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ATTILA MAR�OTI AND HUNG NGOC NGUYEN

Abstract. Let G be a �nite group and � be a set of primes. Put d�(G) = k�(G)=jGj�
where k�(G) is the number of conjugacy classes of �-elements in G and jGj� is the �-part
of the order of G. In this paper we initiate the study of this invariant by showing that if
d�(G) > 5=8 then G possesses an abelian Hall �-subgroup, all Hall �-subgroups of G are
conjugate, and every �-subgroup of G lies in some Hall �-subgroup of G. Furthermore we
have d�(G) = 1 or d�(G) = 2=3. This extends and generalizes a result of W. H. Gustafson.

1. Introduction

For a �nite group G let d(G) be the probability that two elements of G commute. It is
easy to see that d(G) = k(G)=jGj where k(G) denotes the number of conjugacy classes of G.
Several authors have studied this invariant under the name of commutativity degree [7, 1]
or commuting probability [6, 10, 5].

Let �(G) be the set of prime divisors of the order of G and � a non-empty set of primes.
Furthermore, let k�(G) be the number of conjugacy classes of �-elements in G and jGj�
the �-part of the order of G. Since d(G) encodes a lot of structural information of G, it is
expected that d�(G) := k�(G)=jGj� also provides some information on the �-local structure
of G.

Our �rst observation is that d(G) � d�(G) � d�(G) whenever � is a subset of �, see
part (1) of Proposition 5. In particular, if � consists of a single prime, then d�(G) �
d�(G) � 1 by Sylow's theorems. In fact, we have d�(G) � d(P ) where P is any Sylow
p-subgroup of G for any prime p in �. From this and a result of P.M. Neumann [8] it
follows that if d�(G) is bounded from below by a positive constant then P is bounded by
abelian by bounded; that is, P is `almost' abelian for every p 2 �. Furthermore, by the
same reason, if G is �-solvable and d�(G) is bounded from below by a positive constant
then every Hall �-subgroup of G is bounded by abelian by bounded.
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One of the goals of this work is to impose an explicit lower bound for d�(G) in order to
ensure the existence of an abelian Hall �-subgroup in G.

Theorem 1. Let � be a set of primes and G a �nite group with d�(G) > 5=8. Then G
contains an abelian Hall �-subgroup, all Hall �-subgroups of G are conjugate in G, and

every �-subgroup of G lies in some Hall �-subgroup of G. Furthermore d�(G) = 1 or

d�(G) = 2=3.

This theorem can be viewed as a local version and extension of Gustafson's result [6]
stating that if d(G) = d�(G)(G) > 5=8 then G is abelian. We note that the bound 5=8 in
the theorem is tight since if G is the direct product of a group of odd order and the dihedral
group D8 then d2(G) = 5=8. (Here and in what follows, for a prime p we write kp(G) and
dp(G) in place of kfpg(G) and dfpg(G) respectively.) Also, from the condition d�(G) > 5=8
it does not follow that G is �-solvable. For if G is a non-abelian simple group with a Sylow
3-subgroup of order 3 then G is not 3-solvable but d3(G) = 2=3 by Proposition 6.

Our next goal is to describe groups G with d�(G) = 1 or d�(G) = 2=3. By Proposition 7
we see that d�(G) = 1 if and only if G has a normal �-complement and an abelian Hall
�-subgroup. On the other hand, by Theorem 1 and Propositions 5 and 9 we see that
d�(G) = 2=3 if and only if 3 2 �, 2 62 �, d3(G) = 2=3 and d�nf3g(G) = 1. In the next
theorem we describe groups G with d3(G) = 2=3. By Propositions 10, 7 and Theorem 1,
for this we may assume that O30(G) = 1.

Theorem 2. Let G be a �nite group with d3(G) = 2=3 and O30(G) = 1. Let P be a Sylow

3-subgroup in G. Then P is abelian, NG(P )=CG(P ) has order 2, [P;NG(P )] has order 3,
and one of the following holds.

(1) P is a self-centralizing normal subgroup in G; or

(2) G = A � B where A is an almost simple �nite group with a Sylow 3-subgroup of

order 3 contained in the socle of A and B is an abelian 3-group.

Theorem 1 is independent of the classi�cation theorem of �nite simple groups, however
Theorem 2 depends on the fact that if S is a non-abelian �nite simple group with a Sylow
3-subgroup of order 3 then the size of the outer automorphism group of S is not divisible
by 3.

2. Proof of Theorem 1

The starting point of our investigations is the following result which was communicated
to one of us in 2001.

Proposition 3 (Robinson; [9]). Let � = fp1; : : : ; ptg be a subset of �(G) for a �nite

group G. Then there exists a pi-subgroup Qi of G for each i with 1 � i � t so that

k�(G) �
Qt

i=1 k(Qi).

Hall's theorem about solvable groups extends to �-solvable groups (assuming the Odd
Order Theorem [2]).
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Proposition 4 (Hall; Theorems 6.4.5 and 6.4.6 of [4]). A �-solvable group G contains a

Hall �-subgroup, all Hall �-subgroups of G are conjugate, and every �-subgroup in G lies

in some Hall �-subgroup.

The proof of Proposition 3 can be used to establish the following claims.

Proposition 5. Let G be a �nite group and let � � � be two non-empty sets of primes.

(1) Then d(G) � d�(G) � d�(G) � 1. Moreover if � is the disjoint union � [ fpg then

k�(G) � k�(G)kp(N) for some subgroup N of G.

(2) Suppose that � is the disjoint union �[fpg and that G is �-solvable with d�(G) = 1.
Then d�(G) = (1=jHj)

P
h2H kp(CG(h))=jGjp where H is an abelian Hall �-subgroup

of G.

(3) If G contains an abelian Hall �-subgroup then
Q

p2� dp(G) � d�(G).

Proof. Assume that � is the disjoint union of � and fpg. Put k = k�(G) and let x1; : : : ; xk
be representatives of the G-conjugacy classes of �-elements of G. For each 1 � i � k let
yi;1; : : : ; yi;m(i) be representatives of the m(i) = kp(CG(xi)) conjugacy classes of p-elements
inside CG(xi).

We claim that any �-element z of G is conjugate to xiyi;j for some i and j. Write z = xy
where x is the �-part of z and y is the p-part of z. By conjugating by a suitable element of
G if necessary, we may assume that x = xi for some i. But then y lies inside CG(xi) and
therefore is conjugate in CG(xi) to some yi;j . This proves the claim. It is also clear that
the elements xiyi;j are pairwise non-conjugate. Thus

k�(G) =

k�(G)X

i=1

kp(CG(xi)):

Let N be a subgroup of G satisfying kp(N) = max1�i�k kp(CG(xi)). Then k�(G) �
k�(G)kp(N) which gives the second statement of part (1). The �rst statement of part (1)
readily follows.

Suppose now that G is �-solvable and that d�(G) = 1. Then, by Proposition 4,
fx1; : : : ; xkg can be taken to be a Hall �-subgroupH of G. Thus k�(G) =

P
h2H kp(CG(h)).

After dividing both sides of this equality by jGj� we obtain part (2).

Finally suppose that G contains an abelian Hall �-subgroup H =
Q

p2�Hp where Hp is
a Sylow p-subgroup of G. For p 2 � let xp;1; : : : ; xp;kp(G) be representatives in Hp of the
G-conjugacy classes of p-elements in G. It is easy to see that the �-elements

Q
p2� xp;ip andQ

p2� xp;jp are conjugate in G if and only if ip = jp for all p 2 �. This gives
Q

p2� kp(G) �

k�(G), from which part (3) readily follows. �

Another key tool in our proof of Theorem 1 is the following.
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Proposition 6 (Burnside's p-complement theorem; Theorem 7.2.1 of [4]). If a �nite group

G contains a Sylow p-subgroup P with CG(P ) = NG(P ), then G contains a normal p-
complement.

Although the proof of the next proposition does not require the full strength of Proposi-
tion 6 (as kindly pointed out to us by G.R. Robinson), we will give a proof using it (since
we will need Proposition 6 later anyway).

Proposition 7. Let G be a �nite group and � a non-empty set of primes. Then we have

the following.

(1) If dp(G) = 1 for every p 2 � then G contains a normal �-complement and G is

�-solvable.
(2) d�(G) = 1 if and only if G has a normal �-complement and an abelian Hall �-

subgroup.

Proof. We claim that if dp(G) = 1 for p 2 � then G contains a normal p-complement. Notice
that once this claim is established, part (1) follows just by applying this fact repeatedly for
the primes in � \ �(G). But this claim follows directly from Proposition 6.

The `if' direction of part (2) is clear by Proposition 4, while the `only if' direction of
part (2) follows from part (1) of Proposition 5, part (1), and Proposition 4. �

As we have already described groups G with d�(G) = 1, we now consider groups G with
d�(G) < 1. In doing so our �rst tool is a result we mentioned before.

Proposition 8 (Gustafson; [6]). Let G be a �nite group with d(G) > 5=8. Then G is

abelian.

An important application of Proposition 8 is the following.

Proposition 9. Let G be a �nite group and � a set of primes such that d�(G) < 1. Then

we have d�(G) � 2=3. Furthermore if 3 62 � or if jGj is odd, then d�(G) � 5=8.

Proof. Assume that G is a �nite group with d�(G) > 5=8.

Assume �rst that dp(G) = 1 for every p 2 �. Applying Proposition 7, we have that G
is �-solvable and that every Hall �-subgroup of G is abelian by Propositions 8 and 4. But
then part (3) of Proposition 5 gives d�(G) = 1.

Hence we may assume that dp(G) < 1 for some p 2 �, and thus it is su�cient to prove
the proposition in the special case when � = fpg. Let P be a Sylow p-subgroup of G. This
must be abelian. Consider the action of the p0-group X = NG(P )=CG(P ) on P . Suppose
that X has r �xed points on P . Then we must have r > jP j=4.

If p � 5 then this can only be if r = jP j and thus dp(G) = 1 by Proposition 6. A
contradiction.

If p = 2 then the only case to consider is when r = jP j=2, since otherwise we may apply
Proposition 6 as before. Suppose that Q is the subgroup of P all of whose elements are
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�xed by X. We may assume that there exists an element x of X which acts non-trivially
on P . Let � 2 P be an element of a non-trivial hxi-orbit. Then � is mapped to �� by x
for some � in Q. This means that � lies in an hxi-orbit of length a non-trivial power of 2.
A contradiction.

Finally let p = 3. If d3(G) > 2=3 then r > jP j=3 and this forces d3(G) = 1 by Proposi-
tion 6. A contradiction. On the other hand, if jGj is odd then so is jXj. Thus the smallest
prime divisor of jXj is at least 5 and so d�(G) � d3(G) � 7=15. �

We will also need a useful lemma.

Proposition 10 (Fulman and Guralnick; Lemma 2.3 of [3]). Let G be a �nite group and

� a set of primes. Then d�(G) � d�(N)d�(G=N) for any normal subgroup N of G.

Now we can turn to the proof of Theorem 1. Let G be a �nite group and � a set of
primes with d�(G) > 5=8.

We �rst claim that G contains an abelian Hall �-subgroup.

By Sylow's theorem and Proposition 8 we may assume that j�j � 2. Also, by Proposi-
tion 4 and Proposition 8, there is nothing to show when G is a �-solvable group. So assume
that S is any non-abelian simple composition factor of G which is not �-solvable. Then
d�(G) � d�(S) < 1 by Proposition 10 and by part (2) of Proposition 7. By Proposition 9
we may assume that �(S) \ � = f3g for any such S (for if �(S) \ � contains a prime p
di�erent from 3 then d�(G) � dp(G) � dp(S) � 5=8 by Proposition 9). Furthermore if jSj
is odd then d�(S) � d3(S) � 5=8 again by Proposition 9. So jSj must be even and thus we
may assume that the set � = � n f3g consists of primes at least 5.

Clearly, the group G is a �-solvable group and so by Proposition 4 there exists a Hall �-
subgroup in G intersecting every conjugacy class of �-elements in G. Moreover, as d�(G) �
d�(G) > 5=8 by Proposition 5, we must have d�(G) = 1 by Proposition 9. Let H1 be
a Hall �-subgroup of G. Then d�(G) = (1=jH1j)

P
h2H1

k3(CG(h))=jGj3 by part (2) of
Proposition 5.

Given h 2 H1. Then k3(CG(h))=jGj3 � 1=3, or CG(h) contains a Sylow 3-subgroup of
G, in which case k3(CG(h))=jGj3 � 1. We claim that CG(h) contains a Sylow 3-subgroup
of G for more than jH1j=4 of the h's. For otherwise we would have

5=8 < d�(G) � (3=4)(1=3) + (1=4)(1) = 1=2

which is a contradiction.

This means that a Sylow 3-subgroup P of G centralizes more than jH1j=4 �-elements in
G (from di�erent G-orbits). But CG(P ) is also a �-solvable group and so contains a Hall
�-subgroup K. Then we have jH1j=4 < k�(CG(P )) � jKj which forces jKj = jH1j since �
consists of primes at least 5. Thus H := K � P is an abelian Hall �-subgroup in CG(P )
and also in G. This �nishes the proof of our claim.

Next we claim that d�(G) = 2=3 or d�(G) = 1.
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By parts (1) and (3) of Proposition 5 we have
Q

p2� dp(G) � d�(G) � dq(G) for any prime

q in �. By Proposition 9, we may take q = 3 and we also see that dp(G) = 1 for any prime
p 6= 3 in �. This forces d�(G) = d3(G). By Burnside's Lemma (see [4, Theorem 7.1.5]), we
know that d3(G) = d3(NG(P )) which must be 2=3 or 1 (if larger than 5=8).

Note that the above arguments show that if d�(G) = 2=3 then 3 2 �, d3(G) = 2=3, and
also that d�(G) = 1 where � = � n f3g.

Finally, to �nish the proof of Theorem 1, we show that if L is a �-subgroup of G then it
is conjugate to some subgroup of H, where H is a �xed abelian Hall �-subgroups of G.

If d�(G) = 1 then there is nothing to show by Propositions 7 and 4. (Or in general we
may assume that G is not �-solvable.) Thus we may assume that d�(G) = 2=3, in particular
that 3 2 � and d�(G) = 1 where � = � n f3g. (By Sylow's Theorem we may also assume
that � 6= ;.) Write H in the form P �K where P is an abelian Sylow 3-subgroup of G and
K is an abelian Hall �-subgroup of G.

Since d�(G) = 1, the group G contains a normal �-complement, sayM , by Proposition 7.
So L projects into G=M with kernel equal to a (normal) Sylow 3-subgroup P1 of L. By
the weak version of the Schur-Zassenhaus Theorem (see [4, Theorem 3.3.1]), P1 has an
(abelian) complement K1 in G. Since G is a �-solvable group, the subgroup K1 is conjugate
to a subgroup of K by Proposition 4. Thus, to show that L is conjugate to a subgroup of
H, we may assume that K1 � K.

Now consider the K1-orbits in P1. Since d3(G) = 2=3, these have lengths 1 or 2. But
there cannot be a K1-orbit of length 2 in P1 since we may assume that � consists of primes
at least 5, as our application of Proposition 10 above shows. This means that P1 is central
in L and so L = P1 � K1. But then both P1 and P lie in CG(K1) and so there exists
c 2 CG(K1) with P1

c � P . With this same c we have Lc � H.

3. Proof of Theorem 2

In this section we turn to the proof of Theorem 2.

Let G be a �nite group with d3(G) = 2=3 and O30(G) = 1. Let P be a Sylow 3-subgroup
in G. Then P is abelian by Proposition 8. By Burnside's Lemma (see Theorem 7.1.5 in
[4]), we see that 2=3 = d3(G) = d3(NG(P )). This implies that NG(P )=CG(P ) has order 2,
the subgroup NG(P ) centralizes a subgroup of index 3 in P , and so [P;NG(P )] has order
3 and P = [P;NG(P )]� (P \ Z(NG(P ))).

Since O30(G) = 1, the Fitting subgroup F(G) of G is a 3-group. Also, by the Focal
Subgroup Theorem, see [4, pages 165-167], we have that P \G0 has order 3.

Let E = E(G) be the subgroup generated by the components of G. We claim that E = 1
or E is a simple group with a Sylow 3-subgroup of order 3.

Suppose that E 6= 1. Then the Sylow 3-subgroup of E has order 3 since E � G0 and
O30(G) = 1. Again since O30(G) = 1, the subgroup Z(E) is a 3-group. Then, by the Focal
Subgroup Theorem, Z(E) has order 1 or 3. If jZ(E)j = 3 then E must be the central
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product of simple Suzuki groups by [11], however a simple Suzuki group cannot have a
Schur multiplier of order divisible by 3. Thus Z(E) = 1. So E is a direct product of simple
groups and each factor has order divisible by 3, whence E is a simple group whose Sylow
3-subgroup has order 3.

So in this case the generalized Fitting subgroup F�(G) is E � B where B is an abelian
3-group. Note that G centralizes B (since B\G0 = 1) and so B = Z(G). Thus G=B embeds
in the automorphism group of E (which is almost simple since E is simple). Inspection of
the simple groups with Sylow 3-subgroup of order 3 shows that G=EB has order prime to
3. As H2(E;B) = 0 (since E has a cyclic Sylow 3-subgroup, its Schur multiplier has order
prime to 3), the extension 1! B ! G! G=B ! 1 splits and therefore (2) holds.

If E = 1, then F�(G) = B is a 3-group and G=B acts faithfully on B, whence B = P
and G=B has order 2. Therefore (1) holds and the proof is complete.
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