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Abstract. Let G be a finite group, p a prime divisor of the order of G, and
k(G) the number of conjugacy classes of G. By disregarding at most finitely
many non-solvable p-solvable groups G, we have k(G) ≥ 2

√
p− 1 with equality

if and only if
√

p− 1 is an integer, G = Cp o C√p−1 and CG(Cp) = Cp. This

extends earlier work of Héthelyi, Külshammer, Malle, and Keller.

1. Introduction

Throughout this paper let G be a finite group, p a prime divisor of the order of
G, and k(H) the number of conjugacy classes of a finite group H.

Héthelyi and Külshammer [5] showed that if G is a solvable group then k(G) ≥
2
√

p− 1. They mentioned that equality can occur when
√

p− 1 is an integer, G =
Cp o C√p−1 and CG(Cp) = Cp. Later Malle [10] proved that if G is not p-solvable
then k(G) ≥ 2

√
p− 1. Finally Keller [6] showed that there exists a universal positive

constant C so that whenever p > C then k(G) ≥ 2
√

p− 1 for any finite group G.

In this paper we extend these results to show

Theorem 1.1. By disregarding at most finitely many non-solvable p-solvable groups
G, we have k(G) ≥ 2

√
p− 1 with equality if and only if

√
p− 1 is an integer,

G = Cp o C√p−1 and CG(Cp) = Cp.

The semidirect products mentioned in Theorem 1.1 are Frobenius groups unless
p = 2.

It is an open problem of Landau whether there are infinitely many primes p with
the property that p− 1 is a square. For more information see Section 19 of [11].

The next three sections of this paper (Solvable groups, Non-p-solvable groups,
p-solvable groups) are in chronological order and follow closely the relevant papers
[5], [10], and [6], respectively. For this reason we tried to keep the notations and
assumptions of these papers. The fifth section puts the results of the previous
sections together to prove Theorem 1.1.

2. Solvable groups

In this section we prove the following
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Theorem 2.1. Let G be a finite solvable group. Then we have k(G) ≥ 2
√

p− 1
with equality if and only if

√
p− 1 is an integer, G = CpoC√p−1 and CG(Cp) = Cp.

Proof. By [5] it follows that k(G) ≥ 2
√

p− 1, hence it is sufficient to see when
equality can occur.

We make a similar case study as it was in the proof of [5]. Let G be a solvable
group with 2

√
p− 1 conjugacy classes, where p− 1 is a square.

Step 1: There is a unique minimal normal subgroup N in G, where N is an el-
ementary abelian p-subgroup of order pn with N ∈ Sylp(G) and G/N acts on N
faithfully and irreducibly. (This conclusion can be drawn even in the more general
setting when G is p-solvable. This will be used in Section 4.)

Let N be a minimal normal subgroup of G. Then it is elementary abelian.
If p divides |G/N | then by [5] we have 2

√
p− 1 ≤ k(G/N) < k(G) = 2

√
p− 1,

which is a contradiction. Thus p is not a divisor of |G/N |, and hence N is an
elementary abelian p-group, N is the unique minimal normal subgroup in G, the
normal subgroup Op′(G) is trivial and N ∈ Sylp(G). Let G = G/N . Then G

acts on N irreducibly. This action is also faithful, since otherwise CG(N) = T , and
CG(N) = T×N , where T 6= 1 is a normal p′-subgroup in G, which is a contradiction.

Step 2: We may assume that k(G) ≥ 20 and p ≥ 101.

By [14] we have the following.

(1) If p = 2 then k(G) = 2 and G = C2.
(2) If p = 5 then k(G) = 4 and G = D10.
(3) If p = 17 then k(G) = 8 and G = C17 o C4.
(4) If p = 37 then k(G) = 12 and G = C37 o C6.

The next smallest prime p, where p−1 is a square is 101 in which case k(G) = 20.

Step 3: If G = G/N is isomorphic to a subgroup of the group of semilinear trans-
formations Γ(pn) = {x 7→ aσ(x)|a ∈ GF (pn), a 6= 0, σ ∈ Gal(GF (pn)/GF (p))} then
G is of the required type.

In this case

(1) 2
√

p− 1 = k(G) ≥ (pn − 1)/(nx) + x/n,

where x is the order of the cyclic normal subgroup X of G of index at most n, cor-
responding to scalar multiplications. The right-hand-side of (1) takes its minimum
when x =

√
pn − 1 so we get (2/n)

√
pn − 1 ≥ 2

√
p− 1. Since the left-hand-side of

(1) is also 2
√

p− 1, we have equality and thus n = 1, i.e. |N | = p, x =
√

p− 1,
and G = X. Hence G = NK, where K is a complement of order x. Since every
conjugacy class contained in N is of length

√
p− 1, we have that G is a Frobenius

group of the required form.

Step 4: If G = G/N is not isomorphic to a subgroup of Γ(pn), then n ≥ 4.

n = 2 cannot hold, since by Theorem 2.11. of [9] (a) or (c) would occur, and in
these cases equality cannot hold for p ≥ 101.

n = 3 cannot hold either, since then by Theorem 2.12 of [9] (a) or (c) would
occur, and in these cases equality cannot occur for p ≥ 101.

Thus n ≥ 4.

Step 5: N cannot be a primitive module over GF (p)G.
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Suppose that N is a primitive module over GF (p)G. Then by [13] we have
k(G) ≥ pn/2/12n > 2

√
p− 1, since p ≥ 101. A contradiction.

Step 6: |G| ≥ 1
2pn−(1/2).

Since k(G) = 2
√

p− 1, the normal subgroup N contains less than 2
√

p conjugacy
classes each of which has length at most |G|. Thus pn = |N | ≤ 2

√
p|G|, which

implies the above inequality.

Step 7: N cannot be an imprimitive module over GF (p)G.

Suppose that N is an imprimitive module over GF (p)G. Then N = N1×. . .×Nr,
where the Ni’s are permuted by G. Let r be as large as possible. Let Hi = NG(Ni),
Ki = CG(Ni), and H = H1 ∩ . . . ∩Hr. Then N = CG(N) = K1 ∩ . . . ∩Kr. Then
r ≤ k(G) = 2

√
p− 1. Let |Ni| = pm. Since G/H ≤ Sr, by Theorem 36.2 of [3], we

have |G/H| ≤ 3r−1.

If m = 1 and n = r, then as in [5] one gets that the factor group H/N contains
at least pn−(1/2)/(2 · 9n−1) conjugacy classes of G. Thus

2
√

p− 1 = k(G) > k(G) ≥ pn−(1/2)/(2 · 9n−1).

This is impossible since p ≥ 101 and n ≥ 4.

If m = 2 and n = 2r, then one can apply Theorem 2.11 of [9]. If Hi/Ki is
isomorphic to a subgroup of Γ(p2), or of (Zp−1 × Zp−1) : Z2 then Hi/Ki contains
an abelian normal subgroup Li/Ki of index at most 2. Let L = L1 ∩ . . .∩Lr. Then
|G : L| ≤ 2r · 3r−1 and L/N contains at least pn−(1/2)/(22r+1 · 9r−1) conjugacy
classes of G, hence this quantity is strictly smaller than 2

√
p− 1, which cannot be

true, since p ≥ 101 and n ≥ 4. If the case (c) in Theorem 2.11 of [9] occurs, then
|Hi/Zi| ≤ 24, where Zi = Z(Hi/Ki), for i = 1, . . . , r. Let Z = Z1 ∩ . . . ∩ Zr then
|G : Z| ≤ 3r−1 ·24r which by Step 6 gives 2

√
p− 1 > k(G) ≥ p2r−(1/2)/(2·9r−1 ·24r),

which cannot hold since p ≥ 101 and n ≥ 4.

Let m ≥ 3.

In case H1/K1 is isomorphic to a subgroup of Γ(pm), then k(H1) ≥ 2
√

pm − 1/m.
We also have k(H1) ≤ |G : H1|k(G) = r2

√
p− 1 < 4(p − 1), which is impossible

since p ≥ 101 and m ≥ 3.

If H1/K1 is not isomorphic to a subgroup of Γ(pm) then by [13], it has at least
pm/2/12m orbits on the nonidentity elements of N1, thus G also has at least so
many different orbits on N . Thus 2

√
p− 1k(G) ≥ pm/2/12m, which is impossible

since m ≥ 3 and p ≥ 101. Hence we are done. ¤

3. Non-p-solvable groups

In this section we prove

Theorem 3.1. If G is a finite group that is not p-solvable, then k(G) > 2
√

p− 1.

Note that if p is a prime for which G is not p-solvable, then G has a non-cyclic
composition factor S with p a factor of |S|. For a finite group X let k∗(X) be the
number of Aut(X)-orbits on X.

Lemma 3.2. If G is a finite group that is not p-solvable and not simple, then
k(G) > 2

√
p− 1.

Proof. We follow the proof of Lemma 2.5 of [12].
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Let S be a non-abelian composition factor of G whose order is divisible by p.
Let us consider a chief series G = G0 > G1 > . . . > Gr = 1. Each of the factor
groups Gi/Gi+1 is isomorphic to a direct power of some simple group Si. By the
Jordan-Hölder theorem at least one of these simple groups say Sj is isomorphic to
S.

Let us consider the group G/Gj+1. This group has a normal subgroup Gj/Gj+1

which is a direct product of isomorphic copies of S, say E1 × . . . × Em. It is well
known that the Ei’s are the only minimal normal subgroups of Gj/Gj+1. Therefore
conjugation by elements of G/Gj+1 permutes the Ei’s among themselves. It follows
that if eg = f for some e, f ∈ E1 and g ∈ G/Gj+1 then g normalizes E1 and
therefore e and f lie in the same automorphism orbit of E1. This gives us

k(G) ≥ k(G/Gj+1) ≥ k∗(E1) = k∗(S).

By Page 656 of [10] we know that k∗(S) ≥ 2
√

p− 1. Hence it is sufficient to show
that k(G) 6= 2

√
p− 1.

If j + 1 6= r, then k(G) > k(G/Gj+1) and so we are done in this case. Hence we
may assume that j + 1 = r. First suppose that G 6= Gj . In this case (since Gj is
normal in G) the invariant k(G) is larger than the number of G-orbits on Gj which
in turn is greater or equal to k∗(E1) = k∗(S) ≥ 2

√
p− 1. Finally, we may assume

that G = Gj = E1 × . . .× Em with m > 1. In this case

k(G) = k(E1)
m

> k∗(E1) = k∗(S) ≥ 2
√

p− 1.

¤

In view of Lemma 3.2, in order to prove Theorem 3.1, it is sufficient to assume
that G is a non-abelian finite simple group and p is a divisor of |G|. On Page 656 of
[10] it is shown that k(G) ≥ k∗(G) ≥ 2

√
p− 1. Hence we may also assume that p is

the largest prime divisor of |G| and it is sufficient to conclude that k(G) 6= 2
√

p− 1.

Lemma 3.3. Let us use the notations and assumptions introduced above. Let G
be an alternating group, a sporadic simple group, or the Tits group. Then k(G) 6=
2
√

p− 1.

Proof. Let G = An with n ≥ 5. If n is even, then the n− 1 partitions

(1, 1, 1, . . . , 1), (2, 2, 1, . . . , 1), . . . , (n− 2, 2), (n− 1, 1)

of n label conjugacy classes of Sn which lie in An. If n is odd, then the n − 1
partitions

(1, 1, 1, . . . , 1), (2, 2, 1, . . . , 1), . . . , (n− 2, 1, 1), (n)
of n label conjugacy classes of Sn which lie in An. This gives k(An) ≥ n − 1.
Now n − 1 > 2

√
n− 1 ≥ 2

√
p− 1 unless n = 5. For n = 5, inspection shows that

k(A5) = 5 6= 4 = 2
√

5− 1.

Let G be a sporadic simple group or the Tits group. Then, by [2],
√

p− 1 is not
an integer except if G = He in which case 2

√
p− 1 = 8. But k(He) = 33 again by

[2]. ¤

From now on let G be a finite simple group of Lie type. In this case we use Page
656 of [10]. Let H be a group of Lie type of rank r over the field of q elements
with H/Z(H) = G. Then, by Theorem 3.7.6 of [1], H has at least qr semisimple
conjugacy classes, therefore G has at least qr/|Z(H)| ≥ qr/|M(G)| conjugacy classes
where M(G) is the Schur multiplier of G. Moreover p is bounded from above by the
order of the largest maximal torus and this has at most (q + 1)r elements. Thus if
qr > 2|M(G)|

√
(q + 1)r − 1 or

√
p− 1 is not an integer, then k(G) 6= 2

√
p− 1.
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Lemma 3.4. Let G be a finite simple group of Lie type of rank r over the field
of q elements. If qr ≤ 2|M(G)|

√
(q + 1)r − 1 and

√
p− 1 is an integer, then (up

to isomorphism) G = L2(5), L2(9), U3(11), U3(17), U4(2), PSp4(2)′, PSp4(3),
PSp8(2), PΩ−4 (4), PΩ−4 (13), PΩ−6 (2), PΩ−8 (2), or F4(2).

Proof. This lemma was proved using Tables 5.1.A, 5.1.B and Theorem 5.1.4 of [7]
and [4]. ¤

By going through (using [4]) the exceptions in Lemma 3.4 (see the table below)
we are able to finish the proof of Theorem 3.1.

G k(G) 2
√

p− 1
L2(5) 5 4
L2(9) 7 4
U3(11) 48 12
U3(17) 106 8
U4(2) 20 4
PSp4(2)′ 7 4
PSp4(3) 20 4
PSp8(2) 81 8
PΩ−4 (4) 17 8
PΩ−4 (13) 87 8
PΩ−6 (2) 20 4
PΩ−8 (2) 39 8
F4(2) 95 8

4. p-solvable groups

In this section we prove the following result.

Theorem 4.1. There exists a constant C such that the following holds. If p is a
prime number with p > C and G is a p-solvable group of order divisible by p, then

k(G) ≥ 2
√

p− 1

with equality if and only if
√

p− 1 is an integer, G = CpoC√p−1 and CG(Cp) = Cp.

Proof. From [6] we already know that there exists a constant C such that if p is
a prime with p > C and G is a finite group of order divisible by p, then k(G) ≥
2
√

p− 1.

Hence we now assume that H is a p-solvable group with p being a prime such
that p > C, p divides |H| and k(H) = 2

√
p− 1, and it suffices to show that if C

was chosen large enough, then H necessarily is Cp o C√p−1.

To prove this we first claim that there is a unique minimal normal subgroup V
in H and that V is an elementary abelian p-group and H/V is a p′-group which
acts faithfully and irreducibly on V . (This claim was already proved for solvable G
in Step 1 of Section 2.)

To see this let V be a minimal abelian normal subgroup of H. If p divides |H/V |,
then by [6] we have 2

√
p− 1 ≤ k(G/V ) < k(G) = 2

√
p− 1, a contradiction. Thus

p does not divide |H/V |. As p divides |H|, we conclude that p divides |V |, and as
H is p-solvable, we conclude that V is an elementary abelian p-group. Since V was
chosen arbitrarily, this also shows that V is unique. This proves the above claim.
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Now (by the Schur-Zassenhaus Theorem) let G be a complement of V in H.
Then H = GV , and so we are exactly in the situation of Theorem 2.6 of [6]. Let
|V | = pm. If m = 1, then clearly H is a Frobenius group with kernel V , and

2
√

p− 1 = k(H) = k(GV ) = (p− 1)/|G|+ |G|.
Then |G| is a solution of the quadradic equation

0 = x2 − 2
√

p− 1x + p− 1 = (x−
√

p− 1)2.

Thus |G| = √
p− 1 and H has the structure as stated in the theorem.

So now suppose m ≥ 2. From here on we proceed exactly as in the proof of
Theorem 2.6 of [6] and always get a contradiction, assuming C has been chosen
sufficiently large. Only minimal changes in the proof of Theorem 2.6 of [6] are
required here, such as changing some ”≥”-inequalities to strict ”>”-inequalities, so
we leave this verification to the reader. The only thing we point out here is that
if n = 2 and |V1| = p (for n and V1 as in the proof of Theorem 2.6 of [6]), then
we know from Theorem 2.1 that k(G) > 2

√
p− 1, also a contradiction. We are

done. ¤

5. Proof of Theorem 1.1

By Theorems 2.1, 3.1, and 4.1, it is sufficient to assume that G is non-solvable
and p-solvable where p is a prime divisor of the order of G with p ≤ C where
C is a suitable constant in the statement of Theorem 4.1. Assume that C ≥ 2.
Furthermore we may assume that k(G) < 2

√
C − 1. But, by a theorem of Landau

[8] which states that there are only at most finitely many finite groups with a
fixed number of conjugacy classes, we see that there are only at most finitely many
possibilities for G. This proves Theorem 1.1.
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Erzsébet Horváth, Department of Algebra, Institute of Mathematics, Budapest

University of Technology and Economics, H building IV. floor 45, Hungary.

E-mail address: he@math.bme.hu

Thomas Michael Keller, Department of Mathematics, Texas State University

601 University Drive, San Marcos, TX 78666, USA.

E-mail address: keller@txstate.edu
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