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Abstract. For a finite group G let Γ(G) denote the graph defined on the non-
identity elements of G in such a way that two distinct vertices are connected
by an edge if and only if they generate G. In this paper it is shown that the
graph Γ(G) contains a Hamiltonian cycle for many finite groups G.

1. Introduction

For a finite group G let Γ(G) denote the graph defined on the non-identity ele-
ments of G in such a way that two distinct vertices are connected by an edge if and
only if they generate G. The graph Γ(G) is called the generating graph of G. The
generating graph was investigated in [15], [16], and [17]. For example, in [16], it is
shown that for a nilpotent by nilpotent finite group G the clique number of Γ(G)
is equal to the chromatic number of Γ(G).

In the literature many deep results about finite simple groups G can equivalently
be stated as theorems about Γ(G). Three examples are given. Guralnick and Shalev
[10] showed that for sufficiently large G the graph Γ(G) has diameter at most 2.
Guralnick and Kantor [9] showed that there is no isolated vertex in Γ(G). Finally,
Breuer, Guralnick, Kantor [4] showed that the diameter of Γ(G) is at most 2 for all
G.

In this paper those finite groups G are considered for which Γ(G) contains a
Hamiltonian cycle. The following proposition reduces the investigations to those
non-solvable groups G for which G/N is cyclic for any non-trivial normal subgroup
N of G.

Proposition 1.1. Let G be a finite solvable group that has at least 4 elements.
Then the graph Γ(G) contains a Hamiltonian cycle if and only if G/N is cyclic for
all non-trivial normal subgroups N of G.

The three main results of this paper are Theorems 1.2, 1.3, and 1.4.

Theorem 1.2. For every sufficiently large finite simple group G, the graph Γ(G)
contains a Hamiltonian cycle.

Theorem 1.3. For every sufficiently large symmetric group Sn, the graph Γ(Sn)
contains a Hamiltonian cycle.

Theorem 1.4. For every sufficiently large non-abelian finite simple group S, the
graph Γ(S o Cm) contains a Hamiltonian cycle, where m denotes a prime power.
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The proofs of Theorems 1.2, 1.3, and 1.4 depend heavily on Liebeck, Shalev [13],
Fulman, Guralnick [6], Babai, Hayes [1], and Luczak, Pyber [18].

Theorem 1.5. Let G be a sporadic simple group or the automorphism group of a
sporadic simple group. Then the graph Γ(G) contains a Hamiltonian cycle.

Based on Proposition 1.1, Theorems 1.2, 1.3, 1.4, 1.5, and some computer calcu-
lations performed by GAP [8] (see Section 8), the following conjecture is proposed.

Conjecture 1.6. Let G be a finite group with at least 4 elements. Then the graph
Γ(G) contains a Hamiltonian cycle if and only if G/N is cyclic for all non-trivial
normal subgroups N of G.

Conjecture 1.6 is related to Conjecture 1.8 (and the following paragraph) of [4].
Indeed, Burness, Guest, and Guralnick [5] are working on the problem of proving
that Γ(G) has no isolated vertex and indeed has diameter at most 2 if and only if
G/N is cyclic for every non-trivial normal subgroup N of G. Moreover, the problem
has been reduced to the case where G is almost simple.

Problem 8.5 of The Kourovka Notebook [12] posed by M. R. Vaughan-Lee in
1982 is the following. Prove that if G is a finite group, F is any field, and V is a
non-trivial irreducible FG-module then

1
|G|

∑

g∈G

dim(fix(g)) ≤ 1
2

dim(V ).

This was proved in case (|G|, |V |) = 1 and also for solvable groups G by Neumann
and Vaughan-Lee in [19]. Later, Segal and Shalev [20] showed that, in general,
the average dimension of fixed point spaces of elements of G on V is at most
(3/4) dim(V ). Finally, Isaacs, Keller, Meierfrankenfeld, Moretó [11] proved, in a
slightly more general setting, that the average dimension of fixed point spaces of
elements of G on V is at most ((p + 1)/(2p)) dim(V ) where p denotes the smallest
prime divisor of |G|. In this paper we show the following.

Proposition 1.7. Let V be an irreducible FG-module of dimension at least 2 for
some field F and some finite group G. For an arbitrary element g in G let d(g)
denote the dimension of the largest eigenspace of g on V . Suppose that the graph
Γ(G) contains a Hamiltonian cycle. Then

1
(|G| − 1)

∑

1 6=g∈G

d(g) ≤ 1
2

dim(V ).

2. Graphs

A Hamiltonian cycle is a cycle in an undirected simple graph which visits each
vertex exactly once. A graph is called Hamiltonian if it contains a Hamiltonian
cycle. The problem of determining whether a graph is Hamiltonian is NP-complete
and is a special case of the travelling salesman problem.

There are many ways to show that a given graph is Hamiltonian. First of all,
sometimes it is possible just to exhibit a Hamiltonian cycle in the graph. This is
the case for the graph Γ(G) when G is a solvable group of order at least 4 with
the property that G/N is cyclic for every non-trivial normal subgroup N of G (see
Section 3).

A simple graph with m vertices and list of vertex degrees d1 ≤ . . . ≤ dm satisfies
Pósa’s criterion if dk ≥ k + 1 for all positive integers k with k < m/2. By Exercise
10.21 (b) of [14], a graph contains a Hamiltonian cycle if it satisfies Pósa’s criterion.
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It is shown in Sections 4 and 5 that Γ(G) satisfy Pósa’s criterion for almost all (if
not all) finite simple groups G of orders at least 5.

For a simple graph Γ with m vertices let d(Γ, v) denote the degree of the vertex
v. The closure cl(Γ) of Γ is the graph (on the same set of vertices) constructed from
Γ by adding for all non-adjacent pairs of vertices u and v with d(Γ, u)+d(Γ, v) ≥ m
the new edge uv. One of the best characterization of Hamiltonian graphs is

Theorem 2.1 (Bondy, Chvátal, [2]). A graph is Hamiltonian if and only if its
closure is Hamiltonian.

Theorem 2.1 is first applied in Section 6 of this paper.

For a simple graph Γ, let us set cl(1)(Γ) = cl(Γ) and inductively set cl(i)(Γ) =
cl(cl(i−1)(Γ)) for every positive integer i larger than 1.

A simple graph with m vertices and list of vertex degrees d1 ≤ . . . ≤ dm satisfies
Chvátal’s criterion if whenever k is so that dk ≤ k < m/2 it follows that dm−k ≥
m − k. By Exercise 10.21 (d) of [14], a graph contains a Hamiltonian cycle if it
satisfies Chvátal’s criterion. In Section 6 it is shown that for every sufficiently large
symmetric group Sn the graph cl(3)(Γ(Sn)) satisfies Chvátal’s criterion.

3. Solvable Groups

In this section Proposition 1.1 is shown. Let G be a finite solvable group with at
least 4 elements.

If Γ(G) contains a Hamiltonian cycle, then there is no isolated vertex in Γ(G),
hence G/N must be cyclic for all non-trivial normal subgroups N of G. It is sufficient
to show the other implication. Suppose that G is a finite group with the property
that G/N is cyclic for all non-trivial normal subgroups N of G.

If G is cyclic, then any generator g of G is connected to every other vertex of
Γ(G) and g1, g2, . . . , gn−1, g1 determines a Hamiltonian cycle in Γ(G) where n = |G|.
Hence we may assume that G is non-cyclic.

If G has two distinct minimal normal subgroups, A and B, then G embeds in
G/A × G/B and so is Abelian. Since G is not cyclic, the Frattini subgroup of G
must be trivial. Thus, G is a direct product of cyclic groups of prime order. It
follows easily that G is elementary Abelian of order p2 for some prime p. Then each
vertex in Γ(G) has degree p2 − p and so there is a Hamiltonian cycle in Γ(G) by
Pósa’s criterion.

So we may assume that G has a unique minimal normal subgroup M . It follows
that M is an elementary Abelian p-group for some prime p and the cyclic group G/M
acts faithfully and irreducibly on M . Since the cyclic group G/M acts faithfully
and irreducibly on M , the integers |G/M | and |M | are coprime. By the Schur-
Zassenhaus Theorem, G is a split extension of M by H = G/M and all complements
of M in G are conjugate. Hence H can be considered to be an irreducible subgroup
of a Singer cycle on M . It follows that G is a primitive Frobenius group. Put
m = |M |. Let H1, . . . ,Hm be the distinct conjugates of H in G. Notice that m ≥ 3.
For each i with 1 ≤ i ≤ m the cyclic group Hi is maximal in G.

Put n = |H| and let h be a generator of Hm. For each k with 1 ≤ k ≤ m let vk

be the unique element of M with vk
−1Hmvk = Hk. Let j be an arbitrary positive

integer with 1 ≤ j ≤ m · n. If j is a multiple of n, then set gj = vk where k is such
that k ≡ j (mod m). Otherwise, if j is not a multiple of n, then set gj = vk

−1hivk

where i and k are so that i ≡ j (mod n) and k ≡ j (mod m). Then gm·n is the
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identity element of G and g1, . . . , gm·n−1 are precisely the non-identity elements of
G. We claim that the vertices g1, . . . , gm·n−1, g1 determine a Hamiltonian cycle in
Γ(G). To show this claim, let x and y be two consecutive elements in the previous
list and set L = 〈x, y〉. By construction, L projects onto G/M via the natural
homomorphism from G to G/M but L is not conjugate to H1. From this it follows
that L cannot be contained in a maximal subgroup containing M (of the form
M oK for K a maximal subgroup of H) and L cannot lie in any complement of
M in G. Since G is an affine primitive permutation group with (|M |, |H|) = 1, it
follows, from the Schur-Zassenhaus Theorem, that L is contained in no maximal
subgroup of G, hence L = G.

4. Groups of Lie Type

In this section it is shown that the graph Γ(G) satisfies Pósa’s criterion (and
hence contains a Hamiltonian cycle) for every sufficiently large finite simple group
G of Lie type.

By a random element of a non-empty finite set S we mean an element chosen
uniformly from S. For a finite group G let P (G) be the probability that a random
pair of elements of G generate G. For a finite group G and an element x ∈ G, define
Px(G) to be the probability that x and a randomly chosen element y generate G.
Note that for a non-identity element x in a non-cyclic finite group G the number
Px(G)|G| is the degree of the vertex in Γ(G) corresponding to x in G. Let m(G)
denote the minimal index of a proper subgroup in a finite simple group G.

The following two theorems are needed.

Theorem 4.1 (Liebeck, Shalev, [13]). There exists a universal constant c1 so that
1− (c1/m(G)) < P (G) for an arbitrary finite simple group G.

Theorem 4.2 (Fulman, Guralnick, [6]). There exists a universal positive constant
c2 so that c2 < Px(G) for an arbitrary non-identity element x in a finite simple
group G of Lie type.

Let G be a finite simple group of Lie type. Let m + 1 be the order of G and let
d1 ≤ . . . ≤ dm be the list of vertex degrees of the graph Γ(G). Let t be the largest
index (with 1 ≤ t ≤ m) for which dt < (m + 1)/2. (We may assume that such a t
exists for otherwise Γ(G) satisfies Pósa’s criterion and so there exists a Hamiltonian
cycle in Γ(G).) Then

(m + 1)2P (G) =
m∑

i=1

di < t(m + 1)/2 + (m− t)(m + 1).

¿From this inequality and Theorem 4.1 we see that t must satisfy

t <
2c1(m + 1)

m(G)
where c1 is as in Theorem 4.1. Hence, if G is sufficiently large, then we have

t < c2(m + 1).

From this and Theorem 4.2 we find that Γ(G) satisfies Pósa’s criterion and hence
contains a Hamiltonian cycle for G sufficiently large.

5. Alternating Groups

In this section it is shown that for every sufficiently large alternating group
An the graph Γ(An) satisfies Pósa’s criterion (and hence contains a Hamiltonian
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cycle). This result together with the result of the previous section provides a proof
for Theorem 1.2.

Let G be a subgroup of Sn.

Theorem 5.1 (Babai, Hayes, [1]). For every ε > 0 there exists δ > 0 and a threshold
n0 such that for every n ≥ n0, if G ≤ Sn has fewer than [δn] fixed points then the
probability that G and a random element σ ∈ Sn generate An or Sn is at least 1− ε.

The following direct consequence of Theorem 5.1 is also indicated in [1]. Let π
be a permutation in An.

Corollary 5.2. For every ε > 0 there exists δ > 0 and a threshold n0 such that for
every n ≥ n0, if π ∈ An has fewer than [δn] fixed points then the probability that π
and a random element σ ∈ An generate An is at least 1− ε.

In this section, let δ and n0 be positive numbers which fulfill the statement of
Corollary 5.2 for ε = 1/2. Also, in this section, assume that n ≥ n0. Let A(n) be
the set of those even permutations of degree n which fix fewer than [δn] points and
let B(n) be An \A(n). Clearly, |B(n)| ≤ n!/([δn])!.

Theorem 5.3. Let n ≥ 8. The degree of every vertex in Γ(An) is at least n!/(10n3).

Proof. This follows from the proof of Proposition 7.1 of [9]. ¤

By Corollary 5.2, our choice of ε, and Theorem 5.3, the graph Γ(An) satisfies
Pósa’s criterion provided that n is at least max{8, n0} and satisfies the inequality

n!/(10n3) ≥ (n!/([δn])!) + 1 ≥ |B(n)|+ 1.

Hence Γ(An) is indeed Hamiltonian for sufficiently large n.

6. Symmetric Groups

In this section Theorem 1.3 is proved.

Let Γ(G) be defined as usual. If G = Sn, let Γb(G) denote the bipartite subgraph
of Γ(G) obtained by throwing out edges between elements that are not in H := An.
Using a variation on the ideas in [4, §6], we prove:

Theorem 6.1. Assume that n > 15. Then the minimal degree of any vertex in
Γb(G) is at least n!/n3.

Proof. First suppose that n = 2m is even. Let C be the conjugacy class of products
of two cycles of lengths m+1 and m−1 if m is even and of lengths m+2 and m−2
if m is odd. If s ∈ G \H, then the probability that a random element of C and s
generate G is greater than 1/2 [4, Lemma 6.4]. Since |C| ≥ (n!)/m2, it follows that
the vertex degree of s is at least n!/n2.

Let C be a conjugacy class (of G) consisting of three cycles of lengths d1 < d2 <
d3 with d1 = [n/3] − 1. More precisely, if n = 3m then let d1 = m − 1, d2 = m,
d3 = m + 1; if n = 3m + 1 then let d1 = m − 1, d2 = m, d3 = m + 2; and if
n = 3m + 2 then let d1 = m− 1, d2 = m + 1, d3 = m + 2. Note that no element of
C lies inside an imprimitive transitive subgroup. Note also that the elements of C
have the property that some specific power of any given element of C moves exactly
d2 points and in fact is a cycle of precisely that size. By a result of Williamson
[21], it follows that no element of C lies inside a primitive subgroup of G. Hence
we conclude that the only maximal subgroups of G containing an element of C are
the obvious intransitive subgroups.
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Let 1 6= h ∈ H. We want to show that the number of edges in Γb(G) connecting
h and an element of C is at least n!/n3 whenever n > 15. Clearly, we can replace
h by a power of h and assume that h has prime order. If h = h1h2 is a product
of two disjoint permutations both in H then the number of edges from h1 to an
element of C is at most the number of edges from h to an element of C. (This
is because if x ∈ C then 〈h1, x〉 is transitive implies that 〈h, x〉 is transitive.) So
we may assume that h is either a p-cycle with p an odd prime or a product of two
disjoint transpositions. The probability that a random element of C and such an
h is intransitive is roughly at most 3(2/3)3 and is always less than 0.9. Thus, the
probability that h and a random element of C generate G is at least 0.1. Thus,
the degree of the vertex h is at least |C|/10 ≥ n!/n3 (note that for x ∈ C, we have
|CG(x)| < (n/3)3).

Now suppose that n is odd. Let C be the conjugacy class of n-cycles. If s ∈ G\H
is not a transposition, then the probability that a random element of C and s
generate G is greater than 2/3 [4, Proposition 6.8]. Thus, the vertex degree of s
is at least 2|C|/3 = 2(n!)/3n. Suppose that s is a transposition. If x ∈ C, then
〈x, s〉 = G unless 〈x, s〉 is imprimitive.

We reverse the computation. Fix x ∈ C. Take it to be (1, 2, . . . , n). Note that
x fixes a unique partition with block size d for each divisor of n. Let s = (1j).
Then 〈x, s〉 = G if and only if gcd(n, j − 1) = 1. So the probability that a random
transposition and x generate G is at least 1/n, whence the probability that s and a
random element of C generate G is at least 1/n. Thus, the degree of the vertex s
is at least |C|/n = (n!)/n2.

Now suppose that 1 6= h ∈ H. Let C be the conjugacy class of elements that are
a product of an m-cycle and an m+1-cycle where n = 2m+1. Then the probability
that a random element of C and s generate G is greater than 1/2 [4, Lemma 6.5].
Thus, the degree of the vertex s is at least (n!)/(2n2). ¤

Two direct consequences of Theorem 5.1 are

Corollary 6.2. For every ε1 > 0 there exists δ1 > 0 and a threshold n1 such that
for every n ≥ n1, if π ∈ Sn\An has fewer than [δ1n] fixed points then the probability
that π and a random element σ ∈ Sn generate Sn is at least 1− ε1.

Corollary 6.3. For every ε2 > 0 there exists δ2 > 0 and a threshold n2 such that
for every n ≥ n2, if π ∈ An has fewer than [δ2n] fixed points then the probability
that π and a random element σ ∈ Sn generate Sn is at least (1/2)− ε2.

Let δ1, n1 and δ2, n2 be positive numbers satisfying the statements of Corollaries
6.2 and 6.3 for ε1 = 1/5 and ε2 = 1/5 respectively. Let δ be the minimum of δ1

and δ2 and let m0 be the maximum of n1 and n2. Unless otherwise stated assume
that n ≥ m0. Let A1(n) and A2(n) be the set of elements of Sn \ An and An

respectively fixing less than [δn] points. Let B1(n) and B2(n) be (Sn \An) \A1(n)
and An \ (A2(n) ∪ {1}) respectively. Clearly,

|Bi(n)| ≤ n!
2([δn])!

for i = 1, 2.

Lemma 6.4. For sufficiently large n, the set Sn \An spans a complete subgraph in
the graph cl(3)(Γ(Sn)). Moreover, for n sufficiently large, every vertex in A1(n) is
connected to every other vertex and every vertex in B1(n) is connected to at least
(n!/2)− 1 + (n!/n3) other vertices in the graph cl(3)(Γ(Sn)).
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Proof. Let n ≥ max{m0, 15}. Set Γ0 = Γ(Sn). We claim that in the graph Γ1 =
cl(Γ(Sn)) the set A1(n) spans a complete subgraph and every vertex in A1(n) is
connected to every vertex in A2(n).

For the first claim notice that for any u, v in A1(n) we have

d(Γ0, u) + d(Γ0, v) > (8/5)(n!− 1) > n!− 1.

For the latter claim let u ∈ A1(n) and v ∈ A2(n). Then

d(Γ0, u) + d(Γ0, v) > (11/10)(n!− 1) > n!− 1.

Now we claim that, for sufficiently large n, in the graph Γ2 = cl(2)(Γ(Sn)) every
vertex in A1(n) is connected to every other vertex in the graph. Let u ∈ A1(n) and
let v ∈ B1(n) ∪ B2(n) be arbitrary. Then, by Theorem 6.1 and by the observation
made before the statement of the lemma,

d(Γ1, u) + d(Γ1, v) > n!− 2− |B1(n) ∪B2(n)|+ n!/n3 > n!− 1.

Next we claim that, in the graph Γ3 = cl(3)(Γ(Sn)), every vertex in B1(n) is
connected to every other vertex in B1(n). Let u and v be two arbitrary elements
from B1(n). Then, again by Theorem 6.1 and by the observation made before the
statement of the lemma,

d(Γ2, u) + d(Γ2, v) ≥ 2|A1(n)|+ (2n!)/(n3) > n!− 1.

Finally, it follows from the above and from Theorem 6.1 that every vertex in
B1(n) is connected to at least (n!/2) − 1 + (n!/n3) other vertices in the graph
Γ3. ¤

By Theorem 2.1, the following lemma finishes the proof of Theorem 1.3.

Lemma 6.5. For sufficiently large n the graph cl(3)(Γ(Sn)) satisfies Chvátal’s cri-
terion. In particular, the graph cl(3)(Γ(Sn)) contains a Hamiltonian cycle.

Proof. Put Γ3 = cl(3)(Γ(Sn)). Let d1 ≤ . . . ≤ dn!−1 be the list of vertex degrees of
the graph Γ3. Let k be a positive integer at most n!/2. It is sufficient to show that
dn!−1−k ≥ n!− 1− k. Since every vertex in A1(n) has maximum possible degree in
Γ3 by Lemma 6.4, the claim is clear for positive integers k satisfying

k ≤ n!
2
− n!

2([δn])!
.

We may now assume that
n!
2
− n!

2([δn])!
< k <

n!
2

.

But then by Theorem 6.1 and Lemma 6.4, we have

dn!−1−k ≥ n!
2
− 1 +

n!
n3

> n!− 1− n!
2

+
n!

2([δn])!
≥ n!− 1− k.

¤

7. Wreath Products

Let S be a non-abelian finite simple group and let Cm be the cyclic subgroup
of Sm generated by the cyclic permutation σ = (1, 2, . . . , m), with m = pt a prime
power. Consider the wreath product G = S o Cm. Denote the base subgroup of G
by N = S1 × · · · × Sm and let πi : N → Si be the projection on the i-th factor.
Moreover let A = Aut(S), r = pt−1, u = r+1 and Λ the set {1+ri | 0 ≤ i ≤ p−1}.
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Lemma 7.1. A subgroup H of G coincides with G if the following properties are
satisfied:

(1) HN/N ∼= Cm;
(2) πi(H ∩N) ∼= S for some i;
(3) there exists (y1, . . . , ym) ∈ H ∩N and a, b ∈ Λ such that ya and yb are not

A-conjugate.

Proof. If H satisfies the first two conditions, then H ∩N is a subdirect product of
N = S1 × · · · × Sm. If H 6= G then H ∩N ≤ ∏

j Dj where Dj = {(s, sb2 , . . . , sbv ) ∈∏
i∈Bj

Si | s ∈ S, bi ∈ A} is a diagonal subgroup of
∏

i∈Bj
Si and the subsets Bj

form a system of blocks for the action of Cm on {1, . . . , m}, with |Bj | 6= 1. To
conclude note that for any choice of Bj ’s, a and b belong to the same block. ¤

Lemma 7.2. Let i be an integer not divisible by p, ρ = σi, τ = σr, and g =
(x1, . . . , xm)τ ∈ G where (x1, . . . , xm) ∈ N . The probability that there is an edge in
Γ(G) between g and a randomly chosen element in the coset ρN is at least η, where
η is the probability that two randomly chosen elements from S generate S and are
not A-conjugate.

Proof. It is not restrictive to assume that xi = 1 for each i > r (just substitute g
with a conjugate gx for a suitable choice of x ∈ N). Now consider h = ρ(y1, . . . , ym).
There exists k < m and (h1, . . . , hm) ∈ N such that

hk = (ρ(y1, . . . , ym))k = τ−1(h1, . . . , hm).

Let H be the subgroup generated by g and h (which clearly satisfies the first condi-
tion of Lemma 7.1). Notice that H ∩N contains w = (x1h1, . . . , xrhr, hu, . . . , hm)
and wg. Notice also that πu(wg) = h1x1. In particular the second and third con-
dition of Lemma 7.1) are satisfied if hu, h1x1 are not A-conjugate and generate
S. Hence there are η|S|2 possible choices for (h1, hu). Now notices that there ex-
ists two distinct subsets X1 and Xu of {1, . . . ,m}, of cardinality k such that, for
i ∈ {1, u}, hi is the product of the k elements yj with j ∈ Xi (in a suitable order);
take a ∈ X1 \Xu and b ∈ Xu \X1: to obtain a prescribed value for h1, hu, we can
choose yi as we like for i /∈ {a, b}, then choose ya and yb in order to get the wanted
values. So we find η|N | suitable choices for the elements yi. ¤

Corollary 7.3. If g ∈ G \ N , then the degree of g as a vertex of Γ(G) is at least
φ(m)|N |η = pt−1(p− 1)|N |η.

With similar arguments it can be proved that we have at least η|G| edges from
the elements that generate G modulo N .

Lemma 7.4. Let g = (x1, . . . , xm)σ ∈ G. The probability that there is an edge in
Γ(G) between g and a randomly chosen element of G is at least η.

Proof. It is not restrictive (by substituting g with a suitable conjugate) to assume
that x1 = · · · = xm−1 = 1. Take an arbitrary element x = (y1, . . . , ym)σi ∈ G; there
exist k ∈ N and (z1, . . . , zm) ∈ N with gk = σ−i(z1, . . . , zm). Clearly 〈g, x〉 = G if
and only if 〈g, (y1z1, . . . , ymzm)〉 = G: in particular 〈g, x〉 = G if we choose y1, yu

so that y1z1 and yuzu are not A-conjugate and generate S. ¤

We need now some information on the behavior of Pn(G) when n ∈ N .

Lemma 7.5. Assume that n = (x1, . . . , xm) ∈ N, with n 6= 1. Choose i ∈ {1, . . . , m}
with the property that Pxi(S) ≥ Pxj (S) for each 1 ≤ j ≤ m and let x = xi. Given
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a generator τ of Cm = 〈σ〉, the number of edges connecting n with elements of the
coset Nτ is at least |N |µ with

µ = max
(

Px(S)− |CA(x)|
|S| ,

Px(S)|CS(x)|
|S| ρx

)
,

with ρx = 1 if CA(x)S = A and ρx = 0 otherwise.

Proof. It is not restrictive to assume that i = 1 and τ = σ. First we claim that the
number of edges connecting n with elements of the coset Nσ is at least |N |µ1 with

µ1 = Px(S)− |CA(x)|
|S| .

It suffices to prove that, for any y2, . . . , ym ∈ Sm−1, there exist at least µ1|S| choices
for y1 such that if g = (y1, . . . , ym)σ then 〈n, g〉 = G. We have gm = (h1, . . . , hm)
with h1 = y1y2 · · · ym. In particular the second condition of Lemma 7.1 is satisfied
if x and h1 generate S and there are at least |S|Px(S) choices for y1 for which this
is ensured. If there exist λ ∈ Λ with x1 and xλ not A-conjugate, then the third
condition is automatically satisfied and we are done. Otherwise for each 1 ≤ i ≤ p−1
there exist αi ∈ A with xir+1 = xαi . In this case to be sure that H = 〈g, n〉 = G we
need an extra condition on y1 to avoid that πΛ(H ∩ N) = (s, sβ1 , . . . , sβp−1) with
βi ∈ A. Assume that this is the case. Since (x, xr+1, . . . , xr(p−1)+1) = πΛ(n), we
must have βi ∈ CA(x)αi. Let gr = (k1, . . . , km)σr and let ε be the p-cycle (1, r +
1, . . . , r(p− 1)). Since gr normalizes H ∩N , we have that (k1, kr+1, . . . , kr(p−1)+1)ε
normalizes πΛ(H∩N) = (s, sβ1 , . . . , sβp−1). In particular, setting z = βp−1kr(p−1)+1,
we have zβ1 = k1 and zβi = βi−1k(i−1)r+1 for each 2 ≤ i ≤ p− 1 and consequently

zp = k1kr+1 · · · kr(p−1)+1 = h1.

Since kr(p−1)+1 depends only on y2, . . . , yn, the set ∆ = {(tαp−1kr(p−1)+1)p | t ∈
CA(x)} is independent from y1. If we choice y1 such that 〈x, h1〉 = S and h1 /∈ ∆,
then 〈g, n〉 = G. Clearly the number of y1 for which h1 satisfies the two previous
conditions is at most

|S|
(

Px(S)− |CA(x)|
|S|

)
.

This concludes the proof of the first claim. Now we want to show that the number
of edges connecting n with elements of the coset Nσ is at least |N |µ2 with

µ2 =
Px(S)|CS(x)|

|S| ρx.

Note that there are at least µ2|N | choices of (y1, . . . , ym) so that 〈h1, x〉 = S and
kr(p−1)+1 ∈ α−1

p−1CA(x). We claim that for any of these choices, g = (y1, . . . , ym)σ
generates G together with n. By the argument that we have used above, and
under the same notations, it suffices to prove that zp 6= h1. Notice that z =
βp−1kr(p−1)+1 ∈ βp−1α

−1
p−1CA(x) ≤ CA(x), hence zp = h1 would imply [h1, x] = 1,

against 〈h1, x〉 = S. ¤

Lemma 7.6. Let S be a non-abelian finite simple group and let c(S) be the maximal
size of a conjugacy class of S. Then lim|S|→∞(c(S)|Out(S)|)/|S| = 0.

Proof. If S is a finite simple group of Lie type, then this follows by [7, Theorem
1.4]. If S = An for n > 6, then (c(S)|Out(S)|)/|S| ≤ 4/n. ¤

Lemma 7.7. Let η be as above. Then lim|S|→∞ η = 1.
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Proof. Let S be a non-abelian finite simple group and let A be the automorphism
group of S. Notice that η ≥ 1 − p − q where p is the probability that a random
pair of elements of S does not generate S and q is the probability that a random
pair of elements of S is A-conjugate. By Theorem 4.1), p tends to 0 as |S| tends to
infinity. Thus, to prove the lemma, it is sufficient to show that q tends to 0 as |S|
tends to infinity.

Let k be the number of A-conjugacy classes of elements of S and let a1, . . . , ak

be the corresponding orbit sizes with a1 ≥ . . . ≥ ak. We have q = (
∑k

i=1 ai
2)/|S|2.

Put a = a1, n = |S|, and b = n − [n/a]a. We claim that q ≤ ([n/a]a2 + b2)/n2.
Before verifying this claim, let us show how our lemma would follow.

Indeed,

q ≤ [n/a]a2 + b2

n2
<

a

n

(
1 +

a

n

)
≤ c(S)|Out(S)|

n

(
1 +

c(S)|Out(S)|
n

)

and, by Lemma 7.6, the right-hand-side of this inequality tends to 0 as n tends to
infinity, hence q must tend to 0.

Finally, for the proof of our claim, observe that if x and y are two positive integers
with x ≤ y, then (x− 1)2 + (y + 1)2 = x2 + y2 + 2 + 2(y − x) > x2 + y2. This
means that, starting from the list a = a1, . . . , ak, we may derive a sequence of lists
by replacing two elements x and y of the previous list by x − 1 and y + 1 in the
next list, whenever 1 ≤ x ≤ y < a. This way, the last list of non-negative integers
will be a, . . . , a, b, 0, . . . , 0 where b = n− [n/a]a. ¤

We are now in the position to prove Theorem 1.4.

We divide the vertices of Γ(G) into three disjoint subsets:

• V1 is the set of vertices corresponding to elements (y1, . . . , ym)τ with |τ | =
m;

• V2 is the set of vertices corresponding to elements (y1, . . . , ym)τ with 1 <
|τ | < m;

• V3 is the set of vertices corresponding to the non trivial elements of the base
group N of the wreath product.

Let Γ0 = Γ(G) and Γi = cl(i)(Γ(G)) for i ≥ 1. By Lemma 7.4 and Corollary 7.3,
if u ∈ V1 and v ∈ V1 ∪ V2, then

d(Γ0, u) + d(Γ0, v) ≥ η|G|+ η|G|
(

1− 1
p

)
≥ 3η|G|/2.

Since η tends to 1 as |S| tends to infinity (by Lemma 7.7), we deduce that if |S| is
large enough then any vertex in V1 is connected to any other vertex in V1 ∪ V2 in
the first closure Γ1. But then, if v1, v2 ∈ V2, then

d(Γ1, v1) + d(Γ1, v2) ≥ 2|V1| = 2
(

1− 1
p

)
|G| ≥ |G|

which means that Γ2 induces a complete subgraph on V1 ∪ V2.

To complete the proof we need different arguments for the Lie and alternating
cases.

First assume that S is a group of Lie type. By Theorem 4.2 and the fact that
maxx∈S,x6=1 |CA(x)|/|S| tends to 0 as |S| tends to infinity, we deduce that there
exists a positive constant c3 such that, if S is large enough then, for any x ∈ S \{1},

Px(S)− |CA(x)|
|S| ≥ c3.
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By Lemmas 7.4 and 7.5, for any u ∈ V1 and u ∈ V3 we have

d(Γ0, u) + d(Γ0, v) ≥ η|G|+ c3|G|
(

1− 1
p

)
=

(
η + c3

(
1− 1

p

))
|G|.

If |S| is large enough, then η + c3(1 − 1/p) ≥ 1: in this case any vertex in V1 is
connected to any other vertex in V3 in the first closure Γ1, and this implies that Γ2

is a complete graph.

We remain with the alternating groups. In this case we need to use the Babai-
Hayes Theorem. Let δ and n0 be positive numbers which fulfill the statement of
Corollary 5.2 for ε = 1/2. Let A(n) be the set of those even permutations of degree
n which fix fewer than [δn] points. We divide V3 into two disjoint subsets: W1 is
the set of elements (y1, . . . , ym) of N with the property that yi ∈ A(n) for some
1 ≤ i ≤ m; W2 = V3 \ W1. Since Px(S) ≥ 1/2 for each x ∈ A(n), arguing as
in the case of groups of Lie type we deduce that Γ2 induces a complete subgraph
on V1 ∪ V2 ∪ W1. Let now w = (y1, . . . , ym) ∈ W2 and assume that y = yi has
the property that Pyi

(S) ≥ Pyj
(S) for each 1 ≤ j ≤ m. Let now p = Py(S) and

c = |CA(y)|/|S| and consider

µ = max
(

Py(S)− |CA(y)|
|S| ,

Py(S)|CS(y)|
|S|

)
.

If c ≤ p/2 then µ ≥ p/2 ≥ p2/4, otherwise, if c ≥ p/2, we again have µ ≥ p2/4.
Moreover, by Theorem 5.3, p ≥ 1/(5n3), hence, by Lemma 7.5,

d(Γ2, w) ≥ d(Γ0, w) ≥ (pt − pt−1)|N |
100n6

.

On the other hand

|W2| ≤ |S −A(n)|m ≤
(

n!
[δn]!

)m

≤ |N |
(

2
[δn]!

)m

so if n is large enough, d(Γ2, w) > |W2| for each w ∈ W2. This means that Γ2

satisfies Pósa’s criterion, and hence contains a Hamiltonian cycle.

8. Computer Calculations

The main results of this paper hold for sufficiently large groups. In this section,
we consider small groups and sporadic simple groups. In particular, we get a
computational proof of Theorem 1.5. (Currently, we do not know how large the gap
between small and sufficiently large is.)

Using the same computational methods as in [4, Section 2.5], we showed that the
generating graphs of the following groups contain Hamiltonian cycles.

• Non-abelian simple groups of orders at most 107,
• groups G containing a unique minimal normal subgroup N such that N has

order at most 106, N is nonsolvable, and G/N is cyclic,
• alternating and symmetric groups on n points, with 5 ≤ n ≤ 13,
• sporadic simple groups and automorphism groups of sporadic simple groups.

More specifically, the generating graphs of the simple groups in this list satisfy
Pósa’s criterion, and for each non-simple group in this list a suitable iterated closure
of the generating graph satisfies Pósa’s criterion.

For that, we define the partial vertex degree of the non-identity element s w. r. t. the
conjugacy class C as d(Γ(G), s, C) = |{x ∈ C; 〈s, x〉 = G}|. The vertex degree
d(Γ(G), s) equals

∑
C d(Γ(G), s, C), where C runs over the conjugacy classes of G,
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and a lower bound for d(Γ(G), s, gG) is given by |gG|−∑
M∈M(G,s) |gG∩M |, where

M(G, s) denotes the set of those maximal subgroups of G that contain s.

The point is that these lower bounds can be computed easily if the primitive
permutation characters of G are known. This is the case when the table of marks
of G is available or if the character tables of G and of all its maximal subgroups
(and the necessary class fusions) are available, for example if G is a sporadic simple
group not equal to the Monster.

Defining partial vertex degrees for the iterated closures of Γ(G) in the obvious
way, we get d(cl(Γ(G)), s, gG) = |gG| if d(Γ(G), s) + d(Γ(G), g) ≥ |G| − 1, and
d(cl(Γ(G)), s, gG) = d(Γ(G), s, gG) otherwise.

Note that lower bounds for the partial vertex degrees for the closures of Γ(G) can
be computed this way from lower bounds for the partial vertex degrees for Γ(G).

If the primitive permutation characters of G are not known then computing
the (partial) vertex degrees directly, without character-theoretic computations, is
usually faster than computing first the character information.

It turned out that this approach was sufficient to prove that Pósa’s criterion
holds for appropriate closures cl(i)(Γ(G)), for all groups G listed above. See [3] for
more information.

9. Proof of Proposition 1.7

Let us use the notations and assumptions of Proposition 1.7. Notice that if G is
generated by elements x and y then d(x)+ d(y) ≤ dim(V ). Indeed, if d(x)+ d(y) >
dim(V ), then any non-trivial subspace of U ∩ W is G-invariant contradicting the
irreducibility of V where U and W are eigenspaces of x and y on V of dimensions
d(x) and d(y), respectively.

Let n+1 be the order of G and let x1, . . . , xn, xn+1 = x1 be a Hamiltonian cycle
in the graph Γ(G). Then d(xi) + d(xi+1) ≤ dim(V ) for all i with 1 ≤ i ≤ n, hence

n∑

i=1

d(xi) =
1
2

n∑

i=1

(d(xi) + d(xi+1)) ≤ n

2
dim(V )

which is exactly what we wanted.

Acknowledgment. We thank L. Pyber for drawing our attention to [1].
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