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Abstract. Let G be a non-cyclic finite group that can be generated by two
elements. A subset S of G is said to be a pairwise generating set for G if every
distinct pair of elements in S generates G. The maximal size of a pairwise
generating set for G is denoted by ω(G). The minimal number of proper
subgroups of G whose union is G is denoted by σ(G). This is an upper bound
for ω(G). In this paper we give lower bounds for ω(G) and upper bounds for
σ(G) whenever G is a sporadic simple group.

1. Introduction

Dixon [8] showed that two randomly chosen elements of an alternating group An

generate An with probability tending to 1 as n tends to infinity. He conjectured
that a similar result holds for all finite simple groups. Kantor and Lubotzky [12]
confirmed this conjecture for classical (and small rank exceptional) groups. The
proof of Dixon’s conjecture was completed by Liebeck and Shalev in [14], where the
large rank exceptional groups of Lie type were dealt with.

Let G be a finite simple group, let m(G) be the smallest index of a proper
subgroup of G, and let P (G) be the probability that two randomly chosen elements
of G generate G. Liebeck and Shalev [15] proved that there exist constants c1,
c2 > 0 such that

1− (c1/m(G)) < P (G) < 1− (c2/m(G))
for all non-abelian finite simple groups G. Moreover, we have

lim inf m(G)(1− P (G)) = 1 and lim sup m(G)(1− P (G)) = 3

where the limits are taken as G ranges over all non-abelian finite simple groups.
This result has an interesting consequence (Corollary 1.7 of [15]) which we will state
below.

Let G be a non-cyclic finite group that can be generated by two elements. We
define ω(G) to be the largest integer m so that there exists a subset S of G of size
m with the property that any two distinct elements of S generate G. We say that
a subset S of G pairwise generates G if any two distinct elements of S generate G.
We will also say that S is a pairwise generating set for G.

In Corollary 1.7 of [15] Liebeck and Shalev observed that their above-mentioned
result, together with Turán’s theorem [20] of extremal graph theory, imply that
there exists a constant c > 0 so that c · m(G) ≤ ω(G) for any non-abelian finite
simple group G.

No group is the union of two proper subgroups. Scorza [18] showed that a group
G is the union of three proper subgroups if and only if the Klein four group is a
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factor group of G. By a result of Neumann [17], if G is the union of finitely many
proper subgroups then the intersection of all these subgroups is a subgroup of finite
index in G.

The above results lead to the following definitions. For a non-cyclic finite group G
a set of proper subgroups of G whose union is G is called a covering for G. A covering
consisting of the smallest possible number of subgroups is called a minimal covering.
Let σ(G) denote the size of a minimal covering for G. Obviously, ω(G) ≤ σ(G) for
a non-cyclic finite group that can be generated by two elements. This upper bound
for ω(G) is often exact.

Cohn [5] was the first mathematician to study the invariant σ systematically.
He described all groups G with σ(G) = 4, 5, and 6. By answering two of Cohn’s
questions, Tomkinson [19] showed that there is no group G with σ(G) = 7 and that
for every finite solvable group G we have σ(G) = q + 1 where q is the minimal size
of a chief factor of G that has more than one complement. Recently Bhargava [1]
proved that for every positive integer n there exists a finite (possibly empty) set
of finite groups S(n) such that σ(G) = n if and only if G has a factor group in
S(n) but does not have a factor group in S(m) for m < n. Even more recently,
answering a question of Tomkinson [19], Detomi and Lucchini [7] showed that there
is no group G with σ(G) = 11.

Interestingly, the exact values of ω(G) and σ(G) can be computed for many finite
groups G. Let Sn and An be the symmetric and alternating groups on n letters
respectively. Blackburn [2] showed that if n is a sufficiently large odd integer, then
ω(Sn) = σ(Sn) = 2n−1, and that if n is a sufficiently large integer congruent to 2
modulo 4, then ω(An) = σ(An) = 2n−2. Later Britnell, Evseev, Guralnick, Holmes,
Maróti [4] showed that if G is any of the groups (P)GL(n, q), (P)SL(n, q) and if
n ≥ 12, then

ω(G) =
1
b

n−1∏

i=1
b-i

(qn − qi) + [N(b)/2]

where b is the smallest prime factor of n, N(b) is the number of proper subspaces
of an n-dimensional vector space over the field of q elements whose dimensions are
not divisible by b, and [x] denotes the integer part of x. There is also a more
complicated formula for σ(G) for G any of the groups (P)GL(n, q), (P)SL(n, q) for
n ≥ 12.

The methods so far developed to calculate the exact value of ω(G) for a finite
simple group G are efficient only when the order of G is ‘large’. However, we are
also interested in developing techniques that work for ‘small’ finite simple groups.

In this paper we deal with the 26 sporadic simple groups. We provide lower
bounds for ω(G) and upper bounds for σ(G) whenever G is a sporadic simple
group.

Theorem 1.1. Let G be a sporadic simple group. An ad hoc, greedy, or König
method (see Table and Sections 2 and 3) was used to find the lower bound for ω(G)
as in the third entry of the given row of the Table. The given subgroups in the fourth
entry of the row of the Table are representatives of the conjugacy classes of proper
subgroups of G all of whose union is G. The cardinality of this covering is at most
the number given in the last entry of the row of the Table.

In [11] the exact values of σ(G) were found for the groups M11, M22, M23, Ly,
and O

,
N. Here we calculate the exact values of σ(G) for the groups G ∼= Fi22, HS,

Ru, HN, He, and M24.
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Theorem 1.2. The exact value of the invariant σ(G) is known and is given in
Section 3 for G any of the groups M11, M22, M23, M24, Fi22, He, Ru, HS, HN,
O

,
N, and Ly.

G method lower bound the set consisting of all conjugates of upper bound
used for ω(G) these subgroups is a covering for G for σ(G)

M11 ad hoc 23 L2(11), M10 23
M12 ad hoc 131 M11, A6.22, L2(11) 222
M22 greedy 732 M21, L2(11), 24 :A6 771
M23 König 41079 24 :A7 or L3(4):2, A8, 23:11 41079
M24 König 2145 M23, L3(4):S3, M12 :2 3336
J1 greedy 4813 19:6, 23 :7:3, D6 ×D10, L2(11) 5777
J2 greedy 380 3:S6, 21+4 :A5, U3(3), 22+4(3× S3) 1220
J3 König 23648 L2(16):2, L2(19), (3×A6):22 44100
J4 greedy 2.510122× 1017 29:28, 43:14, 211 :M24, 21+12.3.M22 :2, 2.510127× 1017

23+12.(S5 × L3(2)), 210 :L5(2), U3(11):2
Fi22 greedy 149276 2.U6(2), O+

8 (2).S3, 210 :M22, O7(3) 221521
Fi23 greedy 8768674848 O+

8 (3).S3, 211.M23, A12.2, 8875303987
22.U6(2).2, S8(2), 2.Fi22

Fi ′24 greedy 3.091639× 1021 Fi23, (3×O+
8 (3):3):2, O−10(2), 3.091640× 1021

29:14, 37.O7(3), NFi ′24(3A)
Co3 greedy 265413 M23, 35 :(M11 × 2), U3(5):S3, McL:2 833452
Co2 greedy 4327363 U6(2).2, 21+8 :S6(2), McL, M23, HS:2 4730457
Co1 König 46490622576 (A4 ×G2(4)):2, 3.Suz.2, 21+8O+

8 (2), 58033605710
(A5 × J2):2, 211 :M24

Suz greedy 194928 G2(4), 21+6U4(2), U5(2), J2 :2 540333
McL greedy 13245 M22, 2.A8, U4(3) 24575
He greedy 212937 S4(4):2, 22.L3(4).S3, 21+6L3(2), 3:S7 464373
Ru greedy 12970337 L2(29), (22 × S2(8)):3, 21+4+6 :S5 12992175
Th König 103423277855 25.L5(2), 21+8.A9, U3(8):6, 103614133000

(3×G2(3)):2, 39.2.S4

HS greedy 1247 M22, S8, U3(5).2 1376
HN König 162639021 U3(8).3, 2.HS.2, A12 229758831

21+8.(A5 ×A5).2, 51+4 :21+4.5.4
O

,
N greedy 20141165 42.L3(4):21, J1, L2(31) 36450855

Ly greedy 1.128456× 1015 2.A11, 3.McL:2, 37:18, 67:22, G2(5) 1.128457× 1015

B ad hoc 3.8434× 1030 NB(2A), NB(2B), NB(3A), NB(3B), NB(5A) 3.8437× 1030

NB(5B), NB(47A), 29.216.S8(2), Th
M ad hoc 1.2× 1049 NM(2A), NM(2B), NM(3A), NM(3B), NM(3C) 1.5× 1049

NM(5A), NM(5B), NM(7A), NM(7B), NM(13A)
NM(13B), NM(38), L2(59), L2(71)

2. Preliminaries

Unless specified otherwise, all information used in this section is given in the
Atlas [6] and the Gap character table library [9]. All computations with group
elements are performed using Magma [3].

In this section we describe two different methods to compute lower bounds for
ω(G).

2.1. Cyclic subgroups.

Proposition 2.1. Let G be a finite group that can be generated by two elements.
Let H1, . . . , Hn be representatives of the conjugacy classes of maximal subgroups of
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G. Let C be a conjugacy class of cyclic subgroups. Suppose c ∈ C is contained in
exactly ki conjugates of Hi, 1 ≤ i ≤ n. Then a pairwise generating set always exists
which consists of generators of members of C and has size the integer part of

|C|
1 +

∑n
i=1 ki

(
|C|ki

(G:Hi)
− 1

) .

Proof. Choose c ∈ C and set S = {g}, where c = 〈g〉. For a fixed index i (1 ≤ i ≤ n)
there are ki conjugates of Hi that contain c, and each of these conjugates contain
|C|ki/(G:Hi) members of C, including c itself. Hence there are at most

1 +
n∑

i=1

ki

( |C|ki

(G:Hi)
− 1

)

members of C that generate a proper subgroup of G with c. We can always choose
a generator from a member of C to add to S when

|S|
(

1 +
n∑

i=1

ki

( |C|ki

(G:Hi)
− 1

))
< |C|.

This gives the result. ¤

A corollary of Proposition 2.1 is the following.

Corollary 2.1. Suppose that a pairwise generating set S contains elements from
mi conjugates of Hi, 1 ≤ i ≤ n. Then the number of generators of members of C
that can be added to S is at least the integer part of

|C| −∑n
i=1 mi

|C|ki

(G:Hi)

1 +
∑n

i=1 ki

(
|C|ki

(G:Hi)
− 1

) .

Let G and C be given as in the statement of Proposition 2.1. We use Corollary
2.1 to define functions f(C) and f(C) where C is a union of some conjugacy classes
of G. Let f(C) be the integer part of

|C|
1 +

∑n
i=1 ki

(
|C|ki

(G:Hi)
− 1

) .

For each conjugacy class of cyclic subgroups D fix a conjugacy class of generators
of members of D and denote this subset of G by D̄. For a union of some conjugacy
classes C of G define f ′(C) to be the size of a pairwise generating set obtained in
the following manner.

(1) Take a pairwise generating set S, of size at least f(D), which is a subset
of D̄ ⊆ C, where f(D) ≥ f(D′) for any conjugacy class of cyclic subgroups
D′ with D̄′ ⊆ C.

(2) Let D be a conjugacy class of cyclic subgroups with D̄∩S = ∅, D̄ ⊆ C, and
f(D) ≥ f(D′) for all conjugacy classes of cyclic subgroups D′ such that
D̄′ ∩ S = ∅ and D̄′ ⊆ C. Include in S at least as many members of D̄ as
given by Corollary 2.1.

(3) Repeat Step 2 until all conjugacy classes of cyclic subgroups have been
considered. Let f ′(C) be the size of S.

Note that f ′(C) is not well defined. The invariant f ′(C) depends on the choices
of D̄’s for the various D’s, it depends on the numbers of elements taken into S in
Steps (1) and (2), and it depends on which of the two distinct conjugacy classes of
subgroups C or D is considered first in case f(C) = f(D). Consequently, we define
f(C) to be the maximum value of all possible values of f ′(C).
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2.2. König’s Theorem. A bipartite graph Γ = (X,Y,E) is a graph with vertex
set X ∪ Y , edge set E with the property that every edge connects a vertex of X
with a vertex of Y . A matching is a set of edges such that no pair of edges meet at
a common vertex. A maximum matching is a matching of largest possible size. A
covering K is a set of vertices of Γ so that every edge in Γ has an endpoint in K.
A minimum covering is a covering of least possible size.

Theorem 2.1 (König, [13]). Suppose that Γ = (X,Y, E) is a bipartite graph. Then
the number of edges in a maximum matching equals the number of vertices in a
minimum covering.

Theorem 2.1 (also Hall’s Marriage Theorem) has the following consequence.

Theorem 2.2. Let C be a conjugacy class in G with the property that there are ex-
actly two conjugacy classes of maximal subgroups of G containing elements from C.
Let H1 and H2 be representatives of these conjugacy classes of maximal subgroups.
Suppose also that every element of C is contained in a unique conjugate of H1 and
also in a unique conjugate of H2. Let k be the minimum of (G:H1) and (G:H2).
Then there exists a pairwise generating set for G consisting of k members of C.
Proof. One may define a bipartite graph whose vertices are the conjugates of H1

and H2 with an edge between two vertices if and only if a member of C is contained
in their intersection. The number of vertices in a minimum covering of this graph
is clearly k. Hence, by Theorem 2.1, the number of edges in a maximum matching
of the graph also equals k. ¤

3. The groups

The notations are that of the Atlas [6] and the Gap character table library [9].

Lemma 3.1. ω(M11) = σ(M11) = 23.

Proof. The set consisting of all conjugates of the subgroups L2(11) and M10 is a
covering for M11. Since the size of this covering is 23, we have σ(M11) ≤ 23. (In
fact, in [11] it is shown that σ(M11) = 23.) To prove the lemma it is sufficient to
show that ω(M11) ≥ 23. Each element of order 11 in M11 is contained in exactly
one copy of L2(11) and no other maximal subgroup of M11. Similarly, each element
of order 8 in M11 is in exactly one copy of M10 and no other maximal subgroup.
Hence we may choose one element of order 11 from each conjugate of L2(11) and
one element of order 8 from each conjugate of M10 to obtain a pairwise generating
set for M11 of size 23. ¤

Lemma 3.2. 131 ≤ ω(M12) ≤ σ(M12) ≤ 222.

Proof. The set consisting of all conjugates of the subgroups M11, A6.22, and L2(11)
is a covering for M12. Since the size of this covering is 222, we have σ(M12) ≤ 222.
We use the computer package Magma [3] to perform a random search for a pairwise
generating set. We find a pairwise generating set for M12 of size 131. ¤

Lemma 3.3. 732 ≤ f(M22) ≤ ω(M22) ≤ σ(M22) = 771.

Proof. By [11], the set consisting of all conjugates of the subgroups M21, L2(11),
and 24 :A6 is a minimal covering for M22. Since the size of this covering is 771, we
have σ(M22) = 771. By Magma [3] we find that 732 ≤ f(M22). ¤

Lemma 3.4. ω(M23) = σ(M23) = 41079.
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Proof. By [11], the set consisting of all conjugates of the subgroups 24 :A7, A8, and
23:11 is a minimal covering for M23. Since the size of this covering is 41079, we
have σ(M23) = 41079. An element of the class 14B is in one of the 253 conjugates
of 24.A7 and in one of the 253 conjugates of L3(4).2. By Theorem 2.2, we get
a pairwise generating set of 253 elements of 14B. Similarly we get a pairwise
generating set of 506 elements of class 15B, as an element of this class is contained
in one of the 506 conjugates of A8 and in one of the 1771 conjugates of 24.(3×A5).
An element of class 23A is in one conjugate of the maximal subgroup 23:11 and
no other maximal subgroup, so we can adjoin 40320 elements of class 23A to our
pairwise generating set. This gives 41079 ≤ ω(M23). ¤
Lemma 3.5. 2145 ≤ ω(M24) ≤ σ(M24) = 3336.

Proof. The set consisting of all conjugates of the subgroups M23, L3(4):S3, and
M12 :2 is a covering for M24. Since the size of this covering is 3336, we have σ(M24) ≤
3336.

An element of class 23A is in one of the 24 conjugates of M23 and one of the
40320 conjugates of L2(23). If we use all conjugates of M23 then we would also
cover the classes 8A, 11A, 14A, and 15A. The only class that we could cover by
using L2(23) instead would be 12B, but a cheaper way to cover the two classes 23A
and 12B would be to use all conjugates of M23 and all 1288 conjugates of M12 :2.
So any minimal covering of M24 must include all 24 conjugates of M23.

The classes whose elements generate maximal cyclic subgroups and which are
not covered by the conjugates of the maximal subgroup M23 are 10A, 12A, 12B,
and 21A. An element of the class 21A is in one of the 2024 conjugates of L3(4):S3

and one of the 3795 conjugates of 26 :(L3(2) × S3). If we use the latter conjugacy
class of subgroups, then we would also cover the classes 12A and 12B. But fewer
subgroups are needed if we choose all conjugates of L3(4):S3 and all conjugates of
M12 :2. This proves that we must include all conjugates of L3(4):S3 in our covering.

The classes whose elements generate maximal cyclic subgroups and which are not
covered by the conjugates of M23 and L3(4):S3 are 10A, 12A, and 12B. The most
efficient way to cover 12B is to use the 1288 conjugates of M12 :2. This gives us all
the remaining group elements, so this choice is optimal. This yields σ(M24) = 3336,
as claimed.

By Theorem 2.2, we get a pairwise generating set of size 2024 consisting of
elements of class 21A. As said above, an element of the class 21A is in one conjugate
of L3(4):S3 and in one conjugate of 26 :(L3(2) × S3) (and in no other maximal
subgroup of M24). The conjugacy classes of M24 not intersecting either subgroup
L3(4):S3 and 26 :(L3(2)× S3) are 10A, 23A, and 11A. We find that f(10A∪ 23A∪
11A) is 121. This gives the lower bound of 2145 for ω(M24). ¤
Lemma 3.6. 4813 ≤ f(J1) ≤ ω(J1) ≤ σ(J1) ≤ 5777.

Proof. The set consisting of all conjugates of the subgroups 19:6, 23 :7:3, D6×D10,
and L2(11) is a covering for J1. Since the size of this covering is 5777, we have
σ(J1) ≤ 5777. By Magma [3] we find that 4813 ≤ f(J1). ¤
Lemma 3.7. 380 ≤ f(J2) ≤ ω(J2) ≤ σ(J2) ≤ 1220.

Proof. The set consisting of all conjugates of the subgroups 3:S6, 21+4 :A5, U3(3),
and 22+4.(3 × S3) is a covering for J2. Since the size of this covering is 1220, we
have σ(J2) ≤ 1220. By Magma [3] we find that 380 ≤ f(J2). ¤
Lemma 3.8. 23648 ≤ ω(J3) ≤ σ(J3) ≤ 44100.

Proof. The set consisting of all conjugates of the subgroups L2(16):2, L2(19), and
(3 × A6):22 is a covering for J3. Since the size of this covering is 44100, we have
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σ(J3) ≤ 44100. An element of class 19A is in the 14688 conjugates of both classes
of maximal subgroups isomorphic to L2(19). By Theorem 2.2, we get a pairwise
generating set consisting of 14688 elements of class 19A. The conjugacy classes not
in either subgroup isomorphic to L2(19) are 12A, 15A, 17A, and 8A. We find that
f(12A∪15A∪17A∪8A) = 8960. This gives the lower bound of 23648 for ω(J3). ¤
Lemma 3.9. 2.510122× 1017 ≤ f(J4) ≤ ω(J4) ≤ σ(J4) ≤ 2.510127× 1017.

Proof. The set consisting of all conjugates of the subgroups 29:28, 43:14, 211 :M24,
and 21+12.3.M22 :2 is a covering for J4. Since the size of this covering is at most
2.510127 × 1017, we have σ(J4) ≤ 2.510127 × 1017. By Magma [3] we find that
2.510122× 1017 ≤ f(J4). ¤
Lemma 3.10. 149276 ≤ f(Fi22) ≤ ω(Fi22) ≤ σ(Fi22) = 221521.

Proof. The set consisting of all conjugates of the subgroups 2.U6(2), O+
8 (2).S3,

210 :M22, and O7(3) is a covering for Fi22. Since the size of this covering is 221521,
we have σ(Fi22) ≤ 221521.

Each element of class 22B is in one of the 3510 conjugates of 2U6(2) and nothing
else, so the covering must contain this conjugacy class of subgroups.

An element of class 21A is in one subgroup in each class of S10, one of the 1647360
conjugates of S3×U4(3).2 and one of the 61776 conjugates of O+

8 (2).3.2. Using one
of the conjugacy classes of S10 would cover 21A and 9C in 17791488 subgroups. A
cheaper way is to use all conjugates of O+

8 (2).3.2 and one class of 14080 conjugates
of O7(3). Using S3×U4(3).2 would not give us any conjugacy classes not available
in O+

8 (2).3.2. So the covering contains all conjugates of O+
8 (2).3.2.

The remaining classes are 13B and 16B. The optimal way of covering 16B is
to use all 142155 conjugates of 210 :M22. The only other choice would be to use
conjugates of the Tits group, as a 16B element is in four of these. This would also
cover 13B. But the cheapest way to cover these two conjugacy classes is to use all
142155 conjugates of 210 :M22 and one conjugacy class of subgroups isomorphic to
O7(3). (The index of O7(3) in Fi22 is 14080.) This completes the covering.

By Magma [3] we find that 149276 ≤ f(Fi22). ¤
Lemma 3.11. 8768674848 ≤ f(Fi23) ≤ ω(Fi23) ≤ σ(Fi23) ≤ 8875303987.

Proof. The set consisting of all conjugates of the subgroups O+
8 (3).S3, 211.M23,

A12.2, 22.U6(2).2, S8(2), and 2.Fi22 is a covering for Fi23. Since the size of this
covering is 8875303987, we have σ(Fi23) ≤ 8875303987. By Magma [3] we find
that 8768674848 ≤ f(Fi23). ¤
Lemma 3.12. 3.091639× 1021 ≤ f(Fi ′24) ≤ ω(Fi ′24) ≤ σ(Fi ′24) ≤ 3.091640× 1021.

Proof. The set consisting of all conjugates of the subgroups Fi23, (3×O+
8 (3):3):2,

O−10(2), 29:14, 37.O7(3), and NFi ′24(3A) is a covering for Fi ′24. Since the size of this
covering is at most 3.091640×1021, we have σ(Fi ′24) ≤ 3.091640×1021. By Magma
[3] we find that 3.091639× 1021 ≤ f(Fi ′24). ¤
Lemma 3.13. 265413 ≤ f(Co3) ≤ ω(Co3) ≤ σ(Co3) ≤ 833452.

Proof. The set consisting of all conjugates of the subgroups M23, 35 :(M11 × 2),
U3(5):S3, and McL:2 is a covering for Co3. Since the size of this covering is 833452,
we have σ(Co3) ≤ 833452. By Magma [3] we find that 265413 ≤ f(Co3). ¤
Lemma 3.14. 4327363 ≤ f(Co2) ≤ ω(Co2) ≤ σ(Co2) ≤ 4730457.

Proof. The set consisting of all conjugates of the subgroups U6(2).2, 21+8 :S6(2),
McL, M23, and HS:2 is a covering for Co2. Since the size of this covering is 4730457,
we have σ(Co2) ≤ 4730457. By Magma [3] we find that 4327363 ≤ f(Co2). ¤
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Lemma 3.15. 46490622576 ≤ ω(Co1) ≤ σ(Co1) ≤ 58033605710.

Proof. The set consisting of all conjugates of the subgroups (A4×G2(4)):2, 3.Suz.2,
21+8O+

8 (2), (A5 × J2):2, and 211 :M24 is a covering for Co1. Since the size of this
covering is 58033605710, we have σ(Co1) ≤ 58033605710.

An element of the class 39B is in the 688564800 conjugates of (A4 × G2(4)):2
and is in the 1545600 conjugates of 3.Suz.2. By Theorem 2.2 we get a pairwise
generating set consisting of 688564800 elements of class 39B. The conjugacy classes
not in either subgroup are 35A, 36A, 21C, 23B, 20C, 28A, 24F , 30D, 20B, 30E,
and 12I. We find that

f(35A∪36A∪21C∪23B∪20C∪28A∪24F ∪30D∪20B∪30E∪12I) = 45802057776.

This gives the lower bound of 46490622576 for ω(Co1). ¤
Lemma 3.16. 194928 ≤ f(Suz) ≤ ω(Suz) ≤ σ(Suz) ≤ 540333.

Proof. The set consisting of all conjugates of the subgroups G2(4), 21+6U4(2),
U5(2), and J2 :2 is a covering for Suz. Since the size of this covering is 540333,
we have σ(Suz) ≤ 540333. By Magma [3] we find that 194928 ≤ f(Suz). ¤
Lemma 3.17. 13245 ≤ f(McL) ≤ ω(McL) ≤ σ(McL) ≤ 24575.

Proof. The set consisting of all conjugates of the subgroups M22, 2.A8, and U4(3) is
a covering for McL. Since the size of this covering is 24575, we have σ(McL) ≤ 24575.
By Magma [3] we find that 13245 ≤ f(McL). ¤
Lemma 3.18. 212937 ≤ f(He) ≤ ω(He) ≤ σ(He) = 464373.

Proof. The set consisting of all conjugates of the subgroups S4(4):2, 22.L3(4).S3,
21+6L3(2), and 3:S7 is a covering for He. Since the size of this covering is 464373,
we have σ(He) ≤ 464373.

An element of class 17B is in one of the 2058 conjugates of S4(4).2 and no other
subgroup. This implies that a minimal covering must contain all 2058 conjugates
of this subgroup.

The remaining classes are 12B, 14D, 21B, 21D and 28B. An element of class
14D is in one of the 187425 conjugates of 21+6L3(2), one of the 625800 conjugates
of 71+2 :(S3 × 3) and one of the 244800 conjugates of 72 :SL2(7). Using 21+6.L3(2)
would give us 12B, but 71+2(S3×3) would give 21B and 21D, while 72 :SL2(7) does
not give any of the other conjugacy classes. We note that the set of all conjugates of
21+6.L3(2), 3·S7, and 22L3(3).S3 is a covering for He of size 462315. This is smaller
than 652800, the index of 71+2(S3× 3), so it must be best to include all conjugates
of 21+6.L3(2) in the covering at this point.

A 28B-element is in one of the 8330 conjugates of 22L3(3).S3 and one conjugate
each of 7:3 × L3(2) and S4 × L3(2). The latter two subgroups both have index
greater than 462315, so we use the conjugates of 22L3(3).S3. The only other class
is 21B. The best way to cover this class is to use all conjugates of 3·S7. This
completes the covering and gives σ(He) = 464373.

By Magma [3] we find that 212937 ≤ f(He). ¤
Lemma 3.19. 12970337 ≤ f(Ru) ≤ ω(Ru) ≤ σ(Ru) = 12992175.

Proof. The set consisting of all conjugates of the subgroups L2(29), (22× S2(8)):3,
and 21+4+6 :S5 is a covering for Ru. Since the size of this covering is 12992175, we
have σ(Ru) ≤ 12992175.

First we note that an element of class 29A is only in one conjugate of the maximal
subgroup L2(29), so all conjugates of this subgroup must be in a covering.

The remaining classes are 26C and 24B. First consider 26C. This is in one
of the 417600 conjugates of (22 × Sz(8)):3 and two of the 4677120 conjugates of
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L2(25).22. The latter has the advantage of covering some elements of 24B. But
we would need at least half the conjugates of L2(25).22 to cover 26C, so a better
way to cover 26C and 24B would be to use all conjugates of (22 × Sz(8)):3 and all
593775 conjugates of 21+4+6 :S5. So we put all conjugates of (22×Sz(8)):3 into the
covering.

The most efficient way to cover 24B is to use all conjugates of 21+4+6 :S5, and
this completes the covering. This proves σ(Ru) = 12992175.

By Magma [3] we find that 12970337 ≤ f(Ru). ¤
Lemma 3.20. 103423277855 ≤ ω(Th) ≤ σ(Th) ≤ 103614133000.

Proof. The set consisting of all conjugates of the subgroups 25.L5(2), 21+8.A9,
U3(8):6, (3 × G2(3)):2, and 39.2.S4 is a covering for Th. Since the size of this
covering is 103614133000, we have σ(Th) ≤ 103614133000.

An element of the class 27A is in the 2 × 96049408000 conjugates of the two
conjugacy classes of 39.2.S4. By Theorem 2.2 we get a pairwise generating set
of 96049408000 elements of class 27A. An element of class 39B is only in the
subgroup (3 × G2(3)):2, of which there are 3562272000 conjugates. Conjugacy
classes not in either subgroup are 19A, 20A, 21A, 28A, 30B, 31B. We find that
f(19A∪ 20A∪ 30B ∪ 28A∪ 31B ∪ 21A) is 3811597855. This gives a lower bound of
103423277855 for ω(Th). ¤
Lemma 3.21. 1247 ≤ f(HS) ≤ ω(HS) ≤ σ(HS) = 1376.

Proof. The set consisting of all conjugates of the subgroups M22, S8, and U3(5).2
is a covering for HS. Since the size of this covering is 1376, we have σ(HS) ≤ 1376.

An element of class 15A is in one conjugate of each of the 1100 maximal sub-
groups conjugate to S8, and one of the 5775 maximal subgroups conjugate to
5:4 × A5. If we use all conjugates of S8 then we also cover the classes 6A, 7A,
8A, 10B and 12A, but if we were to use 5:4 × A5 then we could cover 20A. Con-
sidering 20A and 15A alone, we see that this would not be the most efficient choice
for covering those classes, as it could be done by using S8 and the 176 conjugates
of U5(2). So we include all conjugates of S8 in our covering.

Next we look at 11A. This is in one conjugate of each class of M11 and one
conjugate of M22. Using any of those subgroups would also cover 5C, but either
choice of class of M11’s would give a conjugacy class of elements of order 8. This
would use 5600 subgroups to cover 11A and one class of elements of order 8, but a
cheaper method would be to use all 100 conjugates of M22 and all 176 conjugates
of U3(5).2. So the conjugates of M22 go into the covering.

This leaves 20A, 8B, and 8C. Using either class of U3(5).2 is an optimal way to
cover 20A, and would complete the covering. This gives σ(HS) = 1376.

By Magma [3] we find that 1247 ≤ f(HS). ¤
Lemma 3.22. 162639021 ≤ ω(HN) ≤ σ(HN) = 229758831.

Proof. The set consisting of all conjugates of the subgroups U3(8).3, 2.HS.2, A12,
21+8(A5 × A5).2, and 51+4 :21+4.5.4 is a covering for HN. Since the size of this
covering is 229758831, we have σ(HN) ≤ 229758831.

The only maximal subgroup containing an element of class 19B is U3(8).3 There
are 16500000 conjugates of this subgroup. The only maximal subgroup containing
an element of class 22A is 2.HS.2, and there are 1539000 of these. There are
two maximal subgroups containing an element of class 35B. These are (D10 ×
U3(5)).2 and A12. There are 1140000 conjugates of the latter and 108345600 of the
former. An element of class 25B is in both of the 5-normalizers, 51+4 :21+4.5.4 and
52+1+2.4.A5. There are 136515456 conjugates of the former maximal subgroup of
HN and there are 364041216 of the latter. By Theorem 2.2, we may have 1140000
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elements of class 35B and 136515456 elements of class 25B in a pairwise generating
set. This way, in total, we get a pairwise generating set of size 16500000+1539000+
1140000 + 136515456. This gives our lower bound for ω(HN).

The above observations prove that any minimal covering must contain all con-
jugates of U3(8).3 and 2·HS.2. The only remaining conjugacy class contained in
a conjugate of (D10 × U3(5)).2 is 35B, so the best way to cover 35B is to use all
conjugates of A12. This only leaves 20E, 25B and 30C.

Take the class 30C. An element of this class is contained in 21+8(A5 × A5).2,
52+1+24·A5, and a 3-centralizer. If we use the involution centralizer, 21+8(A5 ×
A5).2, then we also get 20E, but if we use the 5-normalizer, 52+1+24·A5, then we
get 25B. The 5-normalizer, 52+1+24·A5 has index 364041216, and an element of
class 20E is contained in three conjugates of it, so this would complete the covering
with 364041216 groups. But this is not optimal, as using the involution centralizer,
21+8(A5×A5).2 means that we only need the 136515456 conjugates of 51+4 :21+45.4
to complete the covering. This gives our formula for σ(HN). ¤
Lemma 3.23. 20141165 ≤ f(O

,
N) ≤ ω(O

,
N) ≤ σ(O

,
N) = 36450855.

Proof. By [11], the set consisting of all conjugates of the subgroups 42.L3(4):21,
J1, and L2(31) is a minimal covering for O

,
N. Since the size of this minimal

covering is 36450855, we have σ(O
,
N) = 36450855. By Magma [3] we find that

20141165 ≤ f(O
,
N). ¤

Lemma 3.24. 1.128456× 1015 ≤ f(Ly) ≤ ω(Ly) ≤ σ(Ly) = 112845655268156.

Proof. By [11], the set consisting of all conjugates of the subgroups 2.A11, 3.McL:2,
37:18, 67:22, and G2(5) is a minimal covering for Ly. Since the size of this covering
is 112845655268156, we have σ(Ly) = 112845655268156. By Magma [3] we find
that 1.128456× 1015 ≤ f(Ly). ¤
Lemma 3.25. 3.8434× 1030 ≤ ω(B) ≤ σ(B) ≤ 3.8437× 1030.

Proof. The power maps between conjugacy classes of B show that every maximal
cyclic group contains an element of class 2A, 2B, 2C, 2D, 3A, 3B, 5A, 5B, 31A,
or 47A.

The 2C centralizer is (22 × F4(2)):2 where the 22 has two elements of class 2A
and one of class 2C. So any element that powers up to a 2C involution is in the
subgroup 22×F4(2) and hence can be found in a 2A centralizer, and we do not need
to include any 2C centralizers in a covering if it already includes all conjugates of
the 2A centralizer.

The 2D centralizer 226·O+
8 (2) is a subgroup of the maximal subgroup 29+16·S8(2)

and the 31A centralizer is contained in Th. So there is a covering consisting all
conjugates of the maximal subgroups NB(2A), NB(2B), NB(3A), NB(3B), NB(5A),
NB(5B), NB(47A), 29+16·S8(2), and Th. Since the size of this covering is at most
3.8437× 1030, we have σ(B) ≤ 3.8437× 1030.

Taking one element from each cyclic group of order 47 in B gives the lower bound
of 3.8434× 1030 for ω(B). ¤
Lemma 3.26. 1.2× 1049 ≤ ω(M) ≤ σ(M) ≤ 1.5× 1049.

Proof. The power maps between conjugacy classes of M show that every maximal
cyclic group contains an element of class 2A, 2B, 3A, 3B, 3C, 5A, 5B, 7A, 7B,
13A, 13B, 41A, 59A or 71A.

We know from [10] that the centralizer of an element in 59A is contained in a
maximal subgroup L2(59), while the centralizer of an element in 71A is contained
in a maximal subgroup L2(71). Similarly, the centralizer of an element in 41A is
contained in a maximal subgroup NM(38). This gives a covering consisting of all
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conjugates of NM(2A), NM(2B), NM(3A), NM(3B), NM(3C), NM(5A), NM(5B),
NM(7A), NM(7B), NM(13A), NM(13B), NM(38), L2(59) and L2(71). Since the size
of this covering is at most 1.5× 1049, we have σ(M) ≤ 1.5× 1049.

A pairwise generating set can be found by taking an element of order 71 from
each conjugate of L2(71) and an element of order 59 from each conjugate of L2(59).
This gives a lower bound of 1.2× 1049 for ω(M). ¤
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