
ON FINITE SIMPLE GROUPS AND KNESER GRAPHS

ANDREA LUCCHINI AND ATTILA MARÓTI

Abstract. For a finite group G let Γ(G) be the (simple) graph defined on
the elements of G with an edge between two (distinct) vertices if and only
if they generate G. The chromatic number of Γ(G) is considered for various
non-solvable groups G.

1. Introduction

For a finite non-cyclic group G let σ(G) denote the least number of proper sub-
groups of G whose union is G. The function σ(G) has been much investigated. For
example, Tomkinson [25] showed that σ(G) = |V |+ 1 for a solvable group G where
V denotes the smallest chief factor of G which has more than one complement.

Let G be a finite group that can be generated by two elements. A subset S of
G is said to pairwise generate G if every distinct pair of elements of S generates G.
The maximal size of a pairwise generating set in G is denoted by ω(G). Clearly,
ω(G) ≤ σ(G) if both invariants are defined.

Blackburn [1] showed that ω(Sym(n)) = σ(Sym(n)) = 2n−1 for sufficiently large
odd n and ω(Alt(n)) = σ(Alt(n)) = 2n−2 for sufficiently large even n not divisible
by 4. In the same paper Blackburn asked whether ω(G)/σ(G) tends to 1 as the
size of the non-abelian finite simple group G tends to infinity. Stringer [23] proved
that the answer is affirmative for alternating groups and Britnell, Evseev, Guralnick,
Holmes, Maróti [3] showed that the answer is affirmative for projective special linear
groups.

Stringer’s [23] and Maróti’s [21] results imply that there exists a constant c ≥ 1
such that (1− c/n)σ(Alt(n)) ≤ ω(Alt(n)) for n not divisible by 4 and not a prime
of the form (qk−1)/(q−1) where q is a prime power and k is a positive integer. For
a finite group G let m(G) be the minimal index of a proper subgroup in G. Clearly,
m(Alt(n)) = n for n > 1. Our first result is

Theorem 1.1. There exists a universal constant c ≥ 1 such that if G is a projective
special linear group, a Suzuki group, or a Ree group, then (1−c/m(G))σ(G) ≤ ω(G).

The question arises: does there exist a universal constant c ≥ 1 such that if G is
a non-abelian finite simple group, then (1− c/m(G))σ(G) ≤ ω(G)? The answer is
not known even for alternating groups. The case of special linear groups and Suzuki
groups show that c cannot be taken to be less than 1.

For a finite group G let Γ(G) be the (simple) graph defined on the elements of G
with an edge between two (distinct) vertices if and only if they generate G. Let the
chromatic number (least number of colors needed to color the vertices of the graph
in such a way that the endpoints of every edge receive different colors) of the graph
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Γ(G) be χ(G). Clearly, ω(G) ≤ χ(G) ≤ σ(G) provided that all three invariants are
defined.

In the proof of Theorem 1.1 the chromatic numbers χ(G) are calculated for
various linear groups and Suzuki groups G. For linear groups G of large dimensions
there is a formula for σ(G) (see [3]). In this paper the following is shown.

Theorem 1.2. Let n be a positive integer at least 12 and let q be a prime power.
Let G be any of the groups (P)GL(n, q), (P)SL(n, q). Then

ω(G)− 1 ≤
( 10

qn/2 − 1

)
ω(G) +

(qn/2 − 11
qn/2 − 1

)
σ(G)− 1 < χ(G) ≤ σ(G).

Note that in the formula (above) in the statement of Theorem 1.2 only the second
inequality is ‘new’.

In the proofs of Theorems 1.1 and 1.2 certain variants of Kneser graphs appear.

Let r and n be positive integers with r no greater than n. The Kneser graph
K(n, r) is the graph whose vertices are the r-element subsets of a set of size n
and there is an edge between two subsets if and only if they are disjoint. Kneser
conjectured that the chromatic number of K(n, r) is n−2r+2. This was proved by
Lovász in [17]. There are many papers on Kneser graphs. Here the following result
is shown.

For a positive real number x, the base 2 logarithm is denoted by log x and the
natural (base e) logarithm is denoted by lnx.

Theorem 1.3. Let r and n be positive integers so that r < n/2. There exists a
positive constant c so that whenever 2r log r + 2r + c < n then

(1) the Kneser graph K(n, r) is an induced subgraph of Γ(Sym(n)) for all even n−r;

(2) the Kneser graph K(n, r) is an induced subgraph of Γ(Alt(n)) for all odd n− r.

Let F be a finite field of order q. The q-Kneser graph qK(n, r) is the graph
whose vertices are the r-dimensional subspaces of an n-dimensional vector space
over F and two vertices are connected by an edge if and only if their intersection is
trivial. The chromatic number of the graph qK(n, r) is investigated in [5]. In view
of the present investigations the question arises: for a fixed r is qK(n, r) an induced
subgraph of Γ(GL(n, q)) for sufficiently large n?

For a finite group G let P (G) be the probability that two random elements of G
generate G. In [16] Liebeck and Shalev proved that there exist constants c1, c2 > 0
such that 1− (c1/m(G)) ≤ P (G) ≤ 1− (c2/m(G)) for all non-abelian finite simple
groups G. Two consequences of this theorem are the following.

Theorem 1.4. There exists a universal positive constant d so that

P (G) ≤ 1− d

|G|1/3

for a non-solvable finite group G.

Theorem 1.5. There exists positive constants d1 and d2 so that for any non-abelian
finite simple group G the graph Γ(G) contains (as subgraphs) every r-colorable graph
on at most d2m(G)(log |G|/ log m(G)) vertices for r ≤ d1m(G).

Theorem 1.5 is a slight extension of the Liebeck-Shalev result [16] stating that
there exists a universal constant c > 0 so that c ·m(G) ≤ ω(G) for a non-abelian
finite simple group G.

Finally, the paper culminates in a proof of the following theorem.
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Theorem 1.6. Let α denote ω, χ, or σ. For a positive number x define α(x) to
be the number of positive integers n at most x with the property that there exists
a non-abelian finite simple group G so that α(G) = n. Then α(x) is equal to
(2
√

2 + o(1))(
√

x/ ln x).

2. Linear groups of dimension 2

Throughout this section let q = pf be a prime power where p is a prime and f
is a positive integer. Also, in this section G will always denote any of the groups
GL(2, q), SL(2, q), PGL(2, q), PSL(2, q). We seek to determine ω(G), χ(G), and
σ(G).

We begin by stating Dickson’s [8] result about the maximal subgroups of PSL(2, q).
The result is divided according to the parity of p.

Theorem 2.1 (Dickson, [8]). Let q = 2f ≥ 4. Then the maximal subgroups of
PSL(2, q) are

(1) C2
f o Cq−1, that is, the stabilizer of a point of the projective line;

(2) D2(q−1);
(3) D2(q+1);
(4) PGL(2, q0) where q = q0

r for some prime r and q0 6= 2.

Theorem 2.2 (Dickson, [8]). Let q = pf ≥ 5 with p an odd prime. Then the
maximal subgroups of PSL(2, q) are

(1) Cp
f o C(q−1)/2, that is, the stabilizer of a point of the projective line;

(2) Dq−1 for q ≥ 13;
(3) Dq+1 for q 6= 7, 9;
(4) PGL(2, q0) for q = q0

2 (two conjugacy classes);
(5) PSL(2, q0) for q = q0

r where r is an odd prime;
(6) Alt(5) for q ≡ ±1 (mod 10) where either q = p or q = p2 and p ≡ ±3

(mod 10) (two conjugacy classes);
(7) Alt(4) for q = p ≡ ±3 (mod 8) and q 6≡ ±1 (mod 10);
(8) Sym(4) for q = p ≡ ±1 (mod 8) (two conjugacy classes).

We next state the corresponding result about the maximal subgroups of PGL(2, q)
when q is odd. (For q even we have SL(2, q) ∼= PSL(2, q) and GL(2, q) ∼= SL(2, q)×
Cq−1, hence PGL(2, q) ∼= PSL(2, q)).

Theorem 2.3. Let G = PGL(2, q) with q = pf > 3 for some odd prime p. Then
the maximal subgroups of G not containing PSL(2, q) are

(1) Cp
f o Cq−1;

(2) D2(q−1) for q 6= 5;
(3) D2(q+1);
(4) Sym(4) for q = p ≡ ±3 (mod 8);
(5) PGL(2, q0) for q = q0

r with r an odd prime.

Only in this paragraph let G be GL(2, q) or SL(2, q), and denote the center of
G by Z. We claim that for any maximal subgroup M of G we have Z ≤ M or
SL(2, q) ≤ M whenever q ≥ 4. For if M is a maximal subgroup of G not containing
Z, then MZ = G, M ¢ G and G/M is abelian. It follows that M contains the
commutator subgroup of G which is SL(2, q) for q ≥ 4.

Let V be a 2-dimensional vector space over the field of q elements. The group G
acts naturally on the projective line P(1, q) thought of as the set of 1-dimensional
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subspaces of V . Let us assign an arbitrary labelling {1, . . . , q + 1} to the points of
P(1, q). We denote the stabilizer of the point i in G by Pi. Each group Pi is maximal
in G. Let us denote the center of G by Z. A Singer cycle of GL(2, q) is a cyclic group
of order q2 − 1. Every Singer cycle acts irreducibly on V . The Singer cycles form
a single conjugacy class in GL(2, q). Singer cycles are self-centralizing, and Z is in
every Singer cycle. If S is a Singer cycle of GL(2, q), then we will term S ∩SL(2, q),
(S ∩ SL(2, q))/(Z ∩ SL(2, q)), and S/Z Singer cycles of SL(2, q), PSL(2, q), and
PGL(2, q), respectively. We know that |S ∩SL(2, q)| = q +1. Also, whenever D is a
Singer normalizer in GL(2, q), then D ∩ SL(2, q), (D ∩ SL(2, q))/(Z ∩ SL(2, q)), and
D/Z are Singer normalizers in SL(2, q), PSL(2, q), and PGL(2, q), respectively. The
order of the normalizer of a Singer cycle S is 2|S|, and the number of Singer cycles
is q(q− 1)/2 whichever of the four groups G might be. The set of all normalizers of
Singer cycles together with all the Pi groups forms a covering for G. (A covering is
a collection of proper subgroups whose union is the group.) When q is odd, denote
this set of proper subgroups of G by Σ. Furthermore, if q is even, then the set of
all normalizers of all Singer cycles together with all but one (say Pq+1) of the Pi’s
forms a covering for G. When q is even, denote this set of proper subgroups of G by
Σ. Notice that the sizes of these sets are (q(q+1)/2)+1 and q(q+1)/2 respectively.
These give us upper bounds for σ(G). In fact, when q is large enough, these upper
bounds are exact.

Theorem 2.4 (Bryce, Fedri, Serena, [4]). Let q ≥ 4 and let G be any of the groups
(P)GL(2, q), (P)SL(2, q). If q is even, then σ(G) = q(q + 1)/2. If q is odd, then
σ(G) = (q(q + 1)/2) + 1.

Usually two generators of two distinct Singer cycles of G generate G. From now
on (in this section) this observation will be used extensively.

Lemma 2.1 (Lemma 3.3 of [4]). Let q ≥ 4 and let G be any of the groups
(P)GL(2, q), (P)SL(2, q). Then the normalizer of a Singer cycle S is the unique
maximal subgroup of G containing S except when G = (P)SL(2, q) and q = 5, 7, or
9.

In some cases we can immediately determine ω(G) and χ(G).

Theorem 2.5. Let q > 9 be an odd prime power. Let G be any of the groups
PSL(2, q), SL(2, q). Then ω(G) = χ(G) = σ(G) = (q(q + 1)/2) + 1.

Proof. By Theorem 2.4 it is sufficient to show (q(q + 1)/2) + 1 ≤ ω(G).

Consider the set X = {s1, . . . , st, p1, . . . , pq+1} where the si’s are generators for
the distinct Singer cycles of G and the pi’s are such p-elements from the Pi’s which
cannot be represented over any subfield of GF (q). Clearly, t = q(q − 1)/2. It is
sufficient to show that X is a clique in Γ(G) provided that q > 9 is odd.

By Lemma 2.1, any si is connected to any other element of X in Γ(G). Let i 6= j
be an arbitrary pair of distinct indices. Consider the subgroup H = 〈pi, pj〉 of G.
Inspection shows that, since q > 9, the subgroup H is not contained in any of the
maximal subgroups of G of types (2), (3), (6), (7), (8) of Theorem 2.2. By the
choice of pi, the subgroup H cannot be contained in a maximal subgroup of type
(4) or (5) of Theorem 2.2. Finally, since H is irreducible, it cannot be contained in
any of the Pk’s. ¤

The proof of the above theorem suggests a way to establish lower bounds for
ω(G) and χ(G) in the rest of the cases. Before we proceed we need two lemmas.
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Lemma 2.2. Let n be a positive integer at least 2. Let A be a family of distinct
subsets of {1, . . . , n} each of size 2 such that each pair of subsets in A intersect
non-trivially. If |A| 6= 1, 3, then |⋂A∈AA| = 1.

Proof. Put m = |A|. The claim can be checked easily for m ≤ 3, so suppose that
m ≥ 4. Without loss of generality suppose that A1 = {1, 2} ∈ A, that A1, . . . , Ak

are the distinct subsets in A containing 1 for some k such that m/2 ≤ k ≤ m, and
Ak+1, . . . , Am are the distinct subsets in A containing 2 but not 1. We have to show
that k = m. Suppose that k < m. Then Am = {2, j} for some j > 2. But then
k = 2, m = 4 and Am−1 = Am. A contradiction. ¤

Lemma 2.3. Let n be a positive integer at least 3. Let K(n, 2) be the graph whose
vertices are the 2-element subsets of {1, . . . , n} and two vertices are connected by
an edge if and only if their intersection is trivial. K(n, 2) is called a Kneser graph.
Then ω(K(n, 2)) = [n/2] and χ(K(n, 2)) = n− 2.

Proof. Clearly, there is a clique of size [n/2] in K(n, 2). On the other hand, if Y is
a clique in K(n, 2), then the union of all vertices of Y is a subset of {1, . . . , n} of
size 2|Y |. This proves ω(K(n, 2)) = [n/2].

For each 4 ≤ i ≤ n label all vertices of K(n, 2) that contain i as their largest
element by i. Label all other vertices of K(n, 2) by 3. This way we get a good
coloring of the vertices of K(n, 2) by n− 2 colors. This proves χ(K(n, 2)) ≤ n− 2.

We claim that the set of vertices of K(n, 2) is the union of no fewer than n − 2
empty induced subgraphs of K(n, 2) each of which is maximal with respect to
inclusion. What are the empty induced subgraphs of K(n, 2) that are maximal
with respect to inclusion? Let A be a set of vertices of K(n, 2) which together
define an empty induced subgraph in K(n, 2). Suppose also that A is maximal
satisfying this property with respect to inclusion. By Lemma 2.2, if |A| 6= 3, then A
is equal to the set of all vertices of K(n, 2) which contain a fixed positive integer, say
i. Let us denote this particular set of vertices by Ai. On the other hand, if |A| = 3,
then n ≥ 3 and there exist positive integers i, j, k such that 1 ≤ i < j < k ≤ n and
A = {{i, j}, {i, k}, {j, k}}. Let this particular set be denoted by Ai,j,k. The vertex-
set of K(n, 2) is the union of some of the Ai’s and some of the Ai,j,k’s. Suppose that
the number of Ai’s in the covering is α and the number of Ai,j,k’s in the covering
is β. Consider the induced subgraph of K(n, 2) defined by those vertices of K(n, 2)
which are not contained in any of the Ai’s involved in the covering. This subgraph
is isomorphic to K(n − α, 2). Since the vertex-set of K(n − α, 2) is contained in
the union of β sets each of order 3, we have

(
n−α

2

) ≤ 3β. From this we see that
n− 2 ≤ α + ((n− α)(n− α− 1)/6) ≤ α + β which proves n− 2 ≤ χ(K(n, 2)). ¤

From now on let us exclude the case when G = (P)SL(2, q) and q is odd.

If G = GL(2, q), then for any distinct pair of indices i and j (1 ≤ i < j ≤ q + 1)
there exists a cyclic group Ki,j of order q − 1 such that Ki,jZ = Pi ∩ Pj and Ki,j

fixes every element of the i-th subspace. If G = PGL(2, q), then define Ki,j to be
the image of the subgroup Ki,j of GL(2, q) in PGL(2, q). If G = SL(2, q), then for
any distinct pair of indices i and j (1 ≤ i < j ≤ q + 1) there exists a cyclic group
Ki,j of order q − 1 such that Ki,j = Pi ∩ Pj . Let ki,j be a fixed generator of Ki,j .

Consider the set X consisting of all the above chosen ki,j ’s together with the
elements s1, . . . , st where t is the number of distinct Singer cycles in G and si

denotes an arbitrarily chosen generator of the i-th Singer cycle of G. Let us view
X also as the induced subgraph of Γ(G) determined by the vertex-set X. Clearly,
ω(X) ≤ ω(G) and χ(X) ≤ χ(G).
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For q ≥ 4 any si is connected (in Γ(G)) with any other element of X. (This
follows from Lemma 2.1.) Let ki,j and k`,r be two distinct arbitrary elements of X
both leaving exactly two 1-dimensional subspaces invariant. If q ≥ 4, then ki,j and
k`,r are connected by an edge if and only if {i, j} ∩ {`, r} = ∅. (This follows from
Theorems 2.1 and 2.3 and from the comments made after Theorem 2.3.)

Theorem 2.6. Let q ≥ 4 and let G be any of the groups (P)GL(2, q), (P)SL(2, q).
Let us exclude the case when G = (P)SL(2, q) and q is odd. Let X be as above.
Then ω(X) = [(q2 + 1)/2]. If q is even, then

χ(X) = χ(G) = σ(G)− 1 = (q(q + 1)/2)− 1.

If q is odd, then

(q(q + 1)/2)− 1 = χ(X) ≤ χ(G) ≤ σ(G) = (q(q + 1)/2) + 1.

Proof. Let Xk be the subgraph of X induced by the vertices that do not correspond
to generators of Singer cycles, and let Xs be the subgraph of X induced by the
vertices that correspond to generators of Singer cycles. The graph Xs is complete.
Since every vertex of Xs is connected to every vertex of Xk, it is clear that ω(X) =
ω(Xs)+ω(Xk) = (q(q−1)/2)+ω(Xk) and χ(X) = χ(Xs)+χ(Xk) = (q(q−1)/2)+
χ(Xk). Hence it is sufficient to show that ω(Xk) = [(q + 1)/2], that χ(Xk) = q − 1
and that χ(G) ≤ χ(X) when q is even, provided that q ≥ 4.

Let n be a positive integer at least 3 and let K(n, 2) be the graph whose vertices
are the distinct 2-element subsets of {1, . . . , n} with two vertices A and B connected
by an edge if and only if A∩B = ∅. Clearly, Xk

∼= K(q + 1, 2) provided that q ≥ 4.
By Lemma 2.3, we have ω(K(q + 1, 2)) = [(q + 1)/2] and χ(K(q + 1, 2)) = q − 1.

To complete the proof of the theorem we need to show that χ(G) ≤ (q(q+1)/2)−1
when q ≥ 4 is even. Set Σ̃ = (Σ \ {Pq−1, Pq}) ∪ {P} where P is the set of all
elements of G leaving exactly two 1-dimensional subspaces invariant both of which
are labelled by the positive integers q−1, q, or q+1. Clearly, |Σ̃| = (q(q+1)/2)−1,
every element of G is contained in some member of Σ̃, and every member of Σ̃
induces an empty subgraph in Γ(G). This completes the proof of the theorem. ¤

We now turn to the determination of ω(G). Recall the definition of Σ (which
depends on the parity of q). If q is odd, then |Σ| = (q(q + 1)/2) + 1. If q is even,
then |Σ| = q(q + 1)/2.

Theorem 2.7. Let q ≥ 4 and let G be any of the groups (P)GL(2, q), (P)SL(2, q).
Let us exclude the case when G = (P)SL(2, q) and q is odd. Then ω(G) = [(q2 +
1)/2].

Proof. By Theorem 2.6, we have [(q2 + 1)/2] = ω(X) ≤ ω(G). Let Ω be a set of
elements of G which defines a clique in Γ(G). It is sufficient to show that |Ω| ≤
[(q2 + 1)/2].

When q is even SL(2, q) ∼= PSL(2, q) and GL(2, q) ∼= SL(2, q)×Cq−1 (so PGL(2, q) ∼=
SL(2, q)). Hence, in this case, it is sufficient to assume that G = PSL(2, q).

The intersection of Ω with any member of Σ is either empty or has size 1. The
elements g of G fall into three categories. The element g is irreducible and so it
is in a Singer cycle. In this case g is in exactly one member of Σ. Let α denote
the number of irreducible elements in Ω. Then α ≤ t = q(q − 1)/2. Secondly, the
element g does not lie in a Singer cycle and exactly one member of Σ contains g. (In
this case, g is contained in Pq+1 (when q is even) or g is contained in the maximal
subgroup M of G with (P)SL(2, q) < M and [G : M ] = 2 (when q is odd).) Let



ON FINITE SIMPLE GROUPS AND KNESER GRAPHS 7

the number of such elements g in Ω be β. Clearly, β ≤ 1. Thirdly, the element g
is contained in at least two members of Σ. The number of such elements in Ω is at
most [((q(q + 1)/2) + ε− α− β)/2] where ε = 0 when q is even and ε = 1 when q is
odd. Hence we get

|Ω| ≤ α+β+
[ (q(q + 1)/2) + ε− α− β

2

]
=

[ (q(q + 1)/2) + ε + α + β

2

]
≤

[q2 + 1
2

]
.

¤

3. Suzuki groups

In this section let G be the Suzuki group Suz(q) ≤ GL(4, q) where q = 22m+1 for
some positive integer m at least 2. We already know the covering number σ(G) of
G.

Theorem 3.1 (Lucido, [18]). Let G = Suz(q). Then σ(G) = q2(q2 + 1)/2.

The purpose of this section is to show

Theorem 3.2. Let G = Suz(q). Then ω(G) = q4/2 and χ(G) = (q2(q2 +1)/2)−1.

Proof. The order of G is q2(q − 1)(q2 + 1). The integer q2 + 1 can be factorized as
(q−r+1)(q+r+1) where r = 2m+1. If U is the subgroup of the lower unitriangular
matrices of G, then U is a Sylow 2-subgroup of exponent 4 and of order q2. Let
H be the subgroup of the diagonal matrices of G. Then H is isomorphic to the
multiplicative group of the field, and therefore has order q − 1; it is a π(q − 1)-Hall
subgroup of G and it normalizes U . For i = 1, 2, let Ti be a (cyclic) maximal torus
of order q + (−1)ir + 1. Let ϕ be the set of all conjugates of the subgroups U , H,
T1, and T2. Then, by Theorem 3.10, Chapter XI of [13], we see that ϕ is a partition
of G, that is, every non-identity element of G is contained in exactly one member of
ϕ. By [24], the only maximal subgroup of G containing Ti is Ni = NG(Ti) = Ti〈ti〉,
with ti an element of order 4 and |Ni : Ti| = 4, for i = 1, 2. The 2-elements of G
are contained in the union of the conjugates of N1. By [24], there are two kinds
of maximal subgroups containing H: some conjugates of the Borel subgroup B of
G defined by NG(U) = UH, and some conjugates of the subgroup NG(H) = H〈t〉
where t /∈ U is an involution. Since B is a Frobenius group, there are q2 conjugates
of H in B, and since |NG(H)| = 2|H|, there are q2(q2 + 1)/2 conjugates of H
in G. We now want to examine the intersection of the Borel subgroup B with its
conjugates. To do this we need two facts from [13]. (i) B∩Bt = H; (ii) any element
g of G \ B can be written uniquely in the form g = btu with b ∈ B and u ∈ U .
Therefore, if g ∈ G \B, we have B ∩Bg = Hu, where u is the unique element of U
such that g = btu. It follows that if Bg1 6= Bg2 , then B ∩Bg1 6= B ∩Bg2 . Therefore
there are q2 + (q2 − 1) conjugates of H in B ∪Bg provided that g ∈ G \B.

There are q2(q2 − 1)/2 conjugates of T1 and T2 in G. Pick a generator from
each of these subgroups. Let these be s1, . . . , sq2(q2−1)/2. There are q2 + 1 Borel
subgroups in G. Let these be B1, . . . , Bq2+1. For each pair of indices i and j with
1 ≤ i < j ≤ q2+1, let ki,j be a generator of Bi∩Bj . Let X̃ be the induced subgraph
of Γ(G) spanned by the set consisting of all the si’s and all the ki,j ’s. Notice that
the graph X̃ is isomorphic to the graph X defined before the statement of Theorem
2.6 with the only modification that we replace the even prime power q (at least 4)
by q2. Hence the first two paragraphs of the proof of Theorem 2.6 can be used to
show that ω(X̃) = q4/2 and χ(X̃) = (q2(q2 + 1)/2)− 1.

Let Σ be the set of all conjugates of all normalizers of T1 and T2 together with all
the Bi’s except Bq2+1. The set Σ is a covering for G. Put Σ̃ = (Σ \ {Bq2−1, Bq2})∪
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{B} where B is the set of all powers of the elements kq2−1,q2 , kq2,q2+1, kq2−1,q2+1.
Clearly, |Σ̃| = (q2(q2 + 1)/2)− 1, every element of G is contained in some member
of Σ̃, and every member of Σ̃ induces an empty subgraph in Γ(G). This proves
χ(G) ≥ (q2(q2 + 1)/2)− 1. The other inequality follows from χ(X̃) ≤ χ(G).

In order to complete the proof of the theorem we only need to show that ω(G) ≤
q4/2. Let Ω be a subset of G that defines a clique in Γ(G). The intersection of Ω
with any member of Σ is either empty or has size 1. The elements g of G fall into
three categories. The element g may lie in a unique conjugate of T1 or T2. In this
case g is in exactly one member of Σ. Let α denote the number of such elements
in Ω. Secondly, the element g does not lie in any conjugate of T1 or T2 and exactly
one member of Σ contains g. (In this case g is contained in Bq+1.) Let the number
of such elements g in Ω be β. Clearly, β ≤ 1. Thirdly, the element g is contained
in at least two members of Σ. The end of the proof of Theorem 2.7 may now be
applied to reach the desired conclusion. ¤

4. Ree groups

Apart from an explicit finite list of exceptions, we found that whenever G is any
of the groups GL(2, q), SL(2, q), PGL(2, q), PSL(2, q), Suz(q), then 1 − 1/m(G) ≤
ω(G)/σ(G) where m(G) denotes the minimal index of a proper subgroup in G. In
this section we prove a similar result for Ree groups.

Let G = Ree(q) be the Ree group where q = 32m+1 for some positive integer m
at least 2.

Theorem 4.1. Let G = Ree(q). Then we have 1− 4/(q3 + 1) < ω(G)/σ(G).

Proof. The size of G is q3(q−1)(q3+1), and we have (q−r+1)(q+r+1) = q2−q+1
where r = 3m+1. The maximal subgroups of G are given on Page 61 of [14]. In [19]
it is shown that the union of all conjugates of the (maximal) parabolic subgroups
[q3] : Zq−1, all conjugates of 2 × PSL(2, q), all conjugates of Zq+r+1 : Z6, and all
conjugates of Zq−r+1 : Z6 is G. (For more details on these maximal subgroups see
[14].) This gives an upper bound of

A(q) :=
q3(q3 + 1)(q − 1)

6(q + r + 1)
+

q3(q3 + 1)(q − 1)
6(q − r + 1)

+ (q3 + 1) +
q2(q3 + 1)

(q + 1)

for σ(G). Now pick an element of order q + r + 1 from each conjugate of the
maximal subgroup Zq+r+1 : Z6, an element of order q − r + 1 from each conjugate
of the maximal subgroup Zq−r+1 : Z6, and an element of order (q + 1)/2 from each
conjugate of 2 × PSL(2, q). Let the set consisting of these elements be Ω. This
defines a clique in Γ(G) by the list of maximal subgroups of G found in [14], and
from the proof of Lemma 2.2 of [19]. The size of Ω is

B(q) :=
q3(q3 + 1)(q − 1)

6(q + r + 1)
+

q3(q3 + 1)(q − 1)
6(q − r + 1)

+
q2(q3 + 1)

(q + 1)
.

Careful calculation gives

1− 4
q3 + 1

<
A(q)
B(q)

≤ ω(G)
σ(G)

.

¤

Note that q3 + 1 is the minimal index of a proper subgroup in G.
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5. Linear groups of any dimension

Throughout this section for any positive integer n at least 2 and any prime power
q let G be any of the groups GL(n, q), SL(n, q), PGL(n, q), PSL(n, q).

By [3], exact formulas are known for ω(G) and σ(G) provided that n ≥ 12. In
general (for any n) we only have estimates.

Theorem 5.1 (Corollary 6.1 of [3]). When G = (P)SL(n, q) suppose that n ≥ 2
and (n, q) 6= (2, 5), (2, 7), (2, 9), (3, 4). Then

|GL(n, q)|/(
∑

|GL(n/a, qa).a|) ≤ µ(G) ≤ σ(G) ≤ |GL(n, q)|
|GL(n/b, qb).b| +

[n/2]∑

k=1
b-k

[n

k

]
q
,

where the first sum is over all prime divisors a of n and b is the smallest prime
divisor of n.

The observation of this section is the following.

Theorem 5.2. Let G be any of the groups (P)SL(n, q). Then, apart from finitely
many groups G, we have 1−1/m(G) ≤ ω(G)/σ(G) where m(G) denotes the minimal
index of a proper subgroup in G.

Proof. By the section on linear groups of dimension 2, it is sufficient to assume that
n ≥ 3. Tedious calculations using the bounds in Theorem 5.1 give 1− (q− 1)/(qn−
1) ≤ ω(G)/σ(G) provided that n ≥ 3 and (n, q) 6= (3, 2), (3, 3), (3, 4). ¤

This completes the proof of Theorem 1.1.

6. Linear groups of large dimensions

In this section let G be any of the groups GL(n, q), SL(n, q), PGL(n, q), PSL(n, q).
Suppose also that n ≥ 12.

We aim to determine χ(G). Clearly, ω(G) ≤ χ(G) ≤ σ(G). By [3], we have
formulas for ω(G) and σ(G) which are close to each other.

By Theorem 1.2 of [3], we may assume that n ≡ 2 (mod 4), q odd and G =
(P)GL(n, q), or n ≡ 2 (mod 4) and q even. (For otherwise ω(G) = σ(G) and so
ω(G) = χ(G) = σ(G).) Also, since χ(G) ≤ χ(G/Z(G)), ω(G) = ω(G/Z(G)) and
σ(G) = σ(G/Z(G)), it is sufficient to assume that G = GL(n, q) or G = SL(n, q).

Let V be an n-dimensional vector space over the field of q elements on which
G acts naturally. Put t = |GL(n, q)|/|GL(n/2, q2).2|. Let U1, . . . , U` be a list of
all subspaces of V of odd dimensions less than n/2 and let W1, . . . ,W` be a list of
all subspaces of V of odd dimensions greater than n/2 listed in an order such that
V = Ui ⊕ Wi for all i with 1 ≤ i ≤ `. (Such an ordering of subspaces is always
possible for example by the second paragraph of Section 3 of [3].) Let V1, . . . , Vr be
a list of all n/2-dimensional subspaces of V . The letter g with some subscript(s)
will always denote an element of G. For a positive integer i the element gi will
denote an irreducible element in G. For subspaces Ui, Wi the element gUi,Wi will
denote an element of G that leaves exactly two proper, non-trivial subspaces of V
invariant, namely Ui and Wi. When q is odd, then let gVi denote an element of G
leaving exactly one proper, non-trivial subspace of V invariant, namely Vi. Finally,
for complementary subspaces Vi and Vj an element of G leaving exactly two proper,
non-trivial subspaces of V invariant, namely Vi and Vj , shall be denoted by g{Vi,Vj}.
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Recall that we are assuming that n ≥ 12. By [3], there exists a subset

Σ = {gi}t
i=1 ∪ {gUi,Wi

}`
i=1 ∪ {gVi

}r
i=1 ∪ {g{Vi,Vj}}V =Vi⊕Vj

so that distinct elements x, y ∈ Σ generate G if and only if they do not leave the
same proper, non-trivial subspace of V invariant unless x = gVi

and y = gVj
for

some i and j when 〈x, y〉 is a subgroup of a group of index 2 in G (this occurs only
when q is odd).

Now let Σ denote also the induced subgraph of Γ(G) spanned by the set Σ. Let
χ(Σ) denote the chromatic number of the graph Σ. Clearly, χ(Σ) ≤ χ(G) ≤ σ(G).

Put Σ1 = {gi}t
i=1∪{gUi,Wi}`

i=1 and Σ2 = {gVi
}r

i=1∪{g{Vi,Vj}}V =Vi⊕Vj
. Similarly,

let Σ1 and Σ2 denote the induced subgraphs of Σ spanned by the sets Σ1 and Σ2

respectively. Then Σ1 is a complete subgraph and every vertex on Σ1 is connected
to every vertex in Σ2. Hence χ(Σ) = |Σ1| + χ(Σ2). By this observation and by
Theorem 1.2 of [3] the following question may be of interest.

Question 6.1. Is it true that χ(Σ2) = (qn/2/(qn/2 + 1))
[

n
n/2

]
q

+ ε where ε is 0 if

q is even and 1 if q is odd?

An affirmative answer would imply χ(Σ) = χ(G) = σ(G).

Let Σ′2 be the set {g{Vi,Vj}}V =Vi⊕Vj . Let Σ′2 also denote the associated induced
subgraph in Γ(G). We aim to give a lower bound for χ(Σ′2) for any q (either even
or odd).

Let s be (1/(qn/2 + 1))
[

n
n/2

]
q

and let m be a positive integer with s < m ≤ r

where r =
[

n
n/2

]
q
.

Lemma 6.1. Let ∆ be a graph on m vertices so that every subset of s + 1 vertices
spans a non-empty induced subgraph in ∆. Then the number of edges in ∆ is at
least (m/2)((m/s)− 1).

Proof. Let ∆ be the complementary graph of ∆. (There is an edge in ∆ between
two given distinct vertices iff there is no edge between those vertices in ∆.) By our
hypothesis, ∆ does not contain a complete subgraph on s + 1 vertices, and hence,
by Turán’s theorem [26], contains at most (1− (1/s))(m2/2) edges. ¤

The graph Σ′2 is the union of χ(Σ′2) color classes, that is, empty subgraphs.
What are the maximal empty induced subgraphs of Σ′2? They are of two kinds:
(1) for every n/2-dimensional vector space Vi the set Ai = {g{Vi,Vj}}j where j
runs through the integers for which Vi ∩ Vj = {0}; (2) for every n/2-dimensional
vector spaces Vi, Vj , Vk with Vi ∩ Vj = Vj ∩ Vk = Vk ∩ Vi = {0} the set Ai,j,k =
{g{Vi,Vj}, g{Vj ,Vk}, g{Vk,Vi}}.
Lemma 6.2. We have χ(Σ′2) ≤ r − s.

Proof. Let v be a fixed non-zero vector in V . Let Cv be the set of those Ai’s for
which v 6∈ Vi. Then Cv is a vertex-covering of the graph Σ′2 using r − s maximal
empty induced subgraphs. ¤

Let C be a vertex covering of the graph Σ′2 using sets of type (1) and (2). Suppose
that the number of sets of type (1) in C is α and the number of sets of type (2) in
C is β. Suppose that α + β = χ(Σ′2).

Lemma 6.3. We have r − 6s ≤ α ≤ χ(Σ′2).
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Proof. Let ∆ be the set of n/2-dimensional subspaces of V with the property that
Vi ∈ ∆ if and only if Ai 6∈ C. Let m be the size of ∆. Clearly, m = r − α. Let ∆
denote also the induced subgraph of the q-Kneser graph qK(n, n/2) (defined in the
Introduction) spanned by the set ∆. By our construction, the edge set of the graph
∆ is contained in the union of β triangles. By a result of Frankl and Wilson [10], a
1-intersecting family of n/2-dimensional subspaces of V has size at most s. (A set V
of n/2-dimensional subspaces of V is called a 1-intersecting family if for any distinct
vector spaces Vi and Vj from V we have Vi ∩ Vj 6= {0}.) This implies that ∆ does
not contain an empty induced subgraph on s+1 vertices. Hence, by Lemma 6.1, the
number of edges in ∆ is at least (m/2)((m/s)−1). Now 3(m−s) < (m/2)((m/s)−1)
provided that m > 6s. So if, for a contradiction, we had α < r−6s, then m−s < β
and so r −m + m− s < α + β = χ(Σ′2) contradicting Lemma 6.2. ¤

Now let Σ′ be the set Σ1 ∪Σ′2. Let Σ′ also denote the induced subgraph of Γ(G)
spanned by the set Σ′. Clearly, χ(Σ′) = |Σ1| + χ(Σ′2) = t + ` + χ(Σ′2) as Σ1 is
a complete subgraph and every vertex of Σ1 is connected to every vertex of Σ′2.
Finally, by Lemma 6.3, we have t + ` + r − 6s ≤ χ(Σ′) ≤ χ(G).

Comparing this lower bound for χ(G) with the formulas of Theorem 1.1 and
Theorem 1.2 of [3] we have

ω(G) ≥ 1
2

n−1∏

i=1
2-i

(qn − qi) +
(n/2)−1∑

k=1
2-k

[n

k

]
q
+

1
2

[
n

n/2

]

q

− 1;

σ(G) =
1
2

n−1∏

i=1
2-i

(qn − qi) +
(n/2)−1∑

k=1
2-k

[n

k

]
q
+

qn/2

qn/2 + 1

[
n

n/2

]

q

+ ε;

χ(G) ≥ 1
2

n−1∏

i=1
2-i

(qn − qi) +
(n/2)−1∑

k=1
2-k

[n

k

]
q
+

qn/2 − 5
qn/2 + 1

[
n

n/2

]

q

where ε is 1 if q is odd and is 0 if q is even.

From the latter three formulas Theorem 1.2 follows.

7. Kneser graphs as induced subgraphs

In this section let n and r be positive integers with r < n/2. Let Ω be a set of
size n and let Ω1, . . . , Ωt be the distinct r-subsets of Ω where t =

(
n
r

)
. For each

i with 1 ≤ i ≤ t let Vi be the set of all permutations of Sym(Ω) which fix every
element of Ωi and permute all the elements of Ω \ Ωi in an (n− r)-cycle. Let Γ be
the graph whose vertex-set is V = V1 ∪ . . . ∪ Vt and there is an edge between two
vertices if and only if no point-stabilizer contains both elements and they do not
generate a group containing Alt(Ω). To prove Theorem 1.3 it is sufficient to find an
independent set {v1, . . . , vt} in V = V (Γ) so that vi ∈ Vi for each i with 1 ≤ i ≤ t.

By the following result (see also [12] and [22]), it is sufficient to show that 2 times
the degree of any vertex in Γ is at most (n− r − 1)!.

Theorem 7.1 (Haxell, [11]). Let Γ be a (simple) graph so that every vertex of Γ
has degree at most d for some positive integer d. Let V (Γ) = V1 ∪ . . . ∪ Vt be a
partition of the vertex set of Γ. Suppose that 2d ≤ |Vi| for each i. Then Γ has an
independent set {v1, . . . , vt} where vi ∈ Vi for each i.
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Let v be a fixed vertex in V and let d be its degree in Γ. It is sufficient to show
that 2d ≤ |V1| = (n− r − 1)!.

If {v, w} is an edge in Γ, then v and w generate a transitive subgroup of Sym(Ω)
not containing Alt(Ω). (This is because we are assuming that r < n/2.) Hence there
are two possibilities: 〈v, w〉 is contained in a maximal primitive group different from
Alt(n), or 〈v, w〉 is contained in a maximal imprimitive subgroup of Sym(Ω).

Let H be a maximal subgroup in Sym(Ω). Let h be the number of conjugates of H
containing a fixed element of V . (Notice that h is well-defined since V is a conjugacy
class of elements in Sym(n).) The number of ordered pairs (u, K) such that u ∈ V ,
the subgroup K is conjugate to H, and u ∈ K is equal to (hn!)/((n− r)r!) and less
than (n!/|H|)|H| = n!. Hence h < (n− r)r!.

Let H be a maximal imprimitive subgroup of Sym(Ω). Then it is easy to see
that |H ∩V | < 2n/2(2([(n− r)/2]!)2)/(n− r). For a maximal primitive subgroup H
not containing Alt(Ω) we have |H ∩ V | < |H| ≤ 3n by [20].

By [15], there are at most o(1)n conjugacy classes of transitive maximal sub-
groups in Sym(Ω).

Hence, for a fixed r, the number of neighbors of v in Γ is

d < o(1)r!2(n/2)+1n([(n− r)/2]!)2.

Since
2n−r−1

n− r + 1
<

(n− r)!
2([(n− r)/2]!)2

,

we have

d < o(1)r!2−(n/2)+r+1n(n− r + 1)! <
(
o(1)rrn32−(n/2)+r+2

) |V1|
2

,

where the second inequality followed from r! ≤ rr and

(n− r + 1)! < n2(n− r − 1)! = n2|V1|.
There exists a universal constant c so that whenever 2r log r + 2r + c < n, then
o(1)rrn32−(n/2)+r+2 < 1. Hence d < |V1|/2 provided that 2r log r + 2r + c < n.
This completes the proof of Theorem 1.3.

8. Two consequences of a theorem of Liebeck and Shalev

For a finite group G let P (G) denote the probability that two randomly chosen
elements from G generate G. Let m(G) be the minimal index of a proper subgroup
in G. We begin with

Theorem 8.1 (Liebeck, Shalev, [16]). There exist constants c1, c2 > 0 such that

1− c1

m(G)
≤ P (G) ≤ 1− c2

m(G)
for all non-abelian finite simple groups G. Moreover, we have lim inf m(G)(1 −
P (G)) = 1 and lim supm(G)(1−P (G)) = 3 where the limits are taken as G ranges
over all non-abelian finite simple groups.

We will present an application (Theorem 1.4) of the upper bound of Theorem
8.1 and an application (Theorem 1.5) of the lower bound of Theorem 8.1.

We continue with the following observation.

Lemma 8.1. Let G be a finite group. For a proper subgroup H of index m in G
we have P (G) ≤ 1 − (1/m2) and for a normal subgroup N of G we have P (G) ≤
P (G/N).
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Proof. The first claim is clear since P (G) ≤ 1 − (|H|2/|G|2) = 1 − (1/m2). The
second claim follows from

|G|2P (G) = |{(g, h) ∈ G2 : 〈g, h〉 = G}| ≤ |{(g, h) ∈ G2 : 〈gN, hN〉 = G/N}| =

= |N |2|{(gN, hN) ∈ (G/N)2 : 〈gN, hN〉 = G/N}| = |G|2P (G/N).

¤

Note that if G is not solvable then it admits a monolithic group with non-abelian
socle as an epimorphic image. By Lemma 8.1, to show Theorem 1.4, it is sufficient
to assume that G is a monolithic primitive group with Soc(G) ∼= St for some non-
abelian finite simple group S and positive integer t. Clearly G has a subgroup of
index t and 60t ≤ |S|t ≤ |G|. We may assume that t = 1. For if t > 1, then, by
Lemma 8.1, we have

P (G) ≤ 1− (1/t2) ≤ 1− (1/60t/3) ≤ 1− (1/|G|1/3).

Now G/S is isomorphic to a subgroup of Out(S) and so there exists a positive
constant d1 with |G/S|2 ≤ (1/d1)|G|1/3. By Lemma 8.1, P (G) ≤ 1 − (d1/|G|1/3)
provided that G 6= S. Hence we may assume that G = S. Then there exists a
positive constant d2 so that P (G) ≤ 1 − (c2/m(G)) ≤ 1 − (d2/|G|1/3) where c2 is
as in Theorem 8.1. Finally, to establish Theorem 1.4, take d to be the minimum of
d1 and d2.

We now turn to the proof of Theorem 1.5.

Let Kr(t) be the complete r-partite graph with t vertices in each class, or equiv-
alently the Turán graph T (rt, r). Define sr,ε(n) (for 0 < ε < 1/(2(r− 1))) to be the
greatest t such that every graph of order n and the integer part of

( r − 2
2(r − 1)

+ ε
)
n2

edges contains a Kr(t). The graph Kr(t) contains every r-colorable graph on rt
vertices. Erdős and Stone [9] found a weak lower bound for sr,ε(n) for n sufficiently
large. The correct order of sr,ε(n) in terms of n was found by Bollobás and Erdős [2]:
for any given r and ε there are constants k1(r, ε) and k2(r, ε) such that k1(r, ε) log n <
sr,ε(n) < k2(r, ε) log n. Chvátal and Szemerédi [6] then determined the nature of
the dependence on r and ε, up to a constant:

log n

500 log(1/ε)
< sr,ε(n) <

5 log n

log(1/ε)

for sufficiently large n.

Let c1 be as in Theorem 8.1. Let d1,1 and d2,1 be positive constants so that
whenever G is a non-abelian finite simple group with m(G) < 4c1 then every r-
colorable graph on at most d2,1m(G)(log |G|/ log m(G)) vertices is a subgraph of
Γ(G) for any r ≤ d1,1m(G). (Note that this is possible since there are at most
finitely many non-abelian finite simple groups G with m(G) < 4c1.) Let d2,2 be
a positive constant so that d2,2m(G)(log |G|/ log m(G)) < |G| for any non-abelian
finite simple group G.

Let G be a non-abelian finite simple group with 4c1 ≤ m(G). Let n = |G|. By
Theorem 8.1, the number of edges in Γ(G) is at least (1− (c1/m(G)))(n2/2). Let r
be the integer part of m(G)/(2c1) and let ε be 1/(4(r − 1)). Then

( r − 2
2(r − 1)

+ ε
)
n2 < (1− (c1/m(G)))

n2

2
,
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and so Γ(G) contains a Kr(t) for t ≤ sr,ε(n). Hence Γ(G) contains (as subgraphs)
every r-colorable graph on at most

r log n

500 log(4(r − 1))

vertices. Finally, there exist universal positive constants d1,2 and d2,3 (independent
of G) so that d1,2m(G) ≤ r and

d2,3m(G)
log n

log m(G)
≤ r log n

500 log(4(r − 1))
.

Now let d1 be the minimum of d1,1, and d1,2 and let d2 be the minimum of d2,1, d2,2,
and d2,3. One can see that d1 and d2 are suitable constants satisfying the statement
of Theorem 1.5.

9. Finite simple groups

In this section G denotes a non-abelian finite simple group. Let α denote ω, χ,
or σ. For a positive number x define α(x) to be the number of positive integers n
at most x with the property that there exists a non-abelian finite simple group G
so that α(G) = n. In this section we prove

Theorem 9.1. α(x) = (2
√

2 + o(1))(
√

x)/(lnx).

Let the minimal index of a proper subgroup in G be denoted by m(G). The proof
of Theorem 9.1 depends on Theorem 1.5 and on the following corollary of results of
Stringer.

Theorem 9.2 (Stringer, [23]). Apart from at most finitely many positive integers
n we have n3 < ω(Alt(n)).

For i = 0, 1, let αi(x) be the number of integers α(Gi) so that α(Gi) ≤ x
where G0 = PSL(2, q) for some odd prime power q and G1 = PSL(2, q), Suz(q) for
some even prime power q, PSL(3, q), or Alt(n). Let α2(x) be the number of pairs
(d1 ·m(G), G) so that d1 ·m(G) ≤ x and G 6= PSL(2, q), PSL(3, q), Alt(n), Suz(q)
where d1 is a constant from Theorem 1.5.

By the Prime Number Theorem and by Theorems 2.5, 2.7, 5.1, 3.2, 9.2, it follows
that α0(x) = (2

√
2 + o(1))(

√
x)/(lnx) and that α1(x) = (o(1)

√
x)/(ln x). These

observations together with Theorem 1.5 and α0(x) ≤ α(x) ≤ ∑2
i=0 αi(x) imply

that to prove Theorem 9.1 it is sufficient to establish

Lemma 9.1. α2(x) = (o(1)
√

x)/(lnx).

Proof. In counting all pairs (d1 · m(G), G) with d1 · m(G) ≤ x it is sufficient to
assume that G is a Lie group different from PSL(2, q), PSL(3, q), Suz(q). (We may
exclude the sporadic simple groups since there are only finitely many of them.)

The precise values of the minimal indices m(G) of proper subgroups in the Lie
groups G can be found (for example) in Table 1 on page 60 of [7]. Every numerical
entry of this table is either a positive integer, an infinite sequence depending on one
variable, or a doubly infinite sequence depending on two variables. We may ignore
all positive integer entries of Table 1. Notice that all other numerical entries of
Table 1 give rise to simply or to doubly infinite series of strictly increasing positive
integers. Since there are only finitely many entries in the table, it is sufficient to
verify that every numerical entry (or sequence) has (o(1)

√
x)/(lnx) members that

are at most x/d1.
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Consider the numerical entry m(Gn(q)) associated to the Lie group G = Gn(q)
where n denotes the Lie rank (or twisted Lie rank) of G, the prime power q is
the size of the field over which G is defined, and where Gn(q) stands for a single
entry in Table 1 of [7]. It is easy to see by inspection that if x is large enough and
m(Gn(q)) ≤ x/c, then q ≤ (x/d1)

1/3 and n ≤ ln(x/d1). Hence there are indeed
(o(1)

√
x)/(ln x) pairs (m(Gn(q)), Gn(q)) with m(Gn(q)) ≤ n/d1. ¤
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pairwise generate a linear group. J. Combin. Theory Ser. A. 115 (2008), no. 3, 442-465.

[4] Bryce, R. A.; Fedri, V.; Serena, L. Subgroup coverings of some linear groups. Bull. Austral
Math. Soc. 60, (1999), no. 2, 227-238.

[5] Chowdhury, A.; Godsil, C.; Royle, G. Colouring lines in projective spaces. J. Combin. Theory
Ser. A. 113 (2006), no. 1, 39-52
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Attila Maróti, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sci-
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