ON THE CLIQUE NUMBER OF THE GENERATING GRAPH OF A FINITE GROUP

ANDREA LUCCHINI AND ATTILA MARÓTI

ABSTRACT. The generating graph $\Gamma(G)$ of a finite group G is the graph defined on the elements of G with an edge connecting two distinct vertices if and only if they generate G. The maximum size of a complete subgraph in $\Gamma(G)$ is denoted by $\omega(G)$. We prove that if G is a non-cyclic finite group of Fitting height at most 2 that can be generated by 2 elements, then $\omega(G) = q + 1$ where q is the size of a smallest chief factor of G which has more than one complement. We also show that if S is a non-abelian finite simple group and G is the largest direct power of S that can be generated by 2 elements, then $\omega(G) \leq (1 + o(1))m(S)$ where m(S) denotes the minimal index of a proper subgroup in S.

1. INTRODUCTION

The generating graph $\Gamma(G)$ of a finite group G is the graph defined on the elements of G with an edge connecting two distinct vertices if and only if they generate G. By the solution of Dixon's conjecture, it is known that $\Gamma(S)$ has "many" edges for S a non-abelian finite simple group. In particular, Liebeck and Shalev [8] proved that there exists a universal positive constant c such that the maximal size of a complete subgraph in $\Gamma(S)$ is at least $c \cdot m(S)$ where m(S) is the minimal index of a proper subgroup in S. This result, in general, is best possible. Indeed, by a result of Saxl and Seitz [13], the group $S = Sp_{2n}(2)$ is the union of all conjugates of the maximal subgroups $O_{2n}^+(2)$ and $O_{2n}^-(2)$, and so $\omega(S) \leq 2^{2n} = (2 + o(1))m(S)$.

This result of Liebeck and Shalev together with the above-mentioned remark on the symplectic group justifies the following definitions. For a finite group G let the maximum size of a complete subgraph in $\Gamma(G)$ be denoted by $\omega(G)$. For a non-cyclic finite group G let $\sigma(G)$ denote the least number of proper subgroups of G whose union is G. Clearly, $\omega(G) \leq \sigma(G)$. Moreover, if $\chi(G)$ denotes the chromatic number of $\Gamma(G)$ (that is, the least number of colors needed to color the vertices of $\Gamma(G)$ in such a way that the endpoints of each edge receive different colors), then we also have $\omega(G) \leq \chi(G) \leq \sigma(G)$ where the second inequality follows from the fact that $\Gamma(G)$ is $\sigma(G)$ -colorable since its vertex set is the union of $\sigma(G)$ empty subgraphs.

The function σ has been much investigated. For example, for a finite solvable group G Tomkinson [14] showed that $\sigma(G) = q + 1$ where q is the minimal size of a chief factor of G having more than one complement. Our first result is

Theorem 1.1. Let G be a finite group with Fitting height at most 2. Then $\omega(G) = \chi(G)$. Moreover, if the minimal number of generators of G is 2, then $\omega(G) = \sigma(G)$.

It is not known whether the conclusions of Theorem 1.1 are true for an arbitrary finite solvable group G. Blackburn [3] showed that $\omega(\text{Sym}(n)) = \sigma(\text{Sym}(n)) = 2^{n-1}$

 $^{^0\}mathrm{Research}$ of the second author was supported by OTKA NK72523, OTKA T049841, NSF Grant DMS 0140578, and by a fellowship of the Mathematical Sciences Research Institute.

Date: 24th of February 2009.

for n a sufficiently large odd positive integer, and also that $\omega(\text{Alt}(n)) = \sigma(\text{Alt}(n)) = 2^{n-2}$ for n a sufficiently large even integer not divisible by 4. However, by [10], there are infinitely many non-abelian finite simple groups S with $\omega(S) < \chi(S) < \sigma(S)$.

Still $\omega(S)$ and $\sigma(S)$ do not seem to be "far apart" for a non-abelian finite simple group S. In fact, Blackburn [3] asked whether $\omega(S)/\sigma(S)$ tends to 1 as the size of the non-abelian finite simple group S tends to infinity. Our second result shows that there is an infinite sequence of 2-generated finite groups G such that $\omega(G)/\sigma(G)$ tends to 0 as the size of G tends to infinity.

Theorem 1.2. Let S be a non-abelian finite simple group, let m(S) be the minimal index of a proper subgroup in S and let G be the largest direct power of S that can be generated by 2 elements. Then $\omega(G) \leq m(S) + O(m(S)^{14/15})$ if S is a group of Lie type and $\omega(G) \leq m(S) + O(1)$ otherwise. In particular, if S = Alt(n) then $\omega(G)/\sigma(G) \leq (n + O(1))/2^{n-2}$.

2. Groups of Fitting height at most 2

In this section we prove Theorem 1.1.

Let V be a finite dimensional vector space over a finite field of prime order. Let H be a linear solvable group acting irreducibly and faithfully on V. Suppose that H can be generated by 2 elements. For a positive integer t we consider the semidirect product $G = V^t \rtimes H$ where H acts in the same way on each of the t direct factors. We would like to derive some information about $\omega(G)$. Put $F = \operatorname{End}_H(V)$.

Proposition 2.1. Assume $H = \langle x, y \rangle$ and let (u_1, \ldots, u_t) , $(w_1, \ldots, w_t) \in V^t$. The following are equivalent.

- (1) $G \neq \langle x(u_1, \ldots, u_t), y(w_1, \ldots, w_t) \rangle;$
- (2) there exist $\lambda_1, \ldots, \lambda_t \in F$ and $w \in V$ with $(\lambda_1, \ldots, \lambda_t, w) \neq (0, \ldots, 0, 0)$ such that $\sum_i \lambda_i u_i = w - wx$ and $\sum_i \lambda_i w_i = w - wy$.

Proof. Let $a = x(u_1, \ldots, u_t)$, $b = y(w_1, \ldots, w_t)$, $K = \langle a, b \rangle$. First we prove, by induction on t, that if $K \neq G$ then (2) holds. Let $\bar{a} = x(u_1, \ldots, u_{t-1}, 0)$, $\bar{b} = y(w_1, \ldots, w_{t-1}, 0)$, $\bar{K} = \langle \bar{a}, \bar{b} \rangle$. If $\bar{K} \ncong V^{t-1}H$, then, by induction, there exist $\lambda_1, \ldots, \lambda_{t-1} \in F$ and $w \in V$ with $(\lambda_1, \ldots, \lambda_{t-1}, w) \neq (0, \ldots, 0, 0)$ such that $\sum_i \lambda_i u_i = w - wx$ and $\sum_i \lambda_i w_i = w - wy$. In this case $\lambda_1, \ldots, \lambda_{t-1}, 0$ and w are the requested elements. So we may assume $\bar{K} \cong V^{t-1}H$. Set $V_t =$ $\{(0, \ldots, 0, v) \mid v \in V\}$. We have $\bar{K}V_t = KV_t = G$ and $K \neq G$; this implies that K is a complement of V_t in G and therefore there exists $\delta \in \text{Der}(\bar{K}, V_t)$ such that $\delta(\bar{a}) = u_t$ and $\delta(\bar{b}) = w_t$. However, by Propositions 2.7 and 2.10 of [2], we have $H^1(\bar{K}, V_t) \cong F^{t-1}$. More precisely if $\delta \in \text{Der}(\bar{K}, V_t)$, then there exist an inner derivation $\delta_w \in \text{Der}(H, V)$ and $\lambda_1, \ldots, \lambda_{t-1} \in F$ such that for each $g(v_1, \ldots, v_{t-1}, 0) \in \bar{K}$ we have $\delta(g(v_1, \ldots, v_{t-1}, 0)) = \delta_w(g) + \lambda_1 v_1 + \cdots + \lambda_{t-1} v_{t-1} =$ $wg - w + \lambda_1 v_1 + \cdots + \lambda_{t-1} v_{t-1}$. In particular $u_t = wx - w + \lambda_1 u_1 + \cdots + \lambda_{t-1} u_{t-1}$ and $w_t = wx - w + \lambda_1 w_1 + \cdots + \lambda_{t-1} w_{t-1}$.

Conversely, if (2) holds then $\langle h(v_1, \ldots, v_t) | w - wh = \lambda_1 v_1 + \cdots + \lambda_t v_t \rangle$ is a proper subgroup of G containing K.

Let n be the dimension of V over F. We may identify $H = \langle x, y \rangle$ with a subgroup of GL(n, F). In this identification x and y become two $n \times n$ matrices X and Y with coefficients in F. Let (u_1, \ldots, u_t) , $(w_1, \ldots, w_t) \in V^t$. Then every u_i and w_j can be viewed as a $1 \times n$ matrix. Denote the $t \times n$ matrix with rows u_1, \ldots, u_t (resp. w_1, \ldots, w_t) by A (resp. B). By Proposition 2.1, the elements $x(u_1, \ldots, u_t)$, $y(w_1, \ldots, w_t)$ generate a proper subgroup of G if and only if there exists a non-zero vector $(\lambda_1, \ldots, \lambda_t; \mu_1, \ldots, \mu_n)$ in F^{t+n} such that

$$\begin{cases} (\lambda_1, \dots, \lambda_t) A = (\mu_1, \dots, \mu_n)(1 - X) \\ (\lambda_1, \dots, \lambda_t) B = (\mu_1, \dots, \mu_n)(1 - Y) \end{cases}$$

This is equivalent to saying that there exist elements \bar{X} and \bar{Y} in G such that $\langle \bar{X}, \bar{Y} \rangle = G$ with the property that \bar{X} maps to x and \bar{Y} maps to y under the projection from G to H if and only if there exist $t \times n$ matrices A and B with

(1)
$$\operatorname{rank} \begin{pmatrix} 1-X & 1-Y \\ A & B \end{pmatrix} = n+t.$$

¿From this it immediately follows that G cannot be generated by 2 elements if t > n(hence $\omega(G) = 1$ in this case). Notice also that if X and Y are two $n \times n$ matrices generating the matrix group H, then the linear map $\alpha : F^n \to F^n \times F^n$, $w \mapsto (w(1-X), w(1-Y))$ is injective (if $w \in \ker \alpha$ then wX = wY = w against the fact that X and Y generate a non-trivial irreducible group); the matrix $(1 - X \quad 1 - Y)$ has rank n, and so it is possible to find A and B satisfying (1) whenever $t \leq n$. Hence $3 \leq \omega(V^n \rtimes H) \leq \omega(G)$ whenever $t \leq n$. The case t = n is of special importance. In this case our observations yield

Proposition 2.2. Let t = n. Assume that X_1, \ldots, X_{ω} pairwise generate H. Then there exist elements $\overline{X}_1, \ldots, \overline{X}_{\omega}$ pairwise generating G (so that for all i with $1 \leq i \leq \omega$ the element X_i is the projection of \overline{X}_i under the projection from G to H) if and only if there exist $n \times n$ matrices A_1, \ldots, A_{ω} such that for all i and j with $1 \leq i < j \leq \omega$ we have

$$\det \begin{pmatrix} 1 - X_i & 1 - X_j \\ A_i & A_j \end{pmatrix} \neq 0.$$

From now on let H be a nilpotent finite group that can be generated by 2 elements with an irreducible (but not necessarily faithful) action $\rho: H \to GL(V)$. Let $F = \operatorname{End}_H(V)$ and let $n = \dim_F(V)$. The Sylow subgroups of H are either cyclic or non-cyclic and 2-generated. Let π_1 be the set consisting of those prime divisors of |H| whose corresponding Sylow subgroups are not cyclic, and let π_2 be the set of all other prime divisors of |H|. Let p be the smallest prime in π_1 . (If $\pi_1 = \emptyset$ then set $p = \infty$.) We can find two generators x and y of H such that |x| is divisible only by primes in π_1 (if $\pi_1 = \emptyset$ we take x = 1.) Let $X = x^{\rho}, Y = y^{\rho}$, and $u = \min(p, |V|)$. Clearly $\sigma(V^t \rtimes H^{\rho}) \leq u + 1$.

Proposition 2.3. With the notations and assumptions above we have $\omega(V^t \rtimes H^{\rho}) = u + 1$ if $t \leq n$ and $\omega(V^t \rtimes H^{\rho}) = 1$ otherwise.

Proof. By our observations above, to prove Proposition 2.3, it is sufficient to show that $u + 1 \leq \omega(V^n \rtimes H^{\rho})$. To see this it is sufficient to verify that there exist A, $B_0, \ldots, B_{u-1} \in V^n$ such that the elements $X, YB_0, XYB_1, X^2YB_2, \ldots, X^{u-1}YB_{u-1}$ pairwise generate $V^n \rtimes H^{\rho}$.

We need to consider two different cases.

Case 1: $X \neq 1$.

Notice that $Z(H^{\rho}) \leq (\operatorname{End}_{H}(V))^{*}$, hence $Z(H^{\rho})$ is a subgroup of F^{*} . This implies

- |X| divides |F| 1 (in particular $p \le |F| 1$);
- for any $h \in H$, V is a completely reducible $\langle h \rangle$ -module (indeed any prime divisor of $|H^{\rho}|$ divides $|Z(H^{\rho})|$, hence it is coprime with |F|).

- 3

The second remark implies that we may write x in the form

$$X = \begin{pmatrix} 1 & 0 \\ 0 & C \end{pmatrix}$$

where 1 denotes the identity $\ell \times \ell$ matrix for some non-negative integer ℓ with $\ell < n$ and C is an invertible $(n - \ell) \times (n - \ell)$ matrix which does not admit 1 as an eigenvalue. Decompose Y and 1 - Y as block-matrices in the following way:

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$$
$$1 - Y = \begin{pmatrix} T_1 - Y_1 \\ T_2 - Y_2 \end{pmatrix}$$

where Y_1 and $T_1 - Y_1$ denote the matrices consisting of the first ℓ rows of Y and 1-Y respectively and Y_2 and T_2-Y_2 denote the matrices consisting of the remaining rows of Y and 1-Y respectively. Since

$$\operatorname{rank}(1-X \quad 1-Y) = \operatorname{rank}\begin{pmatrix} 0 & T_1 - Y_1 \\ 1 - C & T_2 - Y_2 \end{pmatrix} = n$$

we deduce that $\operatorname{rank}(T_1 - Y_1) = \ell$. Let D be an $(n - \ell) \times n$ matrix such that

$$\det \begin{pmatrix} T_1 - Y_1 \\ D \end{pmatrix} \neq 0.$$

By Theorem 2.2, we look for A, B_0, \ldots, B_{p-1} such that

$$\det \begin{pmatrix} 1 - X & 1 - X^r Y \\ A & B_r \end{pmatrix} \neq 0 \quad \text{and} \quad \det \begin{pmatrix} 1 - X^r Y & 1 - X^s Y \\ B_r & B_s \end{pmatrix} \neq 0$$

for all r and s such that $0 \le r \le s \le p-1$. Since p divides |F|-1, there exist p pairwise distinct elements $b_0, \ldots, b_{p-1} \in F^*$. Consider the following $p \times p$ matrices:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B_i = \begin{pmatrix} b_i Y_1 \\ D \end{pmatrix}$$

for all i with $0 \le i \le p-1$ where 1 in the definition of A denotes the $\ell \times \ell$ identity matrix. We prove that A, B_0, \ldots, B_{p-1} are the matrices we are looking for. Notice that

$$X^r Y = \begin{pmatrix} Y_1 \\ C^r Y_2 \end{pmatrix},$$

hence

$$\det \begin{pmatrix} 1 - X & 1 - X^r Y \\ A & B_r \end{pmatrix} = \det \begin{pmatrix} 0 & 0 & T_1 - Y_1 \\ 0 & 1 - C & * \\ 1 & 0 & * \\ 0 & 0 & D \end{pmatrix} = \pm \det(1 - C) \det \begin{pmatrix} T_1 - Y_1 \\ D \end{pmatrix} \neq 0$$

On the other hand, if $r \neq s$, then

$$\det \begin{pmatrix} 1 - X^r Y & 1 - X^s Y \\ B_r & B_s \end{pmatrix} = \det \begin{pmatrix} 1 - X^r Y & X^r Y - X^s Y \\ B_r & B_s - B_r \end{pmatrix} = \\ \det \begin{pmatrix} T_1 - Y_1 & 0 \\ * & (C^r - C^s)Y_2 \\ b_r Y_1 & (b_s - b_r)Y_1 \\ D & 0 \end{pmatrix} = \det \begin{pmatrix} T_1 - Y_1 \\ D \end{pmatrix} \det \begin{pmatrix} (C^r - C^s)Y_2 \\ (b_s - b_r)Y_1 \end{pmatrix} = \\ = (b_s - b_r) \det(C^r - C^s) \det \begin{pmatrix} T_1 - Y_1 \\ D \end{pmatrix} \det \begin{pmatrix} Y_2 \\ Y_1 \end{pmatrix}$$

which is non-zero if and only if $\det(C^r - C^s) = \det(C^r(1 - C^{s-r})) \neq 0$. To show that the matrix $1 - C^{s-r}$ is non-singular it is sufficient to see that 1 is not an eigenvalue of C^{s-r} . Since V is a completely reducible $F\langle X \rangle$ -module, C can be diagonalised

and

over a suitable field extension of F. Let β be an arbitrary eigenvalue of C^{s-r} . Then $\beta = \gamma^{s-r}$ for some eigenvalue γ of C. Now γ is different from 1 by our choice of C. Finally since 0 < s - r < p and since no prime smaller than p divides |X| we see that γ^{s-r} cannot be 1. This settles Case 1.

Case 2: X = 1.

In this case $H^{\rho} = \langle Y \rangle$ is a cyclic group and V is an absolutely irreducible FHmodule. Hence V = F and n = 1. We have $u \leq |F|$ and if $0 \neq A \in V$ and $B_0, B_1, \ldots, B_{u-1}$ are distinct elements of V then, by Proposition 2.1, A, YB_0 , YB_1, \ldots, YB_{u-1} pairwise generate $V \rtimes H^{\rho}$. This proves Proposition 2.3.

Let G be a finite solvable group, and let \mathcal{A} be a set of representatives for the irreducible G-groups that are G-isomorphic to a complemented chief factor of G. For $A \in \mathcal{A}$ let $R_G(A)$ be the smallest normal subgroup contained in $C_G(A)$ with the property that $C_G(A)/R_G(A)$ is G-isomorphic to a direct product of copies of A and it has a complement in $G/R_G(A)$. The factor group $C_G(A)/R_G(A)$ is called the A-crown of G. The non-negative integer $\delta_G(A)$ defined by $C_G(A)/R_G(A) \cong_G A^{\delta_G(A)}$ is called the A-rank of G and it coincides with the number of complemented factors in any chief series of G that are G-isomorphic to A. If $\delta_G(A) \neq 0$, then the A-crown is the socle of $G/R_G(A)$. The notion of crown was introduced by Gaschütz in [6].

Proposition 2.4. Let G and A be as above. Let x_1, \ldots, x_u be elements of G such that $\langle x_1, \ldots, x_u, R_G(A) \rangle = G$ for any $A \in \mathcal{A}$. Then $\langle x_1, \ldots, x_u \rangle = G$.

Proof. Let $H = \langle x_1, \ldots, x_u \rangle$ and suppose that $HR_G(A) = G$ for any $A \in \mathcal{A}$. There exists a normal subgroup N of G of minimum order with respect to the property HN = G. Assume by contradiction that $N \neq 1$ and choose M such that A = N/M is a chief factor of G. Since $HM \neq G$, we have that A is a complemented chief factor and $(HM/M)(R_G(A)M/M) = G/M = (HM/M)(N/M)$. By Proposition 11 of [5] and the fact that $R_{G/M}(A) = R_G(A)M/M$, we deduce HM = G, against the choice of N.

Let d(X) denote the minimal number of generators of the finite group X.

Proposition 2.5. Let G be a finite group of Fitting height equal to 2. If d(G) = 2, then $\omega(G) = \sigma(G)$.

Proof. Clearly we may assume that the Frattini subgroup $\operatorname{Frat}(G)$ of G is trivial. Then the Fitting subgroup $\operatorname{Fit}(G)$ coincides with the direct product of the minimal normal subgroups of G (see [12, 5.2.15]). Let V be the subgroup of $\operatorname{Fit}(G)$ generated by the non-central minimal normal subgroups of G. Now V is an abelian normal subgroup of a finite group with trivial Frattini subgroup, so V is complemented in G (see [12, 5.2.13]). So we have that $G = V \rtimes H$ for some nilpotent group H with $d(H) \leq 2$. Let \mathcal{Z} be the set of G-irreducible modules G-isomorphic to some factor of V. We have that $V = \prod_{M \in \mathcal{Z}} V_M$, where V_M is the product of the minimal normal subgroups G-isomorphic to M. If $M \in \mathcal{Z}$ and $\rho_M : H \to GL(M)$ is the action of H on M, then $R_G(M) = C_H(M) \times \prod_{L \in \mathcal{Z}, L \neq M} V_L$ and $G/R_G(M) \cong V_M \rtimes H^{\rho_M} = M^{t_M} \rtimes H^{\rho_M}$ for some positive integer t_M . Notice that $d(M^{t_M} \rtimes H^{\rho_M}) \leq 2$ for all $M \in \mathcal{Z}$.

For the finite nilpotent group H choose p, x, and y as in the preceding paragraph of the statement of Proposition 2.3. Put $\tau = \min_{M \in \mathbb{Z}} \{|M|\}$. (Note that $\mathbb{Z} \neq \emptyset$ for otherwise V = 1 and G = H is nilpotent.) Then $\sigma(G) = 1 + \min\{\tau, p\}$. Put $\sigma = \sigma(G)$. By Proposition 2.3, for any $M \in \mathbb{Z}$ there exist $A_M, B_{0,M}, \ldots, B_{\sigma-2,M}$ such that the σ elements

$$x^{\rho_M} A_M, y^{\rho_M} B_{0,M}, \dots, (x^{\sigma-2}y)^{\rho_M} B_{\sigma-2,M}$$

pairwise generate $M^{t_M} \rtimes H^{\rho_M}$. Put

$$a = \prod_{M \in \mathcal{Z}} A_M$$
, and $b_i = \prod_{M \in \mathcal{Z}} B_{i,M}$

for all i such that $0 \le i \le \sigma - 2$. Finally consider the set

$$\Omega = \{xa, yb_0, xyb_1, \dots, x^{\sigma-2}yb_{\sigma-2}\}.$$

We claim that two distinct elements ω_1, ω_2 of Ω generate G. Indeed, take $M \in \mathcal{A}$. If G centralizes M, then $V \leq R_G(M)$, otherwise $M \in \mathcal{Z}$. In both cases $\langle \omega_1, \omega_2, R_G(M) \rangle = G$, hence, by Proposition 2.4, we have $\langle \omega_1, \omega_2 \rangle = G$. This proves Proposition 2.5.

We are now in the position to prove Theorem 1.1.

Let G be as in the statement of Theorem 1.1. If d(G) > 2, then $\Gamma(G)$ is the empty graph and so $\omega(G) = \chi(G) = 1$. So assume that $d(G) \le 2$. If the Frattini subgroup of G is denoted by $\operatorname{Frat}(G)$, then $\omega(G) = \omega(G/\operatorname{Frat}(G))$ and $\chi(G) = \chi(G/\operatorname{Frat}(G))$. Moreover, if G is non-cyclic, then $\sigma(G) = \sigma(G/\operatorname{Frat}(G))$. Hence we may assume that $\operatorname{Frat}(G) = 1$.

Let G be cyclic. Since $\operatorname{Frat}(G) = 1$, the cyclic group G is the direct product of say t cyclic groups of distinct prime orders. Let S be the set of generators of G. In the graph $\Gamma(G)$ every vertex in S is connected to every other vertex in $\Gamma(G)$. Thus, if $\Gamma(G) \setminus S$ denotes the graph obtained from $\Gamma(G)$ by removing all vertices from S together with all edges having an endpoint in S, then $\omega(G)$ equals the maximum size of a complete subgraph in the graph $\Gamma(G) \setminus S$ plus |S| and $\chi(G)$ equals the chromatic number of the graph $\Gamma(G) \setminus S$ plus |S|. Now G has t maximal subgroups each of which is cyclic. We may choose a generator from each of these maximal subgroups. Since any distinct pair of these elements generate G, we have a complete subgraph of size t in the graph $\Gamma(G) \setminus S$. On the other hand, the graph $\Gamma(G) \setminus S$ can be expressed as the union of t empty subgraphs (coming from the t maximal subgroups of G) hence it is t-colorable and so the chromatic number of $\Gamma(G) \setminus S$ is at most t. These observations yield $t + |S| \leq \omega(G) \leq \chi(G) \leq t + |S|$, hence $\omega(G) = \chi(G)$.

We may now also assume that d(G) = 2. Also, by Proposition 2.5, we assume that G is nilpotent. Then, since $\operatorname{Frat}(G) = 1$, we have $G = C \times N_{p_1} \times \ldots N_{p_t}$ for some positive integer t where $p_1 < \ldots < p_t$ are distinct primes, $N_{p_j} = C_{p_j} \times C_{p_j}$ for all j with $1 \leq j \leq t$, and C is a cyclic group that is a direct product of cyclic groups of prime orders different from p_j for j with $1 \leq j \leq t$. Let N be the normal subgroup of G for which $G/N \cong N_{p_1} = C_{p_1} \times C_{p_1}$. Then $\sigma(G) \leq \sigma(G/N) \leq p_1 + 1$. For each j with $1 \leq j \leq t$ let $a_{1,j}, a_{2,j}, \ldots, a_{p_1+1,j}$ be non-identity elements from N_{p_j} generating distinct cyclic subgroups in N_{p_j} . Let c be a generator from C. For any i with $1 \leq i \leq p_1 + 1$ let a_i be the element $(c, a_{i,1}, \ldots, a_{i,t})$ from G. Clearly, $\{a_1, \ldots, a_{p_1+1}\}$ spans a complete subgraph in $\Gamma(G)$. Hence $p_1 + 1 \leq \omega(G) \leq \sigma(G) \leq p_1 + 1$, that is, $\omega(G) = \sigma(G)$.

3. Direct products of non-abelian simple groups

In this section we prove Theorem 1.2.

Our first result (Proposition 3.1) was also proved (independently) by Abdollahi and Jafarian Amiri in [1].

Proposition 3.1. Let S be a non-abelian finite simple group. Then for any positive integer n we have $\sigma(S^n) = \sigma(S)$ where S^n denotes the direct product of n copies of S.

Proof. The inequality $\sigma(S^n) \leq \sigma(S)$ follows at once from the observation that if $\{M_i\}$ is a set of proper subgroups of S with $S = \bigcup_i M_i$ then $\{M_i \times S^{n-1}\}$ is a set of proper subgroups of S^n with $S^n = \bigcup_i (M_i \times S^{n-1})$.

Let $\{Y_1, \ldots, Y_{\tau}\}$ be a set of proper subgroups of S^n such that $S^n = \bigcup_{i=1}^{\tau} Y_i$. Suppose also that τ is as small as possible (that is $\tau = \sigma(S^n)$). Put $\sigma = \sigma(S)$. We need to show that $\sigma \leq \tau$.

We may assume that the Y_i 's are maximal subgroups of S^n . What are the maximal subgroups of S^n ? They are of the following two kinds:

- product type: $P_{M,i} = \{(x_1, \ldots, x_n) \in S^n \mid x_i \in M\}$, where M is a maximal subgroup of S;
- diagonal type: $D_{i,j,\phi} = \{(x_1, \dots, x_n) \mid x_j = x_i^{\phi}\}, \text{ where } \phi \in \operatorname{Aut}(S).$

Without loss of generality assume that Y_i is of product type if $i \leq a$ and Y_i is of diagonal type if $a < i \leq \tau$ for some non-negative integer a at most τ . We may assume that $a < \sigma$ for otherwise $\sigma \leq a \leq \tau$ in which case we are done.

Let I be the set of those indices i with $1 \leq i \leq n$ for which there exists a maximal subgroup M of S and an index j with $1 \leq j \leq a$ such that $Y_j = P_{M,i}$. For every $i \in I$ let \mathcal{M}_i be the set of those maximal subgroups M of S for which there exists an index j with $1 \leq j \leq a$ such that $Y_j = P_{M,i}$. Define $\Omega_i = S \setminus (\bigcup_{M \in \mathcal{M}_i} M)$. Note that Ω_i has cardinality at least $\sigma - a$. Now for each index j with $1 \leq j \leq n$, let Δ_j be a subset of S of cardinality $\sigma - a$ with the property that $\Delta_i \subseteq \Omega_i$ whenever $i \in I$. Consider the subset $\Gamma = \prod_{j=1}^n \Delta_j$ of S^n . Clearly $|\Gamma| = (\sigma - a)^n$. Since $\Gamma \cap (\bigcup_{j \leq a} Y_j) = \emptyset$, we must have $\Gamma \subseteq \bigcup_{j > a} Y_j$. Notice that $|M \cap \Gamma| \leq (\sigma - a)^{n-1}$ for any maximal subgroup of S^n of diagonal type. This means that Γ is a subset of no less than $\sigma - a$ maximal subgroups of diagonal type. Hence $\sigma - a \leq \tau - a$ which is exactly what we wanted. \Box

Let S be a non-abelian finite simple group. Define $\delta = \delta(S)$ to be the largest positive integer r such that S^r , the direct product of r copies of S can be generated by 2 elements. (The positive integer δ is well-defined. To see this first note that it is known that every non-abelian finite simple group can be generated by 2 elements. Also, for any positive integer d, the group S^r cannot be generated by d elements whenever r is larger than the number of $\operatorname{Aut}(S)$ -orbits on the set of d-tuples generating S. This latter claim follows from the combination of the definition of a maximal subgroup of product type and the Pigeonhole Principle.) Let us denote S^{δ} by G. (Actually, δ is equal to the number of $\operatorname{Aut}(S)$ -orbits on ordered pairs of generators for S, and for arbitrary elements $x = (x_1, \ldots, x_{\delta})$ and $y = (y_1, \ldots, y_{\delta})$ of G we have that $G = \langle x, y \rangle$ if and only if the pairs (x_i, y_i) are distinct representatives for these orbits for i with $1 \leq i \leq \delta$.)

Consider $A = \operatorname{Aut}(G) \cong \operatorname{Aut}(S) \wr \operatorname{Sym}(\delta)$ and let (x, y) be a fixed pair of generators for G with $x = (x_1, \ldots, x_{\delta})$ and $y = (y_1, \ldots, y_{\delta})$ where the x_i 's and y_i 's are elements of S. Since $\langle x, y \rangle = G$, the elements $(x_1, y_1), \ldots, (x_{\delta}, y_{\delta})$ form a set of representatives for the Aut(S)-orbits of the set of generating pairs for S. From this it is easy to see that G has the following relevant property: (\mathcal{P}) if $G = \langle \bar{x}, \bar{y} \rangle$ then there exists $a \in A$ with $(\bar{x}, \bar{y}) = (x^a, y^a)$.

Now we can define a graph Γ in which the set of vertices V is the set of all A-conjugates of x and two vertices \bar{x}_1 , \bar{x}_2 are connected by an edge if and only

if $G = \langle \bar{x}_1, \bar{x}_2 \rangle$. Note that Γ is obtained from $\Gamma(G)$ just by removing all isolated vertices. By property (\mathcal{P}) , the graph Γ is vertex-transitive and edge-transitive. Let $\alpha = |A|, C = C_A(x)$, and $\gamma = |C|$). The number of vertices in V is α/γ and the number of edges in Γ is $\alpha/2$ (since the action of A on the pairs of generators is regular and 2 in the denominator comes from the fact that the edges of Γ are unoriented).

In the remainder of this section we wish to give an upper bound for $\omega(G)$ which is precisely the clique number of Γ .

We will use Corollary 4 of [4] which states that if X is a clique and Y a coclique (an empty subgraph) in a vertex-transitive graph on m vertices, then $|X||Y| \le m$.

We also need a definition. Let s be an element of S and let $\omega(s)$ be the number of indices i with $1 \leq i \leq \delta$ such that x_i and s are Aut(S)-conjugate. We have $\omega(s) = \rho(s)/|C_{Aut(S)}(s)|$ where $\rho(s)$ is the number of elements t in S such that $\langle s,t \rangle = S$ (this is because for any t with $\langle s,t \rangle = S$ there exists a unique index i with $1 \leq i \leq \delta$ and a unique automorphism $a \in Aut(S)$ such that $(s^a, t^a) = (x_i, y_i)$).

Now take M a maximal subgroup of S and put

$$Y_M = \{ v = (z_1, \dots, z_{\delta}) \in V \mid \pi_1(v) = z_1 \in M \}$$

where π_1 is the natural projection from G to the first direct factor. Since Y_M is a coclique in Γ we have $\omega(G) \leq |V|/|Y_M|$.

For any $z \in M$ with $z \neq 1$ there exists a vertex v_z in V such that $\pi_1(v_z) = z$. (This follows from Corollary on page 745 of [7] which states that any non-trivial element of a finite almost simple group G belongs to a pair of elements generating at least the socle of G.) Other vertices v with the property that $\pi_1(v) = z$ can be obtained by conjugating v_z by automorphisms from the subgroup $\overline{A} \cong \operatorname{Aut}(S) \wr$ $\operatorname{Sym}(\delta - 1)$ of A. So if we define C_z to be $C_{\overline{A}}(v_z)$, then we obtain

$$\sum_{\substack{\in M, z \neq 1}} \frac{|A|}{|C_z|} \le |Y_M|$$

z

This implies

$$\omega(G) \le \frac{|V|}{\sum_{z \in M, z \neq 1} \frac{|\bar{A}|}{|C_z|}} = \left(\sum_{z \in M, z \neq 1} \frac{|\bar{A}||C|}{|A||C_z|}\right)^{-1}$$

Clearly $|A|/|\bar{A}| = \delta |\operatorname{Aut}(S)|$. Now assume that $\{u_1, \ldots, u_l\}$ is a set of representatives for the orbits of the action of $\operatorname{Aut}(S)$ on $S \setminus \{1\}$. For $C = C_A(x)$ we have

$$C \cong \prod_{i=1}^{\iota} C_{\operatorname{Aut}(S)}(u_i) \wr \operatorname{Sym}(\omega(u_i)).$$

On the other hand, if $z \in u_j^{\operatorname{Aut}(S)}$, we have

$$C_z \cong \left(\prod_{i \neq j} C_{\operatorname{Aut}(S)}(u_i) \wr \operatorname{Sym}(\omega(u_i))\right) \times \left(C_{\operatorname{Aut}(S)}(u_i) \wr \operatorname{Sym}(\omega(u_i) - 1)\right).$$

It follows that $|C|/|C_z| = |C_{\operatorname{Aut}(S)}(z)| \cdot \omega(z) = \rho(z)$ and

$$\omega(G) \le \left(\sum_{z \in M, z \neq 1} \frac{\rho(z)}{|\operatorname{Aut}(S)|\delta}\right)^{-1}.$$

Note that $|\operatorname{Aut}(S)|\delta$ is the number of ordered pairs (s,t) generating S, while $\sum_{z \in M, z \neq 1} \rho(z)$ is the number of ordered pairs (s,t) generating S such that $s \in M$.

9

So if we define P_M to be the conditional probability that $(s,t) \in M \times S$ given that $\langle s,t \rangle = S$, then $\omega(G) \leq 1/P_M$. We may also write P_M in the form

$$P_M = \frac{P(\langle x, y \rangle = S \mid x \in M) \cdot P(x \in M)}{P(\langle x, y \rangle = S)} \ge P(\langle x, y \rangle = S \mid x \in M) \cdot \frac{|M|}{|S|}$$

where $Q_M = P(\langle x, y \rangle = S \mid x \in M)$ is the conditional probability that the ordered pair (x, y) generates S given that $x \in M$, where $P(x \in M) = |M|/|S|$ is the probability that $x \in M$ and where $P(\langle x, y \rangle = S)$ is the probability that the ordered pair (x, y) generates S. Clearly, $\omega(G) \leq 1/P_M \leq |S:M|/Q_M$. We need a lower bound for Q_M . In what follows m(S) denotes the minimal index of a proper subgroup in S.

Proposition 3.2. Let $M \leq S$ with |S:M| = m(S). Then $1 - O(m(S)^{-1/15}) \leq Q_M$. Moreover if S = Alt(n), then $1 - O(n^{-1}) \leq Q_M$.

Proof. If $(m, s) \in M \times S$, then $(m, s) \neq S$ if and only if $(m, s) \in (K \cap M) \times K$ for some maximal subgroup K of S. This allows us to deduce

$$1 - \sum_{K} \frac{1}{|S:K||M:K \cap M|} \le Q_M$$

where K runs through the set of maximal subgroups of S.

Now use the notations of Section 6 of [8]. There exist positive real numbers δ and b with $\delta > 1$ such that the set \mathcal{A} of maximal subgroups whose index is smaller than $b \cdot m(S)^{\delta}$ is known (and $|\mathcal{A}|$ is "small"). The values of δ and b together with the description of \mathcal{A} is given in [8] when S is a simple group of Lie type. If S = Alt(n) and n is large enough, then any subgroup of Alt(n) different from a point-stabilizer has index at least n(n-1)/2, so for any δ with $1 < \delta \leq 2$ there exists b > 0 with the property that any maximal subgroup of Alt(n) with index smaller than $b \cdot n^{\delta}$ is a point-stabilizer. By [8], we may take $\delta = 16/15$ if S is a group of Lie type, and, by the remarks above, we may take $\delta = 2$ if S is an alternating group. Let \mathcal{B} be the set of those maximal subgroups of S which do not belong to \mathcal{A} . Note that

$$\frac{1}{|S:K||M:K\cap M|} \le \frac{m(S)}{|S:K|^2}.$$

We will make use of the identity

$$\sum_{K\in\mathcal{B}}|S:K|^{-2}=O(m(S)^{-\delta})$$

which, for exceptional groups S of Lie type, is found in line -2 of the proof of Lemma 6.7 in [8], and which, for classical groups S, follows from Theorem 3.1 of [9] by noting that we may replace 2 by δ since $\delta \leq 2$. This implies

$$\sum_{K \in \mathcal{B}} |S:K|^{-1} |M:K \cap M|^{-1} = O(m(S)^{-\delta+1}).$$

Hence

$$1 - \sum_{K \in \mathcal{A}} \frac{1}{|S:K||M:K \cap M|} - O(m(S)^{-\delta+1}) \le Q_M.$$

Now let $\{K_1, \ldots, K_t\}$ be a set of representatives for the S-conjugacy classes of all members of \mathcal{A} . For every i with $1 \leq i \leq t$ let s_i be the number of M-orbits on the coset space $(S : K_i)$. Note (see the proof of Lemma 6.10 in [8]) that for every i with $1 \leq i \leq t$ we have

$$\sum_{K \in K_i^G} \frac{1}{|S:K| |M:K \cap M|} = \frac{s_i}{|S:K_i|} \le \frac{s_i}{m(S)}.$$

We conclude that

(2)
$$1 - \sum_{i=1}^{t} \frac{s_i}{m(S)} - O(m(S)^{-\delta+1}) \le Q_M$$

We now have to show that $\sum_{i=1}^{t} s_i$ is "small". If S is a group of Lie type, then, by [8], $t \leq 3$ and either $s_i \leq 3$ for all i with $1 \leq i \leq t$ or $S = P\Omega_{2m}^{\pm}(q)$ in which case there exists a constant c_1 such that $s_i \leq c_1 q$ for all i with $1 \leq i \leq t$ (see the last part of the proof of Lemma 6.7 in [8]). Finally, if S = Alt(n) and $n \neq 6$, then t = 1 and s_1 is the number of orbits of the point-stabilizer M on the coset space $(S : K_1)$ where K_1 is another point-stabilizer. In this case $s_1 = 2$ since Alt(n) is 2-transitive. By these remarks and by inequality (2), we get

$$1 - O(m(S)^{-\delta+1}) \le Q_M$$

which is exactly what we wanted.

By the inequality $\omega(G) \leq |S: M|/Q_M$ and by Proposition 3.2, we conclude that $\omega(G) \leq m(S) + O(m(S)^{14/15})$ if S is a finite simple group of Lie type and $\omega(G) \leq m(S) + O(1)$ otherwise. Now let S = Alt(n). Then, by [11], we have $2^{n-2} \leq \sigma(S)$ unless n = 7 or 9. Hence, by Proposition 3.1, $2^{n-2} \leq \sigma(G)$ unless n = 7 or 9. From this it follows that $\omega(G)/\sigma(G) \leq (n + O(1))/2^{n-2}$. The proof of Theorem 1.2 is now complete.

References

- Abdollahi, A.; Jafarian Amiri, S. M. Minimal coverings of completely reducible groups. *Publ. Math. Debrecen* 72/1-2 (2008), 167-172.
- [2] Aschbacher, M.; Guralnick, R. M. Some applications of the first cohomology group. J. Algebra, 90 (1984), 446–460.
- [3] Blackburn, S. Sets of permutations that generate the symmetric group pairwise. J. Combin. Theory Ser. A 113 (2006), no. 7, 1572-1581.
- [4] Cameron, P. J.; Ku, C. Y. Intersecting families of permutations. European J. Combin. 24 (2003), no. 7, 881–890.
- [5] Detomi, E.; Lucchini, A. Crowns and factorization of the probabilistic zeta function of a finite group. J. Algebra, 265 (2003), no. 2, 651–668.
- $[6]\,$ Gaschütz, W. Praefrattini
gruppen. Arch. Mat. 13 (1962) 418–426.
- [7] Guralnick, R. M.; Kantor, W. M. Probabilistic generation of finite simple groups. Special issue in honor of Helmut Wielandt. J. Algebra 234 (2000), no. 2, 743–792.
- [8] Liebeck, M. W.; Shalev, A. Simple groups, probabilistic methods, and a conjecture of Kantor and Lubotzky. J. Algebra 184 (1996), no. 1, 31–57.
- [9] Liebeck, M. W.; Shalev, A. Classical groups, probabilistic methods, and the (2,3)-generation problem. Ann. of Math. (2) 144 (1996), no. 1, 77–125.
- [10] Lucchini, A.; Maróti, A. On finite simple groups and Kneser graphs. J. Algebraic Combin. to appear.
- [11] Maróti, A. Covering the symmetric groups with proper subgroups. J. Combin. Theory Ser. A 110 (2005), no. 1, 97–111.
- [12] Robinson, D. J. S. A course in the theory of groups. Graduate Texts in Mathematics, 80 Springer-Verlag, New York, 1993.
- [13] Saxl, J.; Seitz, G. Subgroups of algebraic groups containing regular unipotent elements. J. London Math. Soc. II. Ser. 55, No. 2. (1997), 370-386.
- [14] Tomkinson, M. J. Groups as the union of proper subgroups. Math. Scand. 81, (1997), 191-198.

Andrea Lucchini, Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova, Italy. E-mail address: lucchini@math.unipd.it

Attila Maróti, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda utca 13-15, H-1053, Budapest, Hungary. E-mail address: maroti@renyi.hu and

ON THE CLIQUE NUMBER OF THE GENERATING GRAPH OF A FINITE GROUP 11

Department of Mathematics, University of Southern California, Los Angeles, CA 90089-1113, U.S.A. E-mail address: maroti@usc.edu