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Abstract

For a finite group G, let k(G) denote the number of conjugacy classes
of G. If G is a finite permutation group of degree n > 2, then k(G) ≤
3(n−1)/2. This is an extension of a theorem of Kovács and Robinson and
in turn of Riese and Schmid. If N is a normal subgroup of a completely
reducible subgroup of GL(n, q), then k(N) ≤ q5n. Similarly, if N is a
normal subgroup of a primitive subgroup of Sn, then k(N) ≤ p(n) where
p(n) is the number of partitions of n. These improve results of Liebeck
and Pyber.

1 Introduction.

Let k(G) be the number of conjugacy classes of the finite group G. Kovács
and Robinson [8] proved that if G is a subgroup of Sn, then k(G) ≤ 5n−1,
and the proof of a proposed improvement of this to k(G) ≤ 2n−1 is reduced to
the case where G is almost simple. For solvable permutation groups of degree
n > 2, they obtained k(G) ≤ 3(n−1)/2. These results are independent of the
classification theorem of finite simple groups (CTFSG). To do better, one needs
to use CTFSG. Liebeck and Pyber [10] proved the general k(G) ≤ 2n−1 bound
for arbitrary permutation groups. Later, Riese and Schmid [14] extended the
Kovács-Robinson estimate of solvable permutation groups to certain p-solvable
groups. In general, the following may be shown.

Theorem 1.1. If G is a subgroup of Sn with n > 2, then k(G) ≤ 3(n−1)/2.

To prove Theorem 1.1, we will need sharp estimates for the number of con-
jugacy classes of a normal subgroup of a primitive permutation group. To do
this, we first prove the following

Theorem 1.2. If G is a completely reducible subgroup of GL(n, q), then k(G) ≤
q5n.
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This sharpens Corollary 5 of [10] which was used to extend a result of Arregi
and Vera-Lopez [1]. (See Corollary 6 of [10] and its proof on page 554.) So by
Theorem 1.2 we may sharpen a little on Corollary 6 of [10] as follows. If G is
any subgroup of GL(n, q), then k(G) ≤ q(2n2+31n)/6 · (n− 1)! · 2n−1.

For primitive permutation groups we need

Theorem 1.3. Let G be a primitive subgroup of Sn, and let N be a normal
subgroup of G. Then

(1) k(N) ≤ p(n), where p(n) denotes the number of partitions of the integer n,
with equality if and only if N = Sn or if n = 3 and N = A3.

(2) If the socle of G is not a direct product of non-abelian alternating groups,
then k(N) ≤ n6.

This sharpens Corollary 2.15 of [10].
Now Theorem 1.1 is sharp only if G = A3 or S3 and if n = 3. To improve

on this 3(n−1)/2 general bound the next step would probably be to show that
k(G) ≤ 5(n−1)/3 holds for all permutation groups G of degree n > 3. This
would be sharp in case G = D8 or S4 when n = 4. A careful modification of the
proof of Theorem 1.1 makes it possible to attain the 5(n−1)/3 bound but only
for permutation groups with no composition factor isomorphic to C3 provided
that k(H) ≤ 5n/4 holds for n ≤ 31 whenever H is a (transitive) group of degree
n. If we allow G to possess composition factors isomorphic to C3, then we have
more cases to consider which are not discussed by the proof of Theorem 1.1.
Next we restrict our attention on some of these additional cases and make a
step in developing the method to deal with groups having C3 as a composition
factor. To keep the argument reasonably short we restrict the structure of G
(by excluding C2 from the set of composition factors of G) but in exchange we
prove a sharper bound than the proposed 5(n−1)/3.

Theorem 1.4. If G is a subgroup of Sn with no composition factor isomorphic
to C2, then k(G) ≤ (5/3)n.

The other extreme (and possibly hardest) case to consider in finding the best
possible general estimate for k(G) is when the permutation group is a 2-group.
The example of D8 wr Cn/4 for n a power of 2 of [10] shows that a general upper
bound for k(G) of the form cn should satisfy c < 51/4 = 1.495.... We prove the
following

Theorem 1.5. If G is a nilpotent subgroup of Sn, then k(G) ≤ 1.52n.

Finally, we note that it is very likely that k(G) ≤ 5n/4 should be the best
possible estimate even for arbitrary subgroups G of Sn.

2 Completely reducible groups and primitive per-
mutation groups.

In this section we deal with Theorems 1.2 and 1.3. First we reduce the proof of
part (2) of Theorem 1.3 to the proof of Theorem 1.2. Next we prove Theorem
1.2, and finally, show part (1) of Theorem 1.3.
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To do this, we need two basic results. First of all, we will often use the
following elementary observation not just in this section but throughout the
paper.

Lemma 2.1. If H is a subgroup, and N is a normal subgroup of the finite group
G, then

(i) k(H)/(G : H) ≤ k(G) ≤ k(H) · (G : H) and

(ii) k(G) ≤ k(N) · k(G/N).

Proof. See for example [5].

Now we state a slightly stronger version of Lemma 2.14 of [10].

Lemma 2.2. Let G be a primitive subgroup of Sn having socle S = Lr where L
is a non-abelian simple group and r is an integer. Let N be a normal subgroup
of G different from {1}. There are two possibilities.

(1) If N contains S, then N has a normal subgroup K containing S, such that
|K/S| ≤ n0.82 and N/K has an embedding into Sr with r ≤ log5 n.

(2) If N does not contain S, then r is even, say r = 2l, and N contains a
minimal normal transitive subgroup of G, say M , isomorphic to Ll. In this
case, N has a normal subgroup K ′ containing M , such that |K ′/M | ≤ n0.82 and
N/K ′ has an embedding into Sl with l ≤ log5 n.

Proof. Let m be the minimal faithful permutation degree of L. Notice that m ≥
5. If N contains S, then by Lemma 2.13 of [10] we see that mr ≤ n. Otherwise,
if N does not contain S, we have ml ≤ n. It follows that r ≤ log5 n in the first
case, and l ≤ log5 n in the second. Now N acts by conjugation on the direct
factors of Lr in the first case, and on the direct factors of Ll in the second. The
kernels K and K ′ of these actions have embeddings into Aut(L)r and Aut(L)l

in the respective cases. So the groups N/K and N/K ′ may be considered as
subgroups of Sr and Sl, respectively. Finally, it is easily checked from Lemma 8.6
of [7] that |Out(L)| ≤ m0.82. This gives us |K/S| ≤ |Out(L)|r ≤ m0.82·r ≤ n0.82

in the first case, and |K ′/M | ≤ |Out(L)|l ≤ m0.82·r ≤ n0.82 in the second.

Let G be a primitive permutation group of degree n with socle S = Lr

where L is a simple group. Let N be a normal subgroup of G different from
{1}. Suppose that L is isomorphic to A6, or is non-abelian and non-alternating.
Then we may invoke Lemma 2.2 and use its notation. By part (ii) of Lemma 2.1,
by Lemma 2.2 and by Theorem 2 of [10] we have k(N/S) ≤ n0.82 ·2r−1 ≤ n1.32 if
N contains S and k(N/M) ≤ n0.82 ·2l−1 ≤ n1.32 otherwise. Now using Theorem
1 of [10] and the bounds for the minimal degrees P (L) listed in the proof of
Proposition 1.9 of [10] it is straightforward to see that k(L) ≤ P (L)3.6 holds
when L is of Lie type; also if L is sporadic by [2]. It follows that if L is isomorphic
to A6, or is non-abelian and non-alternating, then by part (ii) of Lemma 2.1 and
by Lemma 2.13 of [10] we have k(N) ≤ k(N/S) · k(S) ≤ n1.32 · n3.6 < n5 if N
contains S, and get k(N) ≤ k(N/M) ·k(M) ≤ n1.32 ·n3.6 < n5 otherwise. Hence
we reduced the proof of part (2) of Theorem 1.3 to the case where the primitive
permutation group G is of affine type, that is, if it has an abelian socle S. In
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this case N contains S, and N/S may be considered as a completely reducible
subgroup of GL(m, p) where p is a prime and pm = n. If we prove Theorem 1.2,
then we get k(N) ≤ k(N/S) · k(S) ≤ p5m · n = n6, which would complete the
proof of part (2) of Theorem 1.3.

We now turn to the proof of Theorem 1.2.
Let G be a completely reducible subgroup of GL(n, q) acting on V , the n-

dimensional vectorspace over GF (q) where q is a fixed prime power. We will
show k(G) ≤ q5n by induction on n. This is true for n = 1 since G is cyclic in
this case of order at most q − 1. Suppose now that n > 1, and that the claim
holds for all integers less than n.

First of all, we may assume that G is irreducible. For if G is not, then the
GF (q)G-module V is a direct sum of two nontrivial submodules, say of V1 and
of V2, of dimensions m < n and n−m, respectively. Let the kernel of the action
of G on the vectorspace V1 be B. Since B is normal in G, we see that B is
completely reducible on V and also on V2. By induction we have k(G/B) ≤ q5m

and k(B) ≤ q5(n−m), hence we get k(G) ≤ k(B) · k(G/B) ≤ q5n by part (ii) of
Lemma 2.1.

Now the vectorspace V admits an m-space decomposition V = V1⊕ ... ⊕Vt

for some m ≤ n and t ≥ 1 with respect to the irreducible group G. Suppose
also that t is as large as possible. If t = n and m = 1, then we have k(G) ≤
k(B) · k(G/B) ≤ qn · 2n−1 ≤ q5n by part (ii) of Lemma 2.1 and by Theorem 2
of [10] where B denotes the kernel of the action of G on the set of subspaces
{V1, . . . , Vt}. If t < n and m ≥ 2, then let V = (V1 ⊗ ... ⊗ Vr) ⊕ ... ⊕
(Vrl−r+1 ⊗ ... ⊗ Vrl) be a decomposition of the GF (q)G-module V such that
rl ≥ 1 is maximal and that dim(Vi) = n0 6= 1 for all 1 ≤ i ≤ rl. Let B be the
kernel of the action of G on the set of subspaces {V1, . . . , Vrl}. As before, B
is normal in G, and so it is completely reducible on V . Let G0 and B0 be the
images of G and B respectively under the natural homomorphism from GL(n, q)
to PGL(n, q). Note that B0 /G0. For each 1 ≤ i ≤ rl, let Gi be the subgroup of
G0 stabilizing the vectorspace Vi. Also, let the kernels of these actions be Ki for
all 1 ≤ i ≤ rl. By the maximality of rl, by repeated use of the main theorem of
[9] and by the irreducibility of G, the groups Gi/Ki are isomorphic and either
have orders less than q3n0 , or are normalizers of classical groups over a subfield
or over an extension field of GF (q), or are subgroups of Sc in a representation
of smallest degree c = n0 + 1 or n0 + 2 for all 1 ≤ i ≤ rl. In the first case we
have k(B0) ≤ |B0| ≤ q3n, while in the third we see that k(B0) ≤ 2n+(n/2) < q2n

by Theorem 2 of [10] and by repeated use of part (ii) of Lemma 2.1.
Suppose that the second case holds. Let the non-abelian simple normal

subgroups of the groups Gi/Ki be isomorphic to the classical group L. We
claim that if N is a subnormal subgroup of Aut(L), then k(N) ≤ P (L)4.1 where
P (L) is the minimal degree of a permutation representation of L. If L is not
equal to PSL(2, 9), PSL(2, 27), PSL(3, 4) or PSL(3, 16), then by Lemma 8.6
of [7] and by k(L) ≤ P (L)3.6 above, we have k(N) ≤ k(L) · |Out(L)| ≤ P (L)4.1.
For the remaining four cases the claim readily follows.

For all 1 ≤ j ≤ rl, denote the group K1∩ . . .∩Kj by Kj . Also put K0 = B0.
We claim that for any index 1 ≤ j ≤ rl, the factor group B0 ∩Kj−1/B0 ∩Kj

may be considered as a subnormal subgroup of the irreducible group Gj/Kj ,
and hence it is completely reducible on Vj . Indeed. Notice that B0 / Gj , and
also that B0 ∩Kj−1 is subnormal in B0 and hence subnormal in Gj also. Now
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we have that (B0 ∩ Kj−1)Kj is subnormal in GjKj , from which we conclude
that B0 ∩ Kj−1/B0 ∩ Kj

∼= (B0 ∩ Kj−1)Kj/Kj is subnormal in GjKj/Kj
∼=

Gj/Gj ∩Kj = Gj/Kj .
Next we will estimate k(B0). By repeated applications of part (ii) of Lemma

2.1 and by our two claims above we have k(B0) ≤
∏rl

j=1 k(B0∩Kj−1/B0∩Kj) ≤
q4.1·rln0 ≤ q4.1·n in this second case under consideration. But we may also
conclude from the above that in all three cases we have k(B0) ≤ q4.1·n.

Now the factor group G0/B0 can be considered as a permutation group of
degree rl, so by Theorem 2 of [10] we have k(G0/B0) ≤ 2rl−1. Hence, by part
(ii) of Lemma 2.1 we get k(G0) ≤ k(G0/B0) · k(B0) ≤ 2(n/2)−1 · q4.1·n ≤ q5n/d
where d is the greatest common divisor of n and q − 1. Finally, again by part
(ii) of Lemma 2.1 we find that k(G) ≤ k(G0) · d ≤ q5n.

This completes the proof of Theorem 1.2 and of part (2) of Theorems 1.3.
Now we turn to the proof of part (1) of Theorem 1.3.

Lemma 2.3. Let m ≥ 5, or m ≥ 4 and r = 1. If (Am)r ≤ G ≤ Sm wr Sr, then
k(G) ≤ p(mr), with equality if and only if G = Smr or mr = 3 and G = A3.

Proof. Put n := mr. Let r = 1. We may take G = An. The conjugacy classes of
Sn can be naturally associated with the partitions of n. We will now associate
the conjugacy classes of An with some partitions of n. If the conjugacy class
of Sn associated with the partition π is a unique conjugacy class in An, then
associate this class with π. Otherwise, if the conjugacy class of Sn associated
with π is the union of at least two conjugacy classes of An, then it must be the
union of precisely two and π must be a partition of n with pairwise different
odd summands. In this case associate one conjugacy class of An with π, and
associate the other one with that partition of n which we get from π by replacing
the (unique) greatest odd summand k by the summands 1 and k − 1. This
correspondence is 1− 1. If n is even or n > 3 is odd, then no conjugacy class of
An is associated with the partition π = (n) or π = (n− 3, 3), respectively.

Now let r ≥ 2 and m ≥ 5. In this case we can write k(G) ≤ p(m)r · 2r−1

by part (ii) of Lemma 2.1 and by Theorem 2 of [10]. It is enough to prove
p(m)r2r−1 < p(mr). Let r = 2. It is sufficient to give 2p(m)2−p(m)+p(m+1) >
2p(m)2 different partitions of m2. Let Π1 be the set of all partitions of m2 of
the following form. Take any partition of m and multiply each summand by m.
We get a partition of m2. Now take a least summand im of the former partition
and replace it by the summands ij1, ... ,ijs where (j1, ... ,js) is an arbitrary
partition of m. By this way we get p(m)2 pairwise different partitions of m2.
Now let Π2 be the set of all partitions of m2 of the following form. Take any
partition of m and multiply each summand by m − 1. Uniting this partition
with an arbitrary partition of m we get a partition of m2. By this way we also
get p(m)2 pairwise different partitions of m2. Since m − 1 and m are relative
prime numbers |Π1 ∩ Π2| = p(m). Finally, we define another set of partitions,
Π3 with the property that Π3 ∩ (Π1 ∩ Π2) = ∅ by the following way. Take any
partition of m + 1 and add the additional summand m2−m− 1 to it. We get a
partition of m2. The number of such partitions is clearly p(m + 1). So we get
|Π1 ∪Π2 ∪Π3| = 2 · p(m)2 − p(m) + p(m + 1) > 2 · p(m)2. Now let r ≥ 3. It is
sufficient to give 2 · (p(m)− 1)rmr−2 different partitions of mr. To do this first
define the following process for arbitrary numbers 2 ≤ i ≤ r and a.

(1) Take any partition of the number mia with at least two summands and with
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each summand divisible by mi−1a. (The number of such partitions is p(m)−1.)

(2) If i ≥ 3, then take any integer 0 ≤ s ≤ m − 1. (There are m different
possibilities.) Else if i = 2 or 1, then take any integer 0 ≤ s ≤ i− 1. (There are
i different possibilities.)

(3) Take a maximal summand say jmi−1a, and replace it by the two summands
jmi−1a− s and s.

(4) Take a minimal summand which is divisible by mi−1a and different from
the one chosen in (3), say mi−1b. Put i := i− 1 and a := b.

For mr · 1 repeat steps (1)-(4) r − 1-times. Finally, for all possible outputs
do step (1). By this way we get 2 · (p(m)−1)rmr−2 pairwise different partitions
of mr.

Suppose that N 6= {1} is a normal subgroup of a primitive group G of degree
n with socle S = Lr where L is a non-abelian alternating group different from
A6. By the proof of Lemma 2.2, there exists a normal subgroup K (or K ′) of
N with the property that K (or K ′) embeds into Aut(L)r (or Aut(L)l where
r = 2l) in such a way that k(K) (or k(K ′)) is at most p(m)r where L = Am and
that N/K (or N/K ′) has an embedding into Sr. Now, by part (ii) of Lemma
2.1 and by Theorem 2 of [10], we see that k(N) ≤ p(m)r2r−1. By the proof of
Lemma 2.3 we have that p(m)r2r−1 < p(mr) for r ≥ 2. In case r = 1, apply
the statement of Lemma 2.3. Finally, mr ≤ n follows from Lemma 2.13 of [10].

If L is isomorphic to A6 or is abelian or a non-alternating simple group, then
by part (2) of Theorem 1.3 (and its proof) and by Theorem 4.2 of [11] we have
k(N) ≤ n6 < e2.5

√
n/13n < p(n) for n ≥ 284. Moreover by [6] it is easily checked

that n6 < p(n) holds for 252 ≤ n ≤ 284, while n6 > p(n) for n < 252. So in
order to establish part (1) of Theorem 1.3 we may suppose that n < 252. Now
the computer package [6] contains a list of all primitive permutation groups G
of degree less than 252 (up to permutation isomorphism) where L is isomorphic
to A6 or is abelian or a non-alternating simple group. From this list it is not
too difficult to deduce the list of all normal subgroups N . It is checked that we
always have k(N) < p(n) unless N = Sn (when n ≤ 4 or n = 6), or if N = A3

when n = 3.
This completes the proof of part (1) of Theorem 1.3.

3 The general bound.

In this section we prove Theorem 1.1. We will start with a few lemmas.

Lemma 3.1. If G is a subgroup of Sn with n ≤ 12, then k(G) ≤ 5
n
4 .

Proof. Use induction on n. If G is intransitive and has an orbit ∆ of length
k < n, then by induction k(G) ≤ k(G/K) · k(K) ≤ 5k/4 · 5(n−k)/4 = 5n/4 where
K is the kernel of the action of G on ∆. For transitive groups this can easily
be read off from the library of transitive permutation groups of the computer
package [6].

We also need to give an upper estimate for the number of partitions of the
integer n.
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Lemma 3.2. For n > 12 we have p(n) < c · (3/2)n where c = (2 · √3)
− 1

2 .

Proof. For n ≥ 50 we have p(n) ≤ eπ
√

2n/3 by [4], and the right hand side is
smaller than c · (3/2)n. For 12 < n < 50 the statement is checked easily.

We state another technical lemma.

Lemma 3.3. If G ≤ Sn is primitive with 7 ≤ n ≤ 12 and N is a normal
subgroup of G of order prime to 7, then k(N) ≤ 2(n−1)/2.

Proof. This is checked easily by [6].

Finally, the following is taken from page 447 of [8].

Lemma 3.4. Let N be a normal subgroup of an arbitrary finite group G.
If every subgroup of G/N has at most t conjugacy classes, then k(G) ≤ t ·
#{G -conjugacy classes of N}.

We will now begin the proof of Theorem 1.2. Choose a counterexample G
with n minimal. We may suppose that G is transitive. For if G was intransitive
with an orbit ∆ of length k < n, then by assumption we would have k(G) ≤
k(G/K) · k(K) ≤ 3(k−1)/2 · 3(n−k−1)/2 < 3(n−1)/2 where K is the kernel of the
action of G on ∆. Moreover, we may also assume that G has no blocks of
imprimitivity of size greater than 2 and less than n/2. For if G had a block ∆
of size 2 < k < n/2, then we would have k(G) ≤ k(G/B) · k(B) ≤ 3((n/k)−1)/2 ·
(3(k−1)/2)

(n/k)
= 3(n−1)/2 where B is the kernel of the action of G on the blocks

of imprimitivity associated to ∆.
Let H be the point stabilizer of the transitive group G. By the observations

above and by Theorem 1.5.A of [3] we have four possibilities to consider for
subgroups of G containing H. These were also given in [8], so from now on we
use the notations of that paper for simplicity.

(i) H max G.

(ii) H max K max G with (G : K) = 2.

(iii) H max K max G with (K : H) = 2.

(iv) H max K max L max G with (K : H) = (G : L) = 2.

By Lemma 3.1, we may suppose that n ≥ 13.
Case (i). By part (1) of Theorem 1.3 and Lemma 3.2, we have k(G) ≤

p(n) < c · (3/2)n ≤ 3(n−1)/2.

Case (ii). Let (K : H) = a. We may suppose that a ≥ 7 (since n ≥ 13).
Let C = coreK(H). For any x in G \K we have C ∩ Cx = {1G}, as coreG(H)
is trivial. Now K/C and K/Cx are both isomorphic to primitive permutation
groups of degree a, and CCx is normal in K, so by part (1) of Theorem 1.3, we
have k(K/C) ≤ p(a) and k(CCx/Cx) ≤ p(a). Hence k(K) ≤ k(K/C) ·k(C/C ∩
Cx) ≤ p(a)2. Now k(G) ≤ 2 · k(K) ≤ 2 · p(a)2. But we are assuming that
k(G) > 3(2a−1)/2, so we have 2 · p(a)2 > 3(2a−1)/2. This is checked to be false
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for 7 ≤ a ≤ 12. Else if a > 12, we get c · (3/2)a
> 3(2a−1)/2 by Lemma 3.2,

which is also a contradiction.

Case (iii). Let (G : K) = a and C = coreG(K). Then C is an elementary
Abelian 2-group of order at most 2a, and G/C is isomorphic to a primitive
permutation group of degree a. Suppose first that a > 12. By Lemma 3.2 and
by our assumption, we have c · (3/2)a · 2a > p(a) · 2a ≥ k(G) > 3(2a−1)/2, which
is a contradiction. By Lemma 3.1 and by the above argument, we may assume
that 7 ≤ a ≤ 12. If the primitive group G/C of degree a has order not divisible
by 7, then by Lemma 3.3 we have k(G/C) ≤ 2(a−1)/2. Hence we get 2(3a−1)/2 ≥
k(G) > 3(2a−1)/2, which is also a contradiction. So we may suppose that G/C
has an element of order 7. By Lemma 3.1, every subgroup of G/C has at most
5a/4 conjugacy classes, so by Lemma 3.4 we get k(G) ≤ ((2a − 2 · 2a−7)/7 + 2 ·
2a−7)·5a/4. By assumption we have 3(2a−1)/2 < ((2a − 2 · 2a−7)/7+2·2a−7)·5a/4,
which is also false.

Case (iv). Let (L : K) = a. Let C = coreL(H) and D = coreL(K).
For any x in G \ L we have C ∩ Cx = {1G}. Then L/D is isomorphic to a
primitive permutation group of degree a, and D/C is an elementary Abelian
2-group of order at most 2a. By part (1) of Theorem 1.3, k(L/D) ≤ p(a), so
that k(L/C) ≤ 2ap(a). Now set M = CCx. Then k(MDx/Dx) ≤ p(a) by part
(1) of Theorem 1.3, so k(M/M ∩ Dx) ≤ p(a). Hence k(M/Cx) ≤ k(M/M ∩
Dx) · k(M ∩ Dx/Cx) ≤ 2a · p(a), so that k(C) ≤ 2a · p(a), k(L) ≤ 22a · p(a)2,
and k(G) ≤ 2 · 4ap(a)2. Suppose first that a > 12. By Lemma 3.2 and by our
assumption, we have 3(4a−1)/2 < 2·22a ·c2 ·(3/2)2a, which is false. By Lemma 3.1
and by the previous argument, we may suppose that 4 ≤ a ≤ 12. First, let a ≥ 7.
If L/D does not contain Aa, then we have k(L/C) ≤ 2a · 2(a−1)/2 by Lemma
3.3. Moreover, k(MDx/Dx) ≤ 2(a−1)/2, so k(C) = k(M/Cx) ≤ 2(3a−1)/2.
This means that k(L) ≤ 23a−1, and so k(G) ≤ 8a. By assumption we have
8a > 3(4a−1)/2, which is a contradiction. Else if the primitive group L/D of
degree a contains Aa, then k(L/C) ≤ ((2a − 2 · 2a−7)/7 + 2 · 2a−7) · 5a/4 by
Lemma 3.4. So this way we get k(G) ≤ 2ap(a) ·((2a − 2 · 2a−7)/7+2 ·2a−7) ·5a/4

which is checked to be smaller than 3(4a−1)/2. (Applying the inequality p(a) ≤
2(a+1)/2 sufficies to show this.) This is a contradiction. Let a = 4. Now
L/D is a primitive group of order divisible by 3, so by Lemma 3.4 we get
k(L/C) ≤ ((24 − 4)/3 + 4) · 5 = 40. Similarly we get k(C) = k(M/Cx) ≤ 40.
This sums up to k(G) ≤ 2 · k(L) ≤ 3200, which is again a contradiction. Let
a = 5. By Lemma 3.4, we get k(L/C) ≤ ((25 − 2)/5 + 2) · 7 = 56. Similarly
k(M/Cx) ≤ 56. This m eans that k(G) ≤ 2 · 562 = 6272, which yields another
contradiction. Finally, let a = 6. All primitive groups of degree 6 contain a
5-cycle, so by Lemma 3.4, we can put k(L/C) ≤ ((26 − 4)/5 + 4) · 11 = 176.
Similarly we see that k(M/Cx) ≤ 176. So we have k(G) ≤ 2 · 1762, which is a
contradiction.

4 Groups with no composition factor isomor-
phic to C2.

We start with the following

Lemma 4.1. If G is a transitive permutation group of degree n with 5 ≤ n ≤ 9
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such that no composition factor of G is isomorphic to C2, then k(G) ≤ k(An).

Proof. This is easily checked by [6].

We now turn to the proof of Theorem 1.4. It is sufficient to prove that if G
is a permutation group of degree n > 4 with no composition factor isomorphic
to C2, then k(G) ≤ (5/3)n−1.

Let G be a counterexample to the previous statement with n minimal. As
in the beginning of the previous section we may assume that G is transitive.
Let ∆ be a block of imprimitivity for G, and let B be the kernel of the action
of G on the system of blocks associated with ∆. Again, by the argument at the
beginning of the previous section we may suppose that |∆| = 1, 2, 3, 4, n/4,
n/3, n/2 or n. Now |∆| can not be 2 or 4, since in this case the normal subgroup
B is solvable of even order. Moreover, |∆| can not be n/4 or n/2 since in this
case the factor group G/B is solvable of even order.

By these observations and by Theorem 1.5.A of [3] we have four possibili-
ties to consider for proper subgroups K, L of G strictly containing the point-
stabilizer H. These are the following.

(i) H max G.

(ii) H max K max G with (G : K) = 3.

(iii) H max K max G with (K : H) = 3.

(iv) H max K max L max G with (K : H) = (G : L) = 3.

By Lemma 4.1, we may suppose that n ≥ 13.
Case (i). By part (1) of Theorem 1.3 and by Lemma 3.2, we have k(G) ≤

p(n) < c · (3/2)n ≤ (5/3)n−1 which is a contradiction.

Case (ii). Observe that K is normal in G. Let (K : H) = a, and let
C = coreK(H). For any x in G \K we have C ∩Cx ∩Cx2

= {1G}, as coreG(H)
is trivial. Now K/Cx and K/Cx2

are both isomorphic to primitive permutation
groups of degree a, and both CCx and (Cx ∩ C)Cx2

are normal in K, so by
part (1) of Theorem 1.3, we have k(K/Cx) ≤ p(a), k(CCx/Cx) ≤ p(a) and
p(a) ≥ k((Cx ∩ C)Cx2

/Cx2
) = k(Cx ∩ C). Hence k(K) ≤ k(K/C) · k(C) ≤

k(K/C) · k(C/Cx ∩C) · k(Cx ∩C) ≤ k(K/C) · k(CCx/Cx) · k(Cx ∩C) ≤ p(a)3.
Now k(G) ≤ 3 · k(K) ≤ 3 · p(a)3 = 3 · p(n/3)3. By Lemma 3.2 we have k(G) ≤
3c3 · (3/2)n

< (5/3)n−1 for n > 36. So we must have 15 ≤ n ≤ 36. It is checked
by [6] that in this case we again have k(G) ≤ 3 · p(n/3)3 < (5/3)n−1. This is a
contradiction.

Case (iii). Observe that K is normal in G. Let (G : K) = a, and let C =
coreG(K). Since C has no composition factors isomorphic to C2, we have k(C) ≤
|C| ≤ 3n/3. On the other hand, G/C is isomorphic to a primitive permutation
group of degree a, so we have k(G/C) ≤ p(a) by part (1) of Theorem 1.3.
This yields k(G) ≤ k(C) · k(G/C) ≤ 3n/3 · p(n/3). By Lemma 3.2, we have
k(G) ≤ 3n/3 · c · (3/2)n/3

< (5/3)n−1 for n > 36. So we must have 15 ≤ n ≤ 36.
For n = 30, 33 and 36 it is checked by [6] that k(G) ≤ 3n/3 · p(n/3) < (5/3)n−1.
Finally since G/C is a primitive permutation group with no composition factor
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isomorphic to C2, by Lemma 4.1 we can definitely replace p(a) by k(Aa) in the
above estimate for 5 ≤ a ≤ 9. Hence k(G) ≤ 3n/3 · k(An/3) < (5/3)n−1 for
15 ≤ n ≤ 27. This is a contradiction.

Case (iv). Observe that L is normal in G. Let (G : K) = a. Moreover
let C = coreL(H) and D = coreL(K). For any x in G \ L we have C ∩ Cx ∩
Cx2

= {1G}, as coreG(H) is trivial. Now L/D is isomorphic to a primitive
group of degree a. Since D/C has no composition factor isomorphic to C2, it
is an elementary abelian 3-group of order at most 3a. So from these, we have
k(L/C) ≤ k(L/D) · k(D/C) ≤ 3a · p(a). Let M = CCx. Since MDx is normal
in L, by part (1) of Theorem 1.3 we have p(a) ≥ k(MDx/Dx) = k(M/M ∩Dx).
This yields k(C/Cx∩C) = k(M/Cx) ≤ k(M/M∩Dx)·k(M∩Dx/Cx) ≤ p(a)·3a.
We next bound k(Cx∩C). Since (Cx∩C)Dx2

/Dx2
is a normal subgroup of the

primitive group Lx2
/Dx2

of degree a, by part (1) of Theorem 1.3 we see that
k(Cx ∩ C/Dx2 ∩ Cx ∩ C) = k((Cx ∩ C)Dx2

/Dx2
) ≤ p(a). Since Dx2 ∩ Cx ∩ C

is isomorphic to a subgroup of Dx2
/Cx2

, it has order at most 3a. So we have
k(Cx∩C) ≤ k(C ∩Cx/Dx2 ∩Cx∩C) ·k(Dx2 ∩Cx ∩C) ≤ p(a) ·3a. Putting our
results together we get k(G) ≤ 3 · k(L) ≤ 3 · k(L/C) · k(C) ≤ 3a+1p(a) · k(C) ≤
3a+1p(a)·k(C/Cx∩C)·k(Cx∩C) ≤ 33a+1p(a)3 = 3·3n/3p(n/9)3. By Lemma 3.2
we have k(G) ≤ 3 · 3n/3p(n/9)3 < 3 · 3n/3 · c3 · (3/2)n/3

< (5/3)n−1 for n > 108.
For n = 90, 99 and 108 it is checked by [6] that k(G) ≤ 3 · 3n/3p(n/9)3 <

(5/3)n−1. For n = 45, 54, 63, 72 and 81 notice that by Lemma 4.1, we can
write k(G) ≤ 3 · 3n/3 · k(An/9), which is checked to be smaller than (5/3)n−1.
Now n 6= 18 nor 36, because a 6= 2 nor 4, since G does not have a composition
fa ctor isomorphic to C2. So we must have n = 27. Let ∆ be the orbit of
K which contains the point stabilized by H. Let B be the base group of the
system of imprimitivity associated to ∆. Then B is an elementary abelian 3-
group, and G/B is a transitive group of degree 9. Since G/B has no composition
factor isomorphic to C2, by Lemma 4.1, we get k(G/B) ≤ k(A9) = 18. Hence
k(G) ≤ k(B) · k(G/B) ≤ 39 · 18 < (5/3)26. This is the final contradiction.

5 Nilpotent groups.

In this section we prove Theorem 1.5. Let G be a counterexample with n
minimal. We may suppose that G is transitive. For if G is intransitive with an
orbit ∆ of length k < n, then k(G) ≤ k(G/K) · k(K) ≤ 1.52k · 1.52n−k where
K is the kernel of the action of G on the set ∆.

We may suppose that G is a p-group by Theorem 1 on page 30 of [15]. For
otherwise, we may consider G as a subgroup of SΩ where |Ω| = n = p1

k1 ...pt
kt

with t ≥ 2 and pi
ki distinct prime powers. (Note that |G| and n have the same

set of prime divisors.) We may take Ω = X1 ×X2 × ...×Xt where |Xi| = pi
ki

for all 1 ≤ i ≤ t such that the Sylow pi-subgroup of G acts transitively on
Xi for all 1 ≤ i ≤ t. Now by the assumption on the minimality of n, we get
k(G) ≤ 1.52

Pt
i=1 pi

ki ≤ 1.52n.
The following lemma shows that G can be taken to be a 2-group.

Lemma 5.1. If G is a p-subgroup of Sn with n > 3 and p > 2, then k(G) ≤
5(n−1)/4.
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Proof. Let G be a counterexample with n minimal. By the argument at the
beginning of this section we may suppose that G is transitive. We may also
assume that n = 3t, for if p > 3, then k(G) ≤ |G| ≤ 5(n−1)/4. If t = 2, then by
[6] we see that k(G) ≤ 17 < 5(n−1)/4. Let t = 3. We may suppose that |G| > 39.
For otherwise, we would have k(G) ≤ |G| ≤ 39 < 5(n−1)/4. A 3-Sylow subgroup
of S27 has order 313 and has 1683 conjugacy classes by [12]. So if G has order
different from 310, then by part (i) of Lemma 2.1, we get k(G) ≤ 9 · 1683 < 39.
Else if |G| = 310, then k(G) ≤ 33 + ((310 − 33)/3) < 513/2. Finally, if t > 3,
then let ∆ be a block of imprimitivity of G of size 9. Let the base group of the
system of imprimitivity associated to the block ∆ be B. Then by assumption
we have k(G) ≤ k(B) · k(G/B) ≤ 5(n−3t−2)/4 · 5(3t−2−1)/4 = 5(n−1)/4. This is a
contradiction.

So, let G be a transitive 2-group of degree n = 2k. If k ≤ 4, then k(G) ≤
k(Syl2(Sn)) ≤ 5n/4 < 1.52n by the [6] library of transitive permutation groups.
Let k = 5. Take a block ∆0 of order 16. This block induces a system of
imprimitivity Σ. Let the kernel of the action of G on Σ be K, and let the
kernel of the action of K on ∆0 be K0. Now K0 is faithful on the set Ω \ ∆0

with orbits of size at most 16, so we have k(K0) ≤ 54. Furthermore, K/K0 is
faithful and transitive on a set of size 16, so k(K/K0) ≤ k(Syl2(S16)) = 230.
This means that k(G) ≤ 2 · 54 · 230 = 287500 < 58 < 1.52n. Let k = 6. Take
a block ∆0 of order 32. Let Σ be the system of imprimitivity induced by this
block, and let the kernel of the action of G on Σ be K. Now let the kernel
of the action of K on ∆0 be K0. The group K0 is faithful on the set Ω \ ∆0

with orbits of size at most 32. By the results obtained in case k = 5, we get
k(G) ≤ 2 · k(K/K0) · k(K0) ≤ 2 · 287500 · 58 < 1.51n. Finally, let k ≥ 7. Again
take a block ∆0 of order 64. Let the induced system of imprimitivity be Σ,
and let the kernel of the action of G on Σ be K. Since K has orbits of length
at most 64, we have k(K) ≤ 1.51n. Furthermore we have k(G/K) ≤ 1.52n/64

by induction. This gives k(G) ≤ 1.51n · 1.52n/64 < 1.52n, which is the final
contradiction.

The above proof uses the fact that if G is a transitive 2-group of degree
n, then k(G) ≤ k(Syl2(Sn)) ≤ p(n) provided that n ≤ 16. However, the
D8 wr Cn/4 example in [10] and the asymptotic estimate for the number of
conjugacy classes of the symmetric 2-group of [12] shows that this is definitely
not the case for all 2-powers, n. Little computer search suggests that the group
D8 wr E(8) has the maximal number of conjugacy classes among transitive 2-
groups of degree 32. So we ask the following.

Question 5.1. Let G be a transitive 2-group of degree 2t with the property that
k(G) is maximal among all transitive 2-groups of degree 2t. Then, is it true that
we have one of the following?

(i) If t ≤ 4, then G is a Sylow subgroup of S2t and k(G) ≤ p(n).

(ii) If t ≥ 5, then G is permutation isomorphic to the permutation group
D8 wr E(2t−2) where E(2t−2) is the elementary abelian 2-group of order 2t−2

with its regular action and k(G) > p(n).

Interestingly, one meets similar problems when trying to improve existing
lower bounds for k(G) (in terms of |G|) as it is suggested in [13].
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