HAMILTONIAN CYCLES IN THE GENERATING GRAPHS OF FINITE GROUPS

T. BREUER, R. M. GURALNICK, A. LUCCHINI, A. MARÓTI, G. P. NAGY

Abstract

For a finite group G let $\Gamma(G)$ denote the graph defined on the nonidentity elements of G in such a way that two distinct vertices are connected by an edge if and only if they generate G. In this paper it is shown that the graph $\Gamma(G)$ contains a Hamiltonian cycle for many finite groups G

1. Introduction

For a finite group G let $\Gamma(G)$ denote the graph defined on the non-identity elements of G in such a way that two distinct vertices are connected by an edge if and only if they generate G. The graph $\Gamma(G)$ is called the generating graph of G. The generating graph was investigated in [15], [16], and [17]. For example, in [16], it is shown that for a nilpotent by nilpotent finite group G the clique number of $\Gamma(G)$ is equal to the chromatic number of $\Gamma(G)$.

In the literature many deep results about finite simple groups G can equivalently be stated as theorems about $\Gamma(G)$. Three examples are given. Guralnick and Shalev [10] showed that for sufficiently large G the graph $\Gamma(G)$ has diameter at most 2. Guralnick and Kantor [9] showed that there is no isolated vertex in $\Gamma(G)$. Finally, Breuer, Guralnick, Kantor [4] showed that the diameter of $\Gamma(G)$ is at most 2 for all G.

In this paper those finite groups G are considered for which $\Gamma(G)$ contains a Hamiltonian cycle. The following proposition reduces the investigations to those non-solvable groups G for which G / N is cyclic for any non-trivial normal subgroup N of G.

Proposition 1.1. Let G be a finite solvable group that has at least 4 elements. Then the graph $\Gamma(G)$ contains a Hamiltonian cycle if and only if G / N is cyclic for all non-trivial normal subgroups N of G.

The three main results of this paper are Theorems 1.2, 1.3, and 1.4.
Theorem 1.2. For every sufficiently large finite simple group G, the graph $\Gamma(G)$ contains a Hamiltonian cycle.

Theorem 1.3. For every sufficiently large symmetric group S_{n}, the graph $\Gamma\left(S_{n}\right)$ contains a Hamiltonian cycle.

Theorem 1.4. For every sufficiently large non-abelian finite simple group S, the graph $\Gamma\left(S \imath C_{m}\right)$ contains a Hamiltonian cycle, where m denotes a prime power.

[^0]The proofs of Theorems 1.2, 1.3, and 1.4 depend heavily on Liebeck, Shalev [13], Fulman, Guralnick [6], Babai, Hayes [1], and Luczak, Pyber [18].

Theorem 1.5. Let G be a sporadic simple group or the automorphism group of a sporadic simple group. Then the graph $\Gamma(G)$ contains a Hamiltonian cycle.

Based on Proposition 1.1, Theorems 1.2, 1.3, 1.4, 1.5, and some computer calculations performed by GAP [8] (see Section 8), the following conjecture is proposed.

Conjecture 1.6. Let G be a finite group with at least 4 elements. Then the graph $\Gamma(G)$ contains a Hamiltonian cycle if and only if G / N is cyclic for all non-trivial normal subgroups N of G.

Conjecture 1.6 is related to Conjecture 1.8 (and the following paragraph) of [4]. Indeed, Burness, Guest, and Guralnick [5] are working on the problem of proving that $\Gamma(G)$ has no isolated vertex and indeed has diameter at most 2 if and only if G / N is cyclic for every non-trivial normal subgroup N of G. Moreover, the problem has been reduced to the case where G is almost simple.

Problem 8.5 of The Kourovka Notebook [12] posed by M. R. Vaughan-Lee in 1982 is the following. Prove that if G is a finite group, F is any field, and V is a non-trivial irreducible $F G$-module then

$$
\frac{1}{|G|} \sum_{g \in G} \operatorname{dim}(\operatorname{fix}(g)) \leq \frac{1}{2} \operatorname{dim}(V)
$$

This was proved in case $(|G|,|V|)=1$ and also for solvable groups G by Neumann and Vaughan-Lee in [19]. Later, Segal and Shalev [20] showed that, in general, the average dimension of fixed point spaces of elements of G on V is at most $(3 / 4) \operatorname{dim}(V)$. Finally, Isaacs, Keller, Meierfrankenfeld, Moretó [11] proved, in a slightly more general setting, that the average dimension of fixed point spaces of elements of G on V is at most $((p+1) /(2 p)) \operatorname{dim}(V)$ where p denotes the smallest prime divisor of $|G|$. In this paper we show the following.

Proposition 1.7. Let V be an irreducible $F G$-module of dimension at least 2 for some field F and some finite group G. For an arbitrary element g in G let $d(g)$ denote the dimension of the largest eigenspace of g on V. Suppose that the graph $\Gamma(G)$ contains a Hamiltonian cycle. Then

$$
\frac{1}{(|G|-1)} \sum_{1 \neq g \in G} d(g) \leq \frac{1}{2} \operatorname{dim}(V)
$$

2. Graphs

A Hamiltonian cycle is a cycle in an undirected simple graph which visits each vertex exactly once. A graph is called Hamiltonian if it contains a Hamiltonian cycle. The problem of determining whether a graph is Hamiltonian is NP-complete and is a special case of the travelling salesman problem.

There are many ways to show that a given graph is Hamiltonian. First of all, sometimes it is possible just to exhibit a Hamiltonian cycle in the graph. This is the case for the graph $\Gamma(G)$ when G is a solvable group of order at least 4 with the property that G / N is cyclic for every non-trivial normal subgroup N of G (see Section 3).

A simple graph with m vertices and list of vertex degrees $d_{1} \leq \ldots \leq d_{m}$ satisfies Pósa's criterion if $d_{k} \geq k+1$ for all positive integers k with $k<m / 2$. By Exercise 10.21 (b) of [14], a graph contains a Hamiltonian cycle if it satisfies Pósa's criterion.

It is shown in Sections 4 and 5 that $\Gamma(G)$ satisfy Pósa's criterion for almost all (if not all) finite simple groups G of orders at least 5 .

For a simple graph Γ with m vertices let $d(\Gamma, v)$ denote the degree of the vertex v. The closure $\mathrm{cl}(\Gamma)$ of Γ is the graph (on the same set of vertices) constructed from Γ by adding for all non-adjacent pairs of vertices u and v with $d(\Gamma, u)+d(\Gamma, v) \geq m$ the new edge $u v$. One of the best characterization of Hamiltonian graphs is

Theorem 2.1 (Bondy, Chvátal, [2]). A graph is Hamiltonian if and only if its closure is Hamiltonian.

Theorem 2.1 is first applied in Section 6 of this paper.
For a simple graph Γ, let us set $\mathrm{cl}^{(1)}(\Gamma)=\operatorname{cl}(\Gamma)$ and inductively set $\mathrm{cl}^{(i)}(\Gamma)=$ $\mathrm{cl}\left(\mathrm{cl}^{(i-1)}(\Gamma)\right)$ for every positive integer i larger than 1 .

A simple graph with m vertices and list of vertex degrees $d_{1} \leq \ldots \leq d_{m}$ satisfies Chvátal's criterion if whenever k is so that $d_{k} \leq k<m / 2$ it follows that $d_{m-k} \geq$ $m-k$. By Exercise 10.21 (d) of [14], a graph contains a Hamiltonian cycle if it satisfies Chvátal's criterion. In Section 6 it is shown that for every sufficiently large symmetric group S_{n} the graph cl ${ }^{(3)}\left(\Gamma\left(S_{n}\right)\right)$ satisfies Chvátal's criterion.

3. Solvable Groups

In this section Proposition 1.1 is shown. Let G be a finite solvable group with at least 4 elements.

If $\Gamma(G)$ contains a Hamiltonian cycle, then there is no isolated vertex in $\Gamma(G)$, hence G / N must be cyclic for all non-trivial normal subgroups N of G. It is sufficient to show the other implication. Suppose that G is a finite group with the property that G / N is cyclic for all non-trivial normal subgroups N of G.

If G is cyclic, then any generator g of G is connected to every other vertex of $\Gamma(G)$ and $g^{1}, g^{2}, \ldots, g^{n-1}, g^{1}$ determines a Hamiltonian cycle in $\Gamma(G)$ where $n=|G|$. Hence we may assume that G is non-cyclic.

If G has two distinct minimal normal subgroups, A and B, then G embeds in $G / A \times G / B$ and so is Abelian. Since G is not cyclic, the Frattini subgroup of G must be trivial. Thus, G is a direct product of cyclic groups of prime order. It follows easily that G is elementary Abelian of order p^{2} for some prime p. Then each vertex in $\Gamma(G)$ has degree $p^{2}-p$ and so there is a Hamiltonian cycle in $\Gamma(G)$ by Pósa's criterion.

So we may assume that G has a unique minimal normal subgroup M. It follows that M is an elementary Abelian p-group for some prime p and the cyclic group G / M acts faithfully and irreducibly on M. Since the cyclic group G / M acts faithfully and irreducibly on M, the integers $|G / M|$ and $|M|$ are coprime. By the SchurZassenhaus Theorem, G is a split extension of M by $H=G / M$ and all complements of M in G are conjugate. Hence H can be considered to be an irreducible subgroup of a Singer cycle on M. It follows that G is a primitive Frobenius group. Put $m=|M|$. Let H_{1}, \ldots, H_{m} be the distinct conjugates of H in G. Notice that $m \geq 3$. For each i with $1 \leq i \leq m$ the cyclic group H_{i} is maximal in G.

Put $n=|H|$ and let h be a generator of H_{m}. For each k with $1 \leq k \leq m$ let v_{k} be the unique element of M with $v_{k}{ }^{-1} H_{m} v_{k}=H_{k}$. Let j be an arbitrary positive integer with $1 \leq j \leq m \cdot n$. If j is a multiple of n, then set $g_{j}=v_{k}$ where k is such that $k \equiv j(\bmod m)$. Otherwise, if j is not a multiple of n, then set $g_{j}=v_{k}{ }^{-1} h^{i} v_{k}$ where i and k are so that $i \equiv j(\bmod n)$ and $k \equiv j(\bmod m)$. Then $g_{m \cdot n}$ is the
identity element of G and $g_{1}, \ldots, g_{m \cdot n-1}$ are precisely the non-identity elements of G. We claim that the vertices $g_{1}, \ldots, g_{m \cdot n-1}, g_{1}$ determine a Hamiltonian cycle in $\Gamma(G)$. To show this claim, let x and y be two consecutive elements in the previous list and set $L=\langle x, y\rangle$. By construction, L projects onto G / M via the natural homomorphism from G to G / M but L is not conjugate to H_{1}. From this it follows that L cannot be contained in a maximal subgroup containing M (of the form $M \rtimes K$ for K a maximal subgroup of H) and L cannot lie in any complement of M in G. Since G is an affine primitive permutation group with $(|M|,|H|)=1$, it follows, from the Schur-Zassenhaus Theorem, that L is contained in no maximal subgroup of G, hence $L=G$.

4. Groups of Lie Type

In this section it is shown that the graph $\Gamma(G)$ satisfies Pósa's criterion (and hence contains a Hamiltonian cycle) for every sufficiently large finite simple group G of Lie type.

By a random element of a non-empty finite set S we mean an element chosen uniformly from S. For a finite group G let $P(G)$ be the probability that a random pair of elements of G generate G. For a finite group G and an element $x \in G$, define $P_{x}(G)$ to be the probability that x and a randomly chosen element y generate G. Note that for a non-identity element x in a non-cyclic finite group G the number $P_{x}(G)|G|$ is the degree of the vertex in $\Gamma(G)$ corresponding to x in G. Let $m(G)$ denote the minimal index of a proper subgroup in a finite simple group G.

The following two theorems are needed.
Theorem 4.1 (Liebeck, Shalev, [13]). There exists a universal constant c_{1} so that $1-\left(c_{1} / m(G)\right)<P(G)$ for an arbitrary finite simple group G.

Theorem 4.2 (Fulman, Guralnick, [6]). There exists a universal positive constant c_{2} so that $c_{2}<P_{x}(G)$ for an arbitrary non-identity element x in a finite simple group G of Lie type.

Let G be a finite simple group of Lie type. Let $m+1$ be the order of G and let $d_{1} \leq \ldots \leq d_{m}$ be the list of vertex degrees of the graph $\Gamma(G)$. Let t be the largest index (with $1 \leq t \leq m$) for which $d_{t}<(m+1) / 2$. (We may assume that such a t exists for otherwise $\Gamma(G)$ satisfies Pósa's criterion and so there exists a Hamiltonian cycle in $\Gamma(G)$.) Then

$$
(m+1)^{2} P(G)=\sum_{i=1}^{m} d_{i}<t(m+1) / 2+(m-t)(m+1)
$$

¿From this inequality and Theorem 4.1 we see that t must satisfy

$$
t<\frac{2 c_{1}(m+1)}{m(G)}
$$

where c_{1} is as in Theorem 4.1. Hence, if G is sufficiently large, then we have

$$
t<c_{2}(m+1)
$$

From this and Theorem 4.2 we find that $\Gamma(G)$ satisfies Pósa's criterion and hence contains a Hamiltonian cycle for G sufficiently large.

5. Alternating Groups

In this section it is shown that for every sufficiently large alternating group A_{n} the graph $\Gamma\left(A_{n}\right)$ satisfies Pósa's criterion (and hence contains a Hamiltonian
cycle). This result together with the result of the previous section provides a proof for Theorem 1.2.

Let G be a subgroup of S_{n}.
Theorem 5.1 (Babai, Hayes, [1]). For every $\epsilon>0$ there exists $\delta>0$ and a threshold n_{0} such that for every $n \geq n_{0}$, if $G \leq S_{n}$ has fewer than [$\left.\delta n\right]$ fixed points then the probability that G and a random element $\sigma \in S_{n}$ generate A_{n} or S_{n} is at least 1- ϵ.

The following direct consequence of Theorem 5.1 is also indicated in [1]. Let π be a permutation in A_{n}.

Corollary 5.2. For every $\epsilon>0$ there exists $\delta>0$ and a threshold n_{0} such that for every $n \geq n_{0}$, if $\pi \in A_{n}$ has fewer than $[\delta n]$ fixed points then the probability that π and a random element $\sigma \in A_{n}$ generate A_{n} is at least $1-\epsilon$.

In this section, let δ and n_{0} be positive numbers which fulfill the statement of Corollary 5.2 for $\epsilon=1 / 2$. Also, in this section, assume that $n \geq n_{0}$. Let $A(n)$ be the set of those even permutations of degree n which fix fewer than $[\delta n]$ points and let $B(n)$ be $A_{n} \backslash A(n)$. Clearly, $|B(n)| \leq n!/([\delta n])$!.
Theorem 5.3. Let $n \geq 8$. The degree of every vertex in $\Gamma\left(A_{n}\right)$ is at least $n!/\left(10 n^{3}\right)$.
Proof. This follows from the proof of Proposition 7.1 of [9].
By Corollary 5.2, our choice of ϵ, and Theorem 5.3, the graph $\Gamma\left(A_{n}\right)$ satisfies Pósa's criterion provided that n is at least $\max \left\{8, n_{0}\right\}$ and satisfies the inequality

$$
n!/\left(10 n^{3}\right) \geq(n!/([\delta n])!)+1 \geq|B(n)|+1
$$

Hence $\Gamma\left(A_{n}\right)$ is indeed Hamiltonian for sufficiently large n.

6. Symmetric Groups

In this section Theorem 1.3 is proved.
Let $\Gamma(G)$ be defined as usual. If $G=S_{n}$, let $\Gamma_{b}(G)$ denote the bipartite subgraph of $\Gamma(G)$ obtained by throwing out edges between elements that are not in $H:=A_{n}$. Using a variation on the ideas in $[4, \S 6]$, we prove:

Theorem 6.1. Assume that $n>15$. Then the minimal degree of any vertex in $\Gamma_{b}(G)$ is at least $n!/ n^{3}$.

Proof. First suppose that $n=2 m$ is even. Let C be the conjugacy class of products of two cycles of lengths $m+1$ and $m-1$ if m is even and of lengths $m+2$ and $m-2$ if m is odd. If $s \in G \backslash H$, then the probability that a random element of C and s generate G is greater than $1 / 2$ [4, Lemma 6.4]. Since $|C| \geq(n!) / m^{2}$, it follows that the vertex degree of s is at least $n!/ n^{2}$.

Let C be a conjugacy class (of G) consisting of three cycles of lengths $d_{1}<d_{2}<$ d_{3} with $d_{1}=[n / 3]-1$. More precisely, if $n=3 m$ then let $d_{1}=m-1, d_{2}=m$, $d_{3}=m+1$; if $n=3 m+1$ then let $d_{1}=m-1, d_{2}=m, d_{3}=m+2$; and if $n=3 m+2$ then let $d_{1}=m-1, d_{2}=m+1, d_{3}=m+2$. Note that no element of C lies inside an imprimitive transitive subgroup. Note also that the elements of C have the property that some specific power of any given element of C moves exactly d_{2} points and in fact is a cycle of precisely that size. By a result of Williamson [21], it follows that no element of C lies inside a primitive subgroup of G. Hence we conclude that the only maximal subgroups of G containing an element of C are the obvious intransitive subgroups.

Let $1 \neq h \in H$. We want to show that the number of edges in $\Gamma_{b}(G)$ connecting h and an element of C is at least $n!/ n^{3}$ whenever $n>15$. Clearly, we can replace h by a power of h and assume that h has prime order. If $h=h_{1} h_{2}$ is a product of two disjoint permutations both in H then the number of edges from h_{1} to an element of C is at most the number of edges from h to an element of C. (This is because if $x \in C$ then $\left\langle h_{1}, x\right\rangle$ is transitive implies that $\langle h, x\rangle$ is transitive.) So we may assume that h is either a p-cycle with p an odd prime or a product of two disjoint transpositions. The probability that a random element of C and such an h is intransitive is roughly at most $3(2 / 3)^{3}$ and is always less than 0.9 . Thus, the probability that h and a random element of C generate G is at least 0.1 . Thus, the degree of the vertex h is at least $|C| / 10 \geq n!/ n^{3}$ (note that for $x \in C$, we have $\left.\left|C_{G}(x)\right|<(n / 3)^{3}\right)$.

Now suppose that n is odd. Let C be the conjugacy class of n-cycles. If $s \in G \backslash H$ is not a transposition, then the probability that a random element of C and s generate G is greater than $2 / 3$ [4, Proposition 6.8]. Thus, the vertex degree of s is at least $2|C| / 3=2(n!) / 3 n$. Suppose that s is a transposition. If $x \in C$, then $\langle x, s\rangle=G$ unless $\langle x, s\rangle$ is imprimitive.

We reverse the computation. Fix $x \in C$. Take it to be $(1,2, \ldots, n)$. Note that x fixes a unique partition with block size d for each divisor of n. Let $s=(1 j)$. Then $\langle x, s\rangle=G$ if and only if $\operatorname{gcd}(n, j-1)=1$. So the probability that a random transposition and x generate G is at least $1 / n$, whence the probability that s and a random element of C generate G is at least $1 / n$. Thus, the degree of the vertex s is at least $|C| / n=(n!) / n^{2}$.

Now suppose that $1 \neq h \in H$. Let C be the conjugacy class of elements that are a product of an m-cycle and an $m+1$-cycle where $n=2 m+1$. Then the probability that a random element of C and s generate G is greater than $1 / 2$ [4, Lemma 6.5]. Thus, the degree of the vertex s is at least $(n!) /\left(2 n^{2}\right)$.

Two direct consequences of Theorem 5.1 are
Corollary 6.2. For every $\epsilon_{1}>0$ there exists $\delta_{1}>0$ and a threshold n_{1} such that for every $n \geq n_{1}$, if $\pi \in S_{n} \backslash A_{n}$ has fewer than $\left[\delta_{1} n\right]$ fixed points then the probability that π and a random element $\sigma \in S_{n}$ generate S_{n} is at least $1-\epsilon_{1}$.

Corollary 6.3. For every $\epsilon_{2}>0$ there exists $\delta_{2}>0$ and a threshold n_{2} such that for every $n \geq n_{2}$, if $\pi \in A_{n}$ has fewer than $\left[\delta_{2} n\right]$ fixed points then the probability that π and a random element $\sigma \in S_{n}$ generate S_{n} is at least $(1 / 2)-\epsilon_{2}$.

Let δ_{1}, n_{1} and δ_{2}, n_{2} be positive numbers satisfying the statements of Corollaries 6.2 and 6.3 for $\epsilon_{1}=1 / 5$ and $\epsilon_{2}=1 / 5$ respectively. Let δ be the minimum of δ_{1} and δ_{2} and let m_{0} be the maximum of n_{1} and n_{2}. Unless otherwise stated assume that $n \geq m_{0}$. Let $A_{1}(n)$ and $A_{2}(n)$ be the set of elements of $S_{n} \backslash A_{n}$ and A_{n} respectively fixing less than $[\delta n]$ points. Let $B_{1}(n)$ and $B_{2}(n)$ be $\left(S_{n} \backslash A_{n}\right) \backslash A_{1}(n)$ and $A_{n} \backslash\left(A_{2}(n) \cup\{1\}\right)$ respectively. Clearly,

$$
\left|B_{i}(n)\right| \leq \frac{n!}{2([\delta n])!}
$$

for $i=1,2$.
Lemma 6.4. For sufficiently large n, the set $S_{n} \backslash A_{n}$ spans a complete subgraph in the graph $\mathrm{cl}^{(3)}\left(\Gamma\left(S_{n}\right)\right)$. Moreover, for n sufficiently large, every vertex in $A_{1}(n)$ is connected to every other vertex and every vertex in $B_{1}(n)$ is connected to at least $(n!/ 2)-1+\left(n!/ n^{3}\right)$ other vertices in the graph $\operatorname{cl}^{(3)}\left(\Gamma\left(S_{n}\right)\right)$.

Proof. Let $n \geq \max \left\{m_{0}, 15\right\}$. Set $\Gamma_{0}=\Gamma\left(S_{n}\right)$. We claim that in the graph $\Gamma_{1}=$ $\operatorname{cl}\left(\Gamma\left(S_{n}\right)\right)$ the set $A_{1}(n)$ spans a complete subgraph and every vertex in $A_{1}(n)$ is connected to every vertex in $A_{2}(n)$.

For the first claim notice that for any u, v in $A_{1}(n)$ we have

$$
d\left(\Gamma_{0}, u\right)+d\left(\Gamma_{0}, v\right)>(8 / 5)(n!-1)>n!-1 .
$$

For the latter claim let $u \in A_{1}(n)$ and $v \in A_{2}(n)$. Then

$$
d\left(\Gamma_{0}, u\right)+d\left(\Gamma_{0}, v\right)>(11 / 10)(n!-1)>n!-1 .
$$

Now we claim that, for sufficiently large n, in the graph $\Gamma_{2}=\operatorname{cl}^{(2)}\left(\Gamma\left(S_{n}\right)\right)$ every vertex in $A_{1}(n)$ is connected to every other vertex in the graph. Let $u \in A_{1}(n)$ and let $v \in B_{1}(n) \cup B_{2}(n)$ be arbitrary. Then, by Theorem 6.1 and by the observation made before the statement of the lemma,

$$
d\left(\Gamma_{1}, u\right)+d\left(\Gamma_{1}, v\right)>n!-2-\left|B_{1}(n) \cup B_{2}(n)\right|+n!/ n^{3}>n!-1
$$

Next we claim that, in the graph $\Gamma_{3}=\operatorname{cl}^{(3)}\left(\Gamma\left(S_{n}\right)\right)$, every vertex in $B_{1}(n)$ is connected to every other vertex in $B_{1}(n)$. Let u and v be two arbitrary elements from $B_{1}(n)$. Then, again by Theorem 6.1 and by the observation made before the statement of the lemma,

$$
d\left(\Gamma_{2}, u\right)+d\left(\Gamma_{2}, v\right) \geq 2\left|A_{1}(n)\right|+(2 n!) /\left(n^{3}\right)>n!-1 .
$$

Finally, it follows from the above and from Theorem 6.1 that every vertex in $B_{1}(n)$ is connected to at least $(n!/ 2)-1+\left(n!/ n^{3}\right)$ other vertices in the graph Γ_{3}.

By Theorem 2.1, the following lemma finishes the proof of Theorem 1.3.
Lemma 6.5. For sufficiently large n the graph $\operatorname{cl}^{(3)}\left(\Gamma\left(S_{n}\right)\right)$ satisfies Chvátal's criterion. In particular, the graph $\mathrm{cl}^{(3)}\left(\Gamma\left(S_{n}\right)\right)$ contains a Hamiltonian cycle.

Proof. Put $\Gamma_{3}=\operatorname{cl}^{(3)}\left(\Gamma\left(S_{n}\right)\right)$. Let $d_{1} \leq \ldots \leq d_{n!-1}$ be the list of vertex degrees of the graph Γ_{3}. Let k be a positive integer at most $n!/ 2$. It is sufficient to show that $d_{n!-1-k} \geq n!-1-k$. Since every vertex in $A_{1}(n)$ has maximum possible degree in Γ_{3} by Lemma 6.4, the claim is clear for positive integers k satisfying

$$
k \leq \frac{n!}{2}-\frac{n!}{2([\delta n])!}
$$

We may now assume that

$$
\frac{n!}{2}-\frac{n!}{2([\delta n])!}<k<\frac{n!}{2} .
$$

But then by Theorem 6.1 and Lemma 6.4, we have

$$
d_{n!-1-k} \geq \frac{n!}{2}-1+\frac{n!}{n^{3}}>n!-1-\frac{n!}{2}+\frac{n!}{2([\delta n])!} \geq n!-1-k .
$$

7. Wreath Products

Let S be a non-abelian finite simple group and let C_{m} be the cyclic subgroup of S_{m} generated by the cyclic permutation $\sigma=(1,2, \ldots, m)$, with $m=p^{t}$ a prime power. Consider the wreath product $G=S \backslash C_{m}$. Denote the base subgroup of G by $N=S_{1} \times \cdots \times S_{m}$ and let $\pi_{i}: N \rightarrow S_{i}$ be the projection on the i-th factor. Moreover let $A=\operatorname{Aut}(S), r=p^{t-1}, u=r+1$ and Λ the set $\{1+r i \mid 0 \leq i \leq p-1\}$.

Lemma 7.1. A subgroup H of G coincides with G if the following properties are satisfied:
(1) $H N / N \cong C_{m}$;
(2) $\pi_{i}(H \cap N) \cong S$ for some i;
(3) there exists $\left(y_{1}, \ldots, y_{m}\right) \in H \cap N$ and $a, b \in \Lambda$ such that y_{a} and y_{b} are not A-conjugate.

Proof. If H satisfies the first two conditions, then $H \cap N$ is a subdirect product of $N=S_{1} \times \cdots \times S_{m}$. If $H \neq G$ then $H \cap N \leq \prod_{j} D_{j}$ where $D_{j}=\left\{\left(s, s^{b_{2}}, \ldots, s^{b_{v}}\right) \in\right.$ $\left.\prod_{i \in B_{j}} S_{i} \mid s \in S, b_{i} \in A\right\}$ is a diagonal subgroup of $\prod_{i \in B_{j}} S_{i}$ and the subsets B_{j} form a system of blocks for the action of C_{m} on $\{1, \ldots, m\}$, with $\left|B_{j}\right| \neq 1$. To conclude note that for any choice of B_{j} 's, a and b belong to the same block.

Lemma 7.2. Let i be an integer not divisible by $p, \rho=\sigma^{i}, \tau=\sigma^{r}$, and $g=$ $\left(x_{1}, \ldots, x_{m}\right) \tau \in G$ where $\left(x_{1}, \ldots, x_{m}\right) \in N$. The probability that there is an edge in $\Gamma(G)$ between g and a randomly chosen element in the coset ρN is at least η, where η is the probability that two randomly chosen elements from S generate S and are not A-conjugate.

Proof. It is not restrictive to assume that $x_{i}=1$ for each $i>r$ (just substitute g with a conjugate g^{x} for a suitable choice of $\left.x \in N\right)$. Now consider $h=\rho\left(y_{1}, \ldots, y_{m}\right)$. There exists $k<m$ and $\left(h_{1}, \ldots, h_{m}\right) \in N$ such that

$$
h^{k}=\left(\rho\left(y_{1}, \ldots, y_{m}\right)\right)^{k}=\tau^{-1}\left(h_{1}, \ldots, h_{m}\right) .
$$

Let H be the subgroup generated by g and h (which clearly satisfies the first condition of Lemma 7.1). Notice that $H \cap N$ contains $w=\left(x_{1} h_{1}, \ldots, x_{r} h_{r}, h_{u}, \ldots, h_{m}\right)$ and w^{g}. Notice also that $\pi_{u}\left(w^{g}\right)=h_{1} x_{1}$. In particular the second and third condition of Lemma 7.1) are satisfied if $h_{u}, h_{1} x_{1}$ are not A-conjugate and generate S. Hence there are $\eta|S|^{2}$ possible choices for $\left(h_{1}, h_{u}\right)$. Now notices that there exists two distinct subsets X_{1} and X_{u} of $\{1, \ldots, m\}$, of cardinality k such that, for $i \in\{1, u\}, h_{i}$ is the product of the k elements y_{j} with $j \in X_{i}$ (in a suitable order); take $a \in X_{1} \backslash X_{u}$ and $b \in X_{u} \backslash X_{1}$: to obtain a prescribed value for h_{1}, h_{u}, we can choose y_{i} as we like for $i \notin\{a, b\}$, then choose y_{a} and y_{b} in order to get the wanted values. So we find $\eta|N|$ suitable choices for the elements y_{i}.

Corollary 7.3. If $g \in G \backslash N$, then the degree of g as a vertex of $\Gamma(G)$ is at least $\phi(m)|N| \eta=p^{t-1}(p-1)|N| \eta$.

With similar arguments it can be proved that we have at least $\eta|G|$ edges from the elements that generate G modulo N.

Lemma 7.4. Let $g=\left(x_{1}, \ldots, x_{m}\right) \sigma \in G$. The probability that there is an edge in $\Gamma(G)$ between g and a randomly chosen element of G is at least η.

Proof. It is not restrictive (by substituting g with a suitable conjugate) to assume that $x_{1}=\cdots=x_{m-1}=1$. Take an arbitrary element $x=\left(y_{1}, \ldots, y_{m}\right) \sigma^{i} \in G$; there exist $k \in \mathbb{N}$ and $\left(z_{1}, \ldots, z_{m}\right) \in N$ with $g^{k}=\sigma^{-i}\left(z_{1}, \ldots, z_{m}\right)$. Clearly $\langle g, x\rangle=G$ if and only if $\left\langle g,\left(y_{1} z_{1}, \ldots, y_{m} z_{m}\right)\right\rangle=G$: in particular $\langle g, x\rangle=G$ if we choose y_{1}, y_{u} so that $y_{1} z_{1}$ and $y_{u} z_{u}$ are not A-conjugate and generate S.

We need now some information on the behavior of $P_{n}(G)$ when $n \in N$.
Lemma 7.5. Assume that $n=\left(x_{1}, \ldots, x_{m}\right) \in N$, with $n \neq 1$. Choose $i \in\{1, \ldots, m\}$ with the property that $P_{x_{i}}(S) \geq P_{x_{j}}(S)$ for each $1 \leq j \leq m$ and let $x=x_{i}$. Given
a generator τ of $C_{m}=\langle\sigma\rangle$, the number of edges connecting n with elements of the coset $N \tau$ is at least $|N| \mu$ with

$$
\mu=\max \left(P_{x}(S)-\frac{\left|C_{A}(x)\right|}{|S|}, \frac{P_{x}(S)\left|C_{S}(x)\right|}{|S|} \rho_{x}\right)
$$

with $\rho_{x}=1$ if $C_{A}(x) S=A$ and $\rho_{x}=0$ otherwise.

Proof. It is not restrictive to assume that $i=1$ and $\tau=\sigma$. First we claim that the number of edges connecting n with elements of the coset $N \sigma$ is at least $|N| \mu_{1}$ with

$$
\mu_{1}=P_{x}(S)-\frac{\left|C_{A}(x)\right|}{|S|}
$$

It suffices to prove that, for any $y_{2}, \ldots, y_{m} \in S^{m-1}$, there exist at least $\mu_{1}|S|$ choices for y_{1} such that if $g=\left(y_{1}, \ldots, y_{m}\right) \sigma$ then $\langle n, g\rangle=G$. We have $g^{m}=\left(h_{1}, \ldots, h_{m}\right)$ with $h_{1}=y_{1} y_{2} \cdots y_{m}$. In particular the second condition of Lemma 7.1 is satisfied if x and h_{1} generate S and there are at least $|S| P_{x}(S)$ choices for y_{1} for which this is ensured. If there exist $\lambda \in \Lambda$ with x_{1} and x_{λ} not A-conjugate, then the third condition is automatically satisfied and we are done. Otherwise for each $1 \leq i \leq p-1$ there exist $\alpha_{i} \in A$ with $x_{i r+1}=x^{\alpha_{i}}$. In this case to be sure that $H=\langle g, \bar{n}\rangle=G$ we need an extra condition on y_{1} to avoid that $\pi_{\Lambda}(H \cap N)=\left(s, s^{\beta_{1}}, \ldots, s^{\beta_{p-1}}\right)$ with $\beta_{i} \in A$. Assume that this is the case. Since $\left(x, x_{r+1}, \ldots, x_{r(p-1)+1}\right)=\pi_{\Lambda}(n)$, we must have $\beta_{i} \in C_{A}(x) \alpha_{i}$. Let $g^{r}=\left(k_{1}, \ldots, k_{m}\right) \sigma^{r}$ and let ϵ be the p-cycle ($1, r+$ $1, \ldots, r(p-1))$. Since g^{r} normalizes $H \cap N$, we have that $\left(k_{1}, k_{r+1}, \ldots, k_{r(p-1)+1}\right) \epsilon$ normalizes $\pi_{\Lambda}(H \cap N)=\left(s, s^{\beta_{1}}, \ldots, s^{\beta_{p-1}}\right)$. In particular, setting $z=\beta_{p-1} k_{r(p-1)+1}$, we have $z \beta_{1}=k_{1}$ and $z \beta_{i}=\beta_{i-1} k_{(i-1) r+1}$ for each $2 \leq i \leq p-1$ and consequently

$$
z^{p}=k_{1} k_{r+1} \cdots k_{r(p-1)+1}=h_{1} .
$$

Since $k_{r(p-1)+1}$ depends only on y_{2}, \ldots, y_{n}, the set $\Delta=\left\{\left(t \alpha_{p-1} k_{r(p-1)+1}\right)^{p} \mid t \in\right.$ $\left.C_{A}(x)\right\}$ is independent from y_{1}. If we choice y_{1} such that $\left\langle x, h_{1}\right\rangle=S$ and $h_{1} \notin \Delta$, then $\langle g, n\rangle=G$. Clearly the number of y_{1} for which h_{1} satisfies the two previous conditions is at most

$$
|S|\left(P_{x}(S)-\frac{\left|C_{A}(x)\right|}{|S|}\right)
$$

This concludes the proof of the first claim. Now we want to show that the number of edges connecting n with elements of the coset $N \sigma$ is at least $|N| \mu_{2}$ with

$$
\mu_{2}=\frac{P_{x}(S)\left|C_{S}(x)\right|}{|S|} \rho_{x}
$$

Note that there are at least $\mu_{2}|N|$ choices of $\left(y_{1}, \ldots, y_{m}\right)$ so that $\left\langle h_{1}, x\right\rangle=S$ and $k_{r(p-1)+1} \in \alpha_{p-1}^{-1} C_{A}(x)$. We claim that for any of these choices, $g=\left(y_{1}, \ldots, y_{m}\right) \sigma$ generates G together with n. By the argument that we have used above, and under the same notations, it suffices to prove that $z^{p} \neq h_{1}$. Notice that $z=$ $\beta_{p-1} k_{r(p-1)+1} \in \beta_{p-1} \alpha_{p-1}^{-1} C_{A}(x) \leq C_{A}(x)$, hence $z^{p}=h_{1}$ would imply $\left[h_{1}, x\right]=1$, against $\left\langle h_{1}, x\right\rangle=S$.

Lemma 7.6. Let S be a non-abelian finite simple group and let $c(S)$ be the maximal size of a conjugacy class of S. Then $\lim _{|S| \rightarrow \infty}(c(S)|\operatorname{Out}(S)|) /|S|=0$.

Proof. If S is a finite simple group of Lie type, then this follows by [7, Theorem 1.4]. If $S=A_{n}$ for $n>6$, then $(c(S)|\operatorname{Out}(S)|) /|S| \leq 4 / n$.

Lemma 7.7. Let η be as above. Then $\lim _{|S| \rightarrow \infty} \eta=1$.

Proof. Let S be a non-abelian finite simple group and let A be the automorphism group of S. Notice that $\eta \geq 1-p-q$ where p is the probability that a random pair of elements of S does not generate S and q is the probability that a random pair of elements of S is A-conjugate. By Theorem 4.1), p tends to 0 as $|S|$ tends to infinity. Thus, to prove the lemma, it is sufficient to show that q tends to 0 as $|S|$ tends to infinity.

Let k be the number of A-conjugacy classes of elements of S and let a_{1}, \ldots, a_{k} be the corresponding orbit sizes with $a_{1} \geq \ldots \geq a_{k}$. We have $q=\left(\sum_{i=1}^{k} a_{i}{ }^{2}\right) /|S|^{2}$.

Put $a=a_{1}, n=|S|$, and $b=n-[n / a] a$. We claim that $q \leq\left([n / a] a^{2}+b^{2}\right) / n^{2}$. Before verifying this claim, let us show how our lemma would follow.

Indeed,

$$
q \leq \frac{[n / a] a^{2}+b^{2}}{n^{2}}<\frac{a}{n}\left(1+\frac{a}{n}\right) \leq \frac{c(S)|\operatorname{Out}(S)|}{n}\left(1+\frac{c(S)|\operatorname{Out}(S)|}{n}\right)
$$

and, by Lemma 7.6, the right-hand-side of this inequality tends to 0 as n tends to infinity, hence q must tend to 0 .

Finally, for the proof of our claim, observe that if x and y are two positive integers with $x \leq y$, then $(x-1)^{2}+(y+1)^{2}=x^{2}+y^{2}+2+2(y-x)>x^{2}+y^{2}$. This means that, starting from the list $a=a_{1}, \ldots, a_{k}$, we may derive a sequence of lists by replacing two elements x and y of the previous list by $x-1$ and $y+1$ in the next list, whenever $1 \leq x \leq y<a$. This way, the last list of non-negative integers will be $a, \ldots, a, b, 0, \ldots, 0$ where $b=n-[n / a] a$.

We are now in the position to prove Theorem 1.4.
We divide the vertices of $\Gamma(G)$ into three disjoint subsets:

- V_{1} is the set of vertices corresponding to elements $\left(y_{1}, \ldots, y_{m}\right) \tau$ with $|\tau|=$ m;
- V_{2} is the set of vertices corresponding to elements $\left(y_{1}, \ldots, y_{m}\right) \tau$ with $1<$ $|\tau|<m$;
- V_{3} is the set of vertices corresponding to the non trivial elements of the base group N of the wreath product.

Let $\Gamma_{0}=\Gamma(G)$ and $\Gamma_{i}=\mathrm{cl}^{(i)}(\Gamma(G))$ for $i \geq 1$. By Lemma 7.4 and Corollary 7.3, if $u \in V_{1}$ and $v \in V_{1} \cup V_{2}$, then

$$
d\left(\Gamma_{0}, u\right)+d\left(\Gamma_{0}, v\right) \geq \eta|G|+\eta|G|\left(1-\frac{1}{p}\right) \geq 3 \eta|G| / 2 .
$$

Since η tends to 1 as $|S|$ tends to infinity (by Lemma 7.7), we deduce that if $|S|$ is large enough then any vertex in V_{1} is connected to any other vertex in $V_{1} \cup V_{2}$ in the first closure Γ_{1}. But then, if $v_{1}, v_{2} \in V_{2}$, then

$$
d\left(\Gamma_{1}, v_{1}\right)+d\left(\Gamma_{1}, v_{2}\right) \geq 2\left|V_{1}\right|=2\left(1-\frac{1}{p}\right)|G| \geq|G|
$$

which means that Γ_{2} induces a complete subgraph on $V_{1} \cup V_{2}$.
To complete the proof we need different arguments for the Lie and alternating cases.

First assume that S is a group of Lie type. By Theorem 4.2 and the fact that $\max _{x \in S, x \neq 1}\left|C_{A}(x)\right| /|S|$ tends to 0 as $|S|$ tends to infinity, we deduce that there exists a positive constant c_{3} such that, if S is large enough then, for any $x \in S \backslash\{1\}$,

$$
P_{x}(S)-\frac{\left|C_{A}(x)\right|}{|S|} \geq c_{3} .
$$

By Lemmas 7.4 and 7.5 , for any $u \in V_{1}$ and $u \in V_{3}$ we have

$$
d\left(\Gamma_{0}, u\right)+d\left(\Gamma_{0}, v\right) \geq \eta|G|+c_{3}|G|\left(1-\frac{1}{p}\right)=\left(\eta+c_{3}\left(1-\frac{1}{p}\right)\right)|G| .
$$

If $|S|$ is large enough, then $\eta+c_{3}(1-1 / p) \geq 1$: in this case any vertex in V_{1} is connected to any other vertex in V_{3} in the first closure Γ_{1}, and this implies that Γ_{2} is a complete graph.

We remain with the alternating groups. In this case we need to use the BabaiHayes Theorem. Let δ and n_{0} be positive numbers which fulfill the statement of Corollary 5.2 for $\epsilon=1 / 2$. Let $A(n)$ be the set of those even permutations of degree n which fix fewer than $[\delta n]$ points. We divide V_{3} into two disjoint subsets: W_{1} is the set of elements $\left(y_{1}, \ldots, y_{m}\right)$ of N with the property that $y_{i} \in A(n)$ for some $1 \leq i \leq m ; W_{2}=V_{3} \backslash W_{1}$. Since $P_{x}(S) \geq 1 / 2$ for each $x \in A(n)$, arguing as in the case of groups of Lie type we deduce that Γ_{2} induces a complete subgraph on $V_{1} \cup V_{2} \cup W_{1}$. Let now $w=\left(y_{1}, \ldots, y_{m}\right) \in W_{2}$ and assume that $y=y_{i}$ has the property that $P_{y_{i}}(S) \geq P_{y_{j}}(S)$ for each $1 \leq j \leq m$. Let now $p=P_{y}(S)$ and $c=\left|C_{A}(y)\right| /|S|$ and consider

$$
\mu=\max \left(P_{y}(S)-\frac{\left|C_{A}(y)\right|}{|S|}, \frac{P_{y}(S)\left|C_{S}(y)\right|}{|S|}\right)
$$

If $c \leq p / 2$ then $\mu \geq p / 2 \geq p^{2} / 4$, otherwise, if $c \geq p / 2$, we again have $\mu \geq p^{2} / 4$. Moreover, by Theorem $5.3, p \geq 1 /\left(5 n^{3}\right)$, hence, by Lemma 7.5,

$$
d\left(\Gamma_{2}, w\right) \geq d\left(\Gamma_{0}, w\right) \geq \frac{\left(p^{t}-p^{t-1}\right)|N|}{100 n^{6}}
$$

On the other hand

$$
\left|W_{2}\right| \leq|S-A(n)|^{m} \leq\left(\frac{n!}{[\delta n]!}\right)^{m} \leq|N|\left(\frac{2}{[\delta n]!}\right)^{m}
$$

so if n is large enough, $d\left(\Gamma_{2}, w\right)>\left|W_{2}\right|$ for each $w \in W_{2}$. This means that Γ_{2} satisfies Pósa's criterion, and hence contains a Hamiltonian cycle.

8. Computer Calculations

The main results of this paper hold for sufficiently large groups. In this section, we consider small groups and sporadic simple groups. In particular, we get a computational proof of Theorem 1.5. (Currently, we do not know how large the gap between small and sufficiently large is.)

Using the same computational methods as in [4, Section 2.5], we showed that the generating graphs of the following groups contain Hamiltonian cycles.

- Non-abelian simple groups of orders at most 10^{7},
- groups G containing a unique minimal normal subgroup N such that N has order at most $10^{6}, N$ is nonsolvable, and G / N is cyclic,
- alternating and symmetric groups on n points, with $5 \leq n \leq 13$,
- sporadic simple groups and automorphism groups of sporadic simple groups.

More specifically, the generating graphs of the simple groups in this list satisfy Pósa's criterion, and for each non-simple group in this list a suitable iterated closure of the generating graph satisfies Pósa's criterion.

For that, we define the partial vertex degree of the non-identity element s w. r. t. the conjugacy class C as $d(\Gamma(G), s, C)=|\{x \in C ;\langle s, x\rangle=G\}|$. The vertex degree $d(\Gamma(G), s)$ equals $\sum_{C} d(\Gamma(G), s, C)$, where C runs over the conjugacy classes of G,
and a lower bound for $d\left(\Gamma(G), s, g^{G}\right)$ is given by $\left|g^{G}\right|-\sum_{M \in \mathcal{M}(G, s)}\left|g^{G} \cap M\right|$, where $\mathcal{M}(G, s)$ denotes the set of those maximal subgroups of G that contain s.

The point is that these lower bounds can be computed easily if the primitive permutation characters of G are known. This is the case when the table of marks of G is available or if the character tables of G and of all its maximal subgroups (and the necessary class fusions) are available, for example if G is a sporadic simple group not equal to the Monster.

Defining partial vertex degrees for the iterated closures of $\Gamma(G)$ in the obvious way, we get $d\left(\operatorname{cl}(\Gamma(G)), s, g^{G}\right)=\left|g^{G}\right|$ if $d(\Gamma(G), s)+d(\Gamma(G), g) \geq|G|-1$, and $d\left(\operatorname{cl}(\Gamma(G)), s, g^{G}\right)=d\left(\Gamma(G), s, g^{G}\right)$ otherwise.

Note that lower bounds for the partial vertex degrees for the closures of $\Gamma(G)$ can be computed this way from lower bounds for the partial vertex degrees for $\Gamma(G)$.

If the primitive permutation characters of G are not known then computing the (partial) vertex degrees directly, without character-theoretic computations, is usually faster than computing first the character information.

It turned out that this approach was sufficient to prove that Pósa's criterion holds for appropriate closures $\mathrm{cl}^{(i)}(\Gamma(G))$, for all groups G listed above. See [3] for more information.

9. Proof of Proposition 1.7

Let us use the notations and assumptions of Proposition 1.7. Notice that if G is generated by elements x and y then $d(x)+d(y) \leq \operatorname{dim}(V)$. Indeed, if $d(x)+d(y)>$ $\operatorname{dim}(V)$, then any non-trivial subspace of $U \cap W$ is G-invariant contradicting the irreducibility of V where U and W are eigenspaces of x and y on V of dimensions $d(x)$ and $d(y)$, respectively.

Let $n+1$ be the order of G and let $x_{1}, \ldots, x_{n}, x_{n+1}=x_{1}$ be a Hamiltonian cycle in the graph $\Gamma(G)$. Then $d\left(x_{i}\right)+d\left(x_{i+1}\right) \leq \operatorname{dim}(V)$ for all i with $1 \leq i \leq n$, hence

$$
\sum_{i=1}^{n} d\left(x_{i}\right)=\frac{1}{2} \sum_{i=1}^{n}\left(d\left(x_{i}\right)+d\left(x_{i+1}\right)\right) \leq \frac{n}{2} \operatorname{dim}(V)
$$

which is exactly what we wanted.

Acknowledgment. We thank L. Pyber for drawing our attention to [1].

References

[1] Babai, L.; Hayes, T. P. The probability of generating the symmetric group when one of the generators is random. Publ. Math. Debrecen 69/3 (2006), 271-280.
[2] Bondy, J. A.; Chvatal, V. A method in graph theory. Discrete Math. 15 (1976), 111-136.
[3] Breuer, T. GAP computations concerning Hamiltonian cycles in the generating graphs of finite groups. arXiv:0911.5589.
[4] Breuer, T.; Guralnick, R. M.; Kantor, W. M. Probabilistic generation of finite simple groups, II. J. Algebra Vol. 320. 2, (2008), 443-494.
[5] Burness, T.; Guest, S.; Guralnick, R. M. Finite groups with positive spread, in preparation.
[6] Fulman, J.; Guralnick, R. M. The probability of generating an irreducible subgroup, preprint.
[7] Fulman, J.; Guralnick, R. M. Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements. arXiv:0902.2238.
[8] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4; 2005, (http://www.gap-system.org).
[9] Guralnick, R. M.; Kantor, W. M. Probabilistic generation of finite simple groups. J. Algebra Vol. 234. 2, (2000), 743-792.
[10] Guralnick, R. M.; Shalev, A. On the spread of finite simple groups. Combinatorica 23 (1) (2003), 73-87.
[11] Isaacs, I. M.; Keller, T. M.; Meierfrankenfeld, U.; Moretó, A. Fixed point spaces, primitive character degrees and conjugacy class sizes. Proc. Am. Math. Soc. 134 11, (2006), 3123-3130.
[12] The Kourovka Notebook. Unsolved problems in group theory. Sixteenth augmented edition, 2006. Edited by V. D. Mazurov and E. I. Khukhro.
[13] Liebeck, M. W.; Shalev, A. Simple groups, probabilistic methods, and a conjecture of Kantor and Lubotzky. J. Algebra 184 (1996), no. 1, 31-57.
[14] Lovász, L. Combinatorial problems and exercises. North-Holland, Amsterdam, 1979.
[15] Lucchini, A.; Maróti, A. Some results and questions related to the generating graph of a finite group. To appear in Proceedings of the Ischia Group Theory Conference 2008.
[16] Lucchini, A.; Maróti, A. On the clique number of the generating graph of a finite group. Proc. Am. Math. Soc. 137, No. 10, (2009), 3207-3217.
[17] Lucchini, A.; Maróti, A. On finite simple groups and Kneser graphs. J. Algebr. Comb. 30 No. 4, (2009), 549-566.
[18] Luczak, T.; Pyber, L. On random generation of the symmetric group. Combinatorics, Probability and Computing 2 (1993), 505-512.
[19] Neumann, P. M.; Vaughan-Lee, M. R. An essay on BFC groups. Proc. London Math. Soc. (3) 35 (1977), 213-237.
[20] Segal, D.; Shalev, A. On groups with bounded conjugacy classes. Quart. J. Math. Oxford 50 (1999), 505-516.
[21] Williamson, A. On primitive permutation groups containing a cycle. Math. Z. 130 (1973), 159-162.

Thomas Breuer, Lehrstuhl D für Mathematik, RWTH Aachen University, 52065 Aachen, Germany. E-mail address: sam@math.rwth-aachen.de

Robert M. Guralnick, Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA. E-mail address: guralnic@usc.edu Andrea Lucchini, Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova, Italy. E-mail address: lucchini@math.unipd.it

Attila Maróti, MTA Alfréd Rényi Institute of Mathematics, Budapest, Hungary. E-mail address: maroti@renyi.hu

Gábor Péter Nagy, SZTE Bolyai Institute, Aradi Vértanúk tere 1, Szeged, 6720, Hungary. E-mail address: nagyg@math.u-szeged.hu

[^0]: ${ }^{1}$ The second author was partially supported by NSF grant DMS 0653873.
 ${ }^{2}$ The research of the fourth author was supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Programme and partially by grants OTKA T049841 and OTKA NK72523.
 ${ }^{3}$ Mathematics Subject Classification 2010: 20P05, 05C45
 Date: 2nd of December, 2009.

