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Abstract

Let G be a group that is a set-theoretic union of finitely many proper
subgroups. Cohn defined σ(G) to be the least integer m such that G is
the union of m proper subgroups. Tomkinson showed that σ(G) can never
be 7, and that it is always of the form q +1 (q a prime power) for solvable
groups G. In this paper we give exact or asymptotic formulas for σ(Sn).
In particular, we show that σ(Sn) ≤ 2n−1, while for alternating groups
we find σ(An) ≥ 2n−2 unless n = 7 or 9. An application of this result is
also given.

1 Introduction

Let G be a group that is a set-theoretic union of finitely many proper
subgroups. Cohn [5] defined the function σ(G) to be the least integer
m such that G is the union of m of its proper subgroups. (A result
of Neumann [18] states that if G is the union of m proper subgroups
where m is finite and small as possible, then the intersection of these
subgroups is a subgroup of finite index in G. Hence in investigating
σ we may assume that G is finite.) It is an easy exercise that σ(G)
can never be 2; it is at least 3. Groups that are the union of three
proper subgroups, as C2 × C2 is for example, are investigated in
the papers [23], [11], and [3]. Moreover, σ(G) can be 4, 5, and 6
too, as the examples, C3 × C3, A4, and C5 × C5 show. However,
Tomkinson [24] proved that there is no group G with σ(G) = 7.
Cohn [5] showed that for any prime power pa there exists a solvable
group G with σ(G) = pa + 1. In fact, Tomkinson [24] established
that σ(G)−1 is always a prime power for solvable groups G. He also
pointed out that it would be of interest to investigate σ for families
of simple groups. Indeed, the situation for nonsolvable groups seems
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to be totally different. Bryce, Fedri, Serena [4] investigated certain
nonsolvable 2-by-2 matrix groups over finite fields, ((P )G(S)L(2, q))
and obtained the formula 1

2
q(q+1) for even prime powers q ≥ 4, and

the formula 1
2
q(q + 1) + 1 for odd prime powers q ≥ 5. Moreover,

Lucido [14] found that σ(Sz(q)) = 1
2
q2(q2 + 1) where q = 22m+1.

There are partial results due to Bryce and Serena for determining
σ((P )G(S)L(n, q)).

In this paper the following is established.

Theorem 1.1. Let n > 3, and let Sn and An be the symmetric and
the alternating group respectively on n letters.

(1) We have σ(Sn) = 2n−1 if n is odd unless n = 9, and σ(Sn) ≤
2n−2 if n is even.

(2) If n 6= 7, 9, then σ(An) ≥ 2n−2 with equality if and only if n is
even but not divisible by 4.

In the following sections we will prove more than what is stated
in Theorem 1.1. We will obtain exact or asymptotic formulas in all
(infinite) cases (possibly) except for σ(Ap) where p is a prime of the
form (qk − 1)/(q − 1) where q is a prime power and k is a positive
integer.

For the groups S9, S12, A7, and A9 we only prove 172 ≤ σ(S9) ≤
256, σ(S12) ≤ 761, σ(A7) ≤ 31, and σ(A9) ≥ 80. Notice that the
numbers 761 and 31 are primes not of the form q + 1 where q is a
prime power. We prove that σ(G) can indeed be such a prime.

Proposition 1.1. For the smallest Mathieu group we have σ(M11) =
23.

This result was also proved (independently) by Holmes in [12]. In
her paper many interesting results are found about sporadic simple
groups. It is proved that σ(M22) = 771, σ(M23) = 41079, σ(O′N) =
36450855, σ(Ly) = 112845655268156, 5165 ≤ σ(J1) ≤ 5415, and
that 24541 ≤ σ(McL) ≤ 24553.

At this point we note that Tomkinson [24] conjectured that σ(G)
can never be 11 nor 13.

In Section 6 we investigate the relationship between some of the
known infinite series of σ.

The commuting graph Γ of a group G is as follows. Let the ver-
tices of Γ be the elements of G and two vertices g, h of Γ are joined
by an edge if and only if g and h commute as elements of G. (The
commuting graph is used to measure how abelian the group is. See
[8], and [21].) Several people have studied α(G), the maximal cardi-
nality of an empty subgraph of Γ and β(G), the minimal cardinality
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of a covering of the vertices of Γ by complete subgraphs. (See the
papers [8], [16], and [20].) Brown investigated the relationship be-
tween the numbers αn = α(Sn) and βn = β(Sn). In [1] it is shown
that these numbers are surprisingly close to each other, though for
n ≥ 15, they are never equal [2].

As an application of Theorem 1.1, we prove that if we add ‘more’
edges to the commuting graph of the symmetric group, then the
corresponding numbers will be equal in infinitely many cases. Let G
be a group. Define a graph Γ′ on the elements of G with the property
that two group elements are joined by an edge if and only if they
generate a proper subgroup of G. Similarly as for the commuting
graph, we may define α′(G) and β′(G) for our new graph, Γ′. Put
α′n = α′(Sn) and β′n = β′(Sn). The theorem can now be stated.

Theorem 1.2. There is a subset S of density 1 in the set of all
primes, so that α′n = β′n holds for all n ∈ S.

The equality α′n = β′n is valid for very small values of n also.
Does it hold for all n?

We note that the problem of covering groups by subgroups has
found interest for many years. The first reference the author is
aware of is the 1926 work of Scorza [23]. Probably Neumann [18],
[19] was the first to study the number of (abelian) subgroups needed
to cover a (not necessarily finite) group G in relation to the index
of the center of G. For a survey of this area see [22]. On the other
hand, for an extensive account of work in (packing and) covering
groups with (isomorphic) subgroups (or of subgroups of a specified
order) the reader is referred to [13].

2 Preliminaries

Let G be Sn or An, the symmetric or the alternating group on n
letters. Let Π be a set of permutations of G. Define σ(Π) to be the
least integer m such that Π is the subset of the set-theoretic union of
m proper subgroups of G. It is straightforward that σ(Π) ≤ σ(G).
We will say that a set H = {H1, . . . , Hm} of m proper subgroups of
G is definitely unbeatable on Π if Π ⊆ ⋃m

i=1 Hi; if Π∩Hi∩Hj = ∅ for
all i 6= j; and if |S ∩ Π| ≤ |Hi ∩ Π| holds whenever 1 ≤ i ≤ m and
when S 6∈ H is a proper subgroup of G. If H is definitely unbeatable
on Π, then |H| = σ(Π) ≤ σ(G).

We will call a permutation an (i, n− i)-cycle if it is a product of
two disjoint cycles one of length i and one of length n− i, and will
call a permutation an (i, j, n− i− j)-cycle if it is a product of three
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disjoint cycles one of length i, one of length j, and one of length
n− i− j.

We will use the list of primitive permutation groups of [7] and the
result of [15] stating that a primitive permutation group of degree
n not containing An has order at most en. Sometimes the com-
puter package [9] is also used for computations in symmetric and
alternating groups of small degree.

3 Symmetric groups

First, let us consider the case where the degree of the symmetric
group is odd.

Theorem 3.1. If n > 1 is odd, then σ(Sn) = 2n−1 unless n = 9.

Proof. The set-theoretic union of An and all maximal intransitive
subgroups of Sn is Sn. This gives

σ(Sn) ≤ 1 +
1

2
·

n−1∑
i=1

(
n

i

)
= 1 +

1

2
(2n − 2) = 2n−1.

The upper bound is known to be exact for n = 3 and n = 5 from
[5], so assume that n ≥ 7. Now let Π be the set of all permutations
of Sn, which are the products of at most two disjoint cycles. It is
sufficient to prove σ(Π) ≥ 2n−1.

For n ≥ 11 the latter inequality is the direct consequence of the
fact that the set consisting of An and of all maximal intransitive
subgroups of Sn is definitely unbeatable on Π. This is proved in two
steps.

Claim 3.1. Let H1 and H2 be An or a maximal intransitive subgroup
of Sn. If H1 6= H2, then Π ∩H1 ∩H2 = ∅.
Proof. Indeed, An∩Π is the set of all n-cycles, while S∆×Sn\∆ ∩ Π

is the set of all permutations of the form π = δ · δ with δ a |∆|-cycle
from S∆ and δ a |n \∆|-cycle from Sn\∆, where n denotes the set of
n letters on which Sn acts and where ∆ is a nontrivial proper subset
of n.

Claim 3.2. Suppose that n ≥ 11 is odd. Let H be An or a maximal
intransitive subgroup of Sn, and let S be any subgroup of Sn different
from An and different from any maximal intransitive subgroup. Then
|S ∩ Π| ≤ |H ∩ Π|.
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Proof. It can be assumed that S is maximal in Sn. First let n ≥ 17.
If S is primitive, then |S ∩Π| ≤ |S| ≤ en follows from [15], while we
have en ≤ ((n− 1)/2)! · ((n− 3)/2)! ≤ |H ∩Π|. If S is imprimitive,
then |S∩Π| ≤ |S| ≤ (n/p)!p·p! ≤ ((n− 1)/2)!·((n− 3)/2)! ≤ |H∩Π|
holds, where p is the smallest prime divisor of n. If n = 11 or 13,
then S is primitive and |S| < ((n− 1)/2)! · ((n− 3)/2)! is checked
easily by [7] or [15]. If n = 15, then by [7], S is conjugate to a
maximal imprimitive group with five blocks of imprimitivity, to a
maximal imprimitive group with three blocks of imprimitivity, or
to S6 acting on the set of distinct pairs of points. In the first and
the third case we have |S| ≤ 3!5 · 5! < 6! · 7! ≤ |H ∩ Π|. Let
S be a maximal imprimitive subgroup of S15 with three blocks of
imprimitivity. Now in S ∩Π the number of 15-, (5, 10)-, (3, 12), and
(6, 9)-cycles are (5!3 · 3!)/15, 72 ·5!2/5, 5!3/2, and 5!3/3, respectively.
All together we get |S ∩ Π| = 2338560 < 6! · 7!.

The remaining cases, n = 7, 9, are dealt separately.
Let n = 7. We have σ(Π) ≤ 64. We will show that σ(Π) ≥

64. Let L be a set of σ(S7) maximal subgroups of S7 covering S7.
Since there is exactly one maximal subgroup (an intransitive one)
containing a given (3, 4)- or a given (2, 5)-cycle, all

(
7
3

)
+

(
7
2

)
= 56

maximal intransitive groups which do not stabilize any point are
contained in L. The group A7 is also contained in L. For if it would
not, then the subset of all 7-cycles of Π (having 6! elements) could
only be covered by 5! maximal primitive groups each conjugate to
AGL(1, 7). So we would get σ(Π) ≥ 56 + 5!, which contradicts
σ(Π) ≤ 64. We claim that L contains all 7 one-point stabilizers
as well, hence σ(Π) ≥ 56 + 1 + 7 = 64 would follow. To see this,
consider the (1, 6)-cycles of Π. A maximal subgroup of S7 containing
such permutations is either a stabilizer of a point, or is conjugate
to the primitive affine group, AGL(1, 7). Suppose that L does not
contain the stabilizer of the point α. Then the 6-cycles of Sn\{α}
are covered with at least 60 primitive affine groups, which gives the
contradiction σ(Π) ≥ 56 + 60.

Let n = 9. We have σ(Π) ≤ 256. Partition Π into three sets.
Let Π1 be the set of (4, 5)-cycles of S9, let Π2 be the set of (3, 6)-
cycles of S9, and let Π3 = Π \ (Π1 ∪Π2). We will show that σ(Π) ≥
σ(Π1∪Π3) = 172. There is no subgroup intersecting both Π1 and Π3,
so we have σ(Π1 ∪ Π3) = σ(Π1) + σ(Π3). Since there is exactly one
maximal subgroup - a group conjugate to S4×S5 - containing a given
(4, 5)-cycle, we have σ(Π1) = 126. Now the set H of subgroups A9

with all maximal intransitive subgroups of S9 isomorphic to S1×S8
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or S2 × S7 is definitely unbeatable on Π3, since these subgroups
cover Π3 in a disjoint way, and |S ∩ Π3| ≤ 6! ≤ |H ∩ Π3| holds for
all subgroups S /∈ H, H ∈ H of S9.

If n > 2 is even, then σ(Sn) is asymptotically equal to the index
of the largest transitive subgroup of Sn, that is to 1

2

(
n

n/2

)
. However,

we prove more than that.

Theorem 3.2. If n > 2 is even, then σ(Sn) ∼ 1
2

(
n

n/2

)
. More pre-

cisely, for any ε > 0 there exists N such that if n > N , then

1

2

(
n

n/2

)
+ (

1

2
− ε)

[n/3]∑
i=0

(
n

i

)
< σ(Sn) ≤ 1

2

(
n

n/2

)
+

[n/3]∑
i=0

(
n

i

)
.

Note that the term
∑[n/3]

i=0

(
n
i

)
is considerably smaller than 1

2

(
n

n/2

)
for large values of n.

Proof. The set-theoretic union of all maximal imprimitive subgroups
conjugate to Sn/2wrS2, all maximal intransitive subgroups conjugate
to some Si × Sn−i with i ≤ [n/3], and An is Sn. This gives

σ(Sn) ≤ 1

2

(
n

n/2

)
+

[n/3]∑
i=0

(
n

i

)
.

Let Π0 be the set of all n-cycles of Sn. For each (n− 2)/4 < i < [n/3]
with i odd, let Πi be the set of all (i, i + 1, n− 2i− 1)-cycles of Sn.
Moreover, let H0 be the set of all maximal imprimitive subgroups of
Sn conjugate to Sn/2wrS2. For each i > 0 with Πi defined above, let
Hi be the set of all maximal intransitive subgroups of Sn conjugate
to Si × Sn−i. The following two claims are to show that if n is
sufficiently large, then H0 is definitely unbeatable on Π0, and for
each i > 0 the set Hi is definitely unbeatable on Πi.

Claim 3.3. With the notations above we have the following.

(i) Π0 ⊆
⋃

H∈H0
H;

(ii) Πi ⊆
⋃

H∈Hi
H for all i > 0;

(iii) If H1, H2 ∈ H0 and H1 6= H2 then Π0 ∩H1 ∩H2 = ∅;
(iv) For all i if H1, H2 ∈ Hi and H1 6= H2, then Πi ∩H1 ∩H2 = ∅.
Proof. All statements are checked easily.
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Claim 3.4. Let n ≥ 14 and let S be a maximal subgroup of Sn.
Then

(i) |S ∩ Π0| < |H ∩ Π0| for all S /∈ H0, H ∈ H0;

(ii) |S ∩ Πi| < |H ∩ Πi| for all i and all S /∈ Hi, H ∈ Hi.

Proof.

(i) If S is primitive, then

|S ∩ Π0| ≤ |S| < en <
(n/2)!2 · 2

n
= |H ∩ Π0|

follows. If S is imprimitive, then

|S ∩ Π0| ≤ |S| ≤ (n/d)!d · d! <
(n/2)!2 · 2

n
= |H ∩ Π0|,

where d is the smallest divisor of n greater than 2. If S is intransitive,
then S ∩ Π0 = ∅.
(ii) Fix an index i. If S is primitive, then

|S ∩ Πi| ≤ |S| < en <
([n/3]− 2)! · (n− [n/3] + 1)!

[n/3] · (n− 2[n/3] + 1)
≤ |H ∩ Πi|

follows. If S is imprimitive, then

|S∩Πi| ≤ |S| < (n/d)!d·d! <
([n/3]− 2)! · (n− [n/3] + 1)!

[n/3] · (n− 2[n/3] + 1)
≤ |H∩Πi|,

where d is the smallest divisor of n greater than 2. Let S be in-
transitive. If S is contained in a group conjugate to Si+1 × Sn−i−1,
then |S ∩ Πi|

|H ∩ Πi| =
(i + 1)! · (n− i− 1)!

i! · (n− i)!
< 1.

If S is contained in a group conjugate to Sn−2i−1 × S2i+1, then

|S ∩ Πi|
|H ∩ Πi| =

(n− 2i− 1)! · (2i + 1)!

i! · (n− i)!
=

(
n
i

)
(

n
2i+1

) < 1.

Finally, if S is contained neither in a group conjugate to Si+1 ×
Sn−i−1, nor in a group conjugate to Sn−2i−1×S2i+1, then S∩Πi = ∅.

Now let Π = Π0 ∪
⋃

i Πi. Let H be a set of σ(Π) maximal
subgroups of Sn covering Π.

Claim 3.5. With the notations above, we have H = H0 ∪
⋃

iHi

whenever n ≥ 14.
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Proof. Let H′ be the set of all intransitive groups in H together with
all maximal imprimitive subgroups of H conjugate to Sn/2wrS2. For
each S ∈ H′, there exists a unique j such that S∩Πj 6= ∅. Moreover,
for all i and all S ∈ H′, Hi ∈ Hi, we have |S ∩Πi| ≤ |Hi ∩Πi|. This
means that the union of all subgroups in H′ does not contain at
least

(|H0∪
⋃
i

Hi|−|H′|)·min{(n/2)!2 · 2
n

,
([n/3]− 2)! · (n− [n/3] + 1)!

[n/3] · (n− 2[n/3] + 1)
}

elements of Π. If this expression is 0, then by Claims 3.3 and 3.4 we
are finished. Otherwise, these elements can be covered by at most
|H0 ∪

⋃
iHi| − |H′| transitive groups neither of which is conjugate

to Sn/2wrS2. But this is impossible since

max{en, (n/d)!d·d!} < min{(n/2)!2 · 2
n

,
([n/3]− 2)! · (n− [n/3] + 1)!

[n/3] · (n− 2[n/3] + 1)
},

where d is the smallest divisor of n with d greater than 2.

The following claim nearly finishes the proof of the theorem.

Claim 3.6. If n ≥ 14, then

1

2

(
n

n/2

)
+

∑

(n−2)/4<i<[n/3]

i odd

(
n

i

)
= σ(Π) < σ(Sn) ≤ 1

2

(
n

n/2

)
+

[n/3]∑
i=0

(
n

i

)
.

Proof. The first equality is a consequence of Claim 3.5. σ(Π) <
σ(Sn) follows from the fact that σ(Π) 6= σ(Sn), since the union of
all subgroups of H0 ∪

⋃
iHi does not contain all even permutations.

The upper bound was already established.

Finally, we need to show that for any fixed 0 < ε < 1/2, there
exists an integer N , so that

(
1

2
− ε)

[n/3]∑
i=0

(
n

i

)
<

∑

(n−2)/4<i<[n/3]

i odd

(
n

i

)

holds whenever n > N . Indeed, for a fixed real number 0 < ε < 1/2,
a suitable N is an integer with the property that whenever n > N ,
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then both

∑

(n−2)/4<i<[n/3]

(
n

i

)
≤ (2 + 2ε)

∑

(n−2)/4<i<[n/3]

i odd

(
n

i

)

and ∑

0≤i≤(n−2)/4

(
n

i

)
≤ 2ε

∑

(n−2)/4<i<[n/3]

i odd

(
n

i

)

hold.

By Theorems 3.1 and 3.2, to complete the proof of part (1) of
Theorem 1.1, we only need to show σ(Sn) ≤ 2n−2 for 4 ≤ n ≤ 12
and n even, since if n ≥ 14 we have

1

2

(
n

n/2

)
+

[n/3]∑
i=0

(
n

i

)
< 2n−2.

If n = 4, then σ(S4) ≤ 4, since S4 is the union of A4 and the three
Sylow 2-subgroups of S4. For n = 6, we have σ(S6) ≤ 16, since S6

is the union of all imprimitive subgroups conjugate to S3wrS2 and
all intransitive subgroups conjugate to S1 × S5. If n = 8, then S8 is
the union of all imprimitive subgroups conjugate to S4wrS2, all in-
transitive subgroups conjugate to S2×S6 and A8, hence σ(S8) ≤ 64.
For n = 10 we have σ(S10) ≤ 256, since S10 is the union of all im-
primitive subgroups conjugate to S5wrS2, all intransitive subgroups
conjugate to S1 × S9 and all intransitive subgroups conjugate to
S3 × S7. Finally, σ(S12) ≤ 761, since S12 may be written as the
union of all imprimitive subgroups conjugate to S6wrS2, all intran-
sitive subgroups conjugate to S1 × S11, S2 × S10, or S3 × S9, and
A12.

4 Alternating groups

Theorem 4.1. Let n > 2 be even. If n is not divisible by 4, then
σ(An) = 2n−2. While if n is divisible by 4, then

(
(3n/4)− 1

(n/4)− 1

)
≤ σ(An)− 2n−2 ≤ 1

2

(
n

n/2

)
,

that is σ(An) ∼ 2n−2.
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Proof. The set-theoretic union of all maximal imprimitive subgroups
of An conjugate to (Sn/2wrS2) ∩ An, and all maximal intransitive
subgroups of An conjugate to some (Si × Sn−i) ∩ An with 1 ≤ i ≤
(n/2)− 1 odd is An. This gives

σ(An) ≤ 1

2

(
n

n/2

)
+

(n/2)−1∑
i=1
i odd

(
n

i

)
.

The right-hand-side of the former inequality is equal to 2n−2 if n is
not divisible by 4, and is 1

2

(
n

n/2

)
+ 2n−2 if n is divisible by 4.

First suppose that n is not divisible by 4. We have σ(An) ≤ 2n−2.
It is proved below that this estimate is exact. The upper bound is
known to be exact for n = 6 by [4], so assume that n ≥ 10. Now
let Π be the set of all permutations of An which are the product
of exactly two disjoint cycles of odd lengths. We will show that
the set H of all maximal imprimitive subgroups of An conjugate
to (Sn/2wrS2) ∩ An, and all maximal intransitive subgroups of An

conjugate to some (Si × Sn−i) ∩ An with 1 ≤ i ≤ (n/2) − 1 odd is
definitely unbeatable on Π if n ≥ 10, that is σ(Π) ≥ 2n−2 for n ≥ 10
and not divisible by 4.

Claim 4.1. Let H be as above. If n ≥ 10 is not divisible by 4, then

(i) Π ⊆ ⋃
H∈H H;

(ii) If H1, H2 ∈ H and H1 6= H2, then Π ∩H1 ∩H2 = ∅;
(iii) |S ∩ Π| ≤ |H ∩ Π| for all S /∈ H, H ∈ H.

Proof.

(i) This was established above.

(ii) This is checked easily.

(iii) First suppose that n ≥ 14. Let H ∼= (Sk × Sn−k)∩An for some
k, and let d be the smallest divisor of n greater than 2. If S is
transitive, then

|S∩Π| ≤ |S| ≤ max{en,
(n/d)!d · d!

2
} ≤ (k−1)!·(n−k−1)! = |H∩Π|

holds. If S is intransitive, then it is either a subgroup of a subgroup
in H, or S ∩ Π = ∅. Now let n = 10. For any maximal subgroup
S /∈ H, the set S ∩ Π is either empty, or it contains only (5, 5)-
cycles. In the latter case, S is either permutation isomorphic to
(S2wrS5)∩A10, or is a proper primitive subgroup of A10. There are
96 Sylow 5-subgroups in (S2wrS5) ∩ A10, and there are at most 36
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Sylow 5-subgroups (all of order 5) in a proper primitive subgroup of
A10, hence |S∩Π| ≤ 384. On the other hand, we have |H∩Π| ≥ 576
whenever H ∈ H.

Now let n be divisible by 4. We have σ(An) ≤ 2n−2 + 1
2

(
n

n/2

)
. It

is proved below that

2n−2 +

(
(3n/4)− 1

(n/4)− 1

)
≤ σ(An).

This bound is certainly sharp for n = 4, since σ(A4) = 5 by [5]. So
assume that n ≥ 8. Let Π1 be the set of all permutations of An

which are the product of exactly two disjoint cycles of odd lengths.
Moreover, let Σ be an arbitrary subset of (n/4) + 1 letters, and let
Π2 be the set of all permutations of An which are the product of
exactly two disjoint cycles of equal lengths with one cycle moving
all letters of Σ. Finally, let Π = Π1 ∪ Π2. We will show that
the set H of all maximal imprimitive subgroups of An conjugate to
(Sn/2wrS2) ∩ An and intersecting Π nontrivially, and all maximal
intransitive subgroups of An conjugate to some (Si × Sn−i) ∩ An

with 1 ≤ i ≤ n
2
− 1 odd is definitely unbeatable on Π if n is divisible

by 4 and greater than 12. That is σ(Π) ≥ 2n−2 +
(
(3n/4)−1
(n/4)−1

)
for n

divisible by 4 and greater than 12.

Claim 4.2. If n is divisible by 4, then

(i) Π ⊆ ⋃
H∈H H;

(ii) If H1, H2 ∈ H and H1 6= H2, then Π ∩H1 ∩H2 = ∅;
(iii) If n ≥ 16, then |S ∩ Π| ≤ |H ∩ Π| for all S /∈ H, H ∈ H.

Proof.

(i) This was established above.

(ii) This is checked easily.

(iii) If n ≥ 14, then the argument of the proof of Claim 3.4 may be
applied.

Let n = 8. Any (3, 5)-cycle is contained in only one maximal
subgroup, in a group permutation isomorphic to (S3 × S5) ∩ A8.
So if L is a set of σ(A8) maximal subgroups covering A8, then L
must contain all 56 maximal subgroups permutation isomorphic to
(S3× S5)∩A8. Now consider a given (1, 7)-cycle. This is contained
in either a maximal affine permutation group, or in a one-point
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stabilizer of A8. It is checked easily that if L does not contain all
of the 15 maximal affine permutation groups, then the (1, 7)-cycles
can only be covered with all one-point stabilizers. Conversely, it
can also be checked that if L does not contain all the one-point
stabilizers, then it must contain all 15 maximal affine subgroups. In
the latter case we have σ(A8) ≥ 56 + 15 > 69, where 69 is the lower
bound for n = 8. For the first case, consider a given (2, 6)-cycle.
This is contained in either a maximal imprimitive group with two
or four blocks of imprimitivity, or in a maximal intransitive group
permutation isomorphic to (S2 × S6) ∩A8. It can be checked easily
that in all of these groups the number of (2, 6)-cycles is at most 192,
while the number of (2, 6)-cycles in A8 is exactly 3360. This implies
that σ(A8) ≥ 56 + 8 + 17 > 69.

Finally, let n = 12. We have to show that σ(A12) ≥ 1052.
For i = 1, 3, and 5, let Πi be the set of all (i, 12 − i)-cycles (of
A12), and let Li be the set of all maximal intransitive subgroups
of A12 permutation isomorphic to (Si × S12−i) ∩ A12. It is easy to
see that Li is definitely unbeatable on Πi for each i. (Note that
a proper primitive subgroup of A12 contains no (3, 9)- or (5, 7)-
cycle, and has order at most 95040.) Moreover, all maximal sub-
groups of A12 intersect at most one of the sets Πi. This means that
σ(Π) =

(
12
1

)
+

(
12
3

)
+

(
12
5

)
= 1024 where Π = Π1 ∪ Π2 ∪ Π3. Now

let L be a set of σ(A12) maximal subgroups covering A12. Since
no maximal subgroup different from the subgroups in L5 intersects
Π5, we have L5 ⊆ L. We may suppose that L1 ⊆ L. For if L
does not contain k > 0 subgroups of L1, then Π is covered by at
least 1024 − k + (10! · k)/95040 > 1052 subgroups. We may also
assume that L3 ⊆ L. For suppose that L does not contain a sub-
group H of L3. Then H ∩ Π3 is covered by subgroups permuta-
tion isomorphic to (S4wrS3) ∩ A12 or (S3wrS4) ∩ A12. Since such a
group can cover at most 288 permutations of H ∩ Π3, a covering of
H ∩ Π3 must contain at least (2! · 8!)/288 = 280 subgroups. Hence
|L| ≥ 1024 − (

12
3

)
+ 280 > 1052. So we may suppose that all max-

imal subgroups permutation isomorphic to (Si × S12−i) ∩ A12 are
contained in L for i = 1, 3, and 5. Suppose that A12 acts on the
set {1, . . . , 12}. Let ∆ be the set of all (6, 6)-cycles of A12 such that
the letters 1, 2, 3, and 4 are in the same 6-cycle. The set ∆ is the
disjoint union of the subgroups of a certain set, K consisting of

(
8
2

)
maximal subgroups each permutation isomorphic to (S6wrS2)∩A12.
We will show that K is definitely unbeatable on ∆. Indeed, any el-
ement of K covers 14400 permutations of ∆, while an imprimitive
maximal subgroup of A12 cannot cover more, a primitive group not
isomorphic to M12 has order less than 14400, and finally, the number

12



of (6, 6)-cycles contained by the primitive group M12 is only 7920.
Since no subgroup in Li intersects ∆ nontrivially when i = 1, 3, or
5, we readily see that L ≥ 1024 +

(
8
2

)
= 1052.

Now we turn to the case when n is odd. The possibilities of n
being prime and n = 9 are treated separately.

Theorem 4.2. If n > 9 is odd and not a prime, then

h ≤ σ(An) ≤ h +

[n/3]∑
i=1

(
n

i

)

where h denotes the index of the largest transitive proper subgroup
of An. In particular, σ(An) ∼ h and σ(An) > 2n−2.

Proof. Let d be the smallest prime divisor of n, and let L be the set of
all maximal imprimitive subgroups of An conjugate to (Sn/dwrSd)∩
An. Notice that |L| = h. All subgroups permutation isomorphic to
(SiwrSn−i)∩An for some 1 ≤ i ≤ [n/3] together with all subgroups
of L cover An. This yields the upper bound for σ(An). To verify the
lower bound, it is sufficient to show that L is definitely unbeatable on
the set Π of all n-cycles of An. It is easy to see that the subgroups of
L cover Π disjointly with each group covering exactly h/n different
n-cycles. If S is an imprimitive maximal subgroup of An of index
k intersecting Π nontrivially, then |S ∩ Π| ≤ k/n ≤ h/n. Finally,
if S is a proper primitive subgroup of An, then |S| ≤ en < h/n
follows for n ≥ 21, and we have |S| < h/n for n = 15. (Note that
intransitive groups intersect Π trivially.)

Theorem 4.3. Let n > 3 be a prime. If n is not equal to 7, then
σ(An) > 2n−2, and σ(A7) ≤ 31.

Proof. First let n > 11. The alternating group, An contains (n− 2)!
Sylow n-subgroups, while a proper transitive subgroup, H of An

contains at most |H|/n. Hence the set of n-cycles of An cannot be
covered by less than n!/(|G| · (n−1)) subgroups where G is a proper
transitive group of An of largest possible order. It is sufficient to
show that 2n−2 < n!/(|G| · (n− 1)), that is |G| < n!/((n− 1) · 2n−2).
Since n is prime, G is primitive. For n > 17, we have |G| < en <
n!/((n− 1) · 2n−2), while if n = 13, then |G| ≤ 5616 < 13!/(12 · 211)
holds. Now let n = 11. Then the number of 11-subgroups contained
by A11 is 9!, while a proper primitive subgroup contains at most
144. Hence a covering of A11 has at least 9!/144 > 29 elements.
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Let n = 7. We will show that A7 can be covered by at most 31
subgroups. Suppose that A7 acts on the set Ω of size 7. Let α ∈ Ω.
Let L be the set of all subgroups conjugate to a copy of PSL(3, 2),
all intransitive subgroups conjugate to (S2 × S5) ∩ A7 satisfying
the property that the 2-element orbit does not contain α, and the
stabilizer of α in A7. Notice that |L| = 31, and that the subgroups
of L cover all permutations of the group A7. Finally, if n = 5, then
σ(A5) = 10 by [5].

Theorem 4.4. If p > 23 is a prime not of the form (qk−1)/(q−1)
where q is a prime power and k is an integer, then

(p− 2)! ≤ σ(Ap) ≤ (p− 2)! +

[p/3]∑
i=1

(
p

i

)
.

Proof. By [10], there are only two conjugacy classes of maximal tran-
sitive subgroups of Ap. Both conjugacy classes consist of subgroups
isomorphic to the unique subgroup of AGL(1, p) of index 2. Let
this set, the set of all maximal transitive subgroups of Ap be de-
noted by L. Since L is definitely unbeatable on the set of p-cycles
and |L| = (n − 2)!, the lower bound for σ(Ap) follows. The upper
bound is a consequence of the proof of Theorem 4.2.

Later, in Lemma 7.1, we will show that there are infinitely many
primes of this kind, so (p − 2)! is actually an asymptotic estimate
for σ(Ap) for such primes, p.

Now let n = 9. Among all transitive subgroups of A9, the primi-
tive group PΓL(2, 8) contains the most 9-cycles; it contains exactly
3024. Since the number of 9-cycles in A9 is 8!, at least 8!/3024 = 80
subgroups are needed to cover all 9-cycles. This gives σ(A9) ≥ 80.

5 A Mathieu group

In this section we prove Proposition 1.1. We first show that σ(M11) ≤
23.

Claim 5.1. The Mathieu group, M11 is the set-theoretic union of all
11 one-point stabilizers of its action on 11 letters and of all 12 one-
point stabilizers of its action on 12 letters. In particular, σ(M11) ≤
23.
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Proof. By [6], the permutation character of the action of M11 on
11 letters is 1M11 + χ2, and the permutation character of the action
of M11 on 12 letters is 1M11 + χ5 where χ2, χ5 are the irreducible
characters of M11 indicated in the character table of M11 found in
[6]. The character table also shows that for arbitrary g ∈ M11 we
cannot have (1M11 + χ2)(g) = 0 and (1M11 + χ5)(g) = 0.

To prove σ(M11) ≥ 23 it is enough to consider only maximal
subgroups whose union is M11.

Claim 5.2.

(i) The only maximal subgroups of M11 containing an element of
order 11 are the one-point stabilizers of M11 on 12 letters.

(ii) Moreover, let L be a set of maximal subgroups whose union is
M11. Then L contains all the one-point stabilizers of M11 of its
action on 12 letters. In particular, σ(M11) ≥ 12.

Proof.

(i) Let G be a maximal subgroup of M11 ≤ S11 containing a per-
mutation of order 11. Then G is transitive and so primitive. A
primitive permutation group of degree 11 contained in M11 is either
a one-point stabilizer of M11 of its action on 12 letters, or is affine
of order 55. Assume that G ≤ M11 is affine of order 55 generated
by the elements g1 and g2 of order 5 and 11, respectively. Represent
M11 on 12 points. Now G ≤ M11 ≤ S12 must be intransitive, since
12 - 55. This can only be if g1 and g2 fixes the same point. Thus G
is contained in a one-point stabilizer of M11 ≤ S12.

(ii) Represent M11 on 12 letters. For any letter α, there exists a
permutation g of M11 of order 11 fixing α. By (i), the only maximal
subgroup of M11 containing g is the one-point stabilizer of α.

We recall the following fact from [6].

Claim 5.3. A maximal subgroup of M11 different from a one-point
stabilizer of M11 of its action on 11 letters and different from a one-
point stabilizer of M11 of its action on 12 letters has order at most
144.

By the character table of M11 in [6], we see that the set Π of group
elements g satisfying (1M11 + χ2)(g) = 1 and (1M11 + χ5)(g) = 0 is
exactly the set of 1980 elements of order 8 in M11. By Claim 5.3, the
set of 11 copies of M10 is definitely unbeatable on Π. This, together
with Claim 5.2, implies σ(M11) ≥ 23. By Claim 5.1, we now obtain
σ(M11) = 23 which proves Proposition 1.1.
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6 On some infinite series of σ

We start with a theorem which was conjectured by Ramanujan in
1913 and was confirmed by Nagell [17] in 1960.

Theorem 6.1 (Nagell, [17]). The only solutions to the Diophantine
equation x2 + 7 = 2n are (n, x) = (3, 1), (4, 3), (5, 5), (7, 11) and
(15, 181).

This is used to prove

Theorem 6.2. Any positive integer is a member of at most one of
the following infinite series.

(1) A = {2n}∞n=5;

(2) Bp = {1
2
pn(pn + 1) + 1}∞n=1 where p is an odd prime;

(3) C = {1
2
2n(2n + 1)}∞n=2.

Proof. Suppose that 2n = 1
2
pk(pk + 1) + 1 where n ≥ 5, k ≥ 1 and

p is an odd prime. After multiplying both sides of the equation

by 8, we obtain 2n+3 = (2pk + 1)
2

+ 7. By Theorem 6.1, we get a
contradiction. Suppose that 2n = 2k−1(2k + 1) where n ≥ 5 and
k ≥ 2. Notice that the right-hand-side of this equation is divisible
by an odd prime, while the left-hand-side is not. Finally, no positive
integer is an element of both Bp and C for any odd prime p, since
the function 1

2
x(x + 1) is strictly increasing on the set of positive

integers by a difference of at least 2 whenever x > 2.

7 An application

We will show that α′n = β′n for n a prime greater than 23 and not
of the form (qk − 1)/(q − 1) where q is a prime power and k is an
integer. But before we do this, we prove

Lemma 7.1. The set of primes not of the form (qk − 1)/(q − 1)
where q is a prime power and k is an integer has density 1 in the
set of all primes.

Proof. The Prime Number Theorem states that there are asymptot-
ically x/ ln x primes less than x. Now let us count the primes less
than x which are of the form (qk − 1)/(q− 1) for some prime power
q and some positive integer k. If k = 2, then q has to be a power
of 2, and so there are at most log2 x such primes. For each k ≥ 3,
there are at most

√
x such primes. Since k cannot exceed log2 x,
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there are at most (
√

x + 1) log2 x such primes in total. We conclude
that the sequence

x/ ln x− (
√

x + 1) log2 x

x/ ln x

tends to 1 as x goes to infinity.

Now we turn to the proof of Theorem 1.2. Let p be a prime
greater than 23 and satisfying the condition of Lemma 7.1. By part
(1) of Theorem 1.1, we see that 2p−1 = σ(Sp) ≥ β′p ≥ α′p. Hence

it is sufficient to show that 2p−1 ≤ α′p. Suppose that Sp is acting
naturally on a set Ω of size p. For each 1 < i ≤ (p − 1)/2 and
each subset of Ω of size i, say ∆, choose an (i, p − i)-cycle of Sp

such that all elements of ∆ are moved by the cycle of length i.
Let the set of all permutations so obtained be Π0. Now choose an
arbitrary n-cycle, say g. This permutation is contained in a unique
copy of AGL(1, p), say in G. Since any (1, p− 1)-cycle is contained
in at most ϕ(p − 1) · p(p − 1) distinct copies of AGL(1, p) where
ϕ(p − 1) denotes the Euler function of the integer p − 1, and since
(p− 2)!− 1 > ϕ(p− 1) · p2(p− 1), it follows that for each ω ∈ Ω we
may choose a (1, p−1)-cycle, gω fixing ω and not contained in G such
that if ω 6= ω′ are distinct elements of Ω, then there is no subgroup
of Sp isomorphic to AGL(1, p) containing both gω and gω′ . Now let
Π be the set consisting of all elements of Π0 together with g and all
gω with ω ∈ Ω. Notice that |Π| = 2p−1. Now it is easy to see that
any two distinct permutations of Π generate a transitive subgroup
of Sp contained neither in Ap nor in any conjugate of AGL(1, p). So
by [10], it follows that any two distinct elements of Π generate Sp.
Hence we have 2p−1 ≤ α′p, which completes the proof of Theorem
1.2.
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