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Abstract. A finite group G is called expansive if for every normal set S and
every conjugacy class C of G the normal set SC consists of at least as many
conjugacy classes of G as S does. This notion is motivated by a finiteness cri-
terion. It is shown that a group is expansive if and only if it is a direct product
of expansive simple or abelian groups. The groups PSL(2, q) and Suz(q) are
expansive for every q ≥ 4 and every q = 22n+1 ≥ 8 respectively. Many small
simple groups including all sporadic simple groups are also expansive.

Dedicated to Geoffrey R. Robinson on the occasion of his 60th birthday.

1. Introduction

The topic of the present paper concerns an “expansive action” of a group which
is defined using the set of conjugacy classes of the group. Motivated by a finiteness
criterion [19, Section 3] the following general notion was suggested by the third
author in his lecture at the conference Finite Groups and their Automorphisms in
Istanbul, 2011.

For a non-empty set X let P be a partition of X with finitely many parts. A
subset of X is called a P -set provided it is a union of parts of P . For an arbitrary
subset T of X put ‖T‖P = | {S ∈ P | T ∩ S 6= ∅} |.

Suppose a group G acts on the set X on the right. We say that the action of G
on X is expansive with respect to the partition P if ‖T‖P ≤ ‖Tg‖P for every g ∈ G
and every P -set T . (This gives rise to a so-called special quadruple [19, Definition
3.1].) For example, the action of any finite group on any finite set is expansive with
respect to any partition with equal parts. In particular, the right regular action of
a finite group G on itself is expansive with respect to the set of left cosets of any
subgroup of G.

In this paper we consider the right regular action of G on X = G where P is the
set of conjugacy classes of G. Here a P -set T is simply a normal subset of G and
‖Tg‖P = ‖T · Cg‖P where g ∈ G and Cg denotes the conjugacy class of g in G. If
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a finite group G is such that this action of G on X is expansive with respect to P
then we simply say that G is expansive.

To motivate this latter notion we state a special case of [19, Theorem 3.5] (here
there is a misprint: m and n should be interchanged). Let G be a non-trivial
expansive group. Put n = |G| and k = k(G) where k(G) denotes the number
of conjugacy classes of G. Let K be an arbitrary group of order k and let γ be
a (surjective) map from G to K so that the preimage of any element of K is a
conjugacy class of G and that the preimage of 1 is {1}. Moreover let δ and ε be
any functions from G to K and G to G respectively. Then the finitely presented
group 〈G,K | gγ(g)ε(g)−1

δ(g)−1 = 1, ∀g ∈ G〉 is finite of order at most (n− 1)en

where e is the base of the natural logarithm.

The subject of products of conjugacy classes in finite groups has received wide
interest. See the book [1] by Arad and Herzog or the papers citing it.

The product of two conjugacy classes in a non-abelian finite simple group G tend
in general to decompose into a large number of conjugacy classes. In particular,
a conjecture of J. G. Thompson saying that there exists a conjugacy class C in G
so that G = CC has been the focus of much research on this topic. For example,
Guralnick and Malle [10, Theorem 1.4] recently proved that there exist conjugacy
classes C1 and C2 in G with G = C1C2 ∪ {1}.

A preliminary study indicated that the expansiveness of a finite group implies
strong restrictions on its structure. The main results of this paper confirm this
view.

We say that a finite group G is normal expansive if for every normal subgroup
N of G and every conjugacy class C of G the normal set NC is the union of at least
as many conjugacy classes of G as N is. Clearly, an expansive group is also normal
expansive. As above, for a finite group H we denote the number of conjugacy
classes of H by k(H).

Theorem 1.1. For a finite group G the following conditions are equivalent.

(i) G is normal expansive.
(ii) G is a direct product of simple or abelian groups.
(iii) k(G) = k(N)k(G/N) for every normal subgroup N of G.
(iv) CG(x mod N) = CG(x)N for every x ∈ G and every normal subgroup N

of G.
(v) For every normal subgroup N of G and any elements x, y of G so that

[x, y] ∈ N , any irreducible character of N extends to an irreducible charac-
ter of N〈x, y〉.

(vi) For every irreducible character χ of any normal subgroup N of G the number
of irreducible characters of G lying above χ is |G : StabG(χ)| · k(G/N).

(vii) Every irreducible character of any normal subgroup of G can be extended
to G.

(viii) Every coset of any fixed normal subgroup of G meets the same number of
conjugacy classes of G.

Our proof of the implication (i) ⇒ (ii) of Theorem 1.1 depends on the Classifi-
cation of Finite Simple Groups.
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Using Hall’s Marriage Theorem and Theorem 1.1 the following is proven.

Theorem 1.2. A group is expansive if and only if it is a direct product of expansive
simple or abelian groups.

This theorem tells us that the next step is to determine which simple groups are
expansive. Next we prove

Theorem 1.3. Let G be PSL(2, q) for some q ≥ 4, or Suz(q) for some q = 22n+1

with n ≥ 1, or one of the 26 sporadic simple groups. Then G is expansive.

Given a character table of a finite group in Gap [8], the structural constants of
the group can be determined. With these, in conjunction with an implementation of
the Hungarian Algorithm [15] we were able to check that all the 138 simple groups
in the Gap Character Table Library (including all the sporadic simple groups) are
indeed expansive. (The result of these computer calculations can be found at [11].)
This lead us to state the following conjecture.

Conjecture 1.4. Every finite simple group is expansive.

To support Conjecture 1.4 we mention a result of Gow [9, Theorem 2] saying that
in any finite simple group of Lie type the product of any two regular semisimple
conjugacy classes contains all semisimple conjugacy classes of the group.

Finally, in the last section, we prove a technical result on what can be said if the
number of non-zero entries in a given column of the character table of the group is
known.

2. Reduction to direct products

In this section we prove Theorem 1.1.

First we show that (i) implies (ii).

Lemma 2.1. Let N be a normal subgroup of a normal expansive group G. Then
G/N acts trivially on the set of conjugacy classes of N . In particular N is normal
expansive. Every subnormal subgroup of a normal expansive group is normal and
normal expansive.

Proof. The last two statements are consequences of the first. Let N be a normal
subgroup of a normal expansive group G. Put H = G/N and let h be an element
of H. By [14, Page 460] (which is also a consequence of any of the following:
[13, Proposition 9.4], [3, Theorem 1], and [6, Lemma 2.2 (2)]), the number of
N -conjugacy classes contained in the coset h is equal to kh(N), the number of h-
invariant conjugacy classes of N . In particular, the number of G-conjugacy class
representatives contained in h is at most kh(N). By the Orbit Counting Lemma, the
number n(G,N) of G-conjugacy classes in N is (1/|H|)∑

y∈H ky(N). If n(G,N) >

kh(N) for some h ∈ H then G cannot be normal expansive just by considering the
normal set NxG where x is so that h = Nx. This means that ky(N) must be the
same for all y ∈ H. For y = 1 this is k(N), the number of conjugacy classes of N .
We conclude that H acts trivially on the set of conjugacy classes of N . ¤
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Lemma 2.2. A solvable normal expansive group is abelian.

Proof. Let G be a minimal counterexample to the statement of the theorem. Let
N be a proper normal subgroup of G with G/N cyclic. Then N is abelian by the
minimality of G and the normal expansiveness of N . Again by Lemma 2.1, G/N
acts trivially on N . Hence N ≤ Z(G). But then G is abelian, a contradiction. ¤

Lemma 2.3. If a non-trivial central element of a finite group G is a commutator,
then G cannot be normal expansive.

Proof. Let z = [x, y] be a non-trivial central element in G where x and y are
elements of G. Then {1, z}x = {x, xy} which means that {1, z}xG = xG. From this
it follows that the normal set 〈z〉xG is the union of less than o(z) conjugacy classes
of G. Hence G cannot be normal expansive. ¤

Lemma 2.4. A normal expansive quasisimple group is simple.

Proof. Let G be a quasisimple group with Z(G) 6= 1. By Lemma 2.3, it is sufficient
to see that some non-trivial element of Z(G) is a commutator. First note that a
central element z in a finite group H is a commutator in H if and only if there is a
conjugacy class C of H such that Cz = C. Now apply [2, Theorem 1] to see that
there is always a central element of prime order in G which is a commutator in
G except possibly when G/Z(G) ∼= PSL(3, 4) and Z(G) is non-cyclic. So suppose
that G is such an exceptional group. Let N be a central subgroup in G such
that Z(G)/N is a non-trivial cyclic group. Then G/N is quasisimple with center
Z(G)/N so, again by [2, Theorem 1], there exists a non-trivial element zN (of prime
order) such that zN = [xN, yN ] for some elements x and y in G. In particular,
[x, y] ∈ zN , so [x, y] is a non-trivial central element in G. ¤

Let F (G) denote the Fitting subgroup of a finite group G. This is the largest
nilpotent normal subgroup of G. Let L(G) be the layer of a finite group G. This is
the central product of all subnormal quasisimple groups of G (if they exist). The
group F ∗(G) = F (G)L(G) is called the generalized Fitting subgroup of G. This
group has the property that CG(F ∗(G)) ≤ F ∗(G).

Lemma 2.5. If G is normal expansive then F (G) = Z(G) and L(G) is trivial or
is a direct product of non-abelian simple groups.

Proof. Let G be normal expansive. Then the nilpotent normal subgroup F (G) ≥
Z(G) is normal expansive by Lemma 2.1. By Lemma 2.2, F (G) is abelian. Again
by Lemma 2.1, G/F (G) acts trivially on F (G). Hence F (G) ≤ Z(G). We conclude
that F (G) = Z(G). Suppose now that L(G) 6= 1. Then every subnormal quasisim-
ple group in G is simple, by Lemma 2.1 and Lemma 2.4. Thus L(G) is the direct
product of these simple groups. ¤

The following lemma finishes the proof of (i) implies (ii).

Lemma 2.6. A normal expansive group is a direct product of simple or abelian
groups.
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Proof. Let G be a normal expansive group. If G = F ∗(G) then there is nothing to
prove by Lemma 2.5. If L(G) = 1 then F ∗(G) = F (G) = Z(G) and so G is abelian.
Hence assume that L(G) 6= 1. Let x ∈ G\F ∗(G). If x permutes some of the simple
factors of L(G) then x cannot act trivially on the set of conjugacy classes of F ∗(G)
violating Lemma 2.1. Hence x must act as an outer automorphism on some of
the simple factors of L(G) (since CG(L(G)) ≤ F ∗(G)). But then, by [5, Theorem
C], x will fuse some of the conjugacy classes of that simple factor together. This
contradicts Lemma 2.1. Thus such an x cannot exist and the proof is complete. ¤

Now we complete the proof of Theorem 1.1.

The implication (ii) ⇒ (iii) is trivial. The equivalence (iii) ⇔ (iv) is proved in [7,
Section 1] and the equivalence (iii)⇔ (v) is shown in [7, Section 3]. The equivalence
(iii) ⇔ (vi) follows from the argument in [18, Pages 97, 98]. The implication (ii)
⇒ (vii) ⇒ (v) is clear. The equivalence (iii) ⇔ (viii) can be established from the
proof of [17, Lemma 1]. Finally, it is clear that (viii) implies (i).

3. Reduction to simple groups

In this section we prove Theorem 1.2.

We need a definition. Let C be a conjugacy class of a finite group G. We say
that G is expansive for C if for any normal set S of G the normal set SC is a union
of at least as many conjugacy classes of G as S is. (Clearly, G is expansive if and
only if G is expansive for all of its conjugacy classes.)

Lemma 3.1. A finite group G is expansive for a conjugacy class C if and only if
there exists a permutation π of the set of conjugacy classes of G such that π(D) ⊆
DC for all conjugacy classes D of G.

Proof. Let D be the set of conjugacy classes of G. For C ∈ D we define a bipartite
graph ΓC as follows. Let X = {(D, 1) : D ∈ D} and Y = {(D, 2) : D ∈ D}. Let
X ∪ Y be the set of vertices of ΓC . Let there be an edge between vertices (D1, 1)
and (D2, 2) if and only if D2 ⊆ D1C. Then G is expansive for C if and only if
the Hall Condition holds for ΓC . Now Hall’s Marriage Theorem [12] guarantees a
perfect matching in ΓC which in turn gives a suitable permutation π on D. ¤

Proposition 3.2. A direct product of finite groups is expansive if and only if every
direct factor is expansive.

Proof. Clearly it is enough to prove the proposition for two direct factors K and
L.

Suppose that any of K and L, say K, is non-expansive. Then there exists a
normal set S in K and a conjugacy class C in K such that the number of conjugacy
classes contained in SC is less than the number of conjugacy classes contained in
S. Then the normal set S × {1} in G = K × L and the conjugacy class C × {1} in
G fail the condition of expansiveness for G.

Suppose now that both K and L are expansive. Let C = CK×CL be an arbitrary
conjugacy class in G where CK is a conjugacy class of K and CL is a conjugacy
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class of L. Let C1, . . . , Cn be the conjugacy classes of K and let Cn+1, . . . , Cn+r

be the conjugacy classes of L. Let π be a permutation of {1, . . . , n} such that
CiCK ⊇ Cπ(i) for all i with 1 ≤ i ≤ n. Such a π exists by Lemma 3.1. Let
σ be a permutation of {n + 1, . . . , n + r} such that CjCL ⊇ Cσ(j) for all j with
n+1 ≤ j ≤ n+r. Such a σ exists again by Lemma 3.1. Then there is a permutation
ρ of the nr conjugacy classes of G such that

(Ci × Cj)C = CiCK × CjCL ⊇ Cπ(i) × Cσ(j) = ρ(Ci × Cj)

for all i and j with 1 ≤ i ≤ n and n + 1 ≤ i ≤ n + r. Hence G is expansive by
Lemma 3.1. ¤

Now Theorem 1.2 follows from the equivalence (i) ⇔ (ii) of Theorem 1.1 and
from Proposition 3.2.

4. The proof of Theorem 1.3

In this section we prove Theorem 1.3. Note that by the paragraph after the
statement of Theorem 1.3, we only need to deal with the groups PSL(2, q) for q ≥ 4
and Suz(q) for q = 22n+1 ≥ 8.

Proposition 4.1. The group PSL(2, q) is expansive for every q ≥ 4.

Proof. To prove that PSL(2, q) is expansive for q ≥ 4 we shall use a theorem of
Macbeath [16, Theorem 1], which says that for any prime power q and any triples
(α, β, γ) ∈ Fq there are matrices A,B, C ∈ SL(2, q) such that (TrA, TrB, TrC) =
(α, β, γ) and ABC = 1.

First let us assume that the characteristic of Fq is 2. Then PSL(2, q) consists
of q − 1 semisimple conjugacy classes and two unipotent conjugacy classes. Fur-
thermore, the trace function provides a one-to-one correspondence between the
semisimple classes and the non-zero field elements. Let {1} = C1, C2, . . . , Cq+1 be
the list of conjugacy classes of G with C2 being the non-trivial unipotent class. Let
R be any normal set with 1 < ‖R‖P < q + 1 = k(PSL(2, q)) and let C be any
non-trivial class. By the theorem of Macbeath, for 3 ≤ r, s ≤ q + 1 each of the
products CrCs, Cr(C1∪C2), (C1∪C2)C2 contains at least q conjugacy classes, and
CrC2 contains any semisimple class except (possibly) Cr and it also contains C2. It
follows that ‖RC‖P ≥ q ≥ ‖R‖P unless C = C2 and R is the union of a unipotent
and a semisimple class. But in this case ‖R‖P = 2, while ‖RC‖P ≥ q− 1 ≥ 3 since
q ≥ 4.

In the following let us assume that the characteristic of Fq is odd. We checked
that PSL(2, q) is expansive for q = 5, 7, 9 by using Gap [8], so we will assume that
q ≥ 11. Now, the conjugacy classes of SL(2, q) are characterized as follows. For
any α ∈ Fq \ {±2} the set Cα = {A ∈ SL(2, q) | TrA = α} is a unique conjugacy
class, while for α ∈ {±2} it is the union of 3 classes, whose two non-central classes
are conjugate in GL(2, q). For example, for α = 2, the two non-trivial classes are
represented by the matrices

c =
(

1 1
0 1

)
, d =

(
1 ν
0 1

)
, where 〈ν〉 = F×q .
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As a consequence, in PSL(2, q) there are three unipotent conjugacy classes C1 =
{1}, Cc, Cd, and 1

2 (q − 1) non-trivial semisimple classes {Cs | s ∈ S} characterized
by the set S = (Fq \ {±2})/ ∼, where ∼ is the equivalence relation defined by
α ∼ β ⇐⇒ α2 = β2. Furthermore, there is a ϕ outer automorphism of PSL(2, q)
such that ϕ(Cc) = Cd, ϕ(Cd) = Cc and ϕ(C) = C for any other conjugacy class.
(Such a ϕ can be represented by conjugation with the diagonal matrix diag(1, ν) ∈
GL(2, q)). Let C be a non-trivial conjugacy class and let R be any normal set. We
show that ‖R‖P ≤ ‖RC‖P holds.

First, let C ∈ {Cs | s ∈ S} be a semisimple class. Let us assume that there is
a non-trivial class Cr ⊆ R. By using the above mentioned theorem of Macbeath,
and also the existence of the automorphism ϕ, it follows that CrC ⊆ RC contains
any semisimple class Cs with s ∈ S except possibly C (for which C ⊆ CrC holds
if Cr is semisimple) and at least one unipotent class. So, ‖R‖P ≤ ‖RC‖P unless
‖R‖P ≥ k(PSL(2, q)) − 2. Let us assume that this is the case. Using that q ≥ 9,
we get that there are at least 4 elements in {Cs | s ∈ S} so there is a non-trivial
semisimple conjugacy class Cr ⊆ R such that Cr 6= C−1 = C, so C1 6⊆ CrC. As
CrC contains a unipotent class, it contains either Cc or Cd. Using ϕ we get CrC
contains both Cc and Cd. Since CrC also contains every non-trivial semisimple
class we get that ‖RC‖P ≥ k(PSL(2, q))− 1 holds, and we are done.

Now, let C ∈ {Cc, Cd}. First, we prove that if R ⊆ C1 ∪ Cc ∪ Cd is a normal
set, then RC contains at least as many unipotent classes as R does. To see this,
let P ⊆ PSL(2, q) be the homomorphic image of the subgroup of unipotent upper
triangular matrices in SL(2, q) through the natural homomorphism SL(2, q) →
PSL(2, q). Then P = P1 ∪ Pc ∪ Pd is a partition of P to non-empty subsets where
Pt = P ∩Ct for t ∈ {1, c, d}. Now, |(R∩P ) · (C ∩P )| ≥ |R∩P |, which proves that
RC ∩ P contains at least as many members of {P1, Pc, Pd} as R ∩ P , which proves
the statement. As a result, we also get ‖R‖P ≤ ‖RC‖P if R does not contain any
non-trivial semisimple class.

Now, let us assume that R contains a non-trivial semisimple class Cr ⊆ {Cs | s ∈
S}. Then Cr(C1 ∪Cc ∪Cd) contains any non-trivial semisimple class, so CrC con-
tains any class in {Cs | s ∈ S\{r}}. So, we are done unless ‖R‖P ≥ k(PSL(2, q))−3.
Let us assume that this is the case. As q ≥ 11, there are at least five non-trivial
semisimple classes in PSL(2, q). It follows that R contains at least two such classes
and RC contains all the non-trivial semisimple classes. In view of our previous state-
ment on the number of unipotent classes in R and in RC, the result ‖R‖P ≤ ‖RC‖P

follows. ¤

Now we turn to the Suzuki groups.

Proposition 4.2. The group Suz(q) is expansive for every q = 22n+1 with n ≥ 1.

Proof. The (simple) Suzuki group Suz(q) has q + 3 conjugacy classes; 4 unipotent
classes and q semisimple classes. The four unipotent classes are the trivial class
C1, the class of involutions C2, and two classes of elements of orders 4 which we
denote by C3 and C4. Let R 6= C1 be an arbitrary normal set and let C 6= C1 be a
conjugacy class of Suz(q). We must show that ‖R‖P ≤ ‖RC‖P .
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To prove this we rely on a result found in the proof of Theorem 4.1 in [1, Page
239] which states that the product of any two non-trivial conjugacy classes in G =
Suz(q) contains all non-trivial elements of G except in the following cases: C2

2 =
G \ (C3 ∪ C4) and C2C3 = C3C2 = C2C4 = C4C2 = G \ (C1 ∪ C2). This means
that we certainly have q + 1 ≤ ‖RC‖P in all cases. Thus we may assume that
‖R‖P = q + 2. But then R contains a semisimple conjugacy class D and by the
result mentioned above DC contains all non-trivial elements of G. ¤

5. An additional result

For the last result of this paper we need a definition. As before, let k(G) be the
number of conjugacy classes of a finite group G. For an integer n with 1 ≤ n ≤ k(G)
and a conjugacy class C of G we say that G is n-expansive for C if there exists a set
C consisting of n distinct conjugacy classes of G such that whenever S is a normal
set of G which is a union of some elements of C then the normal set SC is the union
of at least as many conjugacy classes of G as S is. Every group is 1-expansive for
every conjugacy class of the group. If G is k(G)-expansive for a conjugacy class C
of G then G is expansive for C.

Proposition 5.1. Let C be a conjugacy class of a finite group G. Suppose that
there are n non-zero entries in the column associated to C in the character table of
G. Then G is n-expansive for C.

Proof. Let C1, . . . , Cs be the conjugacy classes of G. Let C = Cj for some j. For
every i in {1, . . . , s} let Ki =

∑
x∈Ci

x and put KiKj =
∑s

k=1 cijkKk where the
cijk are non-negative integers called the structure constants. As on [4, Page 235] let
Vj be the matrix [cijk]1≤i,k≤s. Let n be as in the statement of the proposition. By
Lemma 3.1, G is n-expansive for C if and only if there exist n rows and n columns
in Vj so that there exist n non-zero entries in the matrix Vj with exactly one entry
in each row of the chosen n rows and exactly one entry in each of the chosen n
columns. This clearly holds if some minor of Vj of order n is non-zero, in other
words if the rank of Vj is at least n. Hence it is sufficient to show that the rank of
the matrix Vj is at least n.

Let the complex irreducible characters of G be χ1, . . . , χs. For every integer i

and r between 1 and s let ω
(r)
i = |Ci|χr(xi)/χr(1) where xi ∈ Ci. By [4, Page

235], the eigenvalues of the matrix Vj are ω
(1)
j , . . . , ω

(s)
j , and by [4, Page 237], the

associated eigenvectors are v1, . . . , vs where vr = [ω(r)
1 , . . . , ω

(r)
s ]T for every r with

1 ≤ r ≤ s. Since

[v1, . . . , vs]T = diag
( 1

χ1(1)
, . . . ,

1
χs(1)

)
·M · diag(|C1|, . . . , |Cs|)

where M is the character table of G and since the determinant of M is non-zero, the
determinant of [v1, . . . , vs]T is also non-zero. Thus the vectors v1, . . . , vs are linearly
independent. Hence, in this basis, the matrix Vj becomes diag(ω(1)

j , . . . , ω
(s)
j ) which

clearly has rank n. This finishes the proof of the proposition. ¤
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