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Abstract

In a recent paper Külshammer, Olsson, and Robinson proved a deep

generalization of the Nakayama conjecture for symmetric groups. We

provide a similar but a shorter and relatively elementary proof of their

result. Our method enables us to obtain a more general H-analogue of

the Nakayama conjecture where H is a set of positive integers.

1 Introduction

Let G be a finite group, let p be a prime, and let F be an algebraically closed

field of characteristic p. The group algebra FG may be written as the direct sum

of minimal two-sided ideals called p-blocks. Each complex irreducible character

χ of G is associated with a unique p-block B. We say that χ is in the p-block

B. In the special case of the symmetric group G = Sn, the complex irreducible

characters are naturally labelled by partitions of n. In 1940 Nakayama [5]

conjectured that two irreducible characters χλ and χµ are in the same p-block

of Sn if and only if the partitions λ and µ have the same p-core. Nakayama’s

conjecture was proved in 1947 by Brauer and Robinson [1]. Since then, several

different proofs were published the shortest of which is probably the work of

Meier and Tappe [3].
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Recently, Külshammer, Olsson, and Robinson [2] developed a d-analogue

of part of the p-modular representation theory of a finite group where d ≥ 2

is an integer not necessarily a prime. Let G be a finite group. Let C be the

union of a set of conjugacy classes of G, and let Irr(G) be the set of complex

irreducible characters of G. Külshammer, Olsson, and Robinson defined a C-
block to be a non-empty subset B of Irr(G) which is minimal subject to the

following condition. If χ ∈ B, ψ ∈ Irr(G), and if there exists a natural number

k and a sequence χ = χ0, . . . , χk = ψ so that for all 0 ≤ i < k the truncated

inner product of χi and χi+1 across C, that is, the inner product

〈χi, χi+1〉C :=
1
|G|

∑

g∈C
χi(g)χi+1(g), (1)

is not 0, then ψ ∈ B. It is a basic fact of p-modular representation theory,

that if C is the set of all elements of G with orders not divisible by a prime p,

then the C-blocks of G are precisely the subsets of Irr(G) corresponding to the

usual p-blocks of G. One of the main results of [2] is the following beautiful

generalization of the Nakayama conjecture. Let G = Sn, and view Sn as a

permutation group of degree n. Let d ≥ 1 be an arbitrary integer. We say

that B ⊆ Irr(Sn) is a combinatorial d-block of Sn if B consists of all irreducible

characters of Sn that are labelled by partitions with the same d-core. (We say

that the 1-core of any partition is the empty partition.) Let C be the set of all

elements of Sn which have no cycle (of their disjoint cycle decompositions) of

length divisible by d ≥ 2. In [2] it is proved that if d ≥ 2, then C-blocks and

combinatorial d-blocks for Sn are the same. If d is prime, then this gives the

original Nakayama conjecture.

In this paper we generalize the Nakayama conjecture and the Külshammer,

Olsson, Robinson result even further. Let H be an arbitrary (finite or infinite)

set of positive integers. Following [2] we say that a permutation (of finite order)

is H-regular if for all h ∈ H no cycle (of its disjoint cycle decomposition) has

length equal to h. Let C be the set of H-regular elements of Sn, and define the
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H-blocks of Sn to be the C-blocks. Our main result is the following.

Theorem 1.1. Let H be an arbitrary set of positive integers, and let d be the

greatest common divisor of the elements in H. With the notations above, the

following are true.

(i) Combinatorial d-blocks are unions of H-blocks for Sn for all n ≥ 1.

(ii) If H = {1}, or if d ≥ 2 and d ∈ H, then combinatorial d-blocks are the

same as H-blocks for Sn for all n ≥ 1.

(iii) If d ≥ 2 and d /∈ H, then the conclusion of (ii) is false for infinitely many

positive integers n.

Notice that if d ≥ 2 and H is the set of all integers divisible by d, then part

(ii) reduces to the Külshammer, Olsson, Robinson result. In particular, if d is

a prime, then we obtain the Nakayama conjecture.

Let us conclude with a few words on the proof of Theorem 1.1. We need

many ideas of [2], most importantly the ‘perfect isometry’ and the Osima rule.

However, our proof is shorter and more general than the Külshammer, Ols-

son, Robinson argument. We do not use decomposition numbers, u-numbers,

nor ladders. The new tools are induction on |H| and the Inclusion-Exclusion

Principle.

2 The Inclusion-Exclusion Principle

In this section we only deal with the situation when H = {1}. By the Inclusion-

Exclusion Principle, the proportion of H-regular, that is, fixed-point-free per-

mutations in the symmetric group Sn is

〈χ(n), χ(n)〉H =
n∑

i=0

(−1)i 1
i!
〈χ(n−i), χ(n−i)〉 (2)

where the first inner product denotes the truncated inner product across H-

regular elements in Sn (see (1) for the definition), the other inner products are

the ordinary inner products in the groups Sn−i (n > i), and 〈χ(0), χ(0)〉 = 1.
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Notice that the summands on the right-hand-side of (2) have alternating signs,

but the sum itself is not 0. Also, formula (2) can easily be generalized in the

following way. Let χλ be an arbitrary irreducible character of Sn. Then we have

〈χλ, χ(n)〉H =
n∑

i=0

(−1)i 1
i!
〈ResSn−i

(χλ), χ(n−i)〉 (3)

where ResSn−i
(χλ) denotes the restriction of the character χλ to the group

S1 × . . . × S1 × Sn−i. The summands on the right-hand-side of (3) again have

alternating signs, but can we conclude that the sum is not 0? The answer is

yes. Let us give a proof.

For convenience, for each 0 ≤ i ≤ n − 1, let Ki denote the non-negative

integer 〈ResSn−i(χλ), χ(n−i)〉. Notice that Kn = Kn−1 holds. Put Kn+1 = 0.

By the branching rule, Ki (for i < n) is the number of ways we can ‘get down’ to

the partition (n− i) by removing i removable boxes from the Ferrers diagram of

the partition λ. The ordering of the boxes to be removed is important. Consider

the set {1, . . . , i}. Let us put i in the first box to be removed from λ, the number

i − 1 in the second, and so on. We get a diagram (not necessarily a partition)

full of numbers such that the numbers increase in each row and each column.

We only note that Ki is the degree of the relevant skew character, and also the

number of standard tableaux of shape λ− (n− i).

In this paragraph we show the inequality Ki+1 ≤ (i + 1)Ki for all integers

0 ≤ i ≤ n. If i = n, then the estimate is clear. Otherwise, fill in the boxes of

the diagram λ− (n− i− 1) with the numbers {1, . . . , i + 1} such that first pick

an arbitrary number, put it in the (n− i)-th position of the first row, and then

put the remaining numbers in the diagram so that we get a standard tableau of

shape λ−(n−i−1). The number of such arrangements is exactly (i+1)Ki, and

this proves our inequality. (Note that the estimate can be sharp, for example if

the largest part of λ is sufficiently large.)

Let us now return to equation (3). The first few terms of the sum on the

right-hand-side are 0’s, and the rest are not. Let the first non-zero term be the
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m-th. Then the right-hand-side of (3) may be written in one of the following

two forms

(
(−1)m

m!
Km +

(−1)m+1

(m + 1)!
Km+1

)
+ . . . +

(
(−1)n−1

(n− 1)!
Kn−1 +

(−1)n

n!
Kn

)
; (4)

or

(
(−1)m

m!
Km +

(−1)m+1

(m + 1)!
Km+1

)
+ . . . +

(
(−1)n−2

(n− 2)!
Kn−2+

+
(−1)n−1

(n− 1)!
Kn−1

)
+

(
(−1)n

n!
Kn + Kn+1

)
. (5)

We claim that in every term in parentheses in (4) and (5), the first summand

is not smaller than the second in absolute value. Indeed, for all i ≥ m we have

Ki/i! ≥ Ki+1/(i + 1)! by our previous observation. This means that in both

cases the terms in parentheses are either all non-negative or all non-positive.

Hence it is sufficient to see that the last terms in parentheses in (4) and (5) are

non-zero. But this is obvious in both cases since Kn−1 = Kn 6= 0 and Kn+1 = 0.

This proves that the expression (3) is not 0.

We showed part (ii) and hence part (i) of Theorem 1.1 in case H = {1}.

3 The Murnaghan-Nakayama rule

In the previous section we generalized equation (2) to get formula (3). In this

section we will make further generalizations. Let H be an arbitrary set of

positive integers. Let χλ, χµ be two complex irreducible characters of Sn. We

will present a formula for the truncated inner product of χλ and χµ across

H-regular elements of Sn, which we denote by 〈χλ, χµ〉H .

For non-negative integers h and i with hi ≤ n, and for a partition δ of n−hi,

let Ph,i
λ,δ be the set of paths P in the lattice of partitions, obtained by removing
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i hooks of length h to go from λ to δ. Each path P has a sign σP , defined

as (−1)t(P ), where t(P ) denotes the sum of the leg lengths of the hooks in P .

Define mh,i
λδ to be

∑
σP where the sum is over all paths P in Ph,i

λ,δ. We note

that mh,i
λδ 6= 0 implies that λ and δ have the same d-core whenever h is divisible

by d, since the removal of a hook of length h = dr from a partition may always

be obtained by removing r hooks each of length d (see Pages 69-70 of [4]).

The Murnaghan-Nakayama rule states that whenever x = yi · z is a permu-

tation of n points so that yi is a product of i disjoint cycles each of length h

and z is a permutation of the n− hi points fixed by y, then we have

χλ(x) =
∑

mh,i
λδ χδ(z), (6)

where the sum is over all partitions δ of n − hi, the corresponding characters

are irreducible characters of Sn−hi for hi < n, and where χ∅ = 1 for hi = n.

Let H be an arbitrary set of positive integers, and suppose that h /∈ H. Since

the number of yi’s as above is
(

n
hi

)
(hi)!/(hii!), the Inclusion-Exclusion Principle

gives us

∑
χλ(x)χµ(x−1) =

[n/h]∑

i=0

(−1)i

(
n

hi

)
(hi)!
hii!

∑
χλ(yiz)χµ((yiz)−1) (7)

where the first sum is over all H ∪ {h}-regular elements x of Sn and the third

is over all H-regular elements z of Sn−hi. By substituting the Murnaghan-

Nakayama rules (see (6)) for χλ(yiz) and χµ((yiz)−1) into the right-hand-side

of (7) we obtain

∑
χλ(x)χµ(x−1) =

[n/h]∑

i=0

(−1)i

(
n

hi

)
(hi)!
hii!

∑

δ,δ′
mh,i

λδ mh,i
µδ′

∑
χδ(z)χδ′(z−1) (8)

where the third sum is over all partitions δ and δ′ of n−hi. After dividing both

sides of (8) by n! we get
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Theorem 3.1. For every subset H of the positive integers and for every positive

integer h 6∈ H, we have

〈χλ, χµ〉H∪{h} =
[n/h]∑

i=0

(−1)i 1
hii!

∑

δ,δ′
mh,i

λδ mh,i
µδ′〈χδ, χδ′〉H , (9)

where the second sum is over partitions δ, δ′ of n− hi.

A consequence of Theorem 3.1 is the following. If H is a subset of the set

of positive integers such that d ≥ 2 is a divisor of all elements in H, then

〈χλ, χµ〉H = 0 in case λ and µ have different d-cores. Indeed, let Hn be the

subset of H consisting of all elements of H no greater than n. It is clear that

〈α, β〉H = 〈α, β〉Hn for all irreducible characters α and β of Sk whenever k ≤ n.

Now argue by induction on |Hn|. The claim is trivial for |Hn| = 0 (in which

case the truncated inner product is the usual inner product). When |Hn| > 0,

use Theorem 3.1 once, and apply the induction hypothesis for |Hn| − 1 on the

right-hand-side of (9).

This completes the proof of part (i) of Theorem 1.1.

4 The Osima rule

In general it seems to be very difficult to determine directly whether the expres-

sion (9) is 0 or not. In fact, we can only answer the question by moving from

Sn to the generalized symmetric group Zd o Sw. The situation is similar to the

following example taken from ‘real life’. Imagine a huge but very thin carpet.

We want to measure its width. One way of doing this is to roll it up and count

its layers.

In this section we will derive an analogue of Theorem 3.1 for generalized

symmetric groups.

Let d ≥ 2 be an integer. There are 1−1 correspondences between partitions

of n with a fixed d-core and their d-quotients. Let us fix one. Let λ be a

partition of n, and let βλ be the d-quotient of λ. If there are w hooks of length
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d to be removed from λ to go to its d-core, then w is called the d-weight of βλ.

The d-quotients serve as a natural index set for the irreducible characters of the

generalized symmetric group Zd o Sw. Let χβλ
be the irreducible character of

Zd oSw associated with βλ. A hook in βλ is a hook in one of its partitions and a

hook-removal is defined correspondingly. For non-negative integers h and i with

hi ≤ w, define P̃h,i
λ,δ to be the set of paths P̃ of quotients obtained by removing

i hooks each of length h to go from βλ to βδ where βδ is the d-quotient of the

partition δ under our fixed canonical correspondence. Each path P̃ has a sign

σP̃ , defined as (−1)t(P̃ ), where t(P̃ ) denotes the sum of the leg lengths of the

hooks in P̃ . Define m̃h,i
λδ to be

∑
σP̃ where the sum is over all paths P̃ in P̃h,i

λ,δ.

Let H be an arbitrary set of positive integers. We define an H-regular element

of Zd oSw to be an element (a1, . . . , aw)σ where (a1, . . . , aw) is in the base group

Zd
w (which we consider to be the w-th power of the group of complex d-th roots

of unity) and σ is a permutation of Sw, such that for all h ∈ H, the product of

the aj ’s corresponding to each h-cycle of σ is different from 1. The truncated

inner product across H-regular elements in Zd o Sw is defined similarly as for

symmetric groups (see (1)).

Let x = (a1, . . . , aw)σx, yi = (b1, . . . , bw)σyi , and z = (c1, . . . , cw)σz be

elements of Zd oSw where (a1, . . . , aw), (b1, . . . , bw), and (c1, . . . , cw) are elements

of the base group and σx, σyi , and σz are elements of Sw. Suppose that x =

yiz, σx = σyi · σz, and that σyi and σz move a disjoint set of points in their

permutation representation in Sw. Suppose also that σyi is a product of w −
hi + i disjoint cycles i of which have length h so that the product of the bj ’s

corresponding to each cycle of σyi (in the above decomposition of yi) is 1. We

are now in the position to state a formula of Osima (for details, we refer to

Section 3 of [6] and page 539 of [2]). With the above notations and assumptions

this is

χβλ
(x) =

∑
m̃h,i

λδ χβδ
(z)
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where the sum is over all quotients βδ of weight w − hi, the corresponding

characters are irreducible characters of Zd oSw−hi for hi < w, and where χβ∅ = 1

for hi = w.

We also have the following.

Theorem 4.1. For every subset H of the positive integers and for every positive

integer h 6∈ H, we have

〈χβλ
, χβµ

〉H∪{h} =
[w/h]∑

i=0

(−1)i 1

(hd)i
i!

∑

βδ,βδ′

m̃h,i
λδ m̃h,i

µδ′〈χβδ
, χβδ′ 〉H , (10)

where the second sum is over quotients βδ, βδ′ of weight w − hi.

Proof. The proof is similar to that of Theorem 3.1. For each i we count the

number of possible yi’s, we write up the Inclusion-Exclusion Principle, and apply

Osima’s formula.

In particular, we see that

∑
χβλ

(x)χβµ(x−1) =

=
[w/h]∑

i=0

(−1)i

(
w

hi

)
(hi)!
hii!

d(h−1)i
∑

δ,δ′
m̃h,i

λδ m̃h,i
µδ′

∑
χβδ

(z)χβδ′ (z
−1)

holds where the first sum is over H ∪ {h}-regular, the fourth over H-regular

elements x and z of Zd oSw and Zd oSw−hi, respectively, and the third is over all

quotients βδ and βδ′ of weight w−hi. After dividing both sides of the equation

by dww!, we get the desired result.

5 The ‘perfect isometry’

Let d ≥ 2 be an arbitrary integer, and let H be a set of positive integers

with the property that all elements of H are divisible by d. Define H(d) =
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{h/d : h ∈ H}. As in the previous section, suppose that λ is a partition of n

and the corresponding d-quotient βλ has weight w ≤ [n/d]. For each partition

δ, the paths in Ph,i
λ,δ are in bijective correspondence with the paths in P̃h/d,i

λ,δ .

Furthermore, the fundamental sign relation of Robinson and Osima states that if

a path P of Ph,i
λ,δ corresponds to a path P̃ of P̃h/d,i

λ,δ , then we have σλσP = σδσP̃ ,

where σλ and σδ are certain signs (see Pages 61-63 of [4] and Pages 84-86 of [7])

associated with the partitions λ and δ. This result is proved as Proposition 3.3

in [4], and is implicitly mentioned without proof on Page 86 in [7].

With these notations we can state

Theorem 5.1. If λ and µ are partitions of n with the same d-core, then

〈χλ, χµ〉H = 〈σλχβλ
, σµχβµ〉H(d).

Proof. As at the end of Section 3, we may (and do) suppose, without loss of

generality, that H consists only of elements no greater than n. Now proceed

by induction on |H|. Case |H| = 0 is clear. Suppose that |H| > 0. By the

Robinson-Osima fundamental sign relation and by the definitions above, we have

mh,i
λδ = σδ · m̃h/d,i

λδ · σλ and mh,i
µδ′ = σδ′ · m̃h/d,i

µδ′ · σµ. Apply these relations to the

right-hand-side of the σλσµ-multiple of (10), then use the induction hypothesis

for |H| − 1 to compare the right-hand-sides of (9) and (10).

By Theorem 5.1, to complete the proof of part (ii) of Theorem 1.1, it is

sufficient to show that if 1 ∈ H(d), then for every irreducible character χ of

Zd o Sw, the truncated inner product across the set of H(d)-regular elements

(of Zd o Sw) of χ and the trivial character is not 0. This follows by a slight

modification (generalization) of the (short, elementary, and self-contained) proof

of Theorem 5.12 of [2]. To make this paper self-contained, we present a similar

and a bit longer proof of a more general result. The reader is referred to Page

543 of [2] in case additional details are required.

We define the truncated inner product (across H(d)-regular elements) of two
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characters (of Zd o Sw) to be the relevant linear combination of the truncated

inner products of the relevant irreducible constituents.

Theorem 5.2. Let d ≥ 2, and suppose that 1 ∈ H(d). Let ψ be an arbitrary

character of Zd o Sw lying over an Sw-stable linear character of the base group

Zd
w. Then for any irreducible character χ of Zd o Sw, the algebraic integer

dww! · 〈χ, ψ〉H(d)

χ(1)

is an integer, and it satisfies the congruence

dww! · 〈χ, ψ〉H(d)

χ(1)
≡ (−1)w

ψ(1) (mod d). (11)

Notice that if ψ(1) is not divisible by d (for example, when ψ is the trivial

character, or if ψ is the permutation character (of degree dw) minus the trivial

character), then 〈χ, ψ〉H(d) 6= 0. So Theorem 5.2 would indeed complete the

proof of part (ii) of Theorem 1.1.

Proof. For each partition λ of n we have d (essentially) different ways to define

the d-quotient βλ. In all cases σλ is the same sign. This gives us d (essentially)

different ‘perfect isometries’ in Theorem 5.1. Hence if ψ and ψ′ are two charac-

ters of Zd o Sw lying over an Sw-stable linear character of the base group Zd
w

with ResSw(ψ) = ResSw(ψ′), then by Theorem 5.1, we have

dww! · 〈χ, ψ〉H(d)

χ(1)
=

dww! · 〈χ, ψ′〉H(d)

χ(1)
.

This means that we may (and do) suppose that the character ψ in the statement

of the theorem lies over the trivial character 1 of the base group.

Next we will show that if the congruence (11) holds for all w and for all

irreducible characters χ lying over an Sw-stable linear character of the base

group, then it holds for all irreducible characters χ of Zd o Sw. Let χ = χβλ
be

an irreducible character of Zd oSw labelled by the d-quotient βλ = (λ0, . . . , λd−1).
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For each 0 ≤ j ≤ d − 1, put wj := |λj | and define χj to be the character of

Zd o Swj so that the character χ1 ⊗ . . . ⊗ χw of
∏d

j=1 Zd o Swj induces to χ.

Similarly, for each 0 ≤ j ≤ d − 1, let ψj be the character of Zd o Swj
so that

ψ1⊗ . . .⊗ψw is the restriction of the character ψ to the subgroup
∏d

j=1 Zd oSwj
.

Then by Frobenius reciprocity we have

∑H(d)
χβλ

(x)ψ(x)
χβλ

(1)
=

d∏

j=1

∑H(d)
χj(xj) · ψj(xj)
χj(1)

, (12)

where the first sum is over H(d)-regular elements x of Zd oSw and the second is

over H(d)-regular elements xj of Zd o Swj
. By our assumption at the beginning

of this paragraph, we may conclude that the right-hand-side of (12) is congruent

to
d∏

j=1

(−1)wj ψj(1) = (−1)w
ψ(1)

modulo d, which is exactly what we wanted.

So from now on we may (and do) suppose that χ is an irreducible character

lying over an Sw-stable linear character of the base group, say over α⊗ . . .⊗ α

where α is a linear character of Zd. We wish to calculate

∑H(d)
χ(x)ψ(x)

χ(1)
=

∑ |Kσ| · χ(σ)
χ(1)

ψ(σ)
∑

(a1,...,aw)

α(a1 . . . aw) (13)

where the second sum is over representatives σ of all conjugacy classes Kσ of

Sw and where the third sum is over all w-tuples (a1, . . . , aw) coming from H(d)-

regular elements x = (a1, . . . , aw)σ. It is easy to see by working with a cycle of

σ at a time and by using the usual inner product of characters of Zd that if σ

has a cycle of length t > 1, then

∑

(a1,...,aw)

α(a1 . . . aw)

is an integer divisible by d no matter if t is an element of H(d) or not. Otherwise,

if σ = 1, then this sum is an integer congruent to (−1)w modulo d. So the right-
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hand-side of (13) is indeed congruent to (−1)w
ψ(1) modulo d. This completes

the proof of the theorem.

We have proved part (ii) of Theorem 1.1.

Finally, we turn to the proof of part (iii) of Theorem 1.1. Let H be an

arbitrary set of positive integers, and let d ≥ 2 be the greatest common divisor

of the elements in H. Let the smallest element in H be rd where r > 1. Let λ

be a d-core partition. Add (r − 1)d to the largest part of λ to get a partition

λ′ of the integer n := |λ|+ (r − 1)d. Let B be the combinatorial d-block of Sn

containing χλ′ . By Theorem 5.1 and by our assumption on the minimality of r,

for arbitrary irreducible characters χµ, χν in B we have

〈χµ, χν〉H = 〈σµχβµ , σνχβν 〉H(d) = 〈σµχβµ , σνχβν 〉. (14)

Since the right-hand-side of (14) is 0 whenever µ 6= ν, the set B is a union of

|Zd o Sr−1| different H-blocks. There are infinitely many choices for the d-core

partition λ, so part (iii) of Theorem 1.1 is established.

Acknowledgements

The author thanks his supervisor, Professor G. R. Robinson, Professor J.

B. Olsson, and his office-mate, Thomas Peter for valuable conversations on

this topic. This work was mainly done at the University of Birmingham, U.K.

The research was mainly supported by the School of Mathematics and Statis-

tics of the University of Birmingham, U.K., and partially by NSF Grant DMS

0140578, and by the Hungarian National Foundation for Scientific Research

Grants T034878 and TO49841.

13



References

[1] Brauer, R.; Robinson, G. de B. On a conjecture by Nakayama. Trans. Roy.

Soc. Canada. Sect. III. (3) 41, (1947). 11-25.

[2] Külshammer, B.; Olsson, J. B.; Robinson, G. R. Generalized blocks for

symmetric groups. Invent. math. 151 (2003), 513-552.

[3] Meier, N.; Tappe, J. Ein neuer Beweis der Nakayama-Vermutung über die

Blockstruktur symmetrischer Gruppen. Bull. London Math. Soc. 8 (1976),

no. 1, 34-37.

[4] Morris, A. O.; Olsson, J. B. On p-quotients for spin characters. J. Algebra

119 (1988), no. 1, 51–82.

[5] Nakayama, T. On some modular properties of irreducible representations

of a symmetric group. I. Jap. J. Math. 18, (1941). 89–108.

[6] Osima, M. On the representations of the generalized symmetric group I.

Math. J. Okayama Univ. 4 (1954), 39-56.

[7] Robinson, G. de B. Representation theory of the symmetric group. Math-

ematical expositions. Toronto: University of Toronto Press, VIII, (1961).

Department of Mathematics, University of Southern California, Los Angeles,

CA 90089-1113, U.S.A.

E-mail address: maroti@usc.edu

14


