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Abstract. Let G be a finite group of order divisible by a prime p. The number
of p-regular and p′-regular conjugacy classes of G is at least 2

√
p− 1. Also, the

number of p-rational and p′-rational irreducible characters of G is at least 2
√
p− 1.

Along the way we prove a uniform lower bound for the number of p-regular classes
in a finite simple group of Lie type in terms of its rank and size of the underlying
field.

1. Introduction

Let G be a finite group. The number k(G) of conjugacy classes of G, which is equal
to the number of complex irreducible characters of G, is a fundamental invariant in
group theory. For instance, Higman’s famous conjecture is to show that if p is a
prime and G is a Sylow p-subgroup of the general linear group GLn(q), then k(G)
is a polynomial in q with integer coefficients. The celebrated k(GV ) theorem states
that if V is a finite, faithful, coprime G-module for a finite group G then the number
k(GV ) of conjugacy classes of the semidirect product GV is at most |V |.
Lower bounds for the number of conjugacy classes of a finite group also have a

long history. Answering a question of Frobenius, Landau [La03] proved in 1903 that
for a given k there are only finitely many groups having k conjugacy classes. This
result may be translated to a lower bound on the number of conjugacy classes of a
finite group G only in terms of the order of G. Problem 3 of Brauer’s list of problems
[Br63] was to give a substantially better lower bound for k(G). This was solved by
Pyber [Py92] and his bound was later improved by Keller [Ke09] and by Baumeister,
Maróti, Tong-Viet [BMT17]. In general it is not known whether there is a universal
constant c > 0 such that for every finite group G we have k(G) > c · log |G|.
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Bounding k(G) only in terms of a prime divisor p of |G| is another fundamental
problem. It is related to Problem 21 of Brauer [Br63] and a conjecture of Héthelyi
and Külshammer [HK00] that for any p-block B of any finite group G the number
k(B) of complex irreducible characters in B is 1 or is at least 2

√
p− 1.

As observed by Pyber, work of Brauer [Br42] implies that k(G) ≥ 2
√
p− 1 for G

a finite group whose order is divisible by a prime p but not by p2. Since then, this
bound had been conjectured to be true for all groups G and all primes p dividing |G|.
Proving k(G) ≥ 2

√
p− 1 for all G and p has turned out to be a hard problem.

Building on a series of relevant works by Héthelyi-Külshammer [HK00, HK03], Malle
[Ma06], Keller [Ke09], and Héthelyi-Horváth-Keller-Maróti [HHKM11], the conjec-
ture was finally confirmed in [Ma16].
In this paper, we consider element orders and improve this class number bound

significantly. Let G be a finite group and p be a prime. An element of G is called
p-regular if it has order coprime to p. Throughout the paper let kp′(G) denote the
number of conjugacy classes of p-regular elements in G and let kp(G) denote the
number of conjugacy classes of non-trivial p-elements in G.

Theorem 1.1. If G is a finite group and p is a prime dividing the order of G, then

kp(G) + kp′(G) ≥ 2
√

p− 1

with equality if and only if
√
p− 1 is an integer, G = Cp ⋊C√

p−1 and CG(Cp) = Cp.

Let IBrp(G) denote the set of irreducible p-Brauer characters of a finite group G.
As |IBrp(G)| = kp′(G), Theorem 1.1 provides a somewhat unexpected lower bound for
the number of irreducible p-Brauer characters, namely |IBrp(G)| ≥ 2

√
p− 1− kp(G).

Therefore, Theorem 1.1 can be viewed as a modular version of the bound k(G) ≥
2
√
p− 1 for the number of ordinary irreducible characters of G.
We make the bound |IBrp(G)| ≥ 2

√
p− 1 − kp(G) more explicit in the case when

G is non-p-solvable.

Theorem 1.2. Let p be a prime. Let G be a non-p-solvable finite group. The num-
ber |IBrp(G)| of irreducible p-Brauer characters of G is larger than 2

√
p− 1 unless

possibly if p ≤ 257. In any case, |IBrp(G)| > √
p− 1.

Next we improve the bound k(G) ≥ 2
√
p− 1, holding for any finite group G whose

order is divisible by a prime p, from the character point of view, by turning to fields
of character values. For a positive integer n, let Qn denote the cyclotomic field
extending the field of rational numbers Q by a primitive nth root of unity. For π
a set of primes, we say that χ ∈ Irr(G) is π-rational if there is a positive integer n
coprime to every prime in π such that χ(g) ∈ Qn for all g ∈ G. We write

Irrp−rat(G) := {χ ∈ Irr(G) : χ is p− rational}
and

Irrp′−rat(G) := {χ ∈ Irr(G) : χ is p′ − rational}.
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Here we note that p′ is the set of all primes not equal to p, and therefore a character
χ is p′-rational if and only if its values are in Q|G|p . Also, Irrp−rat(G)∩ Irrp′−rat(G) is
equal to IrrQ(G), the set of rational irreducible characters of G.

Theorem 1.3. If G is a finite group and p is a prime dividing the order of G, then

|Irrp−rat(G) ∪ Irrp′−rat(G)| ≥ 2
√

p− 1

with equality if and only if
√
p− 1 is an integer, G = Cp ⋊C√

p−1 and CG(Cp) = Cp.

Theorems 1.1 and 1.3 show that, in groups of order divisible by a prime p, there
is a correlation between the numbers kp(G) and kp′(G), as well as the numbers
|Irrp−rat(G)| and |Irrp′−rat(G)|, namely if one is small, the other must be large (com-
pared to p, of course). In the minimal situations where one number is minimal/small,
the bound indeed could be improved. We plan to address this at another time.
On the way to the proofs of Theorems 1.1, 1.2 and 1.3, we have to bound the

number of p-regular classes in finite simple groups. The following uniform bound
for simple groups of Lie type is of independent interest and might be useful in other
applications.

Theorem 1.4. If S is a simple group of Lie type defined over the field of q elements
with r the rank of the ambient algebraic group and p is any prime, then

kp′(S) >
qr

17r2
.

Better and more refined bounds for different types and different p are given in
Sections 3, 4 and 5. We remark that the problem of bounding the class number
(both upper and lower bounds) of finite groups of Lie type has been well studied,
for instance in the influential work of Fulman and Guralnick [FG12]. To provide a
relative comparison between kp′(S) and k(S), we note that the best general lower
bound for k(S) is qr/d, where d is the order of the group of diagonal automorphisms
of S.
Theorems 1.1, 1.2, and 1.3 are proved in Sections 7, 8, and 9, respectively. In

Sections 2, 3, 4 and 5 we prove various bounds for the number of p-regular and
p′-regular classes in finite nonabelian simple groups S, as well as the number of
Aut(S)-orbits on those classes. Finally, Theorem 1.4 is proved in Section 6.

2. Orbits of p-regular and p’-regular classes of simple groups

Let p be a prime and let S be a nonabelian finite simple group. Recall that an
element is p-regular in S if it has order coprime to p. We denote the set of p-regular
elements in S by Sp′ , the set of p-regular conjugacy classes in S by Clp′(S), and the
number of p-regular conjugacy classes in S by kp′(S). We denote the set of non-trivial
p-elements in S by Sp, the set of all conjugacy classes in S contained in Sp by Clp(S),
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and the number of conjugacy classes in S contained in Clp(S) by kp(S). When a
group G acts on a set X, we use n(G,X) to denote the number of G-orbits on X.
To prove our main results we need to bound the number of Aut(S)-orbits on p-

regular and p′-regular classes of S for all nonabelian simple groups S, as presented
in the following theorem. We will prove it in this and the next three sections.

Theorem 2.1. Let S be a nonabelian finite simple group and let p be a prime divisor
of |S|. We have

(i) The number of Aut(S)-orbits on the set Clp′(S)∪Clp(S) is larger than 2
√
p− 1

except if (S, p) is equal to (A5, 5) or to (PSL2(16)), 17).
(ii) The number of Aut(S)-orbits on p-regular classes of S is at least 2(p− 1)1/4.

The equality occurs if and only if (S, p) = (PSL2(16)), 17).
(iii) The number of Aut(S)-orbits on p-regular classes of S is greater than 2

√
p− 1

unless possibly when (S, p) is listed in Table 1.

2.1. Some generalities. Observe that any nonabelian finite simple group has order
divisible by at least three distinct primes by Burnside’s Theorem. It immediately
follows that

n(Aut(S),Clp′(S)) ≥ 3

and so Theorem 2.1 is true for p = 2 and p = 3. Thus we may assume in this and
the following sections that p ≥ 5.

Lemma 2.2. Theorem 2.1 is true for S a sporadic simple group, the Tits group, and
groups of Lie type of rank r ≥ 3 in characteristic p ≥ 5.

Proof. The statement follows for S a sporadic simple group or S the Tits group using
[Atl, GAP]. Assume that S is of Lie type of rank r ≥ 3 in characteristic p. Let S be
of the form G/Z(G), where G = GF is the set of fixed points of a simple algebraic
group G of simply connected type defined in characteristic p, under a Frobenius
endomorphism F . By [Ca85, Theorem 3.7.6], the number of semisimple classes of G
is qr, where q is the size of the underlying field of G and r is the rank of G. Therefore,

kp′(S) ≥
kp′(G)

kp′(Z(G))
≥ qr

|Z(G)| =
qr

d
,

where d is the order of the group of diagonal automorphisms of S. It follows that

n(Aut(S),Clp′(S)) ≥
qr

d · |Out(S)| .

To prove the lemma, it is sufficient to show that qr/(d|Out(S)|) > 2
√
p− 1. This

turns out to be true for all S and relevant values of p, q, and r. �
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Table 1. Possible exceptions for the bound n(Aut(S),Clp′(S)) > 2
√
p− 1.

S p n(Aut(S),Clp′(S))
A5 5 3
PSL2(7) 7 4
A6 5 4
PSL2(8) 7 4
PSL2(9) 5 4
PSL2(11) 11 6
PSL2(16) 17 5
PSL2(27) 13 5
PSL2(32) 11 6
PSL2(32) 31 6
PSL2(81) 41 10
PSL2(128) 43 12
PSL2(128) 127 12
PSL2(243) 61 15
PSL2(256) 257 21
PSL3(8) 73 13
PSU3(16) 241 ≥ 27
2B2(8) 13 6
2B2(32) 31 8
2B2(32) 41 9
2B2(128) 113 ≥ 19
2B2(128) 127 ≥ 14
Ω−

8 (4) 257 ≥ 32

The next result is essential in our proofs as it helps to reduce from a classical group
to one of smaller rank. From now on q is always a prime power ℓf , where ℓ is a prime
and f is a positive integer.
Let π denote any of the symbols p′ and p. We denote the number of Aut(S)-orbits

on the set Clπ(S) by n(Aut(S),Clπ(S)).

Lemma 2.3. If S and T are (non-abelian) finite simple groups such that

(S, T ) ∈ {(An,An−1), (PSLn(q),PSLn−1(q)), (PSUn(q),PSUn−1(q))}
or (S, T ) = (PSp2n(q),PSp2n−2(q)) with q odd, then

n(Aut(S),Clπ(S)) ≥ n(Aut(T ),Clπ(T )).

Proof. Let (S, T ) = (An,An−1). Observe that n ≥ 6 by assumption. The group T may
be considered as a point-stabilizer in S. Note that Aut(Am) = Sm for every integer
m at least 5 and different from 6. Assume that n ≥ 8. In this case n(Aut(S),Clπ(S))
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and n(Aut(T ),Clπ(T )) are equal to the number of elements in Sπ and Tπ of different
cycle shapes. The desired bound follows since Tπ is contained in Sπ. Assume that
n ∈ {6, 7}. The group Aut(A6) contains S6 as a subgroup of index 2 and Aut(A6) fuses
the two conjugacy classes of A6 both consisting of elements of order 3. Since p ≥ 5, we
see that n(Aut(A6),Clp(A6)) is equal to the number of possible cycle shapes of non-
trivial p-elements in A6 and n(Aut(A6),Clp′(A6)) is equal to the number of possible
cycle shapes of p-regular elements in A6 minus 1. The desired bound follows for π = p
and also for n = 7. Let n = 6 and π = p′. Since p ≥ 5 and n = 6, we must have
p = 5. Finally, n(Aut(A6),Cl5′(A6)) = 4 > 3 = n(Aut(A5),Cl5′(A5)).
Observe that n ≥ 3 since T is assumed to be non-abelian and simple.
Consider the case when both S and T are projective special linear groups.
Let V be the natural GLn(q)-module of dimension n defined over the field of size

q. The group SLn(q) acts naturally on V . Let W be a 1-dimensional subspace in V
and let U be a complementary (n− 1)-dimensional subspace in V . There is a group
SLn−1(q) which acts naturally on U and which fixes W . All automorphisms of S
can be described by automorphisms of SLn(q) and the group Out(S) is isomorphic
to D2(n,q−1)×Cf , see [Wi09, Section 3.3.4]. The field automorphisms and the inverse
transpose automorphism of SLn(q) restrict naturally to the subgroup SLn−1(q) just
defined. Moreover, elements a and b of SLn−1(q) lie in the same GLn(q)-orbit if and
only if a and b are conjugate in GLn−1(q) by a theorem on rational canonical forms.
It follows that the number N of orbits of Aut(SLn(q)) on the subset consist-

ing of those elements of Clπ(SLn(q)) whose members fix some 1-dimensional sub-
space of V is at least n(Aut(SLn−1(q)),Clπ(SLn−1(q))), which in turn is at least
n(Aut(PSLn−1(q)),Clπ(PSLn−1(q))).
On the other hand, N is at most n(Aut(PSLn(q)),Clπ(PSLn(q))).
Let S and T be projective special unitary groups.
Let V be the natural GUn(q)-module of dimension n defined over the field of size

q2. The module V is equipped with a non-singular conjugate-symmetric sesquilin-
ear form f . The group SUn(q) acts naturally on V . Let W be a 1-dimensional
non-singular subspace in V with respect to f . Let U be the (n − 1)-dimensional
non-singular subspace of V perpendicular to W with respect to the form f . There
is a subgroup SUn−1(q) which acts naturally on U and which fixes W . The auto-
morphisms of the simple group PSUn(q) are described in [Wi09, Section 3.6.3]. All
outer automorphisms of PSUn(q) come from outer automorphisms of SUn(q), these
are diagonal automorphisms or field automorphisms. Field automorphisms preserve
the subgroup SUn−1(q). By a result of Wall [Wa63, p. 34, 13, 2], elements a and
b of SUn−1(q) lie in the same GUn(q)-orbit if and only if a and b are conjugate in
GUn−1(q).
The proof can now be completed as in the linear case by replacing the groups

SLn(q), SLn−1(q), PSLn−1(q), PSLn(q) by SUn(q), SUn−1(q), PSUn−1(q), PSUn(q)
respectively.
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Let S and T be projective symplectic groups.
Let V be the natural Sp2n(q)-module of dimension n defined over the field of size q.

The module V is equipped with a non-singular alternating bilinear form f . Let W be
a 2-dimensional non-singular subspace in V with respect to f . Let U be the (2n−2)-
dimensional non-singular subspace of V perpendicular to W with respect to the form
f . There is a subgroup Sp2n−2(q) which acts naturally on U and which fixes W . The
automorphisms of the simple group PSp2n(q) are described in [Wi09, Section 3.5.5].
All outer automorphisms of PSp2n(q) come from outer automorphisms of Sp2n(q) and
these are diagonal automorphisms and field automorphisms since we are assuming
that q is odd. All outer automorphisms of Sp2n(q) preserve the subgroup Sp2n−2(q).
By a result of Wall [Wa63, p. 36], elements a and b of Sp2n−2(q) lie in the same
Sp2n(q)-orbit if and only if a and b are conjugate in Sp2n−2(q). See also [Fu00, 210,
211].
The proof can now be completed as in the linear or unitary case. �

To have good estimates of n(Aut(S),Clp′(S)) and n(Aut(S),Clp(S) ∪ Clp′(S)),
especially for low rank classical groups and exceptional groups, we will use so-called
strongly self-centralizing maximal tori. A subgroup T of G is said to be strongly
self-centralizing if CG(t) = T for every 1 6= t ∈ T . These groups are useful because
of the following lemma due to Babai, Pálfy and Saxl.

Lemma 2.4. Let G be a finite group with a strongly self-centralizing subgroup T . Let
p be a prime.

(i) If p | |T |, then
|Gp′ | > |G| − |G|

|NG(T )/T |
and

|Gp| ≥
|G|

|NG(T )/T |
|T | − 1

|T | >
|G|

|NG(T )/T |+ 1
.

(ii) If p ∤ |T |, then

|Gp′ | ≥
|G|

|NG(T )/T |
|T | − 1

|T | >
|G|

|NG(T )/T |+ 1
.

Moreover, if G contains pairwise non-conjugate strongly self-centralizing sub-
groups T1, T2, . . . , Tk such that p ∤ |Ti| for all 1 ≤ i ≤ k, then

|Gp′ | >
k∑

i=1

|G|
|NG(Ti)/Ti|+ 1

.

Proof. See [BPS09, Proposition 1.15] and its proof. There the authors used the
language of proportion of p-regular elements but one can transfer to the number of
p-regular elements. �
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2.2. Alternating groups. We finish this section by proving Theorem 2.1 for the
alternating groups.

Lemma 2.5. Theorem 2.1 holds for S = An with n ≥ 5.

Proof. Assume first that p ≥ 7. We claim that n(Aut(S),Clp′(S)) > 2
√
p− 1. As-

sume for a contradiction that S = An is a counterexample to the claim with n ≥ 7
minimal. The prime p divides |An| but does not divide |An−1| by Lemma 2.3. It
follows that n = p. The group Ap has cycles of every odd length up to p− 2 and has
⌊p/3⌋ cycle types of elements of order 3. Therefore we have

n(Aut(S),Clp′(S)) ≥ (p− 1)/2 + ⌊p/3⌋ > 2
√

p− 1,

from which the claim follows.
Let p = 5. From the previous paragraph we have n(Aut(A7),Clp′(A7)) > 2

√
p− 1.

This implies n(Aut(S),Clp′(S)) > 2
√
p− 1 for n ≥ 7 by Lemma 2.3. We find

n(Aut(A6),Cl5′(A6)) = 4 and n(Aut(A5),Cl5′(A5)) = 3. Parts (ii) and (iii) follow.
The number of orbits of Aut(S) on Clp(S) ∪ Clp′(S) is 4 if S = A5 and is 5 if

S = A6. Part (i) follows and the proof is complete. �

3. Theorem 2.1: Linear and unitary groups

3.1. Linear groups. In this subsection, we will prove Theorem 2.1(i) for S =
PSLn(q) with n ≥ 2, q = ℓf where ℓ is a prime, and (n, q) /∈ {(2, 2), (2, 3)}. We
keep the notation introduced in Section 2 and start with the following technical
lemma.

Lemma 3.1. Let n ≥ 2 be an integer and let ǫ be 1 or 2 depending on whether n = 2
or n > 2 respectively. Let S = PSLn(q) be a simple group. Let

m =
qn − 1

(q − 1)(n, q − 1)
.

If p divides m, then

n(Aut(S),Clp(S)) ≥
p− 1

ǫfn
.

If p does not divide m, then

n(Aut(S),Clp′(S)) ≥
ϕ(m)

ǫfn

where ϕ is Euler’s totient function.

Proof. Let A = Aut(S) and let a be an element of S. Let g be the preimage of a
in SLn(q) ≤ GLn(q). Assume that g acts irreducibly on V . The centralizer of g in
GLn(q) is a cyclic group C of order qn − 1 and the normalizer of 〈g〉 in GLn(q) is
C : 〈σ〉 where σ is a field automorphism of order n. There is a subgroup B in A
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defined in a natural way which contains S and which is isomorphic to PGLn(q). We
have |B : S| = (n, q − 1) and |A : B| = ǫf . Observe that

|CB(a)| =
|C|

(n, q − 1)

and

|NB(〈a〉)| =
n|C|

(n, q − 1)
.

It follows that |CA(a)| ≥ |CB(a)| = |C|/(n, q − 1) and

|NA(〈a〉)| ≤ ǫf |NB(〈a〉)| ≤
ǫfn|C|

(n, q − 1)
.

Thus |NA(〈a〉)/CA(〈a〉)| ≤ ǫfn. Assume now that a is of order m. It follows that
there are at least ϕ(m)/(ǫfn) conjugacy classes of A all contained in S which consist
of elements of order m. The desired bound now follows in the case when p does not
dividem. If p dividesm, then the bound also follows by noting that ϕ(m) ≥ p−1. �

Lemma 3.2. Theorem 2.1 holds for S = PSL2(q) with q ≥ 4.

Proof. Let q ≤ 256. By a Gap [GAP] calculation n(Aut(S),Clp′(S)) > 2
√
p− 1

unless q ∈ {4, 5, 7, 8, 9, 11, 16, 27, 32, 81, 128, 243, 256}. The exceptional cases ac-
count for the possibilities in Table 1. Furthermore, if q belongs to {512, 1024}, then
n(Aut(S),Clp′(S)) > 2

√
p− 1 for every possible value of p.

Assume first that p divides q+1. There are q−1 diagonal elements in SL2(q) with
respect to a fixed basis. Thus there are at least q − 1 conjugacy classes of p-regular
elements in GL2(q) and so at least (q− 1)/2 conjugacy classes of PGL2(q) consisting
of p-regular elements in PSL2(q). Thus n(Aut(S),Clp′(S)) ≥ (q − 1)/(2f). This is
larger than 2

√
q subject to the restrictions q > 256 and q 6∈ {512, 1024}. This proves

parts (ii) and (iii) in the case when p divides q+1. We now turn to the proof of part
(i) in the case when p divides q + 1. We may assume that the pair (S, p) appears in
Table 1.
We have n(Aut(S),Clp(S)) ≥ (p − 1)/(2f) by Lemma 3.1. The exact values of

n(Aut(S),Clp′(S)) may be found in Table 1. Using this information, for any pair
(S, p) in Table 1 such that p divides q + 1, we get

n(Aut(S),Clp′(S)) + n(Aut(S),Clp(S)) > 2
√

p− 1,

unless (S, p) = (PSL2(16), 17) when n(Aut(S),Clp′(S))+n(Aut(S),Clp(S)) = 7. This
latter pair is an exception in part (i). This proves part (i) in the case p divides q+1.
Assume now that p does not divide q + 1. In this case p = ℓ or p | q − 1.
Let p = ℓ. There are at least (ℓ−1)/2 diagonal elements in SL2(ℓ). These elements

are fixed by field automorphisms and no two of them are conjugate in GL2(q). Thus
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n(Aut(S),Clp′(S)) ≥ (ℓ− 1)/2. In fact, by the proof of Lemma 3.1,

n(Aut(S),Clp′(S)) ≥ ϕ
( q + 1

(2, q − 1)

)
/(2f) + (ℓ− 1)/2.

This is larger than 2
√
ℓ− 1 unless ℓ = q ∈ {5, 7, 11}. The pairs (S, p) in

{(PSL2(5), 5), (PSL2(7), 7), (PSL2(11), 11)}
appear in Table 1. This proves parts (ii) and (iii) in the case p = ℓ. Part (i) in the
case p = ℓ also follows by a direct check using [Atl].
Finally, assume that p divides q−1. We may assume by the first paragraph of this

proof that q > 256 and q 6∈ {512, 1024}. We have

n(Aut(S),Clp′(S)) ≥ ϕ
( q + 1

(2, q − 1)

)
/(2f)

by Lemma 3.1. This is larger than 2
√
p− 1 unless q ∈ {263, 359}. Another [GAP]

calculation gives n(Aut(S),Clp′(S)) > 2
√
p− 1 for S ∈ {PSL2(263),PSL2(359)}. �

Lemma 3.3. Theorem 2.1 holds for S = PSL3(q).

Proof. We will show that n(Aut(S),Clp′(S)) > 2
√
p− 1 in all cases except when

(S, p) = (PSL3(8), 73).
We may exclude q ≤ 9 using [Atl] and q ∈ {13, 16, 19} using [GAP].
From [SF73] we observe that |CS(g)| ≥ q2/(3, q−1) for every g ∈ S. We also know

that S has a strongly self-centralizing maximal torus T of order

(q2 + q + 1)/(3, q − 1) = Φ3(q)/(3, q − 1)

with |NS(T )/T | = 3, see [BPS09, p. 16] for instance.
Suppose first that p | |T |. Then by Lemma 2.4, we have |Sp′ | > 2

3
|S| and thus

kp′(S) >
2q2

3(3, q − 1)
,

which yields

n(Aut(S),Clp′(S)) >
q2

3f(3, q − 1)2
=: R(q).

One can check that R(q) ≥ 2
√

Φ3(q)/(3, q − 1)− 1 unless q ∈ {25, 49, 64} (as we
already excluded the case q ∈ {13, 16, 19}). Checking further, we find that the
desired inequality R(q) ≥ 2

√
p− 1 still holds.

Now we suppose p ∤ |T |. By Lemma 2.4, we have |Sp′ | > |S|(|T | − 1)/3|T |. Hence

kp′(S) >
q2(|T | − 1)

3(3, q − 1)|T | ,
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implying that

n(Aut(S),Clp′(S)) >
q2(|T | − 1)

6f(3, q − 1)2|T | := R′(q).

It is easy to check that R′(q) ≥ 2
√
q ≥ 2

√
p− 1 unless q ∈ {25, 64} (as we excluded

the case q ∈ {13, 16}). In fact we still have R′(q) ≥ 2
√
p− 1 when q ∈ {25, 64}

since p ≤ 13 in those cases. This proves parts (ii) and (iii) by noting that the pair
(S, p) = (PSL3(8), 73) appears in Table 1.
For the proof of part (i) we may now assume that (S, p) = (PSL3(8), 73). Then

S has a maximal torus of order Φ3(8) = 73 with the relative Weyl group of order
3, and thus S has at least 72/3 = 24 conjugacy classes of elements of order 73. It
follows that there are at least 24/3 = 8 Aut(S)-orbits on Clp(S). We now have
n(Aut(S),Clp(S) ∪ Clp′(S)) ≥ 8 + 13 > 2

√
p− 1, as desired. �

Lemma 3.4. Theorem 2.1(i) holds for S = PSLn(q) with n ≥ 4.

Proof. Assume for a contradiction that part (i) fails for the group S = PSLn(q) with
n ≥ 4 minimal.
The prime p divides |PSLn(q)| but does not divide |PSLn−1(q)| by Lemma 2.3.

This implies that p divides

m =
qn − 1

(q − 1)(n, q − 1)
.

We get

n(Aut(S),Clp(S)) ≥
p− 1

2fn

by Lemma 3.1. By Lemma 2.3 and [FG12, Corollary 3.7 (2)] we also have

n(Aut(S),Clp′(S)) ≥
k(PSLn−1(q))

2f(n− 1, q − 1)
≥ qn−2

2f(n− 1, q − 1)2
.

From these it follows that

n(Aut(S),Clp(S)) + n(Aut(S),Clp′(S)) ≥

≥ p− 1

2fn
+ 2fn+

qn−2

δf(n− 1, q − 1)2
− 2fn ≥ 2

√
p− 1 +

qn−2

2f(n− 1, q − 1)2
− 2fn.

We may thus assume that qn−2 ≤ 4f 2n(n− 1, q − 1)2.
An easy calculation gives n ≤ 9 and q < 128. Moreover, for n ≤ 9 and q < 128, a

Gap [GAP] computation yields that (n, q) must belong in

{(4, 2), (4, 3), (4, 4), (4, 7), (4, 8), (4, 16), (4, 64), (5, 2), (5, 3), (5, 4), (5, 5), (5, 9), (6, 2)}.
Since p divides m but p ∤ |PSLn−1(q)|, the triple (n, q, p) must be (4, 2, 5), (4, 3, 5),

(4, 4, 17), (4, 7, 5), (4, 8, 5), (5, 8, 13), (4, 16, 257), (4, 64, 17), (4, 64, 241), (5, 2, 31),
(5, 3, 11), (5, 4, 11), (5, 4, 31), (5, 5, 11), (5, 5, 71), (5, 9, 11) or (5, 9, 61). In all these
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cases, except when (n, q, p) = (4, 16, 257), we find that n(Aut(S),Clp′(S)) > 2
√
p− 1,

using Gap [GAP] calculations combined with Lemma 2.3 together with the bound
n(Aut(S),Clp′(S)) ≥ k(PSLn−1(q))/2f(n− 1, q − 1).
Let (n, q, p) = (4, 16, 257). The number of conjugacy classes of S = PSL4(16) is

4368 by [GAP]. Observe that m = 17 · 257 in this case. Every element a in S which
is not p-regular and not a p-element has order m. There are ϕ(m)/2 = 2048 possible
conjugacy classes of such elements a in S. It follows that

n(Aut(S),Clp(S))+n(Aut(S),Clp′(S)) ≥ (4368− 2048)/2f(n− 1, q− 1) > 2
√
p− 1,

and the proof is complete. �

3.2. Unitary groups. We continue to prove Theorem 2.1(i) for S = PSUn(q).

Lemma 3.5. Theorem 2.1 holds for S = PSU3(q).

Proof. We show that n(Aut(S),Clp′(S)) > 2
√
p− 1 unless (S, p) = (PSU3(16), 241).

This exceptional case appears in Table 1.
We follow the same idea as in the proof of Lemma 3.3. The case q ≤ 11 can be

checked directly using [Atl]. Thus assume that q ≥ 13.
For every g ∈ G := PGU3(q) we have |CG(g)| ≥ q2 − q + 1 by [SF73]. Therefore

the centralizer size in Aut(S) of an element in S is at least q2 − q + 1, which in turn
implies that the size of every Aut(S)-orbit on S is at most |Aut(S)|/(q2 − q + 1).
On the other hand, S has a strongly self-centralizing maximal torus T of order

(q2 − q + 1)/(3, q + 1) = Φ6(q)/(3, q + 1)

with |NS(T )/T | = 3. Suppose first that p | |T |. Using Lemma 2.4, we obtain
|Sp′ | > 2|S|/3 and, together with the conclusion of the previous paragraph, we deduce
that

n(Aut(S),Clp′(S)) >
(q2 − q + 1)

3f(3, q + 1)
.

One can check that (q2− q+1)/(3f(3, q+1)) > 2
√
(q2 − q + 1)/(3, q + 1)− 1 unless

q = 16 (since we are assuming q ≥ 13).
For q = 16 we have p = 241, n(Aut(S),Clp′(S)) > 20, and

n(Aut(S),Clp(S)) > (q2 − q + 1)(|T | − 1)/(24|T |) = 10,

which implies that n(Aut(S),Clp′(S) ∪ Clp(S)) > 31 > 2
√
p− 1, as wanted. In fact,

we are going to show that n(Aut(S),Clp(S)) ≥ 27 for (S, p) = (PSU3(16), 241), as
appeared in Table 1.
The conjugacy classes and the character table of SU3(q) as well as of PSU3(q) are

available in [SF73]. We observe that S has three unipotent classes, each of which
is invariant under Aut(S). We will see that S has at least 24 Aut(S)-orbits on
semisimple elements of order coprime to p = 241. First S has 16 classes labeled

by C
(k)
4 for 1 ≤ k ≤ 16 of elements of order 17 and these classes produce at least
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2 Aut(S)-orbits. Next there are 40 classes labeled by C
(k,l,m)
6 for 1 ≤ k, l,m ≤ 17,

k < l < m, and k + l +m ≡ 0 (mod 17) of elements of order 17, which produces at

least 5 other orbits. Finally there are 119 classes labeled by C
(k)
7 for 1 ≤ k < 15 · 17

and k 6≡ 0 (mod 15) elements of orders dividing 15 · 17. Among those 119 classes
there is a single class of elements of order 3 and hence that class constitutes a single
orbit. The other 118 classes make up at least 16 orbits, with the notice that the size
of each orbit is a divisor of |Out(S)| = 8.
Now we suppose p ∤ |T | and thus p ≤ q + 1. Again by Lemma 2.4, we have

|Sp′ | > |S|(|T | − 1)/(3|T |). Hence

kp′(S) >
(q2 − q + 1)(|T | − 1)

3(3, q + 1)|T | =
|T | − 1

3
,

implying that

n(Aut(S),Clp′(S)) >
(|T | − 1)

6f(3, q + 1)
=

q2 − q + 1− (3, q + 1)

6f(3, q + 1)2
:= R(q).

We have R(q) ≥ 2
√
q ≥ 2

√
p− 1 unless q ∈ {16, 17, 23} (assuming that q ≥ 13). For

q ∈ {16, 17, 23} the bound R(q) > 2
√
p− 1 still holds. �

We proceed to prove part (i) for the groups S = PSUn(q) with n ≥ 4. If (n, q) =
(4, 2), then p = 5 since we are assuming p ≥ 5 and so n(Aut(S),Clp′(S)) = 14 > 4 by
[GAP]. Assume from now on that (n, q) 6= (4, 2) (and n ≥ 4). In this case PSUn−1(q)
is a simple group.

Lemma 3.6. In order to prove Theorem 2.1(i) for S = PSUn(q) with n ≥ 4, we may
assume that

n(Aut(S),Clp′(S)) ≥
qn−2

2f(n− 1, q + 1)2

and that the prime p divides qn − (−1)n. Moreover, if n is odd then p is a primitive
prime divisor of q2n − 1.

Proof. The prime p divides |S| by assumption and p ≥ 5. Since (n, q) 6= (4, 2),
we may assume by Lemma 2.3 that p does not divide |PSUn−1(q)|. This has two
implications. Firstly,

n(Aut(S),Clp′(S)) ≥
k(PSUn−1(q))

2f(n− 1, q + 1)
≥ qn−2

2f(n− 1, q + 1)2

by Lemma 2.3 and [FG12, Corollary 3.11 (2)] and secondly p | qn − (−1)n.
Let n ≥ 5 be odd. We claim that p is a primitive prime divisor of q2n − 1. Assume

for a contradiction that p | qk − 1 for some integer k with 1 ≤ k < 2n. Since p does
not divide |PSUn−1(q)|, it cannot divide qr + 1 for r < n odd and it cannot divide
qr − 1 for r < n even.
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Assume that k ≤ n. By the previous paragraph, k must be odd. Since p divides
(qn + 1) + (qk − 1), the prime p must divide qn−k + 1. Thus k < n. Since p divides
(qk − 1)+ (qn−k +1), it must divide q|n−2k| +1. This is a contradiction since |n− 2k|
is odd. It follows that n < k. Since p divides (q2n − 1) − (qk − 1), it must divide
q2n−k − 1. This is a contradiction since 2n− k < n. �

Lemma 3.7. Theorem 2.1(i) holds for S = PSUn(q) with n ≥ 4 even.

Proof. Let n be even. In this case p divides qn − 1 and thus p− 1 ≤ qn/2 by Lemma
3.6. Again by Lemma 3.6 we are finished if qn−2/(2f(n− 1, q + 1)2) > 2qn/4. We
may assume that q(3n/4)−2 ≤ 4f(n− 1, q + 1)2. It follows that (n, q) belongs to the
set

{(4, 3), (4, 4), (4, 5), (4, 8), (4, 11), (4, 16), (4, 17), (4, 23), (4, 29), (4, 32), (4, 128), (6, 4)}.
Taking into account that p ≥ 5 divides qn − 1 but p does not divide |PSUn−1(q)| by
Lemma 2.3, the triple (n, q, p) must be (4, 3, 5), (4, 4, 17), (4, 5, 13), (4, 8, 5), (4, 8, 13),
(4, 11, 61), (4, 16, 257), (4, 17, 5), (4, 17, 29), (4, 23, 5), (4, 23, 53), (4, 29, 421), (4, 32, 5),
(4, 32, 41), (4, 128, 5), (4, 128, 29), (4, 128, 113), (4, 128, 127) or (6, 4, 7). We get

qn−2

2f(n− 1, q + 1)2
> 2

√
p− 1

unless (n, q, p) is equal to (4, 4, 17), (4, 5, 13), (4, 8, 5), (4, 8, 13), (4, 11, 61), (4, 16, 257),
(4, 32, 41) or (6, 4, 7). A Gap [GAP] computation using Lemma 2.3 gives

n(Aut(S),Clp′(S)) > 2
√

p− 1

unless (n, q, p) = (4, 32, 41). If (n, q, p) = (4, 32, 41), then the bound still holds since
331 is a prime factor of |PSU3(q)|, unlike p = 41, and

n(Aut(S),Clp′(S)) ≥ n(Aut(PSU3(q)),Clp′(PSU3(q))) ≥
≥ n(Aut(PSU3(q)),Cl331′(PSU3(q))) > 2

√
331− 1 > 2

√
p− 1

by Lemma 2.3 and the proof of Lemma 3.5. �

Lemma 3.8. Let n ≥ 5 be odd. Let p ≥ 5 be a prime which divides qn+1 and which
is a primitive prime divisor of q2n − 1. Let S = PSUn(q). The number of orbits of
Aut(S) on the set of elements of S of orders divisible by p but not equal to p is

qn+1
(q+1)(n,q+1)

− p

2fn
.

Proof. Let g ∈ GUn(q) be an element of order divisible by p. Since GUn(q) ≤ GLn(q
2)

and p is a primitive prime divisor of q2n − 1, we see that g acts irreducibly on the
underlying vector space of dimension n over the field of size q2. It is contained in a
Singer cycle C of GUn(q) defined to be a cyclic irreducible subgroup of GUn(q) of
maximal possible order and whose existence is proved by Huppert in [Hu70]. The
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group C is the intersection of GUn(q) with the Singer cycle of GLn(q
2) (which is a

cyclic subgroup) containing g. Since the centralizer of g in GLn(q
2) is the Singer

cycle containing g, it follows that the centralizer of g in GUn(q) is C. The group C
has order qn + 1 by [Hu70, Satz 4]. Since p is a primitive prime divisor of q2n − 1,
C contains a Sylow p-subgroup P of GUn(q). The centralizer in GUn(q) of any non-
trivial element of P is C. It follows that all Singer cycles in GUn(q) are conjugate and
also that the centralizer of g in GUn(q) is C. The group NGLn(q2)(〈g〉)/CGLn(q2)(〈g〉)
is cyclic of order n, so NGUn(q)(〈g〉) = C.m for some divisor m of n. Since g is
contained in an extension field subgroup GU1(q

n).n of GUn(q), we obtain m = n.
The image F of C ∩ SUn(q) in S has order (qn + 1)/((q + 1)(n, q + 1)). Cyclic

subgroups of this order are all conjugate in Aut(S) by the previous paragraph. Every
element of S of order divisible by p is contained in some conjugate of F in Aut(S).
Observe that |NAut(S)(F )/F | = 2fn. The lemma follows. �

We are now in position to complete the proof for the unitary case.

Lemma 3.9. Theorem 2.1(i) holds for S = PSUn(q) with n ≥ 5 odd.

Proof. Let n ≥ 5 be odd. We may assume that p is a primitive prime divisor of
q2n − 1 by Lemma 3.6. Thus

n(Aut(S),Clp′(S))+n(Aut(S),Clp(S)) ≥
k(S)

2f(n, q + 1)
− qn + 1

2fn(q + 1)(n, q + 1)
+

p

2fn

by Lemma 3.8. This is at least

p

2fn
+ 2fn− 2fn+

qn−1

2f(n, q + 1)2
− qn + 1

2fn(q + 1)(n, q + 1)
≥

≥ 2
√
p+

qn−1

2f(n, q + 1)2
− qn + 1

2fn(q + 1)(n, q + 1)
− 2fn

by [FG12, Corollary 3.11 (2)]. This latter expression is at least 2
√
p if and only if

qn−1 ≥ (qn + 1)(n, q + 1)

n(q + 1)
+ 4f 2n(n, q + 1)2.

This is satisfied unless (n, q) ∈ {(5, 2), (5, 4), (5, 9), (9, 2)}. Taking into account that
the prime p ≥ 5 divides qn + 1, the triple (n, q, p) must belong to

{(5, 2, 11), (5, 4, 5), (5, 4, 41), (5, 9, 5), (5, 9, 1181), (9, 2, 19)}.
Among these exceptions, we have

qn−1

2f(n, q + 1)2
− qn + 1

2fn(q + 1)(n, q + 1)
> 2

√
p− 1
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unless (n, q, p) ∈ {(5, 4, 5), (5, 4, 41), (5, 9, 1181)}. If (n, q, p) ∈ {(5, 4, 5), (5, 4, 41)},
then

n(Aut(S),Clp′(S)) ≥ n(Aut(PSU4(q)),Clp′(PSU4(q))) > 2
√
p− 1

by Lemma 2.3 and [GAP]. Let (n, q, p) = (5, 9, 1181). The precise number of conju-
gacy classes of S can be computed using [Ma81]. This is k(S) = 7596. Plugging this
into the first displayed expression of the present proof, we obtain

n(Aut(S),Cl1181′(S)) + n(Aut(S),Cl1181(S)) > 2
√
1180,

and this finishes the proof. �

3.3. Theorem 2.1(ii) and (iii): Linear and unitary groups of dimension at
least 4. The method in Subsections 3.1 and 3.2 can be revised to prove parts (ii)
and (iii) for S = PSLn(q) and PSUn(q), but we present here another path to do it.
As the case n ≤ 3 has been proved in Lemmas 3.2, 3.3, and 3.5, we will assume that
n ≥ 4 in this subsection.
We use PSL+

n (q) for the linear groups and PSU−
n (q) for the unitary groups.

Lemma 3.10. Let S = PSLǫ
n(q) for n ≥ 4 and p a prime divisor of |S| but p ∤ q.

Assume that p | (qn − (ǫ1)n) but p ∤ (qi − (ǫ1)i) for every 1 ≤ i ≤ n− 1. Then

n(Aut(S),Clp′(S)) >
qn−1(n− 1)

2nf(n, q − ǫ1)
H(n, q, ǫ),

where

H(n, q,+) =
1

er
with r := min{x ∈ N : x ≥ logq(n+ 1)} and

H(n, q,−) =

(
q2 − 1

er′(q + 1)2

)1/2

with r′ := min{x ∈ N : x odd and x ≥ logq(n+ 1)}.
Proof. By [FG12, Theorems 6.4 and 6.7] and their proofs, the minimal centralizer
size of an element in GLǫ

n(q) is at least

qn−1(q − ǫ1)H(n, q, ǫ).

Since GLǫ
n(q) has center of order q − ǫ1, the minimal centralizer size of an element

in PGLǫ
n(q) is at least q

n−1H(n, q, ǫ). There exists a normal subgroup B of Aut(S)
isomorphic to PGLǫ

n(q) with the property that S is normal in B. Thus the minimal
centralizer size in Aut(S) of an element in S is at least qn−1H(n, q, ǫ). It follows that
every Aut(S)-orbit on S has size at most

|Aut(S)|
qn−1H(n, q, ǫ)

.
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On the other hand, by [BGPW13, Lemmas 3.1 and 4.1], we know that the propor-
tion of p-regular elements in PSLǫ

n(q) is at least the proportion of elements in Sn that
have no cycles of length divisible by n. As the latter proportion is (n−1)/n, we have
|Sp′ | ≥ (n − 1)|S|/n, and it follows from the conclusion of the previous paragraph
that

n(Aut(S),Clp′(S)) >
(n− 1)|S|
n|Aut(S)| · q

n−1H(n, q, ǫ).

The result now follows by |Aut(S)| = 2f(n, q − ǫ1)|S|. �

Proposition 3.11. Let S = PSLǫ
n(q) for n ≥ 4 and ǫ = ± and let p be a prime

divisor of |S|. The number of Aut(S)-orbits on p-regular classes of S is greater than
2
√
p− 1.

Proof. Note that the case p | q has been done in Lemma 2.2, and so we assume that
p ∤ q. Furthermore, if p | |PSLǫ

n−1(q)| then we are done by Lemma 2.3 and induction.
So we assume also that p | (qn − (ǫ1)n) but p ∤ (qi − (ǫ1)i) for every 1 ≤ i ≤ n − 1,
which means that p is a primitive prime divisor of qn − 1 when ǫ = + or 4 | n and
ǫ = −, and a primitive prime divisor of qn/2 − 1 when n ≡ 2 (mod 4) and ǫ = −,
and a primitive prime divisor of q2n − 1 when n is odd and ǫ = −. Lemma 3.10 then
implies that

n(Aut(S),Clp′(S)) >
qn−1(n− 1)

2nf(n, q − ǫ1)
H(n, q, ǫ).

A straightforward computation shows that this bound is greater than 2
√
p− 1, and

therefore we are done, unless q = 2 and n ≤ 9, or q = 3 and n ≤ 5, or (n, q, ǫ) ∈
{(4, 4,±), (4, 5,+), (5, 4,±)}.
We now consider these exceptions in a case by case basis.
Let q = 2. First the cases S = SL±

4 (2), SL
±
5 (2), and PSU6(2) can be checked

directly using [Atl]. The case of SL6(2) is not under consideration since 26 − 1 has
no primitive prime divisor. For n = 7, 8, 9 we will show that the number of different
element orders coprime to p is greater than 2

√
p− 1, and for that purpose it is enough

to, and we will, assume that n = 7 as the maximal prime divisor of S is a divisor of
|SLǫ

7(2)|. Here in fact p = 127 = 27 − 1 for ǫ = + and p = 43 = (27 + 1)/3 for ǫ = −.
We consider the embeddings SLǫ

4(2)×SLǫ
3(2) ⊂ SLǫ

7(2) and SLǫ
5(2)×SLǫ

2(2) ⊂ SLǫ
7(2)

and inspect the element orders in the groups SLǫ
k(2) for 2 ≤ k ≤ 5 in [Atl] to produce

more than 2
√
p− 1 element orders of SLǫ

7(2), proving the desired inequality.
Let q = 3. Again the case of S = PSL±

4 (3) is available in [Atl], and so we assume
that S = PSL±

5 (3). The case S = PSL5(3) is in fact easy as p = 11 and PSL5(3) =
SL5(3) contains SL4(3), which has more than 7 different element orders. So it remains
to consider S = PSU5(3), in which case p must be 61 = (35 +1)/4. But by using the
embedding SU4(3) ⊂ SU5(3) = PSU5(3) and inspecting the element orders of SU4(3),
we find that PSU5(3) has at least 17 element orders coprime to p = 61, and hence
the bound follows in this case.
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Let (n, q, ǫ) = (4, 4,±). Then we have p = 17. From [Atl] we observe that SLǫ
3(4)

has more than 8 = 2
√
p− 1 different element orders, and thus, as S = SLǫ

4(4) ≥
SLǫ

3(4), it follows that n(Aut(S),Clp′(S)) > 2
√
p− 1. Similarly when (n, q, ǫ) =

(5, 4,±), by using [Atl] and considering the embeddings SL3(4) ⊂ SL5(4) = PSL5(4)
and SU3(4) × SL2(4) ⊂ SU5(4) one can produce at least 13 different orders coprime
to p of S, and therefore proving the inequality as p ≤ 41 in this case.
Finally for (n, q, ǫ) = (4, 5,+) we have p = 13 and on the other hand, using the

embeddings SL2(5) × SL2(5) ⊂ SL4(5) and SL3(5) ⊂ SL4(5) one easily sees that S
has element orders 1, 2, 3, 5, 6, 15, 31, implying that n(Aut(S),Clp′(S)) ≥ 7 >
2
√
p− 1. �

4. Theorem 2.1: Symplectic and orthogonal groups

The aim of this section is to prove the following theorem, which implies Theorem 2.1
for the symplectic and orthogonal groups.

Theorem 4.1. Let S = PSp2n(q), Ω2n+1(q) for n ≥ 2 and (n, q) 6= (2, 2), or S =
PΩ±

2n(q) for n ≥ 4. Let p be a prime divisor of |S|. Then

n(Aut(S),Clp′(S)) > 2
√

p− 1,

with a single possible exception of (S, p) = (Ω−
8 (4), 257), in which case 2

√
p− 1 =

32 ≤ n(Aut(S),Clp′(S)).

We note that for the exception (S, p) = (Ω−
8 (4), 257), we found by using [GAP] that

S has exactly 32 different element orders coprime to p, and therefore it is unlikely
that this pair is a true exception. In any case, since n(Aut(S),Clp(S)) ≥ 1, the
wanted bound n(Aut(S),Clp(S) ∪ Clp′(S)) > 2

√
p− 1 in Theorem 2.1(i) still holds

for this exception.
As the cases p = 2, 3 or p | q and n ≥ 3 has been considered in Section 2, we will

assume that p ≥ 5. Moreover, we assume p ∤ q except in the case of S = PSp4(q)
∼=

Ω5(q), due to Lemma 2.2.

4.1. Symplectic groups and odd-dimensional orthogonal groups.

Lemma 4.2. Theorem 4.1 holds for S = PSp4(q)
∼= Ω5(q) with q 6= 2.

Proof. We assume that q ≥ 7 as the cases q = 3, 4, 5 can be confirmed directly using
[Atl]. First suppose that p | q. Recall that p ≥ 5, and so q is odd. Then kp′(S) ≥ q2/2
and therefore n(Aut(S),Clp′(S)) > q2/4f . One can check that q2/(4f) > 2

√
p− 1

for all q ≥ 7.
So it remains to assume that p ∤ q. From [En72, Sr68], we observe that |CS(g)| ≥

(q2− 1)/(2, q− 1) for every g ∈ S. Suppose that p | (q2 − 1). [BGPW13, Lemma 5.1]
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then implies that the proportion of p-regular elements in S is at least 3/8. Therefore
kp′(S) ≥ 3(q2 − 1)/8(2, q − 1), and thus

n(Aut(S),Clp′(S)) >
3(q2 − 1)

8f(2, q − 1)2(2, q)
.

This bound is larger than 2
√
q ≥ 2

√
p− 1 if q ≥ 23. When q < 23 we must have

p ≤ 7 since p | (q2 − 1) and we are done as |S| is divisible by at least four primes.
We now consider the case p | (q4 − 1) but p ∤ (q2 − 1). The proportion of p-regular

elements in S is now at least 1/2 again by [BGPW13, Lemma 5.1]. We then have

n(Aut(S),Clp′(S)) >
(q2 − 1)

2f(2, q − 1)2(2, q)
.

This bound is larger than 2q, which in turn is at least 2
√
p− 1 unless

q ∈ {7, 8, 9, 11, 13, 16, 25, 27, 32}.
For each q in this set, we find that the inequality

⌈(q2 − 1)/(2f(2, q − 1)2(2, q))⌉ > 2
√
p− 1

still holds, unless (q, p) ∈ {(8, 13), (9, 41)}. These two exceptions can be confirmed
using [GAP]. �

Let p(i) be the number of distinct ways of representing i as a sum of positive
integers and q(i) be the number of distinct ways of representing i as a sum of odd
positive integers.

Lemma 4.3. Let p ≥ 3 be a prime not dividing q. We have

kp′(PSp2n(q)) ≥





∑n
i=0 p(i)q(n− i) +

⌈
qn − 2

4n

⌉
if q is odd

p(n) +

⌈
qn − 2

2n

⌉
if q is even,

and

kp′(Ω2n+1(q)) ≥





∑⌊(2n+1)/4⌋
i=0 p(i)q(2n+ 1− 4i) +

⌈
qn − 2

4n

⌉
if q is odd

p(n) +

⌈
qn − 2

2n

⌉
if q is even.

Proof. Note that, by the assumption, p cannot divide both qn−1 and qn+1. So let T
be a maximal torus of G := Sp2n(q) of order q

n±1 such that p ∤ |T |. Since the fusion
of (semisimple) elements in this torus is controlled by the relative Weyl group of a
Sylow n-torus with order 2n (see [MM16, Proposition 5.5] and its proof), there exist
at least (|T | − 1)/(2n) nontrivial semisimple classes of G with representatives in T .
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It follows that S has at least (qn − 2)/(2n(2, q − 1)) nontrivial p-regular semisimple
classes.
Suppose first that q is odd. Let Jk denote the Jordan block of size k. By [GLO17,

Proposition 2.3] we know that for each Jordan form

r∑

i=1

(J2ki)
ai +

s∑

j=1

(J2lj+1)
bj ,

where the ki are distinct, the lj are distinct, and
∑r

i=1 aiki +
∑s

j=1 bj(2lj + 1) = n,

there are 2r corresponding unipotent classes of Sp2n(q) (and therefore of PSp2n(q))
of elements having that form. These classes are all p-regular since p ∤ q. Since there
are

∑n
i=0 p(i)q(n− i) such Jordan forms, we obtain the desired bound in this case.

Symplectic groups in even characteristic and odd-dimensional orthogonal groups
follow from [GLO17, Proposition 2.4 and Theorem 3.1] in a similar way. �

We are now ready to prove Theorem 4.1 for S = PSp2n(q) and S = Ω2n+1(q) for
n ≥ 3. The treatments for these two families are almost identical, so let us provide
details only for symplectic groups.
Suppose first that q is odd. Then by Lemma 4.3 and its proof, we obtain

n(Aut(S),Clp′(S)) ≥ 1 +

⌈∑n
i=0 p(i)q(n− i)− 1

2f

⌉
+

⌈
qn − 2

8fn

⌉
=: R(q, n),

as |Out(S)| = 2f and note that the trivial class is an Aut(S)-orbit itself. Note also
that p ≤ (qn + 1)/2 for n ≥ 4 and p ≤ q2 + q + 1 for n = 3. One now can check that
R(q, n) > 2

√
p− 1 for all relevant values.

Next suppose that q is even. We now have

n(Aut(S),Clp′(S)) ≥ 1 +

⌈
p(n)− 1

f

⌉
+

⌈
qn − 2

2fn

⌉
=: R′(q, n),

Again one can check that ⌈(qn − 2)/(2fn)⌉ > 2qn/2 ≥ 2
√
p− 1 unless (n, q) ∈ S :=

{(3, 2), (3, 4), (4, 2), (4, 4), (5, 2), (5, 4)} or 6 ≤ n ≤ 10 and q = 2. We then observe
that R′(n, q) > 2

√
p− 1 in the latter case.

Note that if n = 5 then p ≤ (q5 − 1)/(q − 1) and the desired bound R′(n, q) >
2
√
p− 1 still holds for (n, q) = (5, 4). For (n, q) = (5, 2), the only prime failing the

inequality R′(n, q) > 2
√
p− 1 is p = 31 = qn − 1, but in this case we remark that

there are at least ⌈(qn/10f)⌉ = 4 nontrivial semisimple p-regular classes and at least
p(5) − 1 = 6 nontrivial unipotent classes, totaling to at least 11 p-regular classes of
S, and hence n(Aut(S),Clp′(S)) = kp′(S) ≥ 11 > 2

√
p− 1, as required.

For n = 3 we note that p ≤ q2 + q + 1 and PSp6(q) has at least 9 unipotent
classes, and thus the bound holds for (n, q) = (3, 2) or (3, 4). For n = 4 we note that
PSp8(q) has at least 24 unipotent classes and so we are done for (n, q) = (4, 2) and
(n, q) = (4, 4) as well. The proof is complete.
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4.2. Orthogonal groups in even dimension. Let S = PΩǫ
2n(q) for n ≥ 4, ǫ = ±,

and q = ℓf where ℓ is a prime.
We start this subsection by proving a lower bound for the number of unipotent

classes in even-dimensional orthogonal groups.

Lemma 4.4. The following holds:

(i) PΩ±
2n(q) has at least

∑⌊n/2⌋
i=0 p(i)q(2n− 4i) unipotent classes if q is odd.

(ii) PΩ+
2n(q) has at least p(n) +

∑
i 6=j;i+j≤n;i,j odd p(n− i− j) unipotent classes if

q is even.
(iii) PΩ−

2n(q) has at least
∑

1≤i≤n;i odd p(n− i) unipotent classes if q is even.

Proof. First suppose that q is odd. Consider the Jordan forms

r∑

i=1

(J2ki+1)
ai +

s∑

j=1

(J2lj)
bj ,

where ki ≥ 0 are distinct and lj ≥ 1 are distinct such that

r∑

i=1

ai(2ki + 1) + 4
s∑

j=1

bjlj = 2n.

Here we recall that Jk denotes the Jordan block of size k. It was shown in [GLO17,
Proposition 2.4] that the unipotent elements with such a Jordan form fall into 2r−1

classes in each of GO+
2n(q) and GO−

2n(q), with the exception that if r = 0, it is 1 class
in GO+

2n(q) and none in GO−
2n(q). As q is odd, these classes are inside Ω±

2n(q) and
different classes produce different corresponding classes of S. Now (i) follows since

the number of those Jordan forms is
∑⌊n/2⌋

i=0 p(i)q(2n−4i), with the remark that there
is at least one such form with r ≥ 2.
In a similar way, (ii) and (iii) follow from the description of unipotent classes of

GO±
2n(2

f ) as well as PΩ±
2n(2

f ) = Ω±
2n(2

f ) in [GLO17, Theorem 3.1]. �

Lemma 4.5. Suppose that p is odd and (n, ǫ) 6= (4,+). There are at least

1 +

⌈
qn−1 − 2

4f(n− 1)(4, qn − ǫ1)2

⌉
.

Aut(S)-orbits of p-regular semisimple classes of S = PΩ±
2n(q).

Proof. From the assumption on p, we know that p does not divide both qn−1 − 1 and
qn−1+1. Let T be a maximal torus ofG := Spinǫ

2n(q) of order q
n−1±1 such that p ∤ |T |.

The relative Weyl group of a Sylow (n−1)-torus has order 2(n−1), and thus there are
at least (|T |−1)/(2(n−1)) nontrivial semisimple classes of G with representatives in
T . It follows that S has at least (qn−1 − 2)/(2(n− 1)(4, qn − ǫ1)) nontrivial p-regular
semisimple classes. The lemma now follows as |Out(S)| = 2f(4, qn − ǫ1). �
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Now we are ready to prove Theorem 4.1 for even-dimensional orthogonal groups
of rank at least 4. We recall that p ≥ 5 and p ∤ q.

A) Suppose that p | (qm ± 1) for some m ≤ n/2. One can check that the bound
in Lemma 4.5 is greater than 2

√
p− 1 unless n = 5 and q = 2, 3, 5, 7, 9; n = 6 and

q = 2, 3, 5; or (n, q) = (7, 2), (7, 3), (8, 2), (8, 3).
For these exceptional cases, we will prove the desired bound by also taking into

account the unipotent classes of S. For instance, when (n, q) = (8, 3) we have that S
has at least

∑4
i=0 p(i)q(16 − 4i) = 69 unipotent classes by Lemma 4.4(i), producing

at least ⌈69/8⌉ = 9 orbits of Aut(S) on unipotent classes of S. Together with at
least 5 orbits on nontrivial p-regular semisimple classes by Lemma 4.5, we obtain
n(Aut(S),Clp′(S)) ≥ 14 > 2

√
p− 1 since p ≤ 41. All other cases are treated sim-

ilarly, except when (n, q) = (5, 2), (5, 3) or (5, 5). If (n, q) = (5, 2) or (5, 3) then p
must be 5, but |S| is divisible by at least 4 different primes other than 5, and thus we
still have n(Aut(S),Clp′(S)) ≥ 5 > 2

√
p− 1. Finally if (n, q) = (5, 5) then p ≤ 13,

but |S| is divisible by at least 7 different primes, and we are done as well.

B) Suppose that p does not divide qi ± 1 for every i ≤ n/2. Let m be minimal
subject to the condition p | qm ± 1. In particular, m ≥ 3. Using [BGPW13, Lemma
6.1], we then know that the proportion of p-regular elements in S is at least the
proportion of elements in Sn that have no cycles of length divisible by m. As the
latter proportion is (m− 1)/m, we deduce that

|Sp′ | ≥
m− 1

m
|S| > n− 2

n
|S|,

where we recall that Sp′ denotes the set of p-regular elements in S.
On the other hand, according to the proof of [FG12, Theorem 6.13], the centralizer

size of an element in SO±
2n(q) is at least

qn
[
1− 1/q

2re

]1/2
,

where

r := min{x ∈ N : max{4, logq(4n)} ≤ 2x}.
Thus, for every g ∈ S, we have

|CS(g)| ≥
qn(2, qn − ǫ1)

2(4, qn − ǫ1)

[
1− 1/q

2re

]1/2
,

and therefore

kp′(S) ≥
qn(n− 2)(2, qn − ǫ1)

2n(4, qn − ǫ1)

[
1− 1/q

2re

]1/2
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for every prime p, since |Sp′ | ≥ (n− 2)|S|/n. It follows that

n(Aut(S),Clp′(S)) ≥
qn(n− 2)(2, qn − ǫ1)

4fn(4, qn − ǫ1)2

[
1− 1/q

2re

]1/2
=: R(n, q)

as |Out(S)| = 2f(4, qn − ǫ1).
Taking into account the maximum value of p and assuming that n ≥ 5, we get

R(n, q) > 2
√
p− 1 unless possibly if n = 5 and q ∈ {2, 3, 4, 5}, or n ∈ {6, 7} and

q ∈ {2, 3}, or (n, q, ǫ) = (8, 3,+), or q = 2 and n ∈ {8, 9, 10}.
We now use various techniques to prove the inequality n(Aut(S),Clp′(S)) > 2

√
p− 1

for all these exceptions.
The case (n, q) = (5, 2) can be checked using [Atl]. For (n, q) = (5, 4) we still have

R(n, q) > 2
√
p− 1 unless p = 257 = 44+1, in which case there are at least 1+⌈(45−

2)/20⌉ = 52 Aut(S)-orbits on p-regular semisimple classes with representatives in a
maximal torus of order 45 − ǫ1, and thus we are done.
For (n, q) = (5, 3) we have p ≤ 61 and one can check from [Atl] that PΩǫ

8(3),
and therefore PΩǫ

10(3) has more than 2
√
p− 1 different element orders coprime to p,

producing more than 2
√
p− 1 Aut(S)-orbits on p-regular classes of S.

Next we suppose (n, q) = (5, 5). First we observe that the inequality R(n, q) >
2
√
p− 1 still holds unless p = 521 = (55 + 1)/6, which happens only when ǫ = −, or

p = 313 = (54 +1)/2, which could happen when either ǫ = + or ǫ = −. Consider the
natural embeddings

Spin+
6 (5)× Spin+

4 (5) ⊂ Spin+
10(5)

and
Spin−

6 (5)× SL2(25) ∼= Spin−
6 (5)× Spin−

4 (5) ⊂ Spin−
10(5),

which produce the embeddings

PSL4(5)× PSL2(5)× PSL2(5) ⊂ PΩ+
10(5)

and
PSU4(5)× PSL2(25) ⊂ PΩ−

10(5),

respectively. Let us first consider ǫ = −. Using the information on element orders of
PSU4(5) and PSL2(25) in [Atl] and [GAP], we find that the set of all the numbers
of the form ab where a is an element order of PSU4(5) and b is an element order of
PSL2(25) has cardinality greater than 46. Every element in this set is coprime to
both 313 and 521 and is certainly an element order of S = PΩ−

10(5) by the above
embedding. It follows that n(Aut(S),Clp′(S)) > 46 > 2

√
520 ≥ 2

√
p− 1 as wanted.

The case ǫ = + works in the exact same way.
Now we consider the case n ∈ {6, 7} and q = 2. If p 6= 127 = 27 − 1 then p ≤ 43.

Going through all the cyclic tori of orders 2k ± 1 which are divisors of |S|, we can
find more than 2

√
p− 1 different element orders, proving the bound. If p = 127 then

of course S = Ω+
7 (2), and Lemma 4.4 shows that S has at least p(7) + p(3) = 18

nontrivial unipotent classes, producing at least 9 Aut(S)-orbits on them. Moreover
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we can find 13 different orders of semisimple elements of S. Indeed, there are at
least three classes of elements of order 31 = 25 − 1 since fusion of classes in a torus
of order 31 are controlled by the relative Weyl group of order 10, and these three
classes are contained in at least 2 orbits of Aut(S). Altogether, we have shown that
n(Aut(S),Clp′(S)) ≥ 9 + 14 = 23 > 2

√
126 = 2

√
127− 1, as desired.

The case of (n, q) = (6, 3) is handled similarly to the case (n, q) = (5, 3) by bound-
ing the number of different element orders. One just examines all the element orders
of PΩǫ

8(3) using [GAP] together with odd orders of elements in the cyclic tori (of
Spinǫ

12(3)) of orders 35 ± 1 and 36 − ǫ1 to see that the number of different element
orders coprime to p in S is greater than 2

√
p− 1 for every p | |S|.

Next we consider the case (n, q, ǫ) = (7, 3,±) or (8, 3,+). The trick in the previous
paragraph still works unless p = 547 = (37 + 1)/4 or p = 1093 = (37 − 1)/2. As in
the case of (n, q) = (5, 5), we consider the natural embeddings

Spin+
8 (3)× SL4(3) ∼= Spin+

8 (3)× Spin+
6 (3) ⊂ Spin+

14(3) ⊂ Spin+
16(3)

and

Spin−
8 (3)× SU4(3) ∼= Spin−

8 (3)× Spin−
6 (3) ⊂ Spin−

14(3),

which lead to the embeddings

PΩ+
8 (3)× PSL4(3) ⊂ PΩ+

14(3) ⊂ PΩ+
16(3)

and

PΩ−
8 (3)× PSU4(3) ⊂ PΩ−

14(3),

respectively (see [Ng10, Lemma 2.5]). We now use the information on element orders
of PΩ±

8 (3) and PSL±
4 (3) (here PSL−

4 (3) := PSU4(3)) in [Atl, GAP] to find that the
set of element orders of PΩǫ

14,16(3) coprime to both 547 and 1093 is greater than 67.

It then follows that n(Aut(S),Clp′(S)) > 67 > 2
√
1092 ≥ 2

√
p− 1 as wanted.

For (n, q) = (10, 2) or (9, 2), one just uses Lemmas 4.4 and 4.5 to obtain the
desired bound. For (n, q) = (8, 2) the same trick works unless p = 127 = 27 − 1 or
p = 257 = 28 + 1 and ǫ = −. If p = 127 there are at least ⌈(28)/32⌉ + ⌈27/28⌉ = 13
Aut(S)-orbits on nontrivial p-regular semisimple classes with representatives in the
two tori of coprime orders 28−ǫ1 and 27+1, and at least ⌈(p(7)+p(5)+p(3))/2⌉ = 13
Aut(S)-orbits on nontrivial unipotent classes, and hence

n(Aut(S),Clp′(S)) ≥ 13 + 13 + 1 = 27 > 2
√
126 = 2

√
p− 1.

If p = 257 we consider all the nontrivial classes with representatives in the tori of
orders 27 ± 1, 26 ± 1 and 25 − 1. These orders are pairwise coprime and so the classes
are different and the total number of Aut(S)-orbits on them is at least

⌈
27

28

⌉
+

⌈
27 − 2

28

⌉
+

⌈
26

24

⌉
+

⌈
26 − 2

24

⌉
+

⌈
25 − 2

20

⌉
= 18.
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On the other hand there are at least 13 orbits on nontrivial unipotent classes, as
estimated above, and another orbit on the classes of elements of order 24 + 1 = 17,
implying that n(Aut(S),Clp′(S)) ≥ 18 + 13 + 1 + 1 = 33 > 2

√
256 = 2

√
p− 1.

The proof of Theorem 4.1 is completed by the following two lemmas.

Lemma 4.6. Theorem 4.1 holds for S = PΩ+
8 (q)

Proof. Note that

|S| = q12Φ1(q)
4Φ2(q)

3Φ3(q)Φ4(q)
2Φ6(q)/(4, q

4 − 1).

First we suppose that p divides Φ3(q), Φ4(q) or Φ6(q). According to [BGPW13,
Lemma 6.1], the proportion of p-regular elements in S is then at least the proportion
of elements in S4 with no cycles of length divisible by 2, which is 13/24. As above,
we get

n(Aut(S),Clp′(S)) ≥
13q4

288f(2, q − 1)3

[
1− 1/q

4e

]1/2
.

The assumption on p guarantees that this bound is greater than 2
√
p− 1, unless

q ∈ {2, 3, 4, 5, 7, 9}.
If q = 2, then n(Aut(S),Clp′(S)) ≥ 24 > 2

√
p− 1 by [GAP], as p ≤ 7. Let q = 3.

Since p ≥ 5, we have p ∈ {5, 7, 13}. The number of different orders of elements in
S which are coprime to p is at least 12 by [GAP]. Thus n(Aut(S),Clp′(S)) ≥ 12 >
2
√
13− 1. Let q = 4. The set of prime divisors of the order of S is {2, 3, 5, 7, 13, 17}.

Thus n(Aut(S),Clp′(S)) ≥ 6. This forces p ∈ {13, 17}. Using random searches
by [GAP] one finds that S contains elements of orders 15, 21, 30. It follows that
n(Aut(S),Clp′(S)) ≥ 9 > 2

√
p− 1. Let q = 5. The set of prime divisors of |S| is

{2, 3, 5, 7, 13, 31}. Thus n(Aut(S),Clp′(S)) ≥ 6. Assume that p ∈ {13, 31}. Using
random searches by [GAP], one finds that S contains elements of orders 10, 62, 63
from which we obtain the desired bound for p = 13, and elements of orders 10, 26, 39,
63, 156, from which we get the bound for p = 31. Let q = 7. The set of prime divisors
of |S| is {2, 3, 5, 7, 19, 43}. Thus n(Aut(S),Clp′(S)) ≥ 6. Assume that p ∈ {19, 43}.
Using random searches by [GAP], one finds that S contains elements of orders 16,
25, 168, 600, from which the desired bound follows for p = 19, and 16, 24, 25, 57,
168, 171, 600, from which we get the bound for p = 43. Let q = 9. The set of prime
divisors of |S| is {2, 3, 5, 7, 13, 41, 73}. Thus n(Aut(S),Clp′(S)) ≥ 7. Assume that
p ∈ {41, 73}. Since GO+

6 (9)×GO+
2 (9) is a subgroup of GO+

8 (9), there is a subgroup
of S isomorphic to PΩ+

6 (9)
∼= PSL4(9). Using random searches by [GAP], one sees

that PΩ+
6 (9) (and so S) contains elements of orders 9, 16, 20, 24, 40, 60, 80, 91, 182,

from which the desired bound follows for p = 41, and an additional element of order
205 from which the case p = 73 follows.
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Next we suppose that p divides Φ1(q) or Φ2(q). Arguing similarly as in Lemma 4.5,
we then have that S has at least

1 +

⌈
q3 − 2

36f(2, q − 1)4

⌉

Aut(S)-orbits on its p-regular semisimple classes. This bound is greater than 2
√
p− 1

unless q ∈ {2, 3, 4, 5, 7, 9, 11}. For all these exceptions, we have p ≤ 5 as p | (q2 − 1),
and the bound easily holds as |S| has at least 5 different prime divisors. �

Lemma 4.7. Theorem 4.1 holds for S = PΩ−
8 (q)

Proof. The proof goes along similar lines as in that of Lemma 4.6. Note that

|S| = q12Φ1(q)
3Φ2(q)

3Φ3(q)Φ4(q)Φ6(q)Φ8(q)/(4, q
4 + 1).

The case p divides Φi(q) for i = 1, 2, 3, 4, or 6 is proved similarly as we did for PΩ+
8 (q).

So suppose that p | Φ8(q) but p ∤ Φi(q) for all i = 1, 2, 3, 4, 6. According to [BGPW13,
Lemma 6.1], the proportion of p-regular elements in S is then at least 3/4. As above,
we get

n(Aut(S),Clp′(S)) ≥
3q4(2, q4 + 1)

16f(4, q4 + 1)2

[
1− 1/q

4e

]1/2
.

Note that p ≤ q2 +1 as p | Φ8(q), and thus this bound is greater than 2
√
p− 1 as we

wish, unless q ∈ {2, 3, 4, 5, 7, 9}.
If q = 2, then 5 ≤ p ≤ 17 and n(Aut(S),Clp′(S)) ≥ 30 by Gap [GAP]. Let

q = 3. The set of prime divisors of the order of S is {2, 3, 5, 7, 13, 41}. Thus
n(Aut(S),Clp′(S)) ≥ 6. We may assume that p ∈ {13, 41}. Element orders of S
include by [GAP] every positive integer at most 10 and also 12, 14, 15. It follows
that n(Aut(S),Clp′(S)) ≥ 13 > 2

√
p− 1. Let q = 4. The set of prime divisors

of |S| is {2, 3, 5, 7, 13, 17, 257}. Thus n(Aut(S),Clp′(S)) ≥ 7. We may assume that
p ∈ {17, 257}. Random searches using [GAP] show that element orders of S in-
clude 39 and 60. This gives the desired bound for p = 17. Assume that p = 257.
Again by [GAP] we find elements in S of orders at most 10 and 12, 13, 15, 17,
20, 21, 30, 34, 35, 39, 45, 51, 60, 63, 65, 85, 102, 105, 170, 195, 255, 315. Thus
n(Aut(S),Clp′(S)) ≥ 2

√
p− 1. Note that we do not have strict inequality here and

this possible exception is listed in Table 1.
Let q = 5. The set of prime divisors of |S| is {2, 3, 5, 7, 13, 31, 313}. Thus

n(Aut(S),Clp′(S)) ≥ 7. We may assume that p ∈ {31, 313}. A random search using
[GAP] shows that there is an element of order 104 in S and thus also elements of
orders 4, 8, 26, 52. We may thus assume that p = 313. Several random searches give
element orders 24, 12, 36, 60, 15, 30, 6, 20, 252, 84, 42, 21, 126, 63, 9, 130, 65, 260,
124, 62, 93, 372, 186, 312. From this we obtain n(Aut(S),Clp′(S)) > 2

√
313− 1.

Let q = 7. The set of prime divisors of |S| is {2, 3, 5, 7, 19, 43, 1201}. This gives
n(Aut(S),Clp′(S)) ≥ 7 and so p ∈ {19, 43, 1201}. Further element orders of S (larger
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than 1 and different from a prime) include 4 and 8, from which the desired bound
follows for p = 19. Even further element orders are 10, 20, 40, 50, from which the
case p = 43 is completed. Many [GAP] searches give a total of 70 different element
orders in S each of which is coprime to 1201. This finishes the proof of the bound
for p = 1201.
Finally let q = 9. The set of prime divisors of |S| is {2, 3, 5, 7, 13, 17, 41, 73, 193}.

It follows that n(Aut(S),Clp′(S)) ≥ 9 and so p ∈ {41, 73, 193}. As in the proof of
Lemma 4.1, the group PΩ+

6 (9) may be viewed as a subgroup of S. Element orders
in PΩ+

6 (9) include 4, 8, 16, 91, 182. The desired bound follows for p = 41. Further
element orders in PΩ+

6 (9) are 205, 15, 40. The bound follows for p = 73. Further
element orders in PΩ+

6 (9) include 6, 10, 12, 20, 24, 26, 30, 60, 80. The group PΩ−
6 (9)

is also a subgroup of S and two of its element orders are 328 and 365. From these
we get the desired bound for p = 193. �

5. Theorem 2.1: Exceptional groups

In this section S will be a simple exceptional group of Lie type, but not the Tits
group. Then S is of the form G/Z(G), where G = GF is the set of fixed points of a
simple algebraic group of simply connected type, under a Frobenius endomorphism
F associated to the field of q = ℓf elements, where ℓ is a prime. Let r be the rank of
G, which we also call the rank of S. We then have CG(g) ≥ (q − 1)r for all g ∈ G,
which implies that CS(g) ≥ (q − 1)r/|Z(G)| for all g ∈ S.
Let Φn(q) denote the value of the n-cyclotomic polynomial at q and let p(S) be

the maximal prime divisor of S. Also, let Φ±
4 (q) := q ± √

2q + 1 for q = 22m+1,

Φ±
6 (q) := q ± √

3q + 1 for q = 32m+1, and Φ±
12(q) := q2 ±

√
2q3 + q ± √

2q + 1 for
q = 22m+1. Using the order formulas of S [Atl], one can find an upper bound for
p(S), which we record in Table 2. We observe that in all the cases p(S) ≤ ΨS(q) for
a polynomial ΨS of degree at most r(S). In fact, deg(Ψn(S)) = r in all cases except
S = E7(q).
We recall from Section 2 that a subgroup T of G is said to be strongly self-

centralizing if CG(t) = T for every 1 6= t ∈ T . It turns out that every group of
exceptional types other than E7(q) has one or more strongly self-centralizing torus,
as worked out in [BPS09]. This information is collected in Table 3 for convenient
reference.

We now examine each family of groups separately.

1) S = 2B2(q) with q = 22m+1 ≥ 23. We will assume that m ≥ 3 as information
on 2B2(8) and 2B2(32) are available in [Atl]. As seen in Table 3, S contains two
strongly self-centralizing tori T1 and T2 of order Φ±

4 (q) such that |NS(Ti)/Ti| = 4.
Assume first that p divides either Φ+

4 (q) or Φ
−
4 (q). We then have |Sp′ | > 3|S|/4 by
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Table 2. Upper bounds for p(S).

S upper bound for p(S)
2B2(q), q = 22m+1 Φ+

4 (q)
G2(q) Φ3(q)

2G2(q), q = 32m+1 Φ+
6 (q)

F4(q) Φ8(q)
2F4(q), q = 22m+1 Φ+

12(q)
3D4(q) Φ12(q)
E6(q) Φ9(q)
2E6(q) Φ18(q)
E7(q) Φ7(q)
E8(q) Φ30(q)

Table 3. Strongly self-centralizing maximal tori of exceptional groups.

S conditions |T | |NS(T )/T |
2B2(q) q = 22m+1 Φ±

4 (q) 4

G2(q)
q 6≡ 1(mod3)
q 6≡ 2(mod3)

Φ3(q)
Φ6(q)

6

2G2(q) q = 32m+1 Φ±
6 (q) 6

F4(q) Φ12(q) 12
2F4(q) q = 22m+1 Φ±

12(q) 12
3D4(q) Φ12(q) 4
E6(q) Φ9(q)/(3, q − 1) 9
2E6(q) Φ18(q)/(3, q + 1) 9

E8(q)
Φ24(q)
Φ15(q)
Φ30(q)

24
30
30

Lemma 2.4(i). Therefore,

kp′(S) >
3(q − 1)

4
,

which implies that

n(Aut(S),Clp′(S)) >
3(q − 1)

4(2m+ 1)
,

as |Out(S)| = 2m+ 1. We observe that

3(q − 1)/(4(2m+ 1)) > 2
√

Φ+
4 (q)− 1 ≥ 2

√
p− 1
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for all q ≥ 29. So we are done unless q = 27. In fact, when q = 27 we still have
3(q − 1)/(4(2m+ 1)) > 2

√
p− 1 unless p = 113.

Next we assume p ∤ Φ4(q) = Φ+
4 (q) · Φ−

4 (q), which means that p | 2(q − 1). By
Lemma 2.4(ii), we have |Sp′ | > 2|S|/5. Therefore, kp′(S) > 2(q − 1)/5, and it fol-
lows that n(Aut(S),Clp′(S)) > 2(q − 1)/5(2m+ 1). As p ≤ q − 1, we deduce that
n(Aut(S),Clp′(S)) > 2

√
p− 1 for q ≥ 213. Indeed, we have p ≤ 89 when q = 211 and

p ≤ 73 when q = 29 and thus the desired bound still holds in those cases. We are left
with (S, p) = ( 2B2(2

7), 127).
Let S = 2B2(2

7). We have |Out(S)| = 7. Suzuki [Su60] proved that S has 27 + 3
conjugacy classes. The trivial element of S forms a single Aut(S)-orbit. The group
S has 1 class of involutions. It has 2 classes of elements of order 4 accounting for
2 Aut(S)-orbits. The group S has 63 conjugacy classes of elements of order 127 ac-
counting for at least 9 Aut(S)-orbits. It has 28 conjugacy classes of elements of order
113 forming at least 4 orbits. There are 36 classes of elements in a cyclic torus of order
145, where 1 of them is for elements of order 5, 7 of them for elements of order 29, and
28 of them for elements of order 145. These give at least 6 orbits. Adding all these
together we have n(Aut(S),Clp′(S)) ≥ 14 for the pair (S, p) = ( 2B2(2

7), 127) and
n(Aut(S),Clp′(S)) ≥ 19 for the pair (S, p) = ( 2B2(2

7), 113), as appearing in Table 1.
We also note that for these two exceptions, n(Aut(S),Clp′(S)) ≥ 14 > 2(p − 1)1/4

and n(Aut(S),Clp(S) ∪ Clp′(S)) = 23 > 2
√
p− 1.

2) S = G2(q) with q = ℓf ≥ 3. We will assume that q ≥ 7 as the cases q = 3, 4, 5 are
available in [Atl]. First we consider p | Φ3(q). If q 6≡ 1 (mod 3) then S has a strongly
self-centralizing torus T of order Φ3(q) such that |NS(T )/T | = 6. Lemma 2.4 then
implies that |Sp′ | > 5|S|/6. Thus n(Aut(S),Clp′(S)) > 5(q − 1)2/(6fg) for g = 2 if

ℓ = 3 and g = 1 otherwise. Therefore n(Aut(S),Clp′(S)) > 2
√

Φ3(q)− 1 ≥ 2
√
p− 1

unless q = 9, but in this exceptional case p is at most 13 and the bound still follows.
So assume that q ≡ 1 (mod 3). Then S has a maximal torus of order Φ6(q) with

the relative Weyl group of order 6 as above, implying that there are (q2−q)/6 classes
of S with representatives being nontrivial elements in this torus. Consider another
torus of order (q + 1)2 with the relative Weyl group of order 12, we find another
(q2 + 2q/12f nontrivial different classes. We now have

kp′(S) ≥ 1 +
q2 − q

6
+

q2 + 2q

12
,

and thus

n(Aut(S),Clp′(S)) ≥ 1 +
q2 − q

6f
+

q2 + 2q

12f
.

This bound is greater than 2
√
Φ3(q)− 1 ≥ 2

√
p− 1, and hence we are done, unless

q = 7. When q = 7 we have p = 19 and the above bound is still greater than 2
√
p− 1.
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The case p | Φ6(q) is similar, so suppose that p ∤ Φ3(q)Φ6(q). Then by Lemma 2.4
we have n(Aut(S),Clp′(S)) > (q − 1)2/(7fg) for g = 2 if ℓ = 3 and g = 1 otherwise,
but now p ≤ q + 1. One can check that (q − 1)2/(7fg) > 2

√
q ≥ 2

√
p− 1 unless

q = 7 or 9. But in those cases we have p ≤ 7 or 5, respectively, and hence we still
have n(Aut(S),Clp′(S)) > 2

√
p− 1.

3) S = 2G2(q) with q = 32m+1 ≥ 33. We assume m ≥ 2 as the case 2G2(27) can be
confirmed directly using [Atl]. We know that S contains two strongly self-centralizing
tori T1 and T2 of order Φ±

6 (q) such that |NS(Ti)/Ti| = 6. Assuming that p divides
either Φ+

6 (q) or Φ
−
6 (q), we have kp′(S) > 5(q − 1)/6, which implies that

n(Aut(S),Clp′(S)) >
5(q − 1)

6(2m+ 1)
.

Now we observe that 5(q− 1)/(6(2m+1)) > 2
√

Φ+
6 (q)− 1 ≥ 2

√
p− 1 for all q ≥ 35.

Next we assume p ∤ Φ6(q) = Φ+
6 (q) · Φ−

6 (q), which yields p | 3(q2 − 1). By
Lemma 2.4(ii), we have |Sp′ | > 2|S|/7. Therefore, kp′(S) > 2(q − 1)/7, implying
that n(Aut(S),Clp′(S)) > 2(q − 1)/7(2m+ 1). As p ≤ (q − 1)/2, we deduce that
n(Aut(S),Clp′(S)) > 2

√
p− 1 for q ≥ 37. When q = 35 we in fact have p ≤ 61 and

thus the desired bound also holds.

4) S = F4(q) with q = ℓf . Note that S has a strongly self-centralizing torus T of
order Φ12(q) and |NS(T )/T | = 12. Therefore, if p | Φ12(q), we have

n(Aut(S),Clp′(S)) >
11(q − 1)4

12f(2, q)
,

which is larger than 2
√
Φ12(q)− 1 ≥ 2

√
p− 1 unless q = 2 or 3. When q = 2, there

are at least 18 Aut(S)-orbits on unipotent classes of S while p ≤ 17 by [Atl], so we
are done. When q = 3 then p = Φ12(3) = 73, and n(Aut(S),Clp′(S)) = kp′(S). Note
that G = S has a maximal torus of order Φ8(q) = 82 with the relative Weyl group
of order 8, so we have at least 11 classes of elements in this torus. Similarly, there
are at least (Φ3(q)

2− 1)/24 = 168/24 = 7 classes of nontrivial elements in a maximal
torus of order Φ3(q)

2. We now have n(Aut(S),Clp(S) ∪ Clp′(S)) ≥ 18 > 2
√
73− 1,

as wanted.
So we assume p ∤ Φ12(q). Then S has at least (q4 − q2)/12 nontrivial classes with

representatives in a maximal torus of order Φ12(q). It follows that

n(Aut(S),Clp′(S)) > 1 +

⌈
q4 − q2

12f(2, q)

⌉
.

Note that p ≤ Φ8(q) = q4 + 1 and therefore we are done unless q = 2, 3, 4, 8. The
cases q = 2 or 3 can be handled as above. When q = 8 we have p ≤ 241 and thus
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1 + (q4 − q2)(12f(2, q)) is still greater than 2
√
p− 1. When q = 4, we also have the

desired bound unless p = 44 + 1 = 257.
Suppose (S, p) = (F4(4), 257). From the Dynkin diagrams, we know that the

groups PSL3(4) × PSL3(4), SU3(4) × SU3(4), and Sp6(4) are all sections of S, and
thus every element orders of these groups are element orders of S. Moreover every
element order of F4(2) is also an element order of S. Using [Atl, GAP] to examine
the element orders of these smaller groups, we find that they altogether have way
more than 32 = 2

√
p− 1 different element orders coprime to p = 257, proving the

theorem in this case.

5) S = 2F4(q) with q = 22m+1 ≥ 8. We know that S contains two strongly self-
centralizing tori T1 and T2 of order Φ±

12(q) such that |NS(Ti)/Ti| = 12. Assume that
p divides either Φ+

12(q) or Φ
−
12(q). Then kp′(S) > 11(q − 1)2/12, implying that

n(Aut(S),Clp′(S)) >
11(q − 1)2

12(2m+ 1)
.

One can check that 11(q− 1)2/(12(2m+1)) > 2
√

Φ+
12(q)− 1 ≥ 2

√
p− 1 for all q ≥ 8

and we are done.
Next we assume p ∤ Φ12(q) = Φ+

12(q) · Φ−
12(q). Then p | qΦ1(q)Φ2(q)Φ4(q)Φ6(q) and

hence p ≤ q2 + 1. We now have |Sp′ | > 2|S|/13. Therefore, kp′(S) > 2(q − 1)2/13,
which implies that n(Aut(S),Clp′(S)) > 2(q − 1)2/13(2m+ 1). We deduce that
n(Aut(S),Clp′(S)) > 2

√
p− 1 for q ≥ 27. Indeed, we have p ≤ 61 and p ≤ 19

when q = 25 and 23, respectively, and thus we are also done in these cases.

6) S = 3D4(q) with q = ℓf . We assume q ≥ 3 as the case 3D4(2) is available in
[Atl]. We know that S has a strongly self-centralizing tori T of order Φ12(q) such
that |NS(T )/T | = 4. Assume first that p | Φ12(q). Then n(Aut(S),Clp′(S)) >
3(q − 1)4/(12f). It then follows that n(Aut(S),Clp′(S)) > 2

√
p− 1 unless q = 3 or

4. For q = 3 we have p = Φ12(3) = 73 and note that as C7×SU3(3) and C13×SL3(3)
are sections of S, we can find more than 17 > 2

√
72 different element orders coprime

to 73 in S. For q = 4 we have p = Φ12(4) = 241, and we can find by [GAP] and using
the paper [Kl88] at least 31 > 2

√
p− 1 different element orders from the subgroups

3D4(2), G2(4), C13 × SU3(4), PGL3(4), PSL2(64)× PSL2(4) and C21 ◦ SL3(4) of S.
Next assume that p ∤ Φ12(q). Then p | qΦ1(q)Φ2(q)Φ3(q)Φ6(q) and thus p ≤

q2+q+1. Now there are at least (q4−q2)/4 nontrivial classes with representatives in a
maximal torus of order Φ12(q), and therefore n(Aut(S),Clp′(S)) > 1+(q4 − q2/(12f),

which is larger than 2
√

q2 + q ≥ 2
√
p− 1 for all q ≥ 3.

7) S = E6(q) with q = ℓf . We again assume q ≥ 3 as the case E6(2) is available in
[Atl]. We know that S has a strongly self-centralizing tori T of order Φ9(q)/(3, q− 1)
such that |NS(T )/T | = 9. Assume that p | |T |. Recall that CS(g) ≥ (q−1)6/(3, q−1)
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for all g ∈ S and |Out(S)| = 2f(3, q − 1). Now we have

n(Aut(S),Clp′(S)) >
4(q − 1)6

9f(3, q − 1)2
.

It turns out that 4(q − 1)6/9f(3, q − 1)2 > 2
√
p− 1 unless q = 3 and 4. When q = 4

we have p ≤ 73 so the bound n(Aut(S),Clp′(S)) > 2
√
p− 1 still holds. When q = 3

the only prime we need to check is p = 757 = Φ9(3). So let (S, p) = (E6(3), 757).
The union of the set of prime divisors of |E6(3)| with the set of element orders of the
sections PSL6(3), PSL3(3) × PSL3(3) × PSL3(3), PSL3(27) and PSL5(3) × PSL2(3)
consists of 47 integers none of which is divisible by 757. The group PΩ+

10(3) is also a
section of E6(3) and by finding orders of random elements in PΩ+

10(3) using [GAP],
we may obtain 8 extra integers, namely 21, 35, 45, 70, 82, 84, 90 and 164, apart from
the 47 previously found. Finally, 55 > 2

√
757− 1.

Suppose p ∤ |T |, and so we have p ≤ q4 + 1. Let G be the extension of S be
diagonal automorphisms. Then G has a maximal torus of order Φ9(q) = q6 + q3 + 1
with the relative Weyl group of order 9. Therefore there are at least (q6 + q3)/9
nontrivial classes with representatives in that torus. Therefore G has at least (q6 +
q3)/9 nontrivial p-regular classes, and thus, by the orbit counting formula,

n(Aut(S),Clp′(S)) ≥ 1 +
q6 + q3

18f(3, q − 1)
,

which is larger than 2q2 ≥ 2
√
p− 1 for all q ≥ 3.

8) S = 2E6(q) with q = ℓf . We assume q ≥ 3 as the case E6(2) is available in
[Atl]. From Table 3, we know that S has a strongly self-centralizing torus T of order
Φ18(q)/(3, q + 1) such that |NS(T )/T | = 9. Suppose that p | |T |. Then

n(Aut(S),Clp′(S)) ≥
kp′(S)

2f(3, q + 1)
>

4(q − 1)6

9f(3, q + 1)2
≥ 2

√
Φ18(q)/(3, q + 1)− 1

unless q = 3. When q = 3 we have p = 19 or 37 and the bound n(Aut(S),Clp′(S)) >
2
√
p− 1 still holds.
Next we assume p ∤ |T |. Then p ≤ q4 + 1. As in the case of E6(q), we get

n(Aut(S),Clp′(S)) ≥ 1 +
q6 − q3

18f(3, q + 1)
,

which is larger than 2q2 ≥ 2
√
p− 1 for all q ≥ 3.

9) S = E7(q) with q = ℓf . As the case q = 2 is available in [Atl], we assume
that q ≥ 3. This is the only family of exceptional groups that do not always possess
a strongly self-centralizing maximal torus. It was shown in [BPS09, Theorem 3.4]
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that the proportion of p-regular elements in S is at least 1/15, for every prime p.
Therefore

n(Aut(S),Clp′(S)) >
(q − 1)7

15f(2, q − 1)2
=: R(q).

Recall from Table 2 that p ≤ Φ7(q) = (q7 − 1)/(q − 1) and one can check that

R(q) > 2
√

Φ7(q)− 1 for all q ≥ 5. When q = 4 we observe that the largest prime
divisor of S is 257 and hence the inequality R(q) > 2

√
p− 1 still holds. For q = 3

the bound is also good unless p = 757 = Φ9(3) or 1093 = Φ7(3). The case of
(S, p) = (E7(3), 757) follows from the case (S, p) = (E6(3), 757) we already examined
above. Finally let (S, p) = (E7(3), 1093). We know that E6(3), and hence E7(3), has
at least 55 different element orders coprime to 757 as well as 1093. On the other hand
elements in a maximal torus of (E7)ad(3) of order Φ9(3)Φ1(3) = 2 · 757 are controlled
by its relative Weyl group of order 18, implying that there are at least 42 classes of
elements of order 757 with representatives in this torus, which in turn produce at
least 21 Aut(S)-orbits on those classes. We now have at least 55 + 21 > 2

√
1092,

orbits of Aut(S) on p-regular classes of S.

10) S = E8(q) with q = ℓf ≥ 3 as the case q = 2 can be checked directly
using [Atl]. First assume that p | Φ15(q) or p | Φ30(q). Since S contains two
strongly self-centralizing maximal tori T1 and T2 of order Φ15(q) and Φ30(q) such
that |NS(Ti)/Ti| = 30, we obtain kp′(S) > 29(q − 1)8/30 and thus

n(Aut(S),Clp′(S)) ≥
29(q − 1)8

30f
,

which turns out to be greater than 2
√

Φ30(q)− 1 ≥ 2
√
p− 1 for all q ≥ 3.

Next we suppose p | Φ24(q). As S contains one strongly self-centralizing maximal
torus T of order Φ24(q) such that |NS(T )/T | = 24, we deduce that kp′(S) > 23(q −
1)8/24 and thus n(Aut(S),Clp′(S)) ≥ 23(q − 1)8/(24f), which again is greater than

2
√
q8 − q4 ≥ 2

√
p− 1 for all q ≥ 3.

Lastly we assume p ∤ Φ15(q)Φ24(q)Φ30(q). Then p ≤ Φ7(q) = (q7 − 1)/(q − 1). By
Lemma 2.4 we get

|Sp′ | >
(

1

25
+

1

31
+

1

31

)
|S| = 81

775
|S|.

Thus kp′(S) > 81(q − 1)8/775 and hence n(Aut(S),Clp′(S)) ≥ 81(q − 1)8/(775f).

One can check that 81(q− 1)8/(775f) > 2
√

Φ7(q)− 1 for all q ≥ 4. For the last case
q = 3, we note that S has at least Φ30(3)/30 conjugacy classes with representatives
in the maximal torus of order Φ30(3), which implies that

n(Aut(S),Clp′(S)) = kp′(S) > 2
√
1092 ≥ 2

√
p− 1

for every prime divisor of |S| not dividing Φ15(3)Φ24(3)Φ30(3).
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We have finished the proof of Theorem 2.1.

6. Bounding the number of p-regular classes in finite groups of Lie

type

The following is Theorem 1.4 in the introduction.

Theorem 6.1. Let S be a simple group of Lie type defined over the field of q elements
with r the rank of the ambient algebraic group. We have

kp′(S) >
qr

17r2

for every prime p.

Proof. The theorem is known in the case p ∤ |S|, as we already mentioned in the
introduction that k(S) > qr/d where d is the order of the group of diagonal automor-
phisms of S and the values of d for various groups are known, see [Atl] for instance.
We are also done in the case p is the defining characteristic of S, by using the same
arguments as in the proof of Lemma 2.2. For S an exceptional group, the theorem
follows from our work in Section 5. Here we note that all the bounds obtained are
of the form c(q − 1)r where c is a constant depending on the rank r only. It is then
straightforward to check that c(q − 1)r > qr/(17r2) for all types and all q > 2. The
case q = 2 can be proved by a direct check using [Atl, GAP].
Suppose S = PSp2r(q) or Ω2r+1(q). The case of odd p follows from Lemma 4.3.

When p = 2 similar arguments as in the proof of Lemma 4.3 apply, with the remark
that either (qr − 1)/2 or (qr + 1)/2 is odd (when q is odd), and hence the bound is
kp′(S) > qr/8r > qr/(17r2).
Let S = PΩ±

2r(q). From Subsection 4.2 we know that the minimum centralizer size
of an element in S is at least

qr(2, qr − ǫ1)

2(4, qr − ǫ1)

[
1− 1/q

2ke

]1/2
,

where k := min{x ∈ N : max{4, logq(4r)} ≤ 2x}. On the other hand, By [BPS09,
Theorem 1.1], the proportion of p-regular elements in S is at least 1/4r. We deduce
that

kp′(S) ≥
qr(2, qr − ǫ1)

8r(4, qr − ǫ1)

[
1− 1/q

2ke

]1/2
,

which is greater than qr/17r2 for all possible values of q ≥ 2 and r ≥ 4.
Finally let S = PSLǫ

r+1(q) for ǫ = ±. From the proof of Lemma 3.10, we know
that the minimum centralizer size of an element in S is at least

qrH(r, q, ǫ)

(r + 1, q − ǫ1)
,
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where

H(r, q,+) =
1

ek
with k := min{x ∈ N : x ≥ logq(r + 2)} and

H(r, q,−) =

(
q2 − 1

ek′(q + 1)2

)1/2

with k′ := min{x ∈ N : x odd and x ≥ logq(r + 2)}. Moreover, by [BGPW13,
Theorem 1.1], the proportion of p-regular elements in S is at least 1/(r + 1) (note
that p ∤ q). We deduce that

kp′(S) ≥
qrH(r, q, ǫ)

(r + 1)(r + 1, q − ǫ1)
.

It is straightforward to check that this bound is again larger than qr/(17r2) for all
possible q and r. �

We remark that it is possible to prove that kp′(S) > qr/(12r2) for every S but the
estimates are a lot more tedious. Also, when S is an even-dimensional orthogonal
group, there is an explicitly computed constant c > 0 such that kp′(S) > cqr/r. By
following the proof of Theorem 6.1, we therefore have:

Theorem 6.2. Let S be a simple group of Lie type defined over the field of q elements
with r the rank of the ambient algebraic group. Suppose that S is not linear or unitary.
There exists a universal constant c > 0 such that

kp′(S) >
cqr

r
for every prime p.

7. p-regular and p’-regular conjugacy classes

In this section we prove Theorem 1.1.
We start with an easy observation.

Lemma 7.1. Let G be a finite group and N ✂ G. Then kp(G/N) ≤ kp(G) and
kp′(G/N) ≤ kp′(G).

Proof. Recall that kp′(G) is exactly the number of p-Brauer irreducible characters of
G and every character of G/N can be viewed as a character of G. Therefore the
inequality kp′(G/N) ≤ kp′(G) follows.
Now let gN be a p-element of G/N . Suppose that g = gpgp′ = gp′gp where gp is a

p-element and gp′ is a p′-element. Then we have gN = gpNgp′N = gp′NgpN where
gpN is a p-element and gp′N is a p-regular element of G/N . Since gN is a p-element,
it follows that gp′N = N . Thus gN = gpN , which means that every p-element of G/N
has a representative which is a p-element of G, proving that kp(G/N) ≤ kp(G). �
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Next we improve a key result of [Ma16].

Lemma 7.2. Let V be an irreducible and faithful FG-module for some finite group
H and finite field F of characteristic p. Suppose that p does not divide |H|. Then we
have k(H)+n(H, V )− 1 ≥ 2

√
p− 1 with equality if and only if

√
p− 1 is an integer,

|V | = |F | = p and |H| = √
p− 1.

Proof. This follows from [Ma16, Theorem 2.1] for p ≥ 59. We take this opportunity
to note that [Ma16, Lemma 3.2] is probably incorrect but it may be replaced by a
different but similar statement. This does not effect the proof of [Ma16, Theorem
2.1], only straightforward and minor changes are to be made.
Assume that p < 59. For convenience, let f(H, V ) = k(H) + n(H, V )− 1.
If |V | = p, then H is cyclic of order dividing p− 1 and

f(H, V ) = |H|+ p− 1

|H| ≥ 2
√

p− 1

with equality if and only if
√
p− 1 is an integer and |H| = √

p− 1. From now on
assume that |V | > p.
Let |V | = p2. Assume first that H is solvable. The argument of Héthelyi,

Külshammer [HK03, p. 661-662] gives f(H, V ) ≥ (49p + 1)/60. It is easy to see
that (49p + 1)/60 > 2

√
p− 1 unless p ∈ {2, 3}. Let p ∈ {2, 3}. We are finished

if k(H) ≥ 3 > 2
√
p− 1. Otherwise |H| ≤ 2 and the integer f(H, V ) is at least

1 + (p2 − 1)/2 ≥ 5/2, and so f(H, V ) ≥ 3 > 2
√
p− 1.

Assume now that |V | = p2 and H is non-solvable. Then H ≤ Z(GL(V )) · SL(V )
by [Gi07, Theorem 3.5] and so H/Z(H) is isomorphic to A5 and p ∈ {5, 11, 31, 41}
by [Hu67, p. 213-214] or [Di58, p. 285]. Moreover, since |Z(SL(V ))| = 2, the factor
group H/(Z(SL(V )) ∩ H) is a direct product of A5 and a cyclic group of order (at
least) |Z(H)|/2. This implies that k(H) ≥ 2.5 · |Z(H)|. We thus have

(7.1) f(H, V ) ≥ 2.5 · |Z(H)|+ p2 − 1

60 · |Z(H)| = 2.5 · |Z(H)|+ (2.5/60) · (p2 − 1)

2.5 · |Z(H)| .

The right-hand side of (7.1) is at least 2
√

(2.5/60) · (p2 − 1) > 0.4
√

p2 − 1, which is
larger than 2

√
p− 1 unless p ∈ {5, 11}. If p = 5, then H = SL(2, 5) = SL(V ) and

f(H, V ) = 10 > 2
√
p− 1. Assume that p = 11. If Z(H) is non-trivial, then k(H) ≥ 9

and so f(H, V ) ≥ 7 > 2
√
10− 1. If H is isomorphic to A5 (a case which probably

does not occur), then k(H) = 5 and (112 − 1)/|H| = 2 and so f(H, V ) ≥ 7.
Assume that |V | ≥ p3. Let c = (p− 1)/(p3 − 1). If k(H) > c · |H|, then

f(H, V ) > c · |H|+ p3 − 1

|H| = c · |H|+ c · (p3 − 1)

c · |H| ≥ 2
√

c · (p3 − 1) = 2
√
p− 1.

Thus assume that k(H) ≤ c · |H|.
Observe that c ≤ 1/7. The list of finite groups X with k(X) ≤ 4 found in [VL85]

shows that k(X) > |X|/7. We may thus assume that k(H) ≥ 5.
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If p ≤ 7, then f(H, V ) ≥ 5 + 1 > 2
√
7− 1 ≥ 2

√
p− 1. We may have p ≥ 11.

Observe that c ≤ 1/133. The list of finite groups X with k(X) ≤ 8 found in [VL85]
shows that k(X) > |X|/133. We may thus assume that k(H) ≥ 9.
If p ≤ 23, then f(H, V ) ≥ 9 + 1 > 2

√
23− 1 ≥ 2

√
p− 1. Assume that p ≥ 29.

Now c ≤ 1/871. The list of finite groups X with k(X) ≤ 9 found in [VL85] shows
that k(X) > |X|/871. We may thus assume that k(H) ≥ 10.
If p ≤ 31, then f(H, V ) ≥ 10 + 1 > 2

√
31− 1 ≥ 2

√
p− 1. Assume that p ≥ 37.

Let k(H) = 10 or k(H) = 11. The list in [VL85] shows that |H| ≤ 20160 in the first
case and |H| ≤ 29120 in the second. Thus f(H, V ) ≥ k(H)+(p3−1)/|H| > 2

√
p− 1

for every prime p with 37 ≤ p ≤ 53. Thus k(H) ≥ 12.
We have f(H, V ) ≥ 12 + 1 > 2

√
p− 1 for p ≤ 53, unless p = 47 or p = 53.

Moreover, if k(H) ≥ 14, then f(H, V ) ≥ 14 + 1 > 2
√
53− 1 ≥ 2

√
p− 1. Thus we

may assume that (k(H), p) ∈ {(12, 47), (12, 53), (13, 47), (13, 53)}.
Let k(H) = 12. Then |H| ≤ 43320 or H is isomorphic to the Mathieu group M22

by [VL86]. In the former case f(H, V ) ≥ 12 + (p3 − 1)/43320 > 2
√
p− 1. Observe

that |M22| is equal to 443520, which does not divide |GL(3, p)| (for p ∈ {47, 53}).
Thus in the second case f(H, V ) ≥ 12 + (p4 − 1)/|H| > 23 > 2

√
p− 1.

Finally, let k(H) = 13 and p ∈ {47, 53}. If p = 47, then f(H, V ) ≥ 14 which is
larger than 2

√
p− 1. Let p = 53. If H is not a nilpotent group, then the list in

[VS07] shows that |H| ≤ 4840 and so f(H, V ) ≥ 13 + (533 − 1)/4840 > 2
√
53− 1.

Let H be nilpotent. Since 13 = k(H) =
∏t

i=1 k(Pi) where Pi is a Sylow pi-subgroup
of H and {p1, . . . , pt} is the set of distinct prime divisors of |H| and since 13 is
prime, we must have t = 1 and that H is a p1-group. Now H cannot be transitive
on V \ {0} since 52 = (p − 1) | (|V | − 1) cannot divide |H|. This means that
f(H, V ) ≥ 13 + 2 > 2

√
53− 1. The proof is complete. �

We finally can prove Theorem 1.1, which is restated below.

Theorem 7.3. Let p be a prime and G be a finite group of order divisible by p. We
have

kp(G) + kp′(G) ≥ 2
√

p− 1.

Moreover, the equality occurs if and only if
√
p− 1 is an integer, G = Cp ⋊ C√

p−1

and CG(Cp) = Cp.

Proof. If
√
p− 1 is an integer, G = Cp ⋊ C√

p−1 and CG(Cp) = Cp, then

kp(G) + kp′(G) = 2
√
p− 1.

Assume that G is different from the group G = Cp ⋊ C√
p−1 with CG(Cp) = Cp

when
√
p− 1 is an integer. We proceed to show by induction on the size of G that

kp(G) + kp′(G) > 2
√
p− 1.

This is clearly true in case G is a cyclic group of order p (different from C2). If G
is an almost simple group, the claim follows from Theorem 2.1 unless (Soc(G), p) =
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(A5, 5) or (Soc(G), p) = (PSL2(16), 17). Even in these two exceptional cases the
bound can be checked using [Atl].
Let N be a non-trivial normal subgroup of G. We have

kp(G/N) + kp′(G/N) ≤ kp(G) + kp′(G)

by Lemma 7.1. We may assume by induction that p ∤ |G/N |, or √p− 1 is an integer,
G/N = Cp ⋊ C√

p−1 with CG/N(Cp) = Cp and

2
√

p− 1 = kp(G/N) + kp′(G/N) ≤ kp(G) + kp′(G).

In this latter case we are finished by Lemma 7.1 unless kp(G/N) = kp(G) and
kp′(G/N) = kp′(G). However, kp(G/N) < kp(G) if p | |N | and kp′(G/N) < kp′(G) if
p ∤ |N |. We are thus left with the case that p ∤ |G/N | and p | |N |. Since p ∤ |G/N |
and p | |N | hold for every non-trivial normal subgroup N of G, the group G must
have a unique minimal normal subgroup V . Moreover, G has a complement H for V
by the Schur-Zassenhaus theorem.
Assume that V is elementary abelian. The subgroup H of G acts faithfully, co-

primely and irreducibly on V . We have k(H)+n(H, V )−1 > 2
√
p− 1 by Lemma 7.2.

Observe that kp′(G) ≥ kp′(G/V ) = kp′(H) = k(H) and that kp(G) ≥ n(H, V ) − 1
since each H-orbit on V produces a G-conjugacy class of p-elements. These give the
desired kp′(G) + kp(G) > 2

√
p− 1 bound.

It remains to assume that V is non-abelian and thus it is isomorphic to a direct
product of copies of a non-abelian simple group S. Since almost simple groups G have
been treated before, V is the direct product of at least two copies of S. As p | |V |,
we have p | |S|. First suppose that (S, p) is neither (A5, 5) nor (PSL2(16), 17). From
Theorem 2.1, we know that H has more than 2

√
p− 1 orbits on conjugacy classes

of p-regular and p′-regular elements of S, and therefore of V . Clearly, the number of
these orbits is at most kp(G) + kp′(G), and hence the theorem follows. Even in the
case (S, p) ∈ {(A5, 5), (PSL2(16), 17)} we are also done since the number of G-orbits
on p-regular classes of V is at least k(k+1)/2, where k = n(Aut(S),Clp′(S)) = 4 for
(S, p) = (A5, 5) and 5 for (S, p) = (PSL2(16), 17). We have finished the proof. �

8. The number of Brauer characters of non-p-solvable groups

In this section we prove Theorem 1.2. Let p be a prime. The set of irreducible
p-Brauer characters of a finite group G is denoted by IBrp(G). We give two lower
bounds for |IBrp(G)| in case G is a non-p-solvable finite group. Our result can be
compared to [MN16, Theorem 1.1] where it was shown that |IBrp(G)| is bounded
below by a function of |G/O∞(G)| where O∞(G) denotes the largest solvable normal
subgroup of G.
Let G be a non-p-solvable finite group. Let N := O∞(G). We have |IBrp(G)| =

kp′(G) ≥ kp′(G/N) = |IBrp(G/N)| by Lemma 7.1. It is sufficient to establish the
bounds for the group G/N , that is, we may assume that G has no elementary abelian
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minimal normal subgroup. We may also assume by the same argument that every
minimal normal subgroup of G has order divisible by p.
Let Soc(G) denote the socle of G defined to be the product of all minimal normal

subgroups of G. In this case this is a characteristic subgroup which is a direct product
of non-abelian simple groups. Let S be a non-trivial direct summand of Soc(G).
Assume first that S is G-invariant. Observe that kp′(G) is at least the number of

G-orbits of p-regular elements in S. This latter number is greater than 2
√
p− 1 by

(iii) of Theorem 2.1, unless S and p appear in Table 1 and thus p ≤ 257. In any case,
kp′(G) > 2

√
p− 1.

We are left with the case when S is not G-invariant. Let k = n(Aut(S),Clp′(S)).
Again by (iii) of Theorem 2.1, this is larger than 2

√
p− 1 unless possibly if p ≤ 257,

but in any case k >
√
p− 1. Let t denote the number of different conjugates of S

under G. Then

kp′(G) ≥ n(G,Clp′(Soc(G))) ≥
(
k + t− 1

t

)
≥ k(k + 1)

2
.

If p > 257, then k(k + 1)/2 > 2(p− 1) > 2
√
p− 1. If p ≤ 257, then

k(k + 1)/2 > (p− 1)/2 ≥
√
p− 1,

unless p ≤ 3. Finally, assume that p ≤ 3. The group G has at least three different
prime divisors by Burnside’s Theorem. Thus kp′(G) ≥ 3 >

√
p− 1.

9. p-rational and p’-rational characters

In this section we prove Theorem 1.3.
We first prove Theorem 1.3 for p-solvable groups. In fact, we can do a bit more. The

following implies Theorem 1.3 for p-solvable groups. Here Qp denotes the cyclotomic
extension of rational numbers by a primitive pth root of unity. Also, we use the
standard notation Q(χ) for the field of values of a character χ.

Theorem 9.1. Let G be a finite p-solvable group of order divisible by p. Then

|Irrp−rat(G) ∪ IrrQp
(G)| ≥ 2

√
p− 1.

Moreover, the equality occurs if and only if
√
p− 1 is an integer, G = Cp ⋊ C√

p−1

and CG(Cp) = Cp.

Proof. If
√
p− 1 is an integer, G = Cp ⋊ C√

p−1 and CG(Cp) = Cp, then

|Irrp−rat(G) ∪ IrrQp
(G)| = |Irr(G)| = 2

√
p− 1.

Assume that G is different from the group Cp ⋊ C√
p−1 with CG(Cp) = Cp in case√

p− 1 is an integer. We proceed to prove by induction on the size of G that
|Irrp−rat(G) ∪ IrrQp

(G)| > 2
√
p− 1. This is clear in case G is a cyclic group of

order p (excluding the case p = 2).
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Let N be a minimal normal subgroup of G. We have Irrp−rat(G/N) ⊆ Irrp−rat(G),
IrrQp

(G/N) ⊆ IrrQp
(G) and

Irrp−rat(G/N) ∩ IrrQp
(G/N) = IrrQ(G/N) ⊆ IrrQ(G) = Irrp−rat(G) ∩ IrrQp

(G).

We may assume by induction that p ∤ |G/N |, or that √p− 1 is an integer, G/N =
Cp⋊C√

p−1 with CG/N(Cp) = Cp. Assume that the latter case holds. The elementary
abelian r-group N may be viewed as an irreducible G/N -module. If the cyclic normal
subgroup Cp of G/N acts fixed-point-freely on N and thus also on Irr(N), then there
must be at least 1 p-rational irreducible character of G by Clifford’s theorem which
does not contain N in its kernel. This proves the desired bound. Assume that the
cyclic normal subgroup Cp of G/N has a non-trivial fixed point on N . In this case
|N | = r and G contains an abelian normal subgroup M of order rp. Just as before,
there is at least 1 p-rational irreducible character of G by Clifford’s theorem which
does not contain N in its kernel.
We showed that for every minimal normal subgroup N of G we have p ∤ |G/N |. It

follows that G has a unique minimal normal subgroup V and p ∤ |G/V |. The group
V has a complement H in G by the Schur-Zassenhaus theorem. The group V can
be viewed as an irreducible and faithful FH-module where F is a finite field F of
characteristic p. It follows by Lemma 7.2 that

k(H) + n(H, V )− 1 > 2
√
p− 1.

Note that every irreducible character of H, viewed as a character of G, has values
in Q|H|, and hence is p-rational. Therefore G has exactly k(H) p-rational characters
whose kernels contain V .
We claim that G has at least m := n(H, V )− 1 irreducible characters with values

in Qp and their kernels do not contain V . Note that all characters of V have values
in Qp.
Let θ1, θ2, . . . , θm be representatives of the H-orbits on Irr(V )\{1H}. For each

1 ≤ i ≤ m, the character θi has a canonical extension to IG(θi), say θ̂i such that

Q(θ̂i) = Q(θi) ⊆ Qp (see [Na18, Corollary 6.4] for instance). It follows that Q(θ̂i
G
) ⊆

Qp. Also, by Clifford’s theorem we have θ̂i
G ∈ Irr(G). Note that the θ̂i

G
are pairwise

different. Therefore the claim follows.
Now we have

|IrrQp
(G) ∪ Irrp−rat(G)| ≥ k(H) + n(H, V )− 1 > 2

√
p− 1,

which proves the theorem. �

Lemma 9.2. Let G be a nonsolvable group. Then |Irr2−rat(G)| ≥ 3. Consequently,
Theorem 1.3 holds for p = 2.

Proof. By modding out a solvable normal subgroup if necessary, we assume that G
has a nonabelian minimal normal subgroup N , which is a direct product of copies of
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a nonabelian simple group S. By [HSTV20, Lemma 4.1], there exists a non-principal
character θ ∈ Irr(S) that is extendible to a rational-valued character of Aut(S), and
therefore G has a rational irreducible character χ which extends θ×· · ·× θ ∈ Irr(N).
If G/N has even order, then by Burnside’s theorem it has a nontrivial rational

irreducible character, and together with χ above and the trivial character, it follows
that |IrrQ(G)| ≥ 3, as wanted. If |G/N | > 1 is odd, then every ϕ ∈ Irr(G/N) is 2-
rational and thus all the characters of the form χϕ ∈ Irr(G) are 2-rational, implying
that |Irr2−rat(G)| ≥ 3.
We now can assume that G = N . It is in fact sufficient to show that |Irr2−rat(S)| ≥

3 for every nonabelian simple group S. This is easy to check when S is a sporadic
group, the Tits group, PSL2(q) with q ∈ {5, 7, 8, 9, 17}, PSL3(3), PSU3(3), or PSU4(2)
using [Atl]. It is also easy for S = An by considering the restrictions of the irreducible
characters of S labeled by the partitions (n − 1, 1) and (n − 2, 2). So we can, and
we will, assume that S is not one of these groups. First note that the trivial and
Steinberg characters of S are rational. We claim that S has a 2-rational semisimple
character, and thus the required bound follows.
By the classification, we can find a simple algebraic group G of adjoint type and

a Frobenius endomorphism F : G → G such that S = [G,G] for G := GF . Let
(G∗, F ∗) be dual to (G, F ) and let G∗ := G∗F ∗

. By Lusztig’s classification of the
complex irreducible characters of finite reductive groups [DM91], each G∗-conjugacy
class sG

∗

of a semisimple element s ∈ G∗ corresponds to a semisimple character
χs ∈ Irr(G). This χs has values in Q|s| by [GHSV20, Lemma 4.2] and moreover, by
[Ti15, Proposition 5.1], if |s| is coprime to |Z(G∗)| then χs restricts irreducibly to S.
From the assumption on S, we have that |G∗| is divisible by at least three dif-

ferent odd primes, and thus G∗ always possesses a semisimple element s such that
(|s|, 2|Z(G∗)|) = 1. This s then corresponds to a semisimple character χs ∈ Irr(G)
such that χs restricts irreducibly to S and Q(χs) ⊆ Q|s|. Thus (χs)S is 2-rational.
Theorem 1.3 follows for p = 2 since the solvable case was already treated in Theo-

rem 9.1. �

The following observation is crucial in the proof of Theorem 1.3 for odd p. It is
well-known but we could not find a reference.

Lemma 9.3. For every finite group X and odd prime p, |Irrp−rat(X)| ≥ kp′(X).

Proof. The lemma is obvious when p ∤ |X|. So we assume p | |X|. Consider the
natural actions of Γ := Gal(Q|X|/Q|X|p′ )

∼= Gal(Q|X|p/Q) on classes and irreducible

characters of X. Note that Γ is cyclic of order |X|p(p− 1)/p. Let ξ be a generator of
Γ. By Brauer’s permutation lemma, ξ fixes the same number of irreducible characters
and classes. Each irreducible character fixed by ξ has values in Q|X|p′ and therefore

p-rational. On the other hand, for each conjugacy class Cl(g) of a p-regular element
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g, we have χ(g) ∈ Q|X|p′ for all χ ∈ Irr(X), implying that Cl(g) is fixed by ξ. The
lemma now follows. �

Using the theory of the so-called Bp-characters [Is84], one can similarly show that,
for a p-solvable group G, |Irrp′−rat(G)| is no less than the number of classes of p-
elements. This seems to be true for all finite groups but remains to be confirmed.

Lemma 9.4. Let G be a finite group with a non-abelian normal subgroup

N ∼= S × · · · × S,

where S is simple, 2 < p | |S|, and there are at least two factors of S in N . Then
|Irrp−rat(G)| > 2

√
p− 1.

Proof. Let k := n(Aut(S),Clp′(S)). Since there are at least two factors of S in
N , as before we have n(Aut(N),Clp′(N)) ≥ k(k + 1)/2. Since k ≥ 2(p − 1)1/4 by
Theorem 2.1(ii) and G acts naturally on Clp′(N), it follows that n(G,Clp′(N)) >
2
√
p− 1, which in turn implies that kp′(G) > 2

√
p− 1. The lemma now follows by

Lemma 9.3. �

Theorem 9.5. Let S be a nonabelian simple group of order divisible by p > 2 and
S ≤ G ≤ Aut(S) be an almost simple group. Then

|Irrp−rat(G) ∪ Irrp′−rat(G)| > 2
√

p− 1.

Proof. Suppose first that S is not listed in Table 1. Then by Theorem 2.1(iii) we
have n(Aut(S),Clp′(S)) > 2

√
p− 1. It follows that kp′(G) > 2

√
p− 1, implying that

Irrp−rat(G) > 2
√
p− 1 by Lemma 9.3.

We now go over the simple groups in Table 1 and establish the bound for each of
them. Indeed we are able to check most of them directly using [Atl, GAP], except
the ones below.
Let (S, p) = (PSU3(16), 241). In the proof of Lemma 3.5, we have shown that

kp′(S) > 2(162 − 16 + 1)/3 > 160. Therefore, if |G/S| ≤ 4 then kp′(G) > 160/4 >
2
√
p− 1 and we are done. It remains to assume that G = Aut(S) = S ⋊ C8. Again

in the proof of Lemma 3.5, we already showed that G = Aut(S) has at least 27 orbits
on p-regular classes of S, and so kp′(G) ≥ n(G,Clp′(S))+kp′(G/S)−1 ≥ 27+7 = 34.
We now have Irrp−rat(G) > 2

√
p− 1, as desired.

Let S = 2B2(128) and p = 113 or 127. If G = S then we have kp′(G) > 2
√
p− 1 as

analyzed in Section 5 (1). So suppose G > S and thus G = Aut(S) = S ⋊ C7. First
we note that the trivial and Steinberg characters of S have rational extensions to
Aut(S). Also, S has a rational class of elements of order 5 that is Aut(S)-invariant,
this semisimple class corresponds to a rational semisimple character of S of odd
degree, which therefore has a rational extension to Aut(S) as well. By Gallagher’s
theorem, we obtain 21 irreducible characters of G with values in Q7.
As mentioned in Section 5, Aut(S) has four orbits of size 7 on classes of elements

of order 145. One (semisimple) element in such an orbit produces an irreducible
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semisimple character of S with values in Q145 and moreover has S as the stabilizer
group in Aut(S), and thus gives rise to 1 irreducible character of Aut(S) with values
in Q(χ) ⊆ Q145, by Clifford’s theorem. We now have 4 more irreducible p-rational
characters of G = Aut(S), different from the 21 characters produced in the previous
paragraph. We have shown that G has at least 25, which is larger than 2

√
p− 1,

p-rational irreducible characters.
For (S, p) = (Ω−

8 (4), 257) we know that S has exactly 32 = 2
√
p− 1 different

element orders coprime to p (these orders are listed in the proof of Lemma 4.7), and
so clearly kp′(G) > 32 if G 6= S since there is at least one p-regular class of G outside
S. In fact we still have kp′(G) > 32 when G = S since S has at least four unipotent
classes by Lemma 4.4 and at least 29 semisimple classes coming from 29 different odd
element orders coprime to p. �

We are now in position to prove Theorem 1.3 for all finite groups.

Theorem 9.6. Let G be a finite group and p a prime divisor of |G|. Then
|Irrp−rat(G) ∪ Irrp′−rat(G)| ≥ 2

√
p− 1.

Moreover, the equality occurs if and only if
√
p− 1 is an integer, G = Cp ⋊ C√

p−1

and CG(Cp) = Cp.

Proof. The theorem follows for p = 2 by Lemma 9.2, so we will assume that p is
odd. We proceed in the same way as in the proof of Theorem 9.1 to come up with
the situation where G has a unique minimal normal subgroup N of order divisible
by p such that p ∤ |G/N |. If N is abelian then we are done by Theorem 9.1, so we
assume furthermore that N is nonabelian, which means that N is isomorphic to a
direct product of say k copies of a nonabelian simple group S.
If k ≥ 2, then we are done by Lemma 9.4. On the other hand, if N = S then G is

an almost simple group with socle S, and thus we are done as well by Theorem 9.5.
This completes the proof. �

We finish by remarking that although |Irrp−rat(G)| ≥ kp′(G) by Lemma 9.3 and
|Irrp′−rat(G)| is conjecturally at least 1+ kp(G) (see the discussion after Lemma 9.3),
it does not follow that |Irrp−rat(G) ∪ Irrp′−rat(G)| ≥ kp′(G) + kp(G), as Irrp−rat(G)
and Irrp′−rat(G) have those rational characters, including the trivial character, in
common. However, at the time of this writing, we have not found a counterexample
yet.
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