−1∏

i=1
b-i

(qn − qi) + N(b).

Proof. Let H be the set of all GL(n, q)-conjugates of Mn/b(qb) together with all
subrings M(U) where U is a subspace of V of dimension not divisible by b and at
most n/2. By Lemma 7.2, it is sufficient to show that every element x of Mn(q)
is contained in a member of H.
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Let f be the characteristic polynomial of x. If f is irreducible, then, by Schur’s
lemma and Wedderburn’s theorem, x is contained in some conjugate of Mn/b(qb).
So we may assume that f is not an irreducible polynomial.

If f has an irreducible factor of degree k, then, by the theorem on rational
canonical forms, x must leave a k-dimensional subspace invariant. So if k is not
divisible by b and at most n/2, then x is an element of some member of H. Hence
we may assume that the degree of each irreducible factor of f is divisible by b.

Put f = fm1
1 . . . fm`

` where each fi is a sign times an irreducible polynomial
of degree rib for some positive integer ri. Then, by the theorem on rational
canonical forms, V = ⊕`

i=1Vi viewed as an 〈x〉-module where for each i the linear
transformation x has characteristic polynomial fi

mi on the module Vi. Now
each module Vi contains an irreducible submodule of dimension rib, and so by
Schur’s lemma and Wedderburn’s theorem, the centralizer of x contains a field
of order qrib, and hence a field of order qb. This means that we may view x as a
linear transformation on V viewed as an n/b-dimensional space over a field of qb

elements, and so x is an element of a GL(n, q)-conjugate of Mn/b(qb). ¤

A Singer cycle in GL(n, q) is a cyclic subgroup of order qn − 1. It permutes
the non-zero vectors of V in one single cycle. A Singer cycle generates a field of
order qn in Mn(q). All Singer cycles in GL(n, q) are GL(n, q)-conjugate to the
group GL(1, qn) which is a subgroup of GL(n/a, qa) for every divisor a of n. The
normalizer of a Singer cycle is conjugate to a subgroup of the form GL(1, qn).n.
The group GL(1, qn).n lies inside GL(n/a, qa).a for every divisor a of n. The ring
Mn/a(qa) contains exactly |GL(n/a, qa).a|/|GL(1, qn).n| Singer cycles for every
prime divisor a of n. By this and by Lemma 7.2 it follows that every Singer
cycle lies inside a unique GL(n, q)-conjugate of Mn/a(qa) for every divisor a of n.
Since a Singer cycle S acts irreducibly on V , no ring M(U) contains S where U
is a non-trivial proper subspace of V . There are ϕ(qn− 1) generators of a Singer
cycle where ϕ is Euler’s function.

Let Π1 be the set of all generators of all Singer cycles on V . Let us call a
generator of a Singer cycle an element of type T0.

For every positive integer k with 1 ≤ k < n/2 establish a bijection ϕk from the
set Sk of all k-dimensional subspaces of V to the set Sn−k of all n−k-dimensional
subspaces of V in such a way that for every k-dimensional subspace U we have
V = U ⊕ Uϕk. For an arbitrary positive integer k with 1 ≤ k < n/2 and b - k,
and for an arbitrary vector space U ∈ Sk an element of the form

(
SU 0
0 SUϕk

)

where SU is a generator of a Singer cycle on U and SUϕk
is a generator of a

Singer cycle on Uϕk is called an element of type Tk.
In this paragraph let n be congruent to 2 modulo 4. An element g of GL(n, q)

is said to be of type Tn/2 if there exist complementary subspaces U and U ′ of
dimensions n/2 such that g has the form

(
SU I
0 SU ′

)

where I is the n/2-by-n/2 identity matrix and SU , SU ′ denote the same generator
of a Singer cycle acting on U and U ′ respectively.
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Let the set of all elements of type Tk for all k (with 1 ≤ k < n/2 and b - k) be
Π2 and the set of all elements of type Tn/2 be Π3. Note that if n is not congruent
to 2 modulo 4 then Π3 = ∅.

Lemma 7.4. Let k be a positive integer with 1 ≤ k < n/2 and b - k. If R is a
maximal subring of Mn(q) containing an element of type Tk, then R = M(U),
M(W ), or g−1Mn/a(qa)g where U is a k-dimensional subspace of V , W is an
n− k-dimensional subspace of V , a is any divisor of k, and g is some element of
GL(n, q).

Proof. By the proof of Proposition 7.3, it is sufficient to show that if a is not a
divisor of k, then the group GL(n/a, qa) contains no element of type Tk. Suppose
for a contradiction that there exists an element x of type Tk in GL(n/a, qa) where
a does not divide k. Let C be the centralizer of x in GL(n, q). The size of C is
(qk−1)(qn−k−1). On the other hand, the group of scalars matrices in GL(n/a, qa)
is contained in C hence qa − 1 must divide (qk − 1)(qn−k − 1). We will show
that this is not the case. In doing so we may assume that a is prime (otherwise
we may take a prime divisor of a to be a). It can be shown by an elementary
argument that

(qa − 1, qk − 1) = q − 1 = (qa − 1, qn−k − 1).

Hence qa−1 must divide (q − 1)2 which is impossible since qa−1 > (q − 1)2. ¤

Lemma 7.5. Let n be congruent to 2 modulo 4. If R is a maximal subring of
Mn(q) containing an element of type Tn/2, then R = M(U), or g−1Mn/a(qa)g
where U is a n/2-dimensional subspace of V , a is any divisor of n/2, and g is
some element of GL(n, q).

Proof. By the proof of Proposition 7.3, it is sufficient to show that if a is not a
divisor of n/2, then the group GL(n/a, qa) contains no element of type Tn/2. Sup-
pose for a contradiction that there exists an element x of type Tn/2 in GL(n/a, qa)
where a does not divide n/2. Then there exists an element of order qa − 1 cen-
tralizing x. Let c be an arbitrary element centralizing x. Then since x leaves a
unique non-trivial proper subspace U of V invariant (which has dimension n/2)
it easily follows that c leaves U invariant. Hence, writing c in block matrix form,
we have

c =
(

A B
0 C

)

for some n/2-by-n/2 matrices A, B, and C. It is easy to see that A and B
centralize the corresponding generators of Singer cycles in the block matrix form
of x. This means that A and B are powers of generators of Singer cycles. In
particular, Aqn/2−1 = Cqn/2−1 = 1. This means that the order of c is of the
form βpγ for some positive integer β dividing qn/2−1 and for some non-negative
integer γ where p denotes the prime divisor of q. In particular, if c is the element
of order qa−1, then qa−1 = β | qn/2−1 which is a contradiction since a - n/2. ¤

Let Π be a subset of Mn(q). We define σ(Π) to be the minimal number of
proper subring of Mn(q) whose union contains Π. Clearly, σ(Π) ≤ σ(Mn(q)). Let
H ⊆ K be two sets of subrings of Mn(q). We say that H is definitely unbeatable
on Π with respect to K if the following four conditions hold.

(1) Π ⊆ ⋃
H∈HH;
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(2) Π ∩H 6= ∅ for all H ∈ H;
(3) Π ∩H1 ∩H2 = ∅ for all distinct H1 and H2 in H; and
(4) |Π ∩K| ≤ |Π ∩H| for all H ∈ H and all K ∈ K \ H.

Let Π = Π1 ∪ Π2 ∪ Π3. We aim to determine σ(Π). At present there is an
important point to make. Let C be a set of subrings of Mn(q) with the property
that the union of its members contain Π. Suppose also that |C| = σ(Π). Then
we may assume that all members of C are maximal subrings of Mn(q) and that
no member of C is M(W ) for any subspace W of V of dimension larger than n/2.
(The latter statement follows from the fact that if W is a subspace of dimension
n− k > n/2 then Π ∩M(W ) = Π ∩M(Wϕ−1

k ).)
Let H be the set of maximal subrings of Mn(q) consisting of all GL(n, q)-

conjugates of Mn/b(qb) and all subrings of the form M(U) where U is a k-
dimensional subspace of V with b - k. Let K be the set of all maximal subrings of
Mn(q) apart from the ones which are of the form M(W ) where W is a subspace
of V of dimension larger than n/2.

We claim that H is definitely unbeatable on Π with respect to K. Once we
verified this claim we are finished with the proof of Theorem 1.3. Indeed, the
claim implies that σ(Π) = |H|. Furthermore, by Proposition 7.3, we have

1
b

n−1∏

i=1
b-i

(qn − qi) + N(b) = |H| = σ(Π) ≤ σ(Mn(q)) ≤ 1
b

n−1∏

i=1
b-i

(qn − qi) + N(b).

Part (1) of the definition of definite unbeatability follows from the proof of
Proposition 7.3. Let R ∈ H. If R = g−1Mn/b(qb)g for some g ∈ GL(n, q), then
R contains an element of type T0 (and no elements of other types). If R = M(U)
for some l-dimensional subspace U of V , then R contains an element of type Tl

(and no elements of other types). This proves that part (2) of the definition of
definite unbeatability holds. Part (3) follows from our construction of elements
of types T0, Tk, and Tn/2 and our choice of H. (See the description of Singer
cycles, Lemma 7.4, and Lemma 7.5.) Hence it is sufficient to show that part (4)
of the definition of definite unbeatability holds.

Let n be a prime power (a power of b). Then, by Lemma 7.1, K\H consists of
all subrings of the form M(U) where U is a k-dimensional subspace of V with b | k
and k ≤ n/2. Hence, by Lemma 7.4 and Lemma 7.5, we have |Π∩K| = 0 < |Π∩H|
for all H ∈ H and all K ∈ K \H. This means that it is sufficient to assume that
n is not a prime power.

Let c be the second largest prime divisor of n (after b). It is clear that
max{|Π∩K|} ≤ |GL(n/c, qc)| where the maximum is over all K in K\H. Hence
it is sufficient to show that |GL(n/c, qc)| ≤ |Π ∩H| for all H ∈ H. We will next
consider this inequality for the various possibilities of H in H.

Let H be a ring that is GL(n, q)-conjugate to Mn/b(qb). Then we have

|GL(n/c, qc)| < |GL(n/b, qb).b|
|GL(1, qn).n| ϕ(qn − 1) = |Π1 ∩H| = |Π ∩H|.

Let H ∈ H be a ring of the form M(U) where U is a k-dimensional subspace
with k < n/2. Then we have

|GL(n/c, qc)| < |GL(k, q)|
|GL(1, qk).k| ·

|GL(n− k, q)|
|GL(1, qn−k).(n− k)|ϕ(qk − 1)ϕ(qn−k − 1) =

16



= |Π2 ∩H| = |Π ∩H|.
Finally, let H ∈ H be a ring of the form M(U) where U is a subspace of V of

dimension n/2. (This is the case only when n is congruent to 2 modulo 4.) Then
we have

|GL(n/c, qc)| < qn2/4 |GL(n/2, q)|
|GL(1, qn/2).(n/2)|ϕ(qn/2 − 1) = |Π3 ∩H| = |Π ∩H|.

The previous three inequalities were derived using the following three facts. For
any positive integer m and prime power r we have (1/(m+1))rm2 ≤ |GL(m, r)|.
(This follows from the inequality k/(k+1) ≤ 1−(1/rk) holding for every positive
integer k between 1 and m.) Secondly, Lemma 5.1 of [2] was invoked. Finally, the
sequence n

√
((n/2) + 1)(n/2) is monotone decreasing on the set of even integers

whenever n ≥ 6.
This finishes the proof of Theorem 1.3.
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