ON THE CLIQUE NUMBER OF THE GENERATING GRAPH OF
A FINITE GROUP

ANDREA LUCCHINI AND ATTILA MAROTI

ABSTRACT. The generating graph I'(G) of a finite group G is the graph defined
on the elements of G with an edge connecting two distinct vertices if and only
if they generate G. The maximum size of a complete subgraph in I'(G) is
denoted by w(G). We prove that if G is a non-cyclic finite group of Fitting
height at most 2 that can be generated by 2 elements, then w(G) = ¢+ 1
where ¢ is the size of a smallest chief factor of G which has more than one
complement. We also show that if S is a non-abelian finite simple group and
G is the largest direct power of S that can be generated by 2 elements, then
w(G) < (14 o(1))m(S) where m(S) denotes the minimal index of a proper
subgroup in S.

1. INTRODUCTION

The generating graph I'(G) of a finite group G is the graph defined on the ele-
ments of G with an edge connecting two distinct vertices if and only if they generate
G. By the solution of Dixon’s conjecture, it is known that I'(S) has “many” edges
for S a non-abelian finite simple group. In particular, Liebeck and Shalev [8] proved
that there exists a universal positive constant ¢ such that the maximal size of a com-
plete subgraph in I'(S) is at least ¢ - m(S) where m(S) is the minimal index of a
proper subgroup in S. This result, in general, is best possible. Indeed, by a result
of Saxl and Seitz [13], the group S = Sps,(2) is the union of all conjugates of the
maximal subgroups O (2) and O, (2), and so w(S) < 22" = (2 + o(1))m(9).

This result of Liebeck and Shalev together with the above-mentioned remark on
the symplectic group justifies the following definitions. For a finite group G let the
maximum size of a complete subgraph in I'(G) be denoted by w(G). For a non-cyclic
finite group G let o(G) denote the least number of proper subgroups of G whose
union is G. Clearly, w(G) < o(G). Moreover, if x(G) denotes the chromatic number
of T'(G) (that is, the least number of colors needed to color the vertices of I'(G) in
such a way that the endpoints of each edge receive different colors), then we also
have w(G) < x(G) < o(G) where the second inequality follows from the fact that
I'(G) is o(G)-colorable since its vertex set is the union of ¢(G) empty subgraphs.

The function ¢ has been much investigated. For example, for a finite solvable
group G Tomkinson [14] showed that o(G) = ¢+ 1 where ¢ is the minimal size of a
chief factor of G having more than one complement. Our first result is

Theorem 1.1. Let G be a finite group with Fitting height at most 2. Then w(G) =
X(G). Moreover, if the minimal number of generators of G is 2, then w(G) = o(G).

It is not known whether the conclusions of Theorem 1.1 are true for an arbitrary
finite solvable group G. Blackburn [3] showed that w(Sym(n)) = o(Sym(n)) = 2271
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for n a sufficiently large odd positive integer, and also that w(Alt(n)) = o(Alt(n)) =
282 for n a sufficiently large even integer not divisible by 4. However, by [10], there
are infinitely many non-abelian finite simple groups S with w(S) < x(5) < o(95).

Still w(S) and o (S) do not seem to be “far apart” for a non-abelian finite simple
group S. In fact, Blackburn [3] asked whether w(S)/o(S) tends to 1 as the size of
the non-abelian finite simple group .S tends to infinity. Our second result shows that
there is an infinite sequence of 2-generated finite groups G such that w(G)/o(G)
tends to 0 as the size of G tends to infinity.

Theorem 1.2. Let S be a non-abelian finite simple group, let m(S) be the minimal
index of a proper subgroup in S and let G be the largest direct power of S that can
be generated by 2 elements. Then w(G) < m(S) + O(m(S)14/15) if S is a group
of Lie type and w(G) < m(S) + O(1) otherwise. In particular, if S = Alt(n) then
w(@)/o(G) < (n+0(1)) /272

2. GROUPS OF FITTING HEIGHT AT MOST 2

In this section we prove Theorem 1.1.

Let V be a finite dimensional vector space over a finite field of prime order. Let
H be a linear solvable group acting irreducibly and faithfully on V. Suppose that H
can be generated by 2 elements. For a positive integer ¢ we consider the semidirect
product G = V* x H where H acts in the same way on each of the ¢ direct factors.
We would like to derive some information about w(G). Put F' = Endg (V).

Proposition 2.1. Assume H = (z,y) and let (uq,...,u), (w1,...,wy) € V. The
following are equivalent.

(]) G# <x(u17"'7ut)7y(w17”~»wt)>;
(2) there exist Ai,..., A\t € F and w € V with (Ay,...,A\,w) # (0,...,0,0)
such that Y-, Niu; = w —wx and Y, \jw; = w — wy.

Proof. Let a = x(uy,...,u), b = y(wy,...,wy), K = {(a,b). First we prove,
by induction on ¢, that if K # G then (2) holds. Let a = z(uq,...,ut—1,0),
b = y(wi,...,w;_1,0), K = (a,b). If K 2 V'"1H, then, by induction, there
exist A\1,...,\—1 € F and w € V with (Aq,...,A—1,w) # (0,...,0,0) such
that Y . Au; = w —wx and ), \jw; = w — wy. In this case Ai,...,\—1,0
and w are the requested elements. So we may assume K = VI~'H. Set V, =
{(0,...,0,v) | v € V}. We have KV; = KV; = G and K # G; this implies
that K is a complement of V; in G and therefore there exists 6 € Der(K, Vy)
such that 6(a) = u; and d(b) = w;. However, by Propositions 2.7 and 2.10 of
[2], we have H}(K, V) = F'=1. More precisely if § € Der(K, V), then there ex-
ist an inner derivation &,, € Der(H,V) and Aq,..., \;—1 € F such that for each
g(vi,...,v4-1,0) € K we have 6(g(v1,...,v;-1,0)) = 0 (g)+ X101+ -+ X101 =
wg —w+ A\vy + -+ 101 In particular uy = wr —w 4+ Ajug + -+ AN_1up—
and w; = wxr — w4+ Awy + -+ N qWi_1.

Conversely, if (2) holds then (h(vi,...,v:) | w — wh = Aoy + -+ Moy) s a
proper subgroup of G containing K. O

Let n be the dimension of V over F'. We may identify H = (z,y) with a subgroup
of GL(n, F'). In this identification = and y become two n X n matrices X and YV
with coefficients in F. Let (u1,...,ut), (wi,...,wt) € V. Then every u; and w;
can be viewed as a 1 x n matrix. Denote the ¢ X n matrix with rows uy,...,u;
(resp. wi,...,w;) by A (resp. B). By Proposition 2.1, the elements x(uq,...,u:),



ON THE CLIQUE NUMBER OF THE GENERATING GRAPH OF A FINITE GROUP 3

y(wi, ..., w;) generate a proper subgroup of G if and only if there exists a non-zero
vector (i, ..., Agj i1, -« - fn) in F¥™ such that

()‘17~--7)‘t)A: (:u’halj/n)(l_X)
ALy s M) B = (p1, -, o) (L =Y)

This is equivalent to saying that there exist elements X and Y in G such that
(X,Y) = G with the property that X maps to z and Y maps to y under the
projection from G to H if and only if there exist ¢ X n matrices A and B with

(1) rank (1 le 1 BY) =n-+t

(From this it immediately follows that G' cannot be generated by 2 elements if ¢ > n
(hence w(G) =1 in this case). Notice also that if X and Y are two n X n matrices
generating the matrix group H, then the linear map a : F" — F" X F™, w —
(w(l—X),w(1-Y)) is injective (if w € ker o then wX = wY = w against the fact
that X and Y generate a non-trivial irreducible group); the matrix (1 -X 1- Y)
has rank n, and so it is possible to find A and B satisfying (1) whenever ¢ < n.
Hence 3 < w(V"™ x H) < w(G) whenever t < n. The case t = n is of special
importance. In this case our observations yield

Proposition 2.2. Let t =n. Assume that X1, ..., X, pairwise generate H. Then
there exist elements X1, ..., X, pairwise generating G (so that for all i with 1 <
i < w the element X; is the projection of X; under the projection from G to H)
if and only if there exist n X n matrices Aq,..., A, such that for all i and j with

1<i<j <w we have
1-X; 1-X;
det( A; A, )7&0

(From now on let H be a nilpotent finite group that can be generated by 2
elements with an irreducible (but not necessarily faithful) action p : H — GL(V).
Let F = Endy (V) and let n = dimp(V). The Sylow subgroups of H are either
cyclic or non-cyclic and 2-generated. Let m; be the set consisting of those prime
divisors of |H| whose corresponding Sylow subgroups are not cyclic, and let w3 be
the set of all other prime divisors of |H|. Let p be the smallest prime in 7;. (If
71 = 0 then set p = c0.) We can find two generators x and y of H such that |z| is
divisible only by primes in m (if 73 = () we take z = 1.) Let X = 2, Y = y”, and
u = min(p, |V]). Clearly o(Vt x H?) < u+ 1.

Proposition 2.3. With the notations and assumptions above we have w(Vix HP) =
u+1ift <n and w(V' x H?) =1 otherwise.

Proof. By our observations above, to prove Proposition 2.3, it is sufficient to show
that v + 1 < w(V™ x H?). To see this it is sufficient to verify that there exist A,
By, ...,B,_1 € V" such that the elements X, Y By, XY By, X?YB,,...,X* 'YB,_;
pairwise generate V'™ x H”.

We need to consider two different cases.
Case 1: X # 1.
Notice that Z(H?) < (Endg(V))*, hence Z(HP”) is a subgroup of F*. This implies
e | X| divides |F| — 1 (in particular p < |F| — 1);

e for any h € H, V is a completely reducible (h)-module (indeed any prime
divisor of |H”| divides |Z(HP")|, hence it is coprime with |F|).



4 ANDREA LUCCHINI AND ATTILA MAROTI

The second remark implies that we may write z in the form

10
(0 ¢)
where 1 denotes the identity ¢ x ¢ matrix for some non-negative integer ¢ with

¢ < nand C is an invertible (n — £) x (n — £) matrix which does not admit 1 as an
eigenvalue. Decompose Y and 1 — Y as block-matrices in the following way:

-2

_(Th—Y
1Y<E_B>
where Y7 and T7 — Y7 denote the matrices consisting of the first £ rows of Y and

1-Y respectively and Y5 and 75 —Y5 denote the matrices consisting of the remaining
rows of Y and 1 — Y respectively. Since

and

_ 0 i —-Y1\
rank(l — X 1Y)rank<1_c T2_Y2)n

we deduce that rank(Ty —Y7) = £. Let D be an (n — £) x n matrix such that

det (Tl l_)Yl) # 0.
By Theorem 2.2, we look for A, By, ..., B,_1 such that

1-X 1-X"Y 1-X"Y 1-X°Y
det ( A B, ) #0 and det < B, B, ) #0
for all » and s such that 0 <r < s < p— 1. Since p divides |F| — 1, there exist p

pairwise distinct elements by, ...,b,—1 € F'*. Consider the following p x p matrices:

(10 (7
= o) 2= ()

for all 4 with 0 < i < p—1 where 1 in the definition of A denotes the ¢ x ¢ identity

matrix. We prove that A, By, ..., B,_1 are the matrices we are looking for. Notice
that
ryo__ Yl

XY(WE»
hence

0 0 -1

1-X 1-X"Y\ 0 1-C * B n—"
det( A B ) = det 1 0 3 =+ det(1-C) det( D ) # 0.
0

On the other hand, if r # s, then
det<1_XY 1-X Y)—det(l_X Y XY -X Y)_

B’I‘ BS B’r BS - B’I‘
T —Y; 0
* (CT*CS)YQ _ T1 *Yl (CT*CS)}/Q _
det bYi (bs—b)Y: | = det ( D ) det < (b —b))V1 )
D 0
_ T s Tl - Yl Y2
= (bs — by) det(C" — C®) det ( D > det <Y1>

which is non-zero if and only if det(C" —C*®) = det(C"(1—C*~")) # 0. To show that
the matrix 1 — C*®~" is non-singular it is sufficient to see that 1 is not an eigenvalue
of C*~". Since V is a completely reducible F(X)-module, C can be diagonalised
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over a suitable field extension of F'. Let (3 be an arbitrary eigenvalue of C*~". Then
B =~°"" for some eigenvalue v of C'. Now -~ is different from 1 by our choice of C.
Finally since 0 < s —r < p and since no prime smaller than p divides | X| we see
that v*~" cannot be 1. This settles Case 1.

Case 2: X =1.

In this case H? = (Y) is a cyclic group and V is an absolutely irreducible F'H-
module. Hence V= F and n = 1. We have u < [F| and if 0 # A € V and
By, By, ...,B,_1 are distinct elements of V then, by Proposition 2.1, A, Y By,
Y Bi,...,YB, 1 pairwise generate V' x H”. This proves Proposition 2.3. O

Let G be a finite solvable group, and let A be a set of representatives for the
irreducible G-groups that are G-isomorphic to a complemented chief factor of G.
For A € Alet Rg(A) be the smallest normal subgroup contained in Cg(A) with the
property that Co(A)/Rg(A) is G-isomorphic to a direct product of copies of A and
it has a complement in G/Rg(A). The factor group Cg(A)/Ra(A) is called the A-
crown of G. The non-negative integer dg(A) defined by Ce(A)/Rg(A) =g A%
is called the A-rank of G and it coincides with the number of complemented factors
in any chief series of G that are G-isomorphic to A. If 6g(A) # 0, then the A-crown
is the socle of G/Rg(A). The notion of crown was introduced by Gaschiitz in [6].

Proposition 2.4. Let G and A be as above. Let x1,...,x, be elements of G such
that (z1,...,2y, Ra(A)) =G for any A € A. Then (x1,...,2,) = G.

Proof. Let H = (21, ...,x,) and suppose that HRg(A) = G for any A € A. There
exists a normal subgroup N of G of minimum order with respect to the property
HN = G. Assume by contradiction that N # 1 and choose M such that A = N/M
is a chief factor of G. Since HM # G, we have that A is a complemented chief
factor and (HM/M)(Rg(A)M/M) =G/M = (HM/M)(N/M). By Proposition 11
of [5] and the fact that Rg/ar(A) = Rg(A)M/M, we deduce HM = G, against the
choice of N. (]

Let d(X) denote the minimal number of generators of the finite group X.

Proposition 2.5. Let G be a finite group of Fitting height equal to 2. If d(G) = 2,
then w(G) = o(Q).

Proof. Clearly we may assume that the Frattini subgroup Frat(G) of G is trivial.
Then the Fitting subgroup Fit(G) coincides with the direct product of the minimal
normal subgroups of G (see [12, 5.2.15]). Let V' be the subgroup of Fit(G) generated
by the non-central minimal normal subgroups of G. Now V is an abelian normal
subgroup of a finite group with trivial Frattini subgroup, so V' is complemented in
G (see [12, 5.2.13]). So we have that G =V x H for some nilpotent group H with
d(H) < 2. Let Z be the set of G-irreducible modules G-isomorphic to some factor of
V. We have that V' = [],,cz Vi, where Vi is the product of the minimal normal
subgroups G-isomorphic to M. If M € Z and pys : H — GL(M) is the action of
H on M, then Rg(M) = CH(M) X HLEZ,L;HM Vi, and G/Rg(M) > Vy x HPM =
Mt x HPM for some positive integer tys. Notice that d(M™ x HPM) < 2 for all
MeZ.

For the finite nilpotent group H choose p, x, and y as in the preceding paragraph
of the statement of Proposition 2.3. Put 7 = minpez{|M|}. (Note that Z # 0
for otherwise V' =1 and G = H is nilpotent.) Then ¢(G) = 1 + min{7,p}. Put
o = o(G). By Proposition 2.3, for any M € Z there exist Anr,Bon,-- -, Bo—o,m
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such that the o elements
xPM AM) pr BO,Ma ey (xa—Qy)pM BU*Q,M

pairwise generate MM x HPM . Put

a = H AM, and bi: H Bi,M

MeZ Mez
for all ¢ such that 0 < ¢ < o — 2. Finally consider the set

Q = {xa,ybo, xyby, ..., 17 2yby_o}.

We claim that two distinct elements wy,ws of ) generate G. Indeed, take M €
A. If G centralizes M, then V' < Rg(M), otherwise M € Z. In both cases
(w1,wa, Re(M)) = G, hence, by Proposition 2.4, we have (w1,ws) = G. This
proves Proposition 2.5. |

We are now in the position to prove Theorem 1.1.

Let G be as in the statement of Theorem 1.1. If d(G) > 2, then I'(G) is the empty
graph and so w(G) = x(G) = 1. So assume that d(G) < 2. If the Frattini subgroup
of G is denoted by Frat(G), then w(G) = w(G/Frat(G)) and x(G) = x(G/Frat(G)).
Moreover, if G is non-cyclic, then o(G) = o(G/Frat(G)). Hence we may assume
that Frat(G) = 1.

Let G be cyclic. Since Frat(G) = 1, the cyclic group G is the direct product of
say t cyclic groups of distinct prime orders. Let S be the set of generators of G. In
the graph I'(G) every vertex in S is connected to every other vertex in I'(G). Thus,
it I'(G) \ S denotes the graph obtained from I'(G) by removing all vertices from S
together with all edges having an endpoint in S, then w(G) equals the maximum
size of a complete subgraph in the graph I'(G) \ S plus |S| and x(G) equals the
chromatic number of the graph I'(G) \ S plus |S|. Now G has ¢t maximal subgroups
each of which is cyclic. We may choose a generator from each of these maximal
subgroups. Since any distinct pair of these elements generate G, we have a complete
subgraph of size ¢ in the graph I'(G) \ S. On the other hand, the graph T'(G) \ S
can be expressed as the union of ¢ empty subgraphs (coming from the ¢ maximal
subgroups of G) hence it is ¢-colorable and so the chromatic number of T'(G) \ S
is at most ¢. These observations yield ¢ + |S| < w(G) < x(G) < t + |S], hence
w(G) = X(G).

We may now also assume that d(G) = 2. Also, by Proposition 2.5, we assume
that G is nilpotent. Then, since Frat(G) = 1, we have G = C x N, x ... N, for
some positive integer ¢ where p; < ... < p; are distinct primes, N,, = Cp. x Cp,
for all 7 with 1 < j <, and C is a cyclic group that is a direct product of cyclic
groups of prime orders different from p; for j with 1 < j <t¢. Let N be the normal
subgroup of G for which G/N = N,, = Cp,, x Cp,. Then o(G) < ¢(G/N) < p; + 1.
For each j with 1 < j <t let a1;,a2,;,...,ap,+1,; be non-identity elements from
Np, generating distinct cyclic subgroups in Ny, . Let ¢ be a generator from C. For
any ¢ with 1 <4 < p; +1 let a; be the element (c,a;1,...,a;:) from G. Clearly,
{a1,...,ap,+1} spans a complete subgraph in I'(G). Hence p1 +1 < w(G) < 0(G) <
p1 + 1, that is, w(G) = o(G).

3. DIRECT PRODUCTS OF NON-ABELIAN SIMPLE GROUPS

In this section we prove Theorem 1.2.

Our first result (Proposition 3.1) was also proved (independently) by Abdollahi
and Jafarian Amiri in [1].
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Proposition 3.1. Let S be a non-abelian finite simple group. Then for any positive
integer n we have o(S™) = o(S) where S™ denotes the direct product of n copies of

S.

Proof. The inequality o(S™) < o(S) follows at once from the observation that if
{M;} is a set of proper subgroups of S with S = U;M; then {M; x S"~ 1} is a set
of proper subgroups of S™ with S™ = U;(M; x S"~1).

Let {Y7,...,Y;} be a set of proper subgroups of S™ such that S™ = U_,Y;.
Suppose also that 7 is as small as possible (that is 7 = ¢(S™)). Put o = o(5). We
need to show that o < 7.

We may assume that the Y;’s are maximal subgroups of S™. What are the
maximal subgroups of S™? They are of the following two kinds:

o product type: Pa; = {(x1,...,2,) € S™ | x; € M}, where M is a maximal
subgroup of S;
e diagonal type: D; ;s = {(x1,...,2n) | z; = 27}, where ¢ € Aut(S).

Without loss of generality assume that Y; is of product type if i < a and Y; is
of diagonal type if a < i < 7 for some non-negative integer a at most 7. We may
assume that a < o for otherwise 0 < a¢ < 7 in which case we are done.

Let I be the set of those indices 7 with 1 < ¢ < n for which there exists a maximal
subgroup M of S and an index j with 1 < j < a such that Y; = Py ;. For every
i € I let M; be the set of those maximal subgroups M of S for which there exists
an index j with 1 < j < a such that Y; = Py,;. Define Q; = S\ (Uprenm, M). Note
that €2; has cardinality at least ¢ — a. Now for each index j with 1 < j < n, let
Aj be a subset of S of cardinality o — a with the property that A; C €; whenever
i € I. Consider the subset T' = [[7_; A; of S". Clearly |I| = (¢ —a)". Since
I'N(Uj<qY;) = 0, we must have I' C U;5,Y;. Notice that [M NT| < (o — a)" " for
any maximal subgroup of S™ of diagonal type. This means that I' is a subset of no
less than ¢ — @ maximal subgroups of diagonal type. Hence ¢ — a < 7 — a which is
exactly what we wanted. |

Let S be a non-abelian finite simple group. Define § = 6(5) to be the largest
positive integer r such that S™, the direct product of r copies of S can be generated
by 2 elements. (The positive integer 0 is well-defined. To see this first note that it is
known that every non-abelian finite simple group can be generated by 2 elements.
Also, for any positive integer d, the group S” cannot be generated by d elements
whenever r is larger than the number of Aut(S)-orbits on the set of d-tuples gen-
erating S. This latter claim follows from the combination of the definition of a
maximal subgroup of product type and the Pigeonhole Principle.) Let us denote
S° by G. (Actually, § is equal to the number of Aut(S)-orbits on ordered pairs of
generators for S, and for arbitrary elements x = (x1,...,2s) and y = (y1,...,ys) of
G we have that G = (z,y) if and only if the pairs (z;,y;) are distinct representatives
for these orbits for ¢ with 1 <14 <§.)

Consider A = Aut(G) = Aut(S) 1 Sym(d) and let (z,y) be a fixed pair of gen-
erators for G with x = (21,...,2s) and y = (y1,...,ys) where the x;’s and y;’s
are elements of S. Since (x,y) = G, the elements (x1,y1), ..., (x5, ys) form a set of
representatives for the Aut(S)-orbits of the set of generating pairs for S. From this
it is easy to see that G has the following relevant property: (P) if G = (Z,y) then
there exists a € A with (z,y) = (z%,y*).

Now we can define a graph I' in which the set of vertices V' is the set of all
A-conjugates of = and two vertices T1, To are connected by an edge if and only
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if G = (%1,%2). Note that I' is obtained from I'(G) just by removing all isolated
vertices. By property (P), the graph T is vertex-transitive and edge-transitive. Let
a = |A], C = Cx(x), and v = |C]). The number of vertices in V is a/y and
the number of edges in T" is /2 (since the action of A on the pairs of generators
is regular and 2 in the denominator comes from the fact that the edges of I' are
unoriented).

In the remainder of this section we wish to give an upper bound for w(G) which
is precisely the clique number of T'.

We will use Corollary 4 of [4] which states that if X is a clique and Y a coclique
(an empty subgraph) in a vertex-transitive graph on m vertices, then | X||Y| < m.

We also need a definition. Let s be an element of S and let w(s) be the number
of indices ¢ with 1 < ¢ < § such that x; and s are Aut(S)-conjugate. We have
w(s) = p(5)/|Caut(s)(s)] where p(s) is the number of elements ¢ in S such that
(s,t) = S (this is because for any ¢t with (s, t) = S there exists a unique index ¢ with
1 <i <4 and a unique automorphism a € Aut(S) such that (s*,t*) = (x;,y;))-

Now take M a maximal subgroup of S and put
Yuy={v=_(21,...,25) €V |m(v) =2 € M}

where 7 is the natural projection from G to the first direct factor. Since Y); is a
coclique in I' we have w(G) < |V|/|Ym|.

For any z € M with z # 1 there exists a vertex v, in V such that 7 (v,) = z.
(This follows from Corollary on page 745 of [7] which states that any non-trivial
element of a finite almost simple group G belongs to a pair of elements generating
at least the socle of G.) Other vertices v with the property that m(v) = z can
be obtained by conjugating v, by automorphisms from the subgroup A = Aut(S)?
Sym(d — 1) of A. So if we define C, to be C5(v.), then we obtain

y A
< |Yum|.
o =

zEM,z#1
This implies
-1
Vi AllC]
S it WP DR ex
ZzeM,z;él IC-] 2EM,z#1 z

Clearly |A|/|A| = 6|Aut(S)|. Now assume that {uj,...,u;} is a set of representa-
tives for the orbits of the action of Aut(S) on S\ {1}. For C = C4(x) we have
!
C = H CAut(S) (uz) i Sym(w(uz))
i=1

Aut(S)

On the other hand, if z € u; , we have

C 2 | [ Caueesy(ui) 1Sym(w(ui)) | x (Causcs) (i) 2 Sym(w(u;) — 1)) .
i#]
It follows that |C|/|C.| = [Caus)(2)| - w(z) = p(z) and

-1

p(z)
G) < —_—t
“@<| > [Aut(S)[0
zeEM,z#1
Note that |Aut(S)|d is the number of ordered pairs (s,t) generating S, while
p(z) is the number of ordered pairs (s,t) generating S such that s € M.
zEM,z#1
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So if we define Py to be the conditional probability that (s,t) € M x S given that
(s,t) =5, then w(G) < 1/Pp;. We may also write Py in the form

P({x,yy=S|ze M) -Plx e M) . M|

where Qp = P({z,y) = S | € M) is the conditional probability that the ordered
pair (z,y) generates S given that € M, where P(z € M) = |M|/|S| is the proba-
bility that € M and where P((z,y) = S) is the probability that the ordered pair
(x,y) generates S. Clearly, w(G) < 1/Pp < |S: M|/Qn. We need a lower bound
for Qpr. In what follows m(S) denotes the minimal index of a proper subgroup in

S.

Proposition 3.2. Let M < S with |S : M| = m(S). Then1-O(m(S)~Y/15) < Q.
Moreover if S = Alt(n), then 1 —O(n™') < Q.

M
Py = | M|

Proof. If (m,s) € M x S, then {(m,s) # S if and only if (m,s) € (KN M) x K for
some maximal subgroup K of S. This allows us to deduce

1
1- <
;|S:K|\M:KDM\—QM

where K runs through the set of maximal subgroups of S.

Now use the notations of Section 6 of [8]. There exist positive real numbers ¢ and
b with § > 1 such that the set A of maximal subgroups whose index is smaller than
b-m(S)° is known (and |A| is “small”). The values of § and b together with the
description of A is given in [8] when S is a simple group of Lie type. If S = Alt(n)
and n is large enough, then any subgroup of Alt(n) different from a point-stabilizer
has index at least n(n — 1)/2, so for any § with 1 < § < 2 there exists b > 0 with
the property that any maximal subgroup of Alt(n) with index smaller than b-n? is
a point-stabilizer. By [8], we may take § = 16/15 if S is a group of Lie type, and,
by the remarks above, we may take § = 2 if S is an alternating group. Let B be the
set of those maximal subgroups of S which do not belong to .A. Note that

1 < m(S)
|IS:K||[M:KnM| ~ |S:K|?*
We will make use of the identity

D IS K[ =0(m(S)"°)

KeB

which, for exceptional groups S of Lie type, is found in line -2 of the proof of
Lemma 6.7 in [8], and which, for classical groups S, follows from Theorem 3.1 of [9]
by noting that we may replace 2 by § since 6 < 2. This implies

SIS K[THM : K M[T! = 0(m(S)7t).

KeB
Hence
1
1- —O0(m(S)™™) < Qu.
2 SR koA e = Qu
KeA
Now let {K1,...,K:} be a set of representatives for the S-conjugacy classes of all

members of A. For every i with 1 <14 <t let s; be the number of M-orbits on the
coset space (S : K;). Note (see the proof of Lemma 6.10 in [8]) that for every 7 with
1 <i <t we have

1 Si Si
Kgc IS:K||M:KnM| |S:K;| ~ m(S)
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We conclude that

(2) =30 s O < Qur

We now have to show that 22:1 s; is “small”. If S is a group of Lie type, then, by
[8], t < 3 and either s; <3 forall i with 1 <i<tor S = PQQim(q) in which case
there exists a constant ¢; such that s; < ¢1q for all i with 1 < i <t (see the last
part of the proof of Lemma 6.7 in [8]). Finally, if S = Alt(n) and n # 6, then t =1
and s is the number of orbits of the point-stabilizer M on the coset space (S : K1)
where K is another point-stabilizer. In this case s; = 2 since Alt(n) is 2-transitive.
By these remarks and by inequality (2), we get

1—0(m(S)"*") < Qu

which is exactly what we wanted. ([l

By the inequality w(G) < |S : M|/Qun and by Proposition 3.2, we conclude
that w(G) < m(S) + O(m(S)14/15) if S is a finite simple group of Lie type and
w(G) < m(S) + O(1) otherwise. Now let S = Alt(n). Then, by [11], we have
2772 < ¢(S) unless n = 7 or 9. Hence, by Proposition 3.1, 2"72 < ¢(G) unless
n =7 or 9. From this it follows that w(G)/o(G) < (n + O(1))/2"~2. The proof of
Theorem 1.2 is now complete.
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