ON THE NUMBER OF CONJUGACY CLASSES
OF m-ELEMENTS IN FINITE GROUPS

ATTILA MAROTI AND HUNG NGOC NGUYEN

ABSTRACT. Let G be a finite group and « be a set of primes. Put d.(G) = k- (G)/|G|~
where kx(G) is the number of conjugacy classes of m-elements in G and |G|, is the m-part
of the order of G. In this paper we initiate the study of this invariant by showing that if
d-(G) > 5/8 then G possesses an abelian Hall m-subgroup, all Hall w-subgroups of G are
conjugate, and every m-subgroup of G lies in some Hall m-subgroup of G. Furthermore we
have d-(G) =1 or d-(G) = 2/3. This extends and generalizes a result of W. H. Gustafson.

1. INTRODUCTION

For a finite group G let d(G) be the probability that two elements of G commute. Tt is
easy to see that d(G) = k(G) /|G| where k(G) denotes the number of conjugacy classes of G.
Several authors have studied this invariant under the name of commutativity degree [7, [1]
or commuting probability [6, 0] 5].

Let 7(G) be the set of prime divisors of the order of G and 7 a non-empty set of primes.
Furthermore, let k;(G) be the number of conjugacy classes of m-elements in G and |G|,
the m-part of the order of G. Since d(G) encodes a lot of structural information of G, it is
expected that d.(G) := k;(G) /|G|, also provides some information on the m-local structure
of G.

Our first observation is that d(G) < dr(G) < d,(G) whenever p is a subset of 7, see
part (1) of Proposition In particular, if p consists of a single prime, then d,;(G) <
d,(G) < 1 by Sylow’s theorems. In fact, we have d;(G) < d(P) where P is any Sylow
p-subgroup of G for any prime p in w. From this and a result of P.M. Neumann [§] it
follows that if d.(G) is bounded from below by a positive constant then P is bounded by
abelian by bounded; that is, P is ‘almost’ abelian for every p € w. Furthermore, by the
same reason, if G is w-solvable and d;(G) is bounded from below by a positive constant
then every Hall m-subgroup of G is bounded by abelian by bounded.
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One of the goals of this work is to impose an explicit lower bound for d.(G) in order to
ensure the existence of an abelian Hall m-subgroup in G.

Theorem 1. Let 7 be a set of primes and G a finite group with d-(G) > 5/8. Then G
contains an abelian Hall w-subgroup, all Hall w-subgroups of G are conjugate in G, and

every w-subgroup of G lies in some Hall m-subgroup of G. Furthermore d(G) = 1 or
d.(G) =2/3.

This theorem can be viewed as a local version and extension of Gustafson’s result [6]
stating that if d(G) = dr(g)(G) > 5/8 then G is abelian. We note that the bound 5/8 in
the theorem is tight since if G is the direct product of a group of odd order and the dihedral
group Dg then dz(G) = 5/8. (Here and in what follows, for a prime p we write k,(G) and
dp(G) in place of k3 (G) and dyy) (G) respectively.) Also, from the condition d(G) > 5/8
it does not follow that G is w-solvable. For if G is a non-abelian simple group with a Sylow
3-subgroup of order 3 then @ is not 3-solvable but d3(G) = 2/3 by Proposition [6]

Our next goal is to describe groups G with dr(G) = 1 or d,(G) = 2/3. By Proposition [7]
we see that d(G) = 1 if and only if G has a normal w-complement and an abelian Hall
w-subgroup. On the other hand, by Theorem [I] and Propositions [5] and [0 we see that
d-(G) = 2/3 if and only if 3 € 7, 2 & 7, d3(G) = 2/3 and dr\(33(G) = 1. In the next
theorem we describe groups G with d3(G) = 2/3. By Propositions and Theorem
for this we may assume that O3 (G) = 1.

Theorem 2. Let G be a finite group with d3(G) = 2/3 and Oy (G) = 1. Let P be a Sylow
3-subgroup in G. Then P is abelian, Ng(P)/Cq(P) has order 2, [P,N¢(P)] has order 3,
and one of the following holds.

(1) P is a self-centralizing normal subgroup in G; or
(2) G = A x B where A is an almost simple finite group with a Sylow 3-subgroup of
order 3 contained in the socle of A and B is an abelian 3-group.

Theorem (1] is independent of the classification theorem of finite simple groups, however
Theorem [2| depends on the fact that if S is a non-abelian finite simple group with a Sylow
3-subgroup of order 3 then the size of the outer automorphism group of S is not divisible
by 3.

2. PROOF OF THEOREM
The starting point of our investigations is the following result which was communicated

to one of us in 2001.

Proposition 3 (Robinson; [9]). Let # = {pi1,...,pt} be a subset of w(G) for a finite
group G. Then there exists a p;-subgroup Q; of G for each i with 1 < i < t so that

Hall’s theorem about solvable groups extends to w-solvable groups (assuming the Odd
Order Theorem [2]).
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Proposition 4 (Hall; Theorems 6.4.5 and 6.4.6 of [4]). A w-solvable group G contains a
Hall w-subgroup, all Hall w-subgroups of G are conjugate, and every w-subgroup in G lies
in some Hall w-subgroup.

The proof of Proposition [3| can be used to establish the following claims.
Proposition 5. Let G be a finite group and let p C 7 be two non-empty sets of primes.

(1) Then d(G) < d(G) < du(G) < 1. Moreover if w is the disjoint union p U {p} then
kx(G) < ku(G)ky(N) for some subgroup N of G.

(2) Suppose that 7 is the disjoint union pU{p} and that G is pu-solvable with d,(G) = 1.
Then dr(G) = (L/|HI) > peyr kp(Ca(h))/|G|, where H is an abelian Hall p-subgroup
of G.

(3) If G contains an abelian Hall m-subgroup then [, dp(G) < dx(G).

Proof. Assume that 7 is the disjoint union of ¢ and {p}. Put k = £,(G) and let z1,..., zy
be representatives of the G-conjugacy classes of p-elements of G. For each 1 < ¢ < £k let
Yi,l,- -+ Yim(i) be representatives of the m(i) = k,(Cq(z;)) conjugacy classes of p-elements
inside Cg(z;).

We claim that any m-element z of G is conjugate to z;y; ; for some s and j. Write z = zy
where z is the p-part of z and y is the p-part of z. By conjugating by a suitable element of
G if necessary, we may assume that z = x; for some 7. But then y lies inside Cg(z;) and
therefore is conjugate in Cg(z;) to some y; ;. This proves the claim. It is also clear that
the elements z;y; ; are pairwise non-conjugate. Thus

ku(G)

kn(G) = Y kp(Colar).

i=1

Let N be a subgroup of G satisfying k,(N) = max;<;<i kp(Cq(z;)). Then k;(G) <
k. (G)k,(N) which gives the second statement of part (1). The first statement of part (1)
readily follows.

Suppose now that G is p-solvable and that d,(G) = 1. Then, by Proposition
{x1,..., 21} can be taken to be a Hall u-subgroup H of G. Thus kx(G) = > ), cp kp(Ca(h)).
After dividing both sides of this equality by |G| we obtain part (2).

Finally suppose that G contains an abelian Hall w-subgroup H = Hp@r H, where H), is
a Sylow p-subgroup of G. For p € 7 let xp1,..., %y (c) be representatives in Hy, of the
G-conjugacy classes of p-elements in G. It is easy to see that the m-elements Hpew Tpi, and
[Lex Tp.j, are conjugate in G if and only if i) = j, for all p € w. This gives [, kp(G) <
kr(G), from which part (3) readily follows. O

Another key tool in our proof of Theorem [I]is the following.



4 ATTILA MAROTI AND HUNG NGOC NGUYEN

Proposition 6 (Burnside’s p-complement theorem; Theorem 7.2.1 of [4]). If a finite group
G contains a Sylow p-subgroup P with Cg(P) = Ng(P), then G contains a normal p-
complement.

Although the proof of the next proposition does not require the full strength of Proposi-
tion [6] (as kindly pointed out to us by G.R. Robinson), we will give a proof using it (since
we will need Proposition [f] later anyway).

Proposition 7. Let G be a finite group and ™ a non-empty set of primes. Then we have
the following.

(1) If dp(G) =1 for every p € m then G contains a normal m-complement and G is
m-solvable.

(2) dz(G) = 1 if and only if G has a normal w-complement and an abelian Hall -
subgroup.

Proof. We claim that if d,(G) = 1 for p € 7 then G contains a normal p-complement. Notice
that once this claim is established, part (1) follows just by applying this fact repeatedly for
the primes in 7 N 7(G). But this claim follows directly from Proposition [6]

The ‘if” direction of part (2) is clear by Proposition [4] while the ‘only if’ direction of
part (2) follows from part (1) of Proposition [B] part (1), and Proposition [4 O

As we have already described groups G with d;(G) = 1, we now consider groups G with
dr(G) < 1. In doing so our first tool is a result we mentioned before.

Proposition 8 (Gustafson; [6]). Let G be a finite group with d(G) > 5/8. Then G is
abelian.

An important application of Proposition [§]is the following.

Proposition 9. Let G be a finite group and © a set of primes such that d(G) < 1. Then
we have d(G) < 2/3. Furthermore if 3 ¢ © or if |G| is odd, then d.(G) < 5/8.

Proof. Assume that G is a finite group with d(G) > 5/8.

Assume first that d,(G) = 1 for every p € m. Applying Proposition |7, we have that G
is m-solvable and that every Hall w-subgroup of G is abelian by Propositions [8| and 4] But
then part (3) of Proposition [5| gives d(G) = 1.

Hence we may assume that d,(G) < 1 for some p € 7, and thus it is sufficient to prove
the proposition in the special case when m = {p}. Let P be a Sylow p-subgroup of G. This
must be abelian. Consider the action of the p’-group X = Ng(P)/Cq(P) on P. Suppose
that X has r fixed points on P. Then we must have r > |P|/4.

If p > 5 then this can only be if » = |P| and thus d,(G) = 1 by Proposition [ A
contradiction.

If p = 2 then the only case to consider is when r = | P|/2, since otherwise we may apply
Proposition [6] as before. Suppose that @ is the subgroup of P all of whose elements are
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fixed by X. We may assume that there exists an element x of X which acts non-trivially
on P. Let a € P be an element of a non-trivial (z)-orbit. Then « is mapped to af by x
for some f in (). This means that « lies in an (x)-orbit of length a non-trivial power of 2.
A contradiction.

Finally let p = 3. If d3(G) > 2/3 then r > |P|/3 and this forces d3(G) = 1 by Proposi-
tion[6] A contradiction. On the other hand, if |G| is odd then so is |X|. Thus the smallest
prime divisor of |X| is at least 5 and so d;(G) < d3(G) < 7/15. O

We will also need a useful lemma.

Proposition 10 (Fulman and Guralnick; Lemma 2.3 of [3]). Let G be a finite group and
7 a set of primes. Then d(G) < d(N)d(G/N) for any normal subgroup N of G.

Now we can turn to the proof of Theorem Let G be a finite group and « a set of
primes with d;(G) > 5/8.

We first claim that G contains an abelian Hall 7-subgroup.

By Sylow’s theorem and Proposition [8| we may assume that |7| > 2. Also, by Proposi-
tion [4] and Proposition [8] there is nothing to show when G is a m-solvable group. So assume
that S is any non-abelian simple composition factor of G which is not w-solvable. Then
d-(G) < d(S) < 1 by Proposition [10] and by part (2) of Proposition [7]] By Proposition [9]
we may assume that 7(S) N7 = {3} for any such S (for if #(S) N 7 contains a prime p
different from 3 then d.(G) < dy(G) < d,(S) < 5/8 by Proposition [9). Furthermore if |S|
is odd then d.(S) < d3(S) < 5/8 again by Proposition[9} So |S| must be even and thus we
may assume that the set p = 7\ {3} consists of primes at least 5.

Clearly, the group G is a p-solvable group and so by Proposition 4] there exists a Hall u-
subgroup in G intersecting every conjugacy class of p-elements in G. Moreover, as d,,(G) >
dr(G) > 5/8 by Proposition [} we must have d,(G) = 1 by Proposition 9] Let H; be
a Hall p-subgroup of G. Then dr(G) = (1/|H1|) ) pcp, k3(Ca(h))/|Gl; by part (2) of
Proposition

Given h € Hy. Then k3(Cq(h))/|G|; < 1/3, or Cg(h) contains a Sylow 3-subgroup of
G, in which case k3(Cg(h))/|Gl; < 1. We claim that Cg(h) contains a Sylow 3-subgroup
of G for more than |H;|/4 of the h’s. For otherwise we would have

5/8 <dr(G) < (3/4)(1/3) + (1/4)(1) = 1/2
which is a contradiction.

This means that a Sylow 3-subgroup P of G centralizes more than |H;|/4 u-elements in
G (from different G-orbits). But Cg(F) is also a p-solvable group and so contains a Hall
p-subgroup K. Then we have |H;|/4 < k,(Cg(P)) < |K| which forces |K| = |H1| since p
consists of primes at least 5. Thus H := K X P is an abelian Hall m-subgroup in C¢g(P)
and also in GG. This finishes the proof of our claim.

Next we claim that d(G) = 2/3 or d,(G) = 1.
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By parts (1) and (3) of Propositionwe have [ [, dy(G) < dr(G) < dyg(G) for any prime
q in 7. By P]roposition@7 we may take ¢ = 3 and we also see that d,(G) =1 for any prime
p # 3 in w. This forces d;(G) = d3(G). By Burnside’s Lemma (see [4, Theorem 7.1.5]), we
know that d3(G) = d3(Ng(P)) which must be 2/3 or 1 (if larger than 5/8).

Note that the above arguments show that if d;(G) = 2/3 then 3 € =, d3(G) = 2/3, and
also that d,(G) =1 where p =\ {3}.

Finally, to finish the proof of Theorem [I} we show that if L is a w-subgroup of G then it
is conjugate to some subgroup of H, where H is a fixed abelian Hall 7m-subgroups of G.

If d-(G) = 1 then there is nothing to show by Propositions (7] and 4l (Or in general we
may assume that G is not m-solvable.) Thus we may assume that d,(G) = 2/3, in particular
that 3 € m and d,(G) = 1 where p = 7\ {3}. (By Sylow’s Theorem we may also assume
that 1 # (0.) Write H in the form P x K where P is an abelian Sylow 3-subgroup of G and
K is an abelian Hall y-subgroup of G.

Since d,(G) = 1, the group G contains a normal p-complement, say M, by Proposition
So L projects into G/M with kernel equal to a (normal) Sylow 3-subgroup P, of L. By
the weak version of the Schur-Zassenhaus Theorem (see [4, Theorem 3.3.1]), P, has an
(abelian) complement K7 in G. Since G is a p-solvable group, the subgroup K is conjugate
to a subgroup of K by Proposition 4l Thus, to show that L is conjugate to a subgroup of
H, we may assume that K; < K.

Now consider the Kj-orbits in P;. Since d3(G) = 2/3, these have lengths 1 or 2. But
there cannot be a Ki-orbit of length 2 in P; since we may assume that p consists of primes
at least 5, as our application of Proposition [L0| above shows. This means that I is central
in L and so L = P; x K;. But then both P; and P lie in C(K7) and so there exists
¢ € Cg(Ky) with P1¢ < P. With this same ¢ we have L¢ < H.

3. PROOF OF THEOREM

In this section we turn to the proof of Theorem

Let G be a finite group with d3(G) = 2/3 and Oy (G) = 1. Let P be a Sylow 3-subgroup
in G. Then P is abelian by Proposition By Burnside’s Lemma (see Theorem 7.1.5 in
[]), we see that 2/3 = d3(G) = d3(Ng(P)). This implies that N (P)/Cq(P) has order 2,
the subgroup N (P) centralizes a subgroup of index 3 in P, and so [P,N¢(P)] has order
3and P =[P,Ng(P)] x (PNZ(Ng(P))).

Since O (G) = 1, the Fitting subgroup F(G) of G is a 3-group. Also, by the Focal
Subgroup Theorem, see [4, pages 165-167], we have that P N G’ has order 3.

Let £ = E(G) be the subgroup generated by the components of G. We claim that £ = 1
or E is a simple group with a Sylow 3-subgroup of order 3.

Suppose that E # 1. Then the Sylow 3-subgroup of E has order 3 since E < G’ and
O3 (G) = 1. Again since Oz (G) = 1, the subgroup Z(FE) is a 3-group. Then, by the Focal
Subgroup Theorem, Z(E) has order 1 or 3. If |Z(E)| = 3 then E must be the central
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product of simple Suzuki groups by [II], however a simple Suzuki group cannot have a
Schur multiplier of order divisible by 3. Thus Z(E) = 1. So E is a direct product of simple
groups and each factor has order divisible by 3, whence E is a simple group whose Sylow
3-subgroup has order 3.

So in this case the generalized Fitting subgroup F*(G) is E x B where B is an abelian
3-group. Note that G centralizes B (since BNG' = 1) and so B = Z(G). Thus G/B embeds
in the automorphism group of E (which is almost simple since F is simple). Inspection of
the simple groups with Sylow 3-subgroup of order 3 shows that G/FEB has order prime to
3. As H?(E,B) = 0 (since E has a cyclic Sylow 3-subgroup, its Schur multiplier has order
prime to 3), the extension 1 - B — G — G/B — 1 splits and therefore (2) holds.

If £ =1, then F*(G) = B is a 3-group and G/B acts faithfully on B, whence B = P
and G/B has order 2. Therefore (1) holds and the proof is complete.
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