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Abstract

Almost all primitive permutation groups of degree n have order at

most n · Q[log2 n]−1
i=0 (n − 2i) < n1+[log2 n], or have socle isomorphic to a

direct power of some alternating group. The Mathieu groups, M11, M12,
M23 and M24 are the four exceptions. As a corollary the sharp version of
a theorem of Praeger and Saxl is established, where M12 turns out to be
the ”largest” primitive group. For an application a bound on the orders
of permutation groups without large alternating composition factors is
given. This sharpens a lemma of Babai, Cameron, Pálfy and generalizes
a theorem of Dixon.

1 Introduction

Bounding the order of a primitive permutation group in terms of its
degree was a problem of 19-th century group theory. Apart from
some early results of Jordan probably the first successful estimate
for the orders of primitive groups not containing the alternating
group is due to Bochert [4] (see also [9] or [19]): if G is primi-
tive and (Sn : G) > 2, then (Sn : G) ≥ [1

2
(n + 1)]!. This bound

will prove useful since it is the sharpest available general estimate
for very small degrees. But it is far from best possible. Based
on Wielandt’s method [20] of bounding the orders of Sylow sub-
groups Praeger and Saxl [16] obtained an exponential estimate, 4n,
where n is the degree of the permutation group. Their proof is
quite elaborate. Using entirely different combinatorial arguments,
Babai [1] obtained an e4

√
n ln2 n estimate for uniprimitive (primitive

but not doubly transitive) groups. For the orders of doubly transi-
tive groups not containing the alternating group, Pyber obtained an
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n32log2 n bound for n > 400 in [17] by an elementary argument (using
some ideas of [2]). Apart from O(log n) factors in the exponents, the
former two estimates are asymptotically sharp. To do better, one
has to use the O’Nan-Scott theorem and the classification of finite
simple groups. An nc ln ln n type bound with “known” exceptions has
been found by Cameron [5], while an n9 log2 n estimate follows from
Liebeck [13]. In this paper we use the classification of finite sim-
ple groups to set the sharpest upper bounds possible for the orders
of primitive permutation groups via a reasonably short argument.
First the following is proved.

Theorem 1.1. Let G be a primitive permutation group of degree n.
Then one of the following holds.
(i) G is a subgroup of Sm wr Sr containing (Am)r, where the action
of Sm is on k-element subsets of {1, ..., m} and the wreath product
has the product action of degree n =

(
m
k

)r
;

(ii) G = M11, M12, M23 or M24 with their 4-transitive action;

(iii) |G| ≤ n ·∏[log2 n]−1
i=0 (n− 2i) < n1+[log2 n].

This is a sharp version of the above-mentioned result of Liebeck.
The theorem practically states that if G is a primitive group, which is
not uniprimitive of case (i), and is not 4-transitive, then the estimate
in (iii) holds. The bound in (iii) is best possible. There are infinitely
many 3-transitive groups, in particular the affine groups, AGL(t, 2)
acting on 2t points and the symmetric group, S5 acting on 6 points
for which the estimate is exact. In fact, these are the only groups
among groups not of case (i) and (ii) for which equality holds. But
there is one more infinite sequence of groups displaying the sharpness
of the bound. The projective groups, PSL(t, 2) acting on the t > 2

dimensional projective space have order 1
2
· (n + 1) ·∏[log2 n]−1

i=0 (n +

1− 2i) < n ·∏[log2 n]−1
i=0 (n− 2i), where n = 2t − 1.

An easy direct consequence is

Corollary 1.1. Let G be a primitive subgroup of Sn.

(i) If G is not 3-transitive, then |G| < n
√

n;

(ii) If G does not contain An, then |G| < 50 · n√n.

This is a sharp version of a result of Cameron [5]. The estimate
in (i) is asymptotically sharp for uniprimitive groups of case (i) of
theorem 1.1 and is sharp for the automorphism group of the Fano-
plane. The estimate in (ii) is sharp for the biggest Mathieu group.
Theorem 1.1 also leads to a sharp exponential bound.
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Corollary 1.2. If G is a primitive subgroup of Sn not containing
An, then |G| < 3n. Moreover, if n > 24, then |G| < 2n.

This improves the Praeger-Saxl [16] theorem. The proof will
also display M12 as the “largest” primitive group. M24 has order
greater than 224, which explains the requirement n > 24 in the
latter statement. But let us put this in a slightly different form
with the use of the prime number theorem.

Corollary 1.3. If G is a primitive subgroup of Sn not containing
An, then |G| is at most the product of all primes not greater than n,
provided that n > 24.

Kleidman and Wales published a list of primitive permutation
groups of order at least 2n−4 in [11]. However their list is rather
lengthy, and it is not easy to use. Using our results above we will
relax the bound to 2n−1 to give a shorter list of “large” primitive
groups. These exceptional groups are refered to in [15]. (Note that
the Kleidman-Wales list can also be deduced by a similar argument.)

Corollary 1.4. Let G be a primitive permutation group of degree
n not containing An. If |G| > 2n−1, then G has degree at most 24,
and is permutation isomorphic to one of the following 24 groups with
their natural permutation representation if not indicated otherwise.

(i) AGL(t, q) with (t, q) = (1, 5), (3, 2), (2, 3), (4, 2); AΓL(1, 8) and
24 : A7;

(ii) PSL(t, q) with (t, q) = (2, 5), (3, 2), (2, 7), (2, 8), (3, 3), (4, 2);
PGL(t, q) with (t, q) = (2, 5), (2, 7), (2, 9); PΓL(2, 8) and PΓL(2, 9);

(iii) Mi with i = 10, 11, 12, 23, 24;

(iv) S6 with its primitive action on 10 points, and M11 with its action
on 12 point.

From the above list, using an inductive argument, one can deduce
the theorem of Liebeck and Pyber [14] stating that a permutation
group of degree n has at most 2n−1 conjugacy classes.

Another possible application of the previous result was suggested
in [18] by Pyber. Improving restrictions on the composition factors
of permutation groups one can bound their order. For example,
Dixon [7] proved that a solvable permutation group of degree n has
order at most 24(n−1)/3, and Babai, Cameron, Pálfy [3] showed that
a subgroup of Sn that has no composition factors isomorphic to
an alternating group of degree greater than d(d ≥ 6) has order at
most dn−1. Applying the former results Dixon’s theorem may be
generalized and Babai-Cameron-Pálfy’s estimate may be sharpened
as follows.
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Corollary 1.5. Let G be a permutation group of degree n, and let
d be an integer not less than 4. If G has no composition factors
isomorphic to an alternating group of degree greater than d, then
|G| ≤ d!(n−1)/(d−1).

This bound is best possible. If n is a power of d, then the iterated
wreath product of n/d copies of Sd has order precisely d!(n−1)/(d−1).
The proof will show that the Mathieu group, M12 is again of special
importance.

For an application of this corollary see chapter 3 of the book by
Lubotzky and Segal [15], and for an alternative approach to dealing
with nonabelian alternating composition factors see the paper [10]
by Holt and Walton.

2 Proof of theorem 1.1.

Before starting the actual proof of the theorem, an easy observation
has to be made on the bound in (iii). It is strictly monotone in n,
and

n[log2 n] < n ·
[log2 n]−1∏

i=0

(n− 2i) < n1+[log2 n]

holds. The former inequality follows from replacing every (n − 2i)
in the product by 1

2
n, while the latter inequality is straightforward.

Theorem 1.1 is proved in four steps.

1. It may be assumed that G is almost simple. For if G is
affine of prime power degree n = pt for some prime p, then |G| ≤
|AGL(t, p)| = n · ∏[logp n]−1

i=0 (n − pi) ≤ n · ∏[log2 n]−1
i=0 (n − 2i). Note

that the latter inequality holds even when p is replaced by any prime
power q, and n is replaced by qk. This observation is used in the
second step of the proof. If G is of diagonal type of degree n (n ≥
60), then |G| < n3+ln ln n by [5], and the right hand side is smaller
than n[log2 n]. If G is of product type, then it is a subgroup of some
primitive permutation group of the form H wr Sr, where r ≥ 2 and
H is primitive of diagonal type or is almost simple acting on a set
of size t (t ≥ 5). In this case the degree of G is n = tr. If H is
an alternating group, Am (m ≥ 5) acting on k-element subsets of
{1, ...,m} and n =

(
m
k

)r
, then G is of case (i) of the theorem. If H

is a 4-transitive Mathieu group, then it is easily checked that |G| ≤
|H wr Sr| < n[log2 n]. Otherwise |G| ≤ |H wr Sr| < (t1+[log2 t])

r ·r! by
assumption, and elementary calculations show that the right hand
side is less than n[log2 n]. Finally, if G is nonaffine of twisted product
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type, then |G| ≤ |H|r · |Sr| ≤ n · log60 nlog60 n for some nonabelian
simple group, H and integer, r (r ≥ 2), where the degree of G is n =
|H|r. The right hand side of the former inequality is considerably
smaller than n[log2 n] for n ≥ 602.

2. It may be assumed that G has an alternating or a projective
nonabelian simple socle. For if G has unitary socle U(t, q), where
t ≥ 3, q a prime power, and (t, q) 6= (3, 5), then G has minimal de-
gree at least qt by [12], while |G| ≤ |AGL(t, q)|. If G has symplectic
socle PSp(2m, q), where m ≥ 2 and q > 2, then its minimal degree
is at least q2m−1 by [12], while |G| ≤ |AGL(2m − 1, q)|. If G has
orthogonal socle PΩ±ε(t, q), then its minimal degree is at least qt−2

by [12], while |G| ≤ |AGL(t− 2, q)|. If U(3, 5) ≤ G ≤ Aut(U(3, 5)),
then G has degree at least 50, while |G| < n[log2 n] for n ≥ 50. If
PSp(2m, 2) ≤ G ≤ Aut(PSp(2m, 2)), then G has minimal degree
2m−1(2m − 1) if m ≥ 3 by [12], else G has socle A6

∼= PSL(2, 9). In

the previous case it can be verified, that |G| ≤ 2m2 ·∏m
i=1(4

i − 1) ≤
n ·∏[log2 n]−1

i=0 (n− 2i), where n ≥ 2m−1(2m − 1). This means that all
nonprojective classical almost simple groups satisfy (iii) of the theo-
rem. Finally, let G have socle isomorphic to an exceptional group of
Lie-type or to a sporadic simple group. Furthermore, suppose that
G is not of type (ii) of the theorem. It will be shown that G is of
case (iii). To show this, n can be taken to be the minimal degree of a
permutation representation of G. By [13] the order of G is bounded

above by n9. Since we have n9 ≤ n[log2 n] < n ·∏[log2 n]−1
i=0 (n− 2i) for

n ≥ 512, it can also be assumed that n ≤ 511. Now using the list in
[8], it is easily checked that G has order at most the relevant bound
of (iii) of the theorem.

3. It may be assumed that G is a projective almost simple group.
For if G has a nonprojective nonabelian alternating socle, then Am ≤
G ≤ Sm for some m (m ≥ 7). The one-point stabilizer of G in its
primitive action on the set {1, ..., n} is primitive, imprimitive, or
intransitive as a subgroup of Sm. If it is intransitive, then G is of
type (i) of the theorem. If it is primitive, then |G| ≤ n4 ≤ n[log2 n]

if n ≥ 16, by Bochert’s lemma, else n = 15 and G ∼= A7. Easy
calculation shows that this latter group is again of case (iii) of the
theorem, since |G| < 153. Finally, suppose that the point stabilizer
of G is imprimitive as a subgroup of Sm. Then there exist integers
a and b both at least 2, such that m = a · b and n = m!/(b!a · a!).
Thus one can assume, that m ≥ 8. The following lemma shows that
these groups also have order at most the bound in (iii).

Lemma 2.1. For integers a, b and m such that m ≥ 8; a, b ≥ 2 and
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m = a · b, the inequality m! ≤ (m!/(b!a · a!))[log2(m!/(b!a·a!))] holds.

Proof. Since m! ≤ 2[(m+1)/2]2 holds for all m of the statement of the
lemma, it is sufficient to see m!/(b!a · a!) ≥ 2[(m+1)/2]. This inequality
is proved below. Three assumptions, A, B and C are made on the
product decomposition of m. Through steps A and B we show that
it is enough to consider the case when a is the smallest prime factor
of m. Then in step C it is proved that only cases a = 1, 3 and 5
have to be dealt with.

A. Suppose that b ≥ a. For if a > b, then m!/(a!b · b!) <
m!/(b!a · a!), since a!b−1 > b!a−1, which means that the right hand
side of the inequality in question can be decreased by interchanging
a and b.

B. Suppose that a is the smallest prime divisor of m. This re-
striction can also be drawn. For let m = a1b1 = a2b2 with a1,
b1, a2, b2 ≥ 2 be two decompositions of m satisfying the previous
assumption. If a1 ≤ a2 and b1 ≥ b2, then

m!

b1!
a1 · a1!

≤ m!

b2!
a1 · (b2 + 1)a1 ... b1

a1 · a1!
≤ m!

b2!
a1 · a1! · b2

a1(b1−b2)
≤

≤ m!

b2!
a1 · a1! · (b2! · a2)

a1
b2
·(b1−b2)

≤ m!

b2!
a1 · a1! · (b2! · a2)(a2−a1)

≤

≤ m!

b2!
a1 · a1! · b2!

(a2−a1) · (a1 + 1) ... a2

≤ m!

b2!
a2 · a2!

follows. This means that a can be taken to be smallest possible. So
a is indeed the smallest prime divisor of m. (Assumption A is used
in establishing the third inequality of the derivation.)

Before making the third assumption, it is straightforward to see
that m!/(b!a · a!) ≥ pπ(m)−π(b) holds, where π(x) denotes the number
of primes not greater than x, and p is the smallest prime greater
than b. The estimate 0.92 < π(x) · ln x/x < 1.11 found in [6] is also
needed.

C. Suppose that a = 2, 3 or 5. For if a ≥ 7, then m = 49, 77 or
m ≥ 91. If m = 49, then m!/(b!a · a!) = 49!/(7!7 · 7!) > 11π(49)−π(7) >
1111 > 2[(m+1)/2]. If m = 77, then m!/(b!a · a!) = 77!/(11!7 · 7!) >
13π(77)−π(11) > 1316 > 2[(m+1)/2]. Finally, if m ≥ 91, then

m!

(b!a · a!)
≥ (m/7)π(m)−π(m/7) >

> (m/7)(0.92·m/ln m)−(1.11·(m/7)/ln (m/7)) > 2(m+1)/2 = 2[(m+1)/2]
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follows from the above-mentioned estimate of [6].

If a = 2, then we have m!/(b!a · a!) = 1
2
· ( m

m/2

) ≥ ((m/2)+1)m/2

(m/2)!
≥

≥ ((m/2)+1)m/2

(((m/2)+1)/2)m/2 = 2[(m+1)/2] . If a = 3, then m!/(b!a · a!) =

m!/((m/3)!3 · 3!) ≥ 1
2
· ( m+1

(m+1)/2

) ≥ 2[(m+1)/2]. Finally, if a = 5, then

m!/(b!a · a!) = m!/((m/5)!5 · 5!) ≥ 1
2
· ( m+1

(m+1)/2

) ≥ 2[(m+1)/2] follows.

The lemma is now proved.

4. If G has socle isomorphic to a projective group, then it is of
case (iii) of theorem 1 or it is of type (i) with r = k = 1. This is
proved below.

Lemma 2.2. Let G be an almost simple primitive subgroup of Sn

not containing An. If G has a projective socle, then |G| ≤ n ·∏[log2 n]−1
i=0 (n− 2i).

Proof. Let G have socle isomorphic to PSL(t, q). The proof consists
of three steps.

A. It may be assumed that G is acting on a set of size at least
(qt − 1)/(q − 1). For if (t, q) 6= (2, 5); (2, 7); (2, 9); (2, 11); (4, 2), then
PSL(t, q) has minimal degree (qt − 1)/(q − 1); else easy calculations
show that G contains An, or it is of case (iii) of theorem 1.1.

B. It may be assumed that both t and q are greater than 2. For
if q = 2, then G is permutation isomorphic to PSL(t, 2) acting on
n = 2t − 1 points, or it has degree n ≥ 2t. In the previous case

|PSL(t, 2)| ≤ 1
2
· (n+1) ·∏[log2 n]−1

i=0 (n+1−2i) < n ·∏[log2 n]−1
i=0 (n−2i)

follows, while in the latter one we have |PΓL(t, 2)| ≤ n[log2 n]. Now
suppose that t = 2 and q > 2. n can be taken to be q + 1. If q
is a prime we may suppose that q ≥ 11, and so |G| ≤ q(q2 − 1) ≤
(q + 1)q(q − 1) = n(n − 1)(n − 2) ≤ n[log2 n] follows. If q = 4, then
G has socle isomorphic to PSL(2, 5). This case was already treated
in step A. If q ≥ 16 and it is not a prime, we have |G| < q

2
q(q2 − 1)

≤ (q + 1)q(q − 1)(q − 3) ≤ n[log2 n]. Finally if q = 8 or 9 we have

|G| ≤ n ·∏[log2 n]−1
i=0 (n− 2i).

C. Let t > 2 and q > 2. Suppose that n = (qt − 1)/(q − 1) >

qt−1. Then it is staightforward to see that |G| < qt2 . We also have

n[log2 n] > q(t−1)2log2 q−(t−1). Now consider the qt2 < q(t−1)2log2 q−(t−1)

inequality. This is equivalent to (t2 + t− 1)/(t− 1)2 < log2 q. If
q ≥ 7, then the former inequality is always true. If q = 5, then
it is true only if t ≥ 4. If q = 4, then it only holds if t ≥ 5,
and if q = 3, then it is only true if t ≥ 7. It is checked that if
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(t, q) = (3, 4); (4, 4); (4, 3); (5, 3); (6, 3); (3, 5), then |G| < n[log2 n].

Finally, if (t, q) = (3, 3), then |G| < n ·∏[log2 n]−1
i=0 (n− 2i) follows.

3 Corollaries

Corollaries 1.1-4 are proved almost simultaneously in this section.
First of all, it is necessary to give an upper estimate for the orders
of primitive groups of case (i) of theorem 1.1.

Lemma 3.1. Let G be a primitive group of degree n not of case (iii)
of theorem 1.1. If G is not 3-transitive, then |G| < n

√
n.

Proof. It may be assumed that G is of type (i) of theorem 1.1 with

m ≥ 7. If r = 1, then k ≥ 2, and so |G| ≤ m! ≤ (
m
2

)q(m
2 ) ≤

(
m
k

)q(m
k) = n

√
n follows; else r ≥ 2, and we have |G| ≤ m!r · r! <

mr
√

mr ≤ (
m
k

)r
q

(m
k)

r

= n
√

n.

The 5-transitive Mathieu group, M12 is the largest primitive
group in the following sense.

Lemma 3.2. If G is a primitive subgroup of Sn not containing An,

then |G| ≤ |M12|
n
12 < 3n.

Proof. Let c be the constant |M12| 1
12 = 95040

1
12 ≈ 2.59911.... The

|G| ≤ cn estimate has to be proved. If n ≤ 9, then Bochert’s bound,
while if n ≥ 10, then both n

√
n and n1+[log2 n] are smaller than cn.

The 4-transitive Mathieu groups are easily checked to have order at
most cn.

The classification of exponentially large primitive groups is essen-
tial in order to complete the proofs of corollaries 1.1 and 1.2. The
proof of corollary 1.4 is what follows.

Proof. Let G be a primitive permutation group of degree n not con-
taining An. If |G| > 2n−1, then G is a 4-transitive Mathieu group or

n is at most 22. For if n ≥ 23, then n
√

n and n ·∏[log2 n]−1
i=0 (n−2i) are

smaller than 2n−1. From [8] it follows that a primitive permutation
group of degree at most 22 is affine, Mathieu or almost simple with
alternating or projective socle. It is checked that if such a group has
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order greater than 2n−1, then it is permutation isomorphic to one of
the groups in the list. It is also checked that all permutation groups
in the list have order greater than 2n−1.

The next lemma finishes the proof of Corollary 1.2 and 1.1 (i).

Lemma 3.3. Let G be primitive of degree n not containing An.

(i) If |G| > 2n, then G is a 2-transitive group of degree at most 24;

(ii) If |G| ≥ n
√

n, then G is 3-transitive of degree at most 24.

Proof.

(i) If |G| > 2n, then G is permutation isomorphic to one of the
groups in the list of Corollary 1.4. It is checked that only 2-transitive
groups in the list have order at least 2n. Moreover, |M24| > 224.

(ii) If |G| ≥ n
√

n, then G is permutation isomorphic to one of the
groups in the list of Corollary 1.4. For if n ≤ 21, then 2n−1 < n

√
n;

else n = 22 and G has socle isomorphic to M22, so it does have order
less than n

√
n. It is checked that only 3-transitive groups in the list

have order at least n
√

n. Moreover, |M24| > n
√

n.

Corollary 1.1 (ii) follows from lemma 3.3 (ii).
For the proof of Corollary 1.3 notice that the product of all primes

not greater than n, is at least n0.5·(π(n)−π(
√

n)) > n(0.46·n−1.11·√n)/ ln n

by [6]. This is greater than n
√

n for n ≥ 200. For cases 24 < n < 200
it is checked by computer that

∏
p<n p > 2n−1 holds.

4 An application

Corollary 1.5 is proved now. We proceed by induction on n. If n ≤ d
then the estimate is straightforward. Let n > d. If G is primitive

then |G| ≤ |M12|(n−1)/11 < d!(n−1)/(d−1). (The former inequality
follows from Lemma 3.2 for n ≥ 12, and holds also for 4 < n < 12 by
inspection.) If G is transitive with k-element blocks of imprimitivity
then

|G| ≤ (d!(k−1)/(d−1))
n/k · d!(n/k−1)/(d−1) = d!(n−1)/(d−1)

follows by induction. Finally, if G is intransitive with an orbit of
length k, then

|G| ≤ d!(k−1)/(d−1) · d!(n−k−1)/(d−1) < d!(n−1)/(d−1).
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[16] Praeger, C.; Saxl, J. On the order of primitive permutation
groups. Bull. London Math. Soc. 12, (1980), 303-308.

[17] Pyber, L. On the orders of doubly transitive permutation
groups, elementary estimates. J. Comb. Theory (A) 62, (1993),
361-366.

[18] Pyber, L. Asymptotic results for permutation groups. DIMACS
Series in Discrete Mathematics and Theoretical Computer Sci-
ence 11, (1993), 197-219.

[19] Wielandt, H. Finite Permutation groups. Acad. Press, New
York, 1964.

[20] Wielandt, H. Permutation groups through invariant relations
and invariant functions. Lecture Notes, Ohio State University,
Columbus, Ohio, 1969.

11


