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RING ELEMENTS AS SUMS OF UNITS

CHARLES LANSKI AND ATTILA MARÓTI

Abstract. In an Artinian ring R every element of R can be expressed as the

sum of two units if and only if R/J(R) does not contain a summand isomorphic
to the field with two elements. This result is used to describe those finite rings
R for which Γ(R) contains a Hamiltonian cycle where Γ(R) is the (simple)
graph defined on the elements of R with an edge between vertices r and s if

and only if r− s is invertible. It is also shown that for an Artinian ring R the
number of connected components of the graph Γ(R) is a power of 2.

1. Introduction

Unless otherwise stated it is assumed that every ring in this paper has a multi-
plicative identity. Let J(R) denote the Jacobson radical of a ring R and let GF (2)
denote the field of two elements.

Theorem 1. Let R be an Artinian ring. Then every element of R can be ex-
pressed as the sum of two units if and only if R/J(R) does not contain a summand
isomorphic to GF (2).

By Theorem 1, one may also construct non-Artinian rings R with the property
that every element of R can be expressed as the sum of two units. In general, one
may take R = F [X]/I where F is an Artinian ring so that F/J(F ) does not contain
a summand isomorphic to GF (2), F [X] is a polynomial ring over F where X is
an infinite set of commuting indeterminates, and I is the ideal in F [X] generated
by the squares of the indeterminates. Indeed, every element r of R has the form
r = f + h(X) where f ∈ F and h(X) is nilpotent. By the choice of F , there exist
units f1, f2 with f = f1 + f2 and so r = f1 + (f2 + h(X)) expressed as the sum of
two units.

For a ring R let Γ(R) be the graph defined on the elements of R with an edge
between vertices r and s if and only if r− s is invertible. This graph was defined in
a paper of Lucchini and Maróti [4] where it was shown that Γ(R) is arc transitive
(vertex-transitive and edge-transitive)(see the beginning of Section 7 of [4]), and
also that for an Artinian ring R, the chromatic number of Γ(R) is equal to the
maximal cardinality of a complete subgraph in Γ(R) (see Theorem 6.1 of [4]). (The
chromatic number of a (simple) graph is the least cardinality of colors needed to
color the vertices of the graph in such a way that the endpoints of every edge receive
different colors.)

Let R be an Artinian ring with the property that R/J(R) does not contain a
summand isomorphic to GF (2). We claim that the graph Γ(R) is connected and
has diameter at most 2. By Theorem 1 we know that every element of R can be
expressed as a sum of two units, so for any different a, b ∈ R there are units u and
v with a − b = u + v. Thus b is connected to b + u, and this vertex is connected
to b + u + v = a. This proves that every vertex x is connected with every vertex
different from x by a path of length at most 2.
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The following theorem shows that Γ(R) can have more than one connected com-
ponent for an Artinian ring R; in fact, the number of connected components in
Γ(R) for an Artinian ring R is always a power of 2. A bipartite graph is a graph
whose vertices can be divided into two disjoint sets U and V such that every edge
connects a vertex in U to one in V ; that is, U and V are independent sets (U and
V induce empty subgraphs).

Theorem 2. Let R be an Artinian ring with the property that R/J(R) has k
summands isomorphic to GF (2) for some positive integer k.

(1) Then Γ(R) contains 2k−1 connected components each of which is a bipartite
graph.

(2) There exist mutually orthogonal idempotents e1, . . . , ek in R such that for
every element r in R there exist ϵ1, . . . , ϵk ∈ {0, 1} and units u and v in R
so that r = ϵ1e1 + . . .+ ϵkek + u+ v.

For a non-Artinian ring R the graph Γ(R) may contain infinitely many connected
components each of which is a complete subgraph. Indeed, consider the polynomial
ring R = D[x] in one variable over a division ring D.

In general, for any ring R, the connected components of Γ(R) are all isomorphic
to Γ(S) where S is the subring of R generated by the group of units of R. Indeed,
if S denotes the subring of R generated by the group of units of R, then, for each
r ∈ R, the set r + S is the set of vertices of the connected component Γr of Γ(R)
containing r. Clearly, Γ0

∼= Γ(S) and also Γ0
∼= Γr via the restriction of the

automorphism of Γ(R) sending a vertex x to x+ r.
Theorems 1 and 2 lead to a full description of those finite rings R for which Γ(R)

contains a Hamiltonian cycle.

Corollary 1. Let R be a finite ring with at least three elements. Then the graph
Γ(R) contains a Hamiltonian cycle if and only if R/J(R) contains at most one
summand isomorphic to GF (2).

The proofs of this note also show that for a finite ring R with at least three
elements Γ(R) contains a Hamiltonian cycle if and only if every element of R can
be expressed as the sum of two or three units.

For a non-empty proper subset X of a finite ring R let PX be the probability
that r− s is a unit where r is chosen uniformly at random from X and s is chosen
uniformly at random from R \X. Our last result is

Corollary 2. Let R be a finite ring. Then either PX = 0 for some non-empty
proper subset X of R, or 1/(3|R|) < PX for every non-empty proper subset X of
R.

2. Proof of Theorem 1

If U(R) denotes the group of units of the ring R, then the direct product U(R)×
U(R) acts on R in a natural way. (An element (u, v) of U(R)× U(R) takes x ∈ R
to u−1xv.) For a positive integer n let Mn(D) be the full matrix ring consisting of
n× n matrices with entries from the division ring D.

Lemma 1. Let n ≥ 2 and let D be a division ring. Then every U(Mn(D)) ×
U(Mn(D))-orbit of Mn(D) has a representative whose entries in the main diagonal
are 0’s.

Proof. Let X be an arbitrary matrix in Mn(D). Let r be its rank. By invertible
row and column operations it is possible to eliminate all entries of X apart from
the first r entries along the main diagonal. Finally we may multiply the resulting
matrix from the right by a cyclic permutation matrix to obtain a matrix all of
whose entries on the main diagonal are 0. �
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From Lemma 1 it follows that for n ≥ 2 and D a division ring, every element
of Mn(D) can be expressed as the sum of two units. Indeed, let X ∈ Mn(D) be
an arbitrary matrix. We know that there exist invertible matrices U and V so
that U−1XV has all 0’s on its main diagonal. If d ∈ D is not zero, then U−1XV
is the sum of an upper triangular matrix A with all d’s on the main diagonal
and a lower triangular matrix B with all −d’s on the main diagonal. Finally,
X = UAV −1 + UBV −1.

Before we further generalize (see Lemma 2) this latter observation, let us state
a well-known fact that is a standard exercise and will be used in several places of
this note.

Fact 1. An element of an Artinian ring is invertible if and only if it is invertible
modulo the Jacobson radical.

Lemma 2. Let R be an Artinian ring with the property that no summand of R/J(R)
is isomorphic to GF (2). Then every element of R is the sum of two units.

Proof. First let R be a division ring D different from GF (2). Then 0 = a+(−a) for
some units a and −a, and for every non-zero element x of D we have x = a+(x−a)
for some units a and x − a. By the observation after Lemma 1, we already know
that every element of R = Mn(D) is the sum of two units for n ≥ 2 and D an
arbitrary division ring.

If S and T are rings in which every element can be expressed as the sum of two
units, then the ring S ⊕ T also has this property. Hence, if R is a semi-simple ring
with no summand isomorphic to GF (2), then every element of R is the sum of
exactly two units.

Finally, to prove the lemma, suppose that R is an Artinian ring with the property
that J(R) ̸= 0 and that no factor of R/J(R) is isomorphic to GF (2). Let x be an
arbitrary element of R. Then there exist units a + J(R) and b + J(R) in R/J(R)
so that x+ J(R) = (a+ J(R)) + (b+ J(R)). Hence x = (a+ j) + (b+ k) for some
j, k in J(R). But both a+ j and b+ k are units by Fact 1. �

Lemma 2 provides one implication of Theorem 1. For the other implication let
R be an Artinian ring with the property that at least one summand of R/J(R) is
isomorphic to GF (2). Let φ1 be a (natural) projection of R onto one of the GF (2)
summands of R/J(R). Then no element of φ1

−1(1) can be expressed as the sum
of two units. This completes the proof of Theorem 1.

3. Proof of Theorem 2

For an arbitrary ring R the graph Γ(R) is isomorphic to the Cayley graph
Γ(R,U(R)) of the Abelian group (R,+) with respect to the set U(R). Cayley
graphs of groups have been much investigated.

Starting from the set of graphs Γ(Mn(D)) of full n-by-n matrix algebras Mn(D)
over division rings D all graphs Γ(R) for R an Artinian ring can be built up using
two kinds of graph constructions: “blowing up of vertices” and direct products.
This observation is based on the Artin-Wedderburn Theorem.

The first construction is related to Fact 1. Indeed, a consequence of Fact 1
is that Γ(R) can be obtained from Γ(R/J(R)) just by replacing each vertex of
Γ(R/J(R)) by an empty graph of cardinality |J(R)| and by replacing each edge

of Γ(R/J(R)) by a cardinality of |J(R)|2 edges running between the relevant two
empty graphs replacing the relevant two vertices of Γ(R/J(R)). (Also note that
there is no isolated vertex in Γ(R/J(R)) and hence neither in Γ(R).)

The direct product of two (simple) graphs Γ1 and Γ2 is the (simple) graph
Γ1 × Γ2 whose vertex set is the cartesian product of the vertex sets of Γ1 and Γ2,
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and two pairs in Γ1 × Γ2 are connected by an edge if both of their components are
connected in Γ1 and Γ2. It is easy to see that for arbitrary rings S and T we have
Γ(S ⊕ T ) ∼= Γ(S)× Γ(T ).

Now we turn to the proof of part (1) of Theorem 2.
Let R be an Artinian ring with the property that R/J(R) has k summands

isomorphic to GF (2) for some positive integer k. We must show that Γ(R) contains
2k−1 connected components each of which is a bipartite graph.

By the above, we may assume that J(R) = 0, that is, R is a direct sum of full
matrix algebras over division rings.

Let S be the ring which is the direct sum of k copies of GF (2) and let T be
the subring of R which is the direct sum of all but the k copies of GF (2). Then
R = S ⊕ T .

If T = 0, then Γ(R) is isomorphic to the direct product of k copies of Γ(GF (2))
which is a graph Γ(k) on 2k vertices and 2k−1 independent edges. Hence we may
assume that T ̸= 0.

By the above, it is sufficient to show that the graph Γ(k)× Γ(T ) contains 2k−1

connected components each of which is a bipartite graph. But this follows from
the fact (see Theorem 1) that Γ(T ) is a connected graph with the property that for
any pair of distinct vertices x and y there is a third vertex z which is connected to
both x and y.

Now we turn to the proof of part (2) of Theorem 2.
Let R be an Artinian ring with the property that R/J(R) has k summands

isomorphic to GF (2) for some positive integer k. Write R/J(R) in the form T ⊕ S
where T is the sum of all summands of R/J(R) which are different from GF (2)
and S is the sum of all k summands of R/J(R) isomorphic to GF (2). Let φ be
the composition of the natural projections from R onto R/J(R) and R/J(R) onto
S. The ring S has k mutually orthogonal idempotents f1, . . . , fk each of which
generates one of the k summands in S isomorphic to GF (2) and f1+ . . .+ fk = 1S .
By Proposition 4 on page 54 of [2], there exist mutually orthogonal idempotents
e1, . . . , ek of R with the property that ei ∈ φ−1(fi) and 2ei ∈ J(R) for all i with
1 ≤ i ≤ k. Let r be an arbitrary element of R. Then there exist ϵ1, . . . , ϵk ∈ {0, 1}
with the property that φ(r − (ϵ1e1 + . . . + ϵkek)) = 0. But then, by Theorem 1,
there exist units u′, v′ in T and j1, j2 ∈ J(R) so that r − (ϵ1e1 + . . . + ϵkek) =
(u′ +1S + j1)+ (v′ +1S + j2). Since u = u′ +1S + j1 and v = v′ +1S + j2 are units
in R by Fact 1, this proves part (2) of Theorem 2.

4. Proof of Corollary 1

Corollary 1 and the remark after the statement of Corollary 1 are consequences
of Lemmas 3 and 4.

Lemma 3. Let R be an Artinian ring. Then the following three conditions are
equivalent.

(1) The factor ring R/J(R) has at most one summand isomorphic to GF (2).
(2) The graph Γ(R) is connected.
(3) Every element of R is a sum of two or three units.

Proof. The implication (2) =⇒ (1) follows from part (1) of Theorem 2. Again by
part (1) of Theorem 2, for the implication (1) =⇒ (2), it can be assumed that the
factor ring R/J(R) has no summand isomorphic to GF (2). But then Theorem 1
implies that Γ(R) has diameter at most 2 (since Γ(R) is vertex-transitive) hence
is connected. Since Γ(R) is vertex-transitive, (3) implies that Γ(R) has diameter
at most 3 and so is connected. To finish the proof of Lemma 3 it is sufficient to
show the implication (1) =⇒ (3). By Theorem 1, it is sufficient to show that if R is
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an Artinian ring with R/J(R) having exactly one summand isomorphic to GF (2),
then every element of R is a sum of two or three units. As before, let φ1 be a
(natural) projection of R onto one of the GF (2) summands of R/J(R). Then, by
Lemma 2, every element of φ1

−1(0) is a sum of two units and every element of
φ1

−1(1) is a sum of three units. �
Lemma 4. For a finite ring R with at least three elements Γ(R) contains a Hamil-
tonian cycle if and only if Γ(R) is connected.

Proof. It is sufficient to show that if Γ(R) is connected then Γ(R) contains a Hamil-
tonian cycle for |R| ≥ 3. So suppose that Γ(R) is connected and that |R| ≥ 3. Notice
that Aut(Γ(R)) contains a regular Abelian subgroup, namely the additive group
R, and so we may conclude that the graph Γ(R) contains a Hamiltonian cycle by
Exercise 12.17 of [3]. �

5. Proof of Corollary 2

The edge expansion h(G) of a graph G on n vertices is defined as

h(G) = min
1≤|X|≤n/2

|∂(X)|
|X|

where the minimum is over all non-empty sets X of at most n/2 vertices, and ∂(X)
stands for the set of edges with exactly one endpoint in X.

In the solution of Exercise 11.32 (b) of [3] it is shown that if G is a connected
vertex-transitive graph on n vertices with diameter D, then for every non-empty
subset X of the vertex-set of G of size at most n/2 we have

|∂(X)|/|X| ≥ n− |X|
D(n− 1)

.

Hence h(G) ≥ 1/(2D).
Let G = Γ(R) for a finite ring R. If Γ(R) is not connected then taking X to be

the vertex-set of a connected component of Γ(R) we have

PX =
|∂(X)|

|X|(|R| − |X|)
= 0

since ∂(X) = ∅. Otherwise, if Γ(R) is connected, then, by Lemma 3, the graph
Γ(R) has diameter at most 3, we have seen that Γ(R) is vertex-transitive, and so,
by the above, PX > 1/(3|R|).
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