ON FINITE SIMPLE GROUPS AND KNESER GRAPHS

ANDREA LUCCHINI AND ATTILA MAROTI

ABSTRACT. For a finite group G let I'(G) be the (simple) graph defined on
the elements of G with an edge between two (distinct) vertices if and only
if they generate G. The chromatic number of I'(G) is considered for various
non-solvable groups G.

1. INTRODUCTION

For a finite non-cyclic group G let o(G) denote the least number of proper sub-
groups of G whose union is G. The function ¢(G) has been much investigated. For
example, Tomkinson [25] showed that o(G) = |V| + 1 for a solvable group G where
V denotes the smallest chief factor of G which has more than one complement.

Let G be a finite group that can be generated by two elements. A subset S of
G is said to pairwise generate G if every distinct pair of elements of S generates G.
The maximal size of a pairwise generating set in G is denoted by w(G). Clearly,
w(G) < o(G) if both invariants are defined.

Blackburn [1] showed that w(Sym(n)) = o(Sym(n)) = 2"~! for sufficiently large
odd n and w(Alt(n)) = o(Alt(n)) = 272 for sufficiently large even n not divisible
by 4. In the same paper Blackburn asked whether w(G)/o(G) tends to 1 as the
size of the non-abelian finite simple group G tends to infinity. Stringer [23] proved
that the answer is affirmative for alternating groups and Britnell, Evseev, Guralnick,
Holmes, Maréti [3] showed that the answer is affirmative for projective special linear
groups.

Stringer’s [23] and Mar6ti’s [21] results imply that there exists a constant ¢ > 1
such that (1 — ¢/n)o(Alt(n)) < w(Alt(n)) for n not divisible by 4 and not a prime
of the form (¢* —1)/(q—1) where ¢ is a prime power and k is a positive integer. For
a finite group G let m(G) be the minimal index of a proper subgroup in G. Clearly,
m(Alt(n)) = n for n > 1. Our first result is

Theorem 1.1. There exists a universal constant ¢ > 1 such that if G is a projective
special linear group, a Suzuki group, or a Ree group, then (1—c/m(G))o(G) < w(G).

The question arises: does there exist a universal constant ¢ > 1 such that if G is
a non-abelian finite simple group, then (1 — ¢/m(G))o(G) < w(G)? The answer is
not known even for alternating groups. The case of special linear groups and Suzuki
groups show that ¢ cannot be taken to be less than 1.

For a finite group G let I'(G) be the (simple) graph defined on the elements of G
with an edge between two (distinct) vertices if and only if they generate G. Let the
chromatic number (least number of colors needed to color the vertices of the graph
in such a way that the endpoints of every edge receive different colors) of the graph
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I'(G) be x(G). Clearly, w(G) < x(G) < o(G) provided that all three invariants are
defined.

In the proof of Theorem 1.1 the chromatic numbers x(G) are calculated for
various linear groups and Suzuki groups G. For linear groups G of large dimensions
there is a formula for o(G) (see [3]). In this paper the following is shown.

Theorem 1.2. Let n be a positive integer at least 12 and let q be a prime power.
Let G be any of the groups (P)GL(n,q), (P)SL(n,q). Then

Ww(@) - 1< (qnéio_l)w(a) + ((’;//22__111)0(@ 1< x(G) < a(Q).

Note that in the formula (above) in the statement of Theorem 1.2 only the second
inequality is ‘new’.

In the proofs of Theorems 1.1 and 1.2 certain variants of Kneser graphs appear.

Let r and n be positive integers with r no greater than n. The Kneser graph
K(n,r) is the graph whose vertices are the r-element subsets of a set of size n
and there is an edge between two subsets if and only if they are disjoint. Kneser
conjectured that the chromatic number of K (n,r) is n— 2r+2. This was proved by
Lovész in [17]. There are many papers on Kneser graphs. Here the following result
is shown.

For a positive real number z, the base 2 logarithm is denoted by logx and the
natural (base e) logarithm is denoted by Inz.

Theorem 1.3. Let r and n be positive integers so that r < n/2. There exists a
positive constant ¢ so that whenever 2rlogr + 2r + ¢ < n then

(1) the Kneser graph K (n,r) is an induced subgraph of T'(Sym(n)) for all even n—r;
(2) the Kneser graph K(n,r) is an induced subgraph of T'(Alt(n)) for all odd n —r.

Let F be a finite field of order q. The ¢-Kneser graph ¢K(n,r) is the graph
whose vertices are the r-dimensional subspaces of an n-dimensional vector space
over F' and two vertices are connected by an edge if and only if their intersection is
trivial. The chromatic number of the graph ¢K (n,r) is investigated in [5]. In view
of the present investigations the question arises: for a fixed r is ¢K (n,r) an induced
subgraph of I'(GL(n, ¢)) for sufficiently large n?

For a finite group G let P(G) be the probability that two random elements of G
generate G. In [16] Liebeck and Shalev proved that there exist constants ¢1, co > 0
such that 1 — (¢;/m(G)) < P(G) <1 — (c2/m(G)) for all non-abelian finite simple
groups G. Two consequences of this theorem are the following.

Theorem 1.4. There exists a universal positive constant d so that

d
for a non-solvable finite group G.
Theorem 1.5. There exists positive constants dy and ds so that for any non-abelian
finite simple group G the graph T'(G) contains (as subgraphs) every r-colorable graph
on at most dam(G)(log |G|/ logm(QG)) wvertices for r < dym(G).

Theorem 1.5 is a slight extension of the Liebeck-Shalev result [16] stating that
there exists a universal constant ¢ > 0 so that ¢ - m(G) < w(G) for a non-abelian
finite simple group G.

Finally, the paper culminates in a proof of the following theorem.
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Theorem 1.6. Let « denote w, x, or o. For a positive number x define a(x) to
be the number of positive integers n at most x with the property that there exists
a non-abelian finite simple group G so that a(G) = n. Then a(zx) is equal to

(2v2+ o(1))(vz/ Inz).
2. LINEAR GROUPS OF DIMENSION 2

Throughout this section let ¢ = p/ be a prime power where p is a prime and f
is a positive integer. Also, in this section G will always denote any of the groups
GL(2,q), SL(2,q), PGL(2,q), PSL(2,q). We seek to determine w(G), x(G), and
o(G).

We begin by stating Dickson’s [8] result about the maximal subgroups of PSL(2, q).
The result is divided according to the parity of p.

Theorem 2.1 (Dickson, [8]). Let ¢ = 2/ > 4. Then the mazimal subgroups of
PSL(2,q) are

(1) Cy' % Cy—1, that is, the stabilizer of a point of the projective line;
(2) D2(q71);

(3) Dagi1s

(4) PGL(2,qo) where ¢ = qo" for some prime r and qo # 2.

Theorem 2.2 (Dickson, [8]). Let ¢ = p/ > 5 with p an odd prime. Then the
mazimal subgroups of PSL(2, q) are

(1) Cpf X C(q—1)/2, that is, the stabilizer of a point of the projective line;

(2) Dy_1 for g >13;

(8) Dgy1 forq#7,9;

4) PGL(2,qo) for ¢ = qo® (two conjugacy classes);

(

(5) PSL(2,q0) for q = qo" where r is an odd prime;

(6) Alt(5) for ¢ = 41 (mod 10) where either ¢ = p or ¢ = p* and p = £3
(mod 10) (two conjugacy classes);

(7) Alt(4) for ¢ =p = +£3 (mod 8) and ¢ # £1 (mod 10);

(8) Sym(4) for ¢ =p = +£1 (mod 8) (two conjugacy classes).

We next state the corresponding result about the maximal subgroups of PGL(2, ¢)
when ¢ is odd. (For ¢ even we have SL(2,¢) = PSL(2, q) and GL(2,q) = SL(2, q) X
Cy—1, hence PGL(2,¢q) = PSL(2,q)).

Theorem 2.3. Let G = PGL(2,q) with ¢ = pf > 3 for some odd prime p. Then
the mazimal subgroups of G not containing PSL(2,q) are

(1) Cpl x Cy_y;

(2) Dyq—1) for q #5;

(8) Da(gs1y;

(4) Sym(4) for ¢ =p==£3 (mod 8);

(5) PGL(2,q0) for g = qo" with r an odd prime.

Only in this paragraph let G be GL(2,q) or SL(2,¢), and denote the center of
G by Z. We claim that for any maximal subgroup M of G we have Z < M or
SL(2,q) < M whenever ¢ > 4. For if M is a maximal subgroup of G not containing
Z,then MZ = G, M < G and G/M is abelian. It follows that M contains the
commutator subgroup of G which is SL(2, q) for ¢ > 4.

Let V be a 2-dimensional vector space over the field of q elements. The group G
acts naturally on the projective line P(1,q) thought of as the set of 1-dimensional
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subspaces of V. Let us assign an arbitrary labelling {1,...,q + 1} to the points of
P(1,q). We denote the stabilizer of the point ¢ in G by P;. Each group P; is maximal
in G. Let us denote the center of G by Z. A Singer cycle of GL(2, q) is a cyclic group
of order ¢ — 1. Every Singer cycle acts irreducibly on V. The Singer cycles form
a single conjugacy class in GL(2,¢). Singer cycles are self-centralizing, and Z is in
every Singer cycle. If S is a Singer cycle of GL(2, ¢), then we will term SNSL(2, q),
(SN SL(2,q9))/(Z N SL(2,q)), and S/Z Singer cycles of SL(2,q), PSL(2,q), and
PGL(2, q), respectively. We know that |[SNSL(2,q)| = ¢+ 1. Also, whenever D is a
Singer normalizer in GL(2, q), then D NSL(2,q), (DNSL(2,q9))/(ZNSL(2,q)), and
D/Z are Singer normalizers in SL(2, ¢), PSL(2, ¢), and PGL(2, q), respectively. The
order of the normalizer of a Singer cycle S is 2|S|, and the number of Singer cycles
is g(¢ — 1)/2 whichever of the four groups G might be. The set of all normalizers of
Singer cycles together with all the P; groups forms a covering for G. (A covering is
a collection of proper subgroups whose union is the group.) When ¢ is odd, denote
this set of proper subgroups of G by . Furthermore, if g is even, then the set of
all normalizers of all Singer cycles together with all but one (say P,11) of the P;’s
forms a covering for G. When g is even, denote this set of proper subgroups of G by
Y. Notice that the sizes of these sets are (¢(g+1)/2)+1 and ¢(¢+1)/2 respectively.
These give us upper bounds for o(G). In fact, when ¢ is large enough, these upper
bounds are exact.

Theorem 2.4 (Bryce, Fedri, Serena, [4]). Let ¢ > 4 and let G be any of the groups
(P)GL(2,q), (P)SL(2,q). If q is even, then o(G) = q(q + 1)/2. If q is odd, then
o(G) = (q(g+1)/2) + 1.

Usually two generators of two distinct Singer cycles of G generate G. From now
on (in this section) this observation will be used extensively.

Lemma 2.1 (Lemma 3.3 of [4]). Let ¢ > 4 and let G be any of the groups
(P)GL(2,q), (P)SL(2,q). Then the normalizer of a Singer cycle S is the unique
mazimal subgroup of G containing S except when G = (P)SL(2,q) and ¢ =5, 7, or
9.

In some cases we can immediately determine w(G) and x(G).

Theorem 2.5. Let ¢ > 9 be an odd prime power. Let G be any of the groups
PSL(2,q), SL(2,q). Then w(G) = x(G) =o(G) = (¢(¢+1)/2) + 1.

Proof. By Theorem 2.4 it is sufficient to show (g(q +1)/2) +1 < w(G).

Consider the set X = {s1,...,8¢,D1,...,Pq+1} where the s;’s are generators for
the distinct Singer cycles of G and the p;’s are such p-elements from the P;’s which
cannot be represented over any subfield of GF(q). Clearly, t = g(¢ — 1)/2. It is
sufficient to show that X is a clique in I'(G) provided that ¢ > 9 is odd.

By Lemma 2.1, any s, is connected to any other element of X in I'(G). Let ¢ # j
be an arbitrary pair of distinct indices. Consider the subgroup H = (p;,p;) of G.
Inspection shows that, since ¢ > 9, the subgroup H is not contained in any of the
maximal subgroups of G of types (2), (3), (6), (7), (8) of Theorem 2.2. By the
choice of p;, the subgroup H cannot be contained in a maximal subgroup of type
(4) or (5) of Theorem 2.2. Finally, since H is irreducible, it cannot be contained in
any of the Py’s. O

The proof of the above theorem suggests a way to establish lower bounds for
w(G) and x(G) in the rest of the cases. Before we proceed we need two lemmas.
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Lemma 2.2. Let n be a positive integer at least 2. Let A be a family of distinct
subsets of {1,...,n} each of size 2 such that each pair of subsets in A intersect
non-trivially. If |Al # 1, 3, then |[4c4 Al = 1.

Proof. Put m = | A|. The claim can be checked easily for m < 3, so suppose that
m > 4. Without loss of generality suppose that 41 = {1,2} € A, that A;,..., Ay
are the distinct subsets in A containing 1 for some k such that m/2 < k < m, and

Ak+1,- .., Ay are the distinct subsets in A containing 2 but not 1. We have to show
that k& = m. Suppose that k& < m. Then A,, = {2,j} for some j > 2. But then
k=2, m=4and A,,_1 = A,,. A contradiction. O

Lemma 2.3. Let n be a positive integer at least 3. Let K(n,2) be the graph whose
vertices are the 2-element subsets of {1,...,n} and two vertices are connected by
an edge if and only if their intersection is trivial. K(n,2) is called a Kneser graph.
Then w(K(n,2)) = [n/2] and x(K(n,2)) =n — 2.

Proof. Clearly, there is a clique of size [n/2] in K(n,2). On the other hand, if Y is
a clique in K(n,2), then the union of all vertices of Y is a subset of {1,...,n} of
size 2|Y|. This proves w(K(n,2)) = [n/2].

For each 4 < i < n label all vertices of K(n,2) that contain ¢ as their largest
element by i. Label all other vertices of K(n,2) by 3. This way we get a good
coloring of the vertices of K(n,2) by n — 2 colors. This proves x(K(n,2)) <n — 2.

We claim that the set of vertices of K(n,2) is the union of no fewer than n — 2
empty induced subgraphs of K(n,2) each of which is maximal with respect to
inclusion. What are the empty induced subgraphs of K(n,2) that are maximal
with respect to inclusion? Let A be a set of vertices of K(n,2) which together
define an empty induced subgraph in K(n,2). Suppose also that A is maximal
satisfying this property with respect to inclusion. By Lemma 2.2, if | 4| # 3, then A
is equal to the set of all vertices of K (n,2) which contain a fixed positive integer, say
i. Let us denote this particular set of vertices by A;. On the other hand, if |A| = 3,
then n > 3 and there exist positive integers ¢, 7, k such that 1 <7 < j < k < n and
A= {{i,j},{i,k},{J, k}}. Let this particular set be denoted by A, ; . The vertex-
set of K (n,2) is the union of some of the A;’s and some of the A; ; x’s. Suppose that
the number of A;’s in the covering is o and the number of A; ; ;s in the covering
is 8. Consider the induced subgraph of K (n,2) defined by those vertices of K (n, 2)
which are not contained in any of the A;’s involved in the covering. This subgraph
is isomorphic to K(n — «,2). Since the vertex-set of K(n — «,2) is contained in
the union of § sets each of order 3, we have (”;D‘) < 36. From this we see that
n—2<a+(n—a)(in—a—1)/6) <a+ [ which proves n — 2 < x(K(n,2)). O

From now on let us exclude the case when G = (P)SL(2,¢) and ¢ is odd.

If G = GL(2,q), then for any distinct pair of indices i and j (1 <i<j<g+1)
there exists a cyclic group Kj; ; of order ¢ — 1 such that K; ;7 = P; N P; and K, ;
fixes every element of the i-th subspace. If G = PGL(2, q), then define K ; to be
the image of the subgroup K; ; of GL(2,q) in PGL(2,q). If G = SL(2,¢), then for
any distinct pair of indices ¢ and j (1 < i < j < g+ 1) there exists a cyclic group
K; ; of order ¢ — 1 such that K; ; = P, N P;. Let k; ; be a fixed generator of K; ;.

Consider the set X consisting of all the above chosen k; ;’s together with the
elements si1,...,s; where t is the number of distinct Singer cycles in G and s;
denotes an arbitrarily chosen generator of the i-th Singer cycle of G. Let us view
X also as the induced subgraph of T'(G) determined by the vertex-set X. Clearly,
w(X) <w(@) and x(X) < x(G).
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For ¢ > 4 any s; is connected (in I'(G)) with any other element of X. (This
follows from Lemma 2.1.) Let k; ; and ke, be two distinct arbitrary elements of X
both leaving exactly two 1-dimensional subspaces invariant. If ¢ > 4, then k; ; and
ke, are connected by an edge if and only if {i,j} N {¢,r} = 0. (This follows from
Theorems 2.1 and 2.3 and from the comments made after Theorem 2.3.)

Theorem 2.6. Let ¢ > 4 and let G be any of the groups (P)GL(2,q), (P)SL(2,q).
Let us exclude the case when G = (P)SL(2,q) and q is odd. Let X be as above.
Then w(X) = [(¢* + 1)/2]. If q is even, then

X(X) =x(G) =0(G) =1 =(q(¢g +1)/2) - 1.
If q is odd, then
(g +1)/2) =1 =x(X) <x(G) < o(G) = (¢(g +1)/2) + 1.

Proof. Let Xj, be the subgraph of X induced by the vertices that do not correspond
to generators of Singer cycles, and let X be the subgraph of X induced by the
vertices that correspond to generators of Singer cycles. The graph X is complete.
Since every vertex of X is connected to every vertex of Xy, it is clear that w(X) =
W(X,) +w(X) = (ala—1)/2) +w(Xx) and x(X) = x(X,)+x(X5) = (alg—1)/2) +
X(Xk). Hence it is sufficient to show that w(Xy) = [(¢ + 1)/2], that x(X;) =¢—1
and that x(G) < x(X) when g is even, provided that ¢ > 4.

Let n be a positive integer at least 3 and let K (n,2) be the graph whose vertices
are the distinct 2-element subsets of {1, ..., n} with two vertices A and B connected
by an edge if and only if AN B = (). Clearly, X; = K(q+1,2) provided that ¢ > 4.
By Lemma 2.3, we have w(K(¢+1,2)) = [(¢+1)/2] and x(K(¢+1,2)) =¢— 1.

To complete the proof of the theorem we need to show that x(G) < (q(g+1)/2)—1
when ¢ > 4 is even. Set ¥ = (I {P;-1,FP;}) U {P} where P is the set of all
elements of G leaving exactly two 1-dimensional subspaces invariant both of which
are labelled by the positive integers ¢ —1, g, or g+ 1. Clearly, |§J| =(q(g+1)/2) -1,
every element of GG is contained in some member of i, and every member of ¥
induces an empty subgraph in I'(G). This completes the proof of the theorem. [

We now turn to the determination of w(G). Recall the definition of ¥ (which
depends on the parity of ¢). If ¢ is odd, then |X| = (¢(¢ + 1)/2) + 1. If ¢ is even,
then |X| =q(¢g+1)/2.

Theorem 2.7. Let ¢ > 4 and let G be any of the groups (P)GL(2,q), (P)SL(2,q).
Let us exclude the case when G = (P)SL(2,q) and q is odd. Then w(G) = [(¢* +

1)/2].

Proof. By Theorem 2.6, we have [(¢*> + 1)/2] = w(X) < w(G). Let Q be a set of
elements of G which defines a clique in I'(G). It is sufficient to show that || <

[(¢* +1)/2].

When g is even SL(2, ¢) = PSL(2, ¢) and GL(2, q) = SL(2, q) xCy—_1 (so PGL(2, q) =
SL(2,q)). Hence, in this case, it is sufficient to assume that G = PSL(2, q).

The intersection of 2 with any member of ¥ is either empty or has size 1. The
elements g of G fall into three categories. The element g is irreducible and so it
is in a Singer cycle. In this case g is in exactly one member of ¥. Let a denote
the number of irreducible elements in . Then o < ¢ = g(¢ — 1)/2. Secondly, the
element g does not lie in a Singer cycle and exactly one member of ¥ contains g. (In
this case, g is contained in Pyy; (when ¢ is even) or g is contained in the maximal
subgroup M of G with (P)SL(2,q) < M and [G : M] = 2 (when ¢ is odd).) Let
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the number of such elements g in 2 be 5. Clearly, § < 1. Thirdly, the element g
is contained in at least two members of ¥. The number of such elements in €2 is at
most [((q(g+1)/2) + € — a — 3)/2] where e = 0 when ¢ is even and € = 1 when ¢ is
odd. Hence we get

(Q(Q+1)/2)+€—a—5} _ [(Q(Q+1)/2)+€+04+5} < [q2+1}_
2 2 2

€| §a+ﬁ+[

]

3. SUZUKI GROUPS

In this section let G' be the Suzuki group Suz(q) < GL(4, q) where g = 22™+1 for
some positive integer m at least 2. We already know the covering number o(G) of

G.
Theorem 3.1 (Lucido, [18]). Let G = Suz(q). Then o(G) = ¢*(¢*> + 1) /2.

The purpose of this section is to show

Theorem 3.2. Let G = Suz(q). Then w(G) = ¢*/2 and x(G) = (¢*(¢*+1)/2) — 1.

Proof. The order of G is ¢?(q — 1)(¢® + 1). The integer ¢ + 1 can be factorized as
(g—7r+1)(g+7r+1) where r = 2™+ If U is the subgroup of the lower unitriangular
matrices of G, then U is a Sylow 2-subgroup of exponent 4 and of order ¢?. Let
H be the subgroup of the diagonal matrices of G. Then H is isomorphic to the
multiplicative group of the field, and therefore has order ¢ — 1; it is a (¢ — 1)-Hall
subgroup of G and it normalizes U. For i = 1, 2, let T; be a (cyclic) maximal torus
of order ¢ + (—1)'r + 1. Let ¢ be the set of all conjugates of the subgroups U, H,
Ty, and T. Then, by Theorem 3.10, Chapter XI of [13], we see that ¢ is a partition
of G, that is, every non-identity element of G is contained in exactly one member of
©. By [24], the only maximal subgroup of G containing T; is N; = Ng(T;) = T;(t;),
with ¢; an element of order 4 and |N; : T;| = 4, for i = 1, 2. The 2-elements of G
are contained in the union of the conjugates of Ny. By [24], there are two kinds
of maximal subgroups containing H: some conjugates of the Borel subgroup B of
G defined by Ng(U) = UH, and some conjugates of the subgroup Ng(H) = H(t)
where t ¢ U is an involution. Since B is a Frobenius group, there are ¢> conjugates
of H in B, and since |Ng(H)| = 2|H|, there are ¢*(¢> + 1)/2 conjugates of H
in G. We now want to examine the intersection of the Borel subgroup B with its
conjugates. To do this we need two facts from [13]. (i) BN B! = H; (ii) any element
g of G\ B can be written uniquely in the form g = btu with b € B and u € U.
Therefore, if g € G\ B, we have BN BY = H*, where u is the unique element of U
such that g = btu. It follows that if B9* # B92, then BN B9 # BN BY9. Therefore
there are ¢? + (¢? — 1) conjugates of H in B U BY provided that g € G \ B.

There are ¢?(¢> — 1)/2 conjugates of T} and Ty in G. Pick a generator from
each of these subgroups. Let these be s1,...,542(42_1)/2. There are ¢*> + 1 Borel
subgroups in G. Let these be B1,...,Bj2,. For each pair of indices ¢ and j with
1 <i<j<qg*+1,let k; j be a generator of B;NB;. Let X be the induced subgraph
of I'(G) spanned by the set consisting of all the s;’s and all the k; ;’s. Notice that
the graph X is isomorphic to the graph X defined before the statement of Theorem
2.6 with the only modification that we replace the even prime power ¢ (at least 4)
by ¢?. Hence the first two paragraphs of the proof of Theorem 2.6 can be used to
show that w(X) = ¢*/2 and x(X) = (¢*(¢> +1)/2) — 1.

Let X be the set of all conjugates of all normalizers of T7 and T3 together with all
the B;’s except Bg241. The set ¥ is a covering for G. Put = (%) {Bp_1,Bp})U
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{B} where B is the set of all powers of the elements ky2_1 2, kg2 g241, kg2—1,g241-
Clearly, |3| = (¢2(¢2 + 1)/2) — 1, every clement of G is contained in some member
of i and every member of ¥ induces an empty subgraph in I'(G). This proves
x(G) > (¢%(¢® +1)/2) — 1. The other inequality follows from x(X) < x(G).

In order to complete the proof of the theorem we only need to show that w(G) <
q*/2. Let Q be a subset of G that defines a clique in I'(G). The intersection of
with any member of ¥ is either empty or has size 1. The elements g of G fall into
three categories. The element g may lie in a unique conjugate of 73 or T5. In this
case ¢ is in exactly one member of 3. Let a denote the number of such elements
in Q. Secondly, the element g does not lie in any conjugate of T1 or Ty and exactly
one member of ¥ contains g. (In this case g is contained in B,1;.) Let the number
of such elements g in Q be 8. Clearly, 8 < 1. Thirdly, the element g is contained
in at least two members of 3. The end of the proof of Theorem 2.7 may now be
applied to reach the desired conclusion. O

4. REE GROUPS

Apart from an explicit finite list of exceptions, we found that whenever G is any
of the groups GL(2,q), SL(2,q), PGL(2,q), PSL(2, q), Suz(g), then 1 — 1/m(G) <
w(G@)/o(G) where m(G) denotes the minimal index of a proper subgroup in G. In
this section we prove a similar result for Ree groups.

Let G = Ree(q) be the Ree group where ¢ = 3?™*+1 for some positive integer m
at least 2.

Theorem 4.1. Let G = Ree(q). Then we have 1 —4/(¢> +1) < w(G)/a(G).

Proof. The size of G is ¢*(¢—1)(¢®>+1), and we have (¢g—7+1)(g+r+1) = ¢*—q+1
where r = 3™, The maximal subgroups of G are given on Page 61 of [14]. In [19]
it is shown that the union of all conjugates of the (maximal) parabolic subgroups
[¢°] © Z4—1, all conjugates of 2 x PSL(2, q), all conjugates of Z, .41 : Zg, and all
conjugates of Z,_,11 : Zs is G. (For more details on these maximal subgroups see
[14].) This gives an upper bound of

_ @+ | P@+De-1)

AD=—=0 T T 6= r+ D) @D+

*(* +1)
(¢g+1)

for 0(G). Now pick an element of order ¢ + r + 1 from each conjugate of the
maximal subgroup Zg4,41 : Zg, an element of order ¢ — r + 1 from each conjugate
of the maximal subgroup Z,_,4+1 : Zg, and an element of order (¢+ 1)/2 from each
conjugate of 2 x PSL(2,q). Let the set consisting of these elements be Q. This
defines a clique in T'(G) by the list of maximal subgroups of G found in [14], and
from the proof of Lemma 2.2 of [19]. The size of  is

Blg) = AP +D)g-1) AP +D-1) | P +1)
4= 6(g+r+1) 6(q—r—+1) (¢g+1)

Careful calculation gives

Note that ¢® + 1 is the minimal index of a proper subgroup in G.
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5. LINEAR GROUPS OF ANY DIMENSION
Throughout this section for any positive integer n at least 2 and any prime power

g let G be any of the groups GL(n,q), SL(n,q), PGL(n, q), PSL(n, q).

By [3], exact formulas are known for w(G) and ¢(G) provided that n > 12. In
general (for any n) we only have estimates.

Theorem 5.1 (Corollary 6.1 of [3]). When G = (P)SL(n,q) suppose that n > 2
and (n,q) # (2,5), (2,7), (2,9), (3,4). Then

“ _|GL(n,q)| q A
GLn I/ (3 IGL(n/a.¢")al) < (@) < 0(6) < perepiing + ST []
b’(k

where the first sum is over all prime divisors a of n and b is the smallest prime
divisor of n.

The observation of this section is the following.

Theorem 5.2. Let G be any of the groups (P)SL(n,q). Then, apart from finitely
many groups G, we have 1—1/m(G) < w(G)/o(G) where m(G) denotes the minimal
index of a proper subgroup in G.

Proof. By the section on linear groups of dimension 2, it is sufficient to assume that
n > 3. Tedious calculations using the bounds in Theorem 5.1 give 1 — (¢ —1)/(¢™ —
1) < w(G)/o(G) provided that n > 3 and (n,q) # (3,2), (3,3), (3,4). O

This completes the proof of Theorem 1.1.

6. LINEAR GROUPS OF LARGE DIMENSIONS

In this section let G be any of the groups GL(n, ¢), SL(n, q), PGL(n, q), PSL(n, q).
Suppose also that n > 12.

We aim to determine x(G). Clearly, w(G) < x(G) < o(G). By [3], we have
formulas for w(G) and ¢(G) which are close to each other.

By Theorem 1.2 of [3], we may assume that n = 2 (mod 4), ¢ odd and G =
(P)GL(n,q), or n = 2 (mod 4) and ¢ even. (For otherwise w(G) = o(G) and so
w(G) = x(G) = o(G).) Also, since x(G) < x(G/Z(@)), w(G) = w(G/Z(G)) and
0(G) =0(G/Z(Q)), it is sufficient to assume that G = GL(n, q) or G = SL(n, q).

Let V be an n-dimensional vector space over the field of ¢ elements on which
G acts naturally. Put t = |GL(n,q)|/|GL(n/2,¢%).2|. Let Uy,...,U; be a list of
all subspaces of V' of odd dimensions less than n/2 and let W1, ..., W, be a list of
all subspaces of V of odd dimensions greater than n/2 listed in an order such that
V =U®W, for all i with 1 < i < £. (Such an ordering of subspaces is always
possible for example by the second paragraph of Section 3 of [3].) Let V4,...,V, be
a list of all n/2-dimensional subspaces of V. The letter g with some subscript(s)
will always denote an element of G. For a positive integer ¢ the element g; will
denote an irreducible element in G. For subspaces U;, W; the element gy, w, will
denote an element of G that leaves exactly two proper, non-trivial subspaces of V
invariant, namely U; and W;. When ¢ is odd, then let gy, denote an element of G
leaving exactly one proper, non-trivial subspace of V' invariant, namely V;. Finally,
for complementary subspaces V; and V; an element of G leaving exactly two proper,
non-trivial subspaces of V' invariant, namely V; and Vj, shall be denoted by g(v; v;}-
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Recall that we are assuming that n > 12. By [3], there exists a subset

S = {gi}ims U{gu.w. Yoy U{gv i U vy bv=viev,
so that distinct elements z, y € ¥ generate G if and only if they do not leave the
same proper, non-trivial subspace of V invariant unless z = gy, and y = gy, for
some i and j when (x,y) is a subgroup of a group of index 2 in G (this occurs only
when ¢ is odd).

Now let ¥ denote also the induced subgraph of I'(G) spanned by the set ¥. Let
X(X) denote the chromatic number of the graph ¥. Clearly, x(2) < x(G) < o(G).

Put X1 = {g:}{—1U{gv,w: Hoy and B2 = {gv; }1_1U{gv, v;} }v=viev; . Similarly,
let ¥; and ¥, denote the induced subgraphs of ¥ spanned by the sets ¥; and 3o
respectively. Then ¥; is a complete subgraph and every vertex on ¥ is connected
to every vertex in ¥,. Hence x(X) = [Xi| 4+ x(¥2). By this observation and by
Theorem 1.2 of [3] the following question may be of interest.

Question 6.1. Is it true that x(32) = (¢"/?/(¢"/? + 1)) [7;/’2} + € where € is 0 if
a

q s even and 1 if q is odd?

An affirmative answer would imply x(2) = x(G) = o(G).

Let X5 be the set {g(v, v,}}v=v,av;. Let ¥ also denote the associated induced
subgraph in I'(G). We aim to give a lower bound for x(X%) for any g (either even
or odd).

Let s be (1/(¢™/? + 1)) [nT/lz} and let m be a positive integer with s < m < r
q
where r = {"/QL.

Lemma 6.1. Let A be a graph on m vertices so that every subset of s + 1 vertices
spans a non-empty induced subgraph in A. Then the number of edges in A is at
least (m/2)((m/s) —1).

Proof. Let A be the complementary graph of A. (There is an edge in A between
two given distinct vertices iff there is no edge between those vertices in A.) By our
hypothesis, A does not contain a complete subgraph on s + 1 vertices, and hence,
by Turdn’s theorem [26], contains at most (1 — (1/s))(m?/2) edges. O

The graph X is the union of x(X%) color classes, that is, empty subgraphs.
What are the maximal empty induced subgraphs of 3,? They are of two kinds:
(1) for every n/2-dimensional vector space V; the set A; = {g(v, v,1}; where j
runs through the integers for which V; N'V; = {0}; (2) for every n/2-dimensional
vector spaces V;, V;, Vi with V, N V; = V; NV, = Vi NV, = {0} the set A; ;1 =
{g{Vi;Vj}7g{‘/j,Vk}7g{vk,V£}}'

Lemma 6.2. We have x(X4) <r —s.

Proof. Let v be a fixed non-zero vector in V. Let C, be the set of those A;’s for
which v € V;. Then C, is a vertex-covering of the graph ¥ using r — s maximal
empty induced subgraphs. O

Let C be a vertex covering of the graph 3/, using sets of type (1) and (2). Suppose
that the number of sets of type (1) in C is @ and the number of sets of type (2) in
C is . Suppose that a + 8 = x(X5h).

Lemma 6.3. We have r — 6s < a < x(X5).
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Proof. Let A be the set of n/2-dimensional subspaces of V' with the property that
V; € A if and only if A; € C. Let m be the size of A. Clearly, m =r — a. Let A
denote also the induced subgraph of the ¢-Kneser graph ¢K (n,n/2) (defined in the
Introduction) spanned by the set A. By our construction, the edge set of the graph
A is contained in the union of 8 triangles. By a result of Frankl and Wilson [10], a
1-intersecting family of n/2-dimensional subspaces of V has size at most s. (A set V
of n/2-dimensional subspaces of V is called a 1-intersecting family if for any distinct
vector spaces V; and V; from V we have V; N'V; # {0}.) This implies that A does
not contain an empty induced subgraph on s+ 1 vertices. Hence, by Lemma 6.1, the
number of edges in A is at least (m/2)((m/s)—1). Now 3(m—s) < (m/2)((m/s)—1)
provided that m > 6s. So if, for a contradiction, we had o < r —6s, then m —s < 3
and sor—m+m—s < a+ = x(X%) contradicting Lemma 6.2. (|

Now let ¥/ be the set X1 UX),. Let ¥/ also denote the induced subgraph of T'(GQ)
spanned by the set 3. Clearly, x(X') = [Z1] + x(Z5) = ¢t + £+ x(X5) as Xy is
a complete subgraph and every vertex of ¥; is connected to every vertex of X.
Finally, by Lemma 6.3, we have t + £ +r — 65 < x(X) < x(G).

Comparing this lower bound for x(G) with the formulas of Theorem 1.1 and
Theorem 1.2 of [3] we have

_ (n/2)71

173 i n 1 n
Z Z —1:
21:[ ; {k}q+2[n/2L '
2fi 2tk
n—1 (n/2)—1
1 . n q/? n
G — n__ 1 .
o (@) QE((] ¢+ ; [k}q+qn/2+1{n/2L+e’
2t 21k
n—1 (n/2)—1
1 : n /2 -5 n
G >7 n _ £ =
x( )_QE(Q q') + k; [l-c}q+qn/2+1{n/2L
2ti 21k

where € is 1 if ¢ is odd and is 0 if ¢ is even.

From the latter three formulas Theorem 1.2 follows.

7. KNESER GRAPHS AS INDUCED SUBGRAPHS

In this section let n and r be positive integers with r < n/2. Let Q be a set of
size n and let Qq,...,8; be the distinct r-subsets of {0 where t = (2) For each
¢ with 1 <4 <t let V; be the set of all permutations of Sym({2) which fix every
element of Q; and permute all the elements of Q\ ; in an (n — r)-cycle. Let T’ be
the graph whose vertex-set is V = V; U ... U V; and there is an edge between two
vertices if and only if no point-stabilizer contains both elements and they do not
generate a group containing Alt(€2). To prove Theorem 1.3 it is sufficient to find an
independent set {v1,...,v;} in V = V(T') so that v; € V; for each ¢ with 1 <4 <¢.

By the following result (see also [12] and [22]), it is sufficient to show that 2 times
the degree of any vertex in I' is at most (n —r — 1)\,

Theorem 7.1 (Haxell, [11]). Let T be a (simple) graph so that every vertex of T
has degree at most d for some positive integer d. Let V(I') = Vi U...UWV; be a
partition of the vertex set of T'. Suppose that 2d < |V;| for each i. Then T has an
independent set {v1,...,v;} where v; € V; for each i.
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Let v be a fixed vertex in V and let d be its degree in I'. It is sufficient to show
that 2d < |[Vi| = (n—r — 1)L

If {v,w} is an edge in T", then v and w generate a transitive subgroup of Sym(€2)
not containing Alt(€2). (This is because we are assuming that r < n/2.) Hence there
are two possibilities: (v, w) is contained in a maximal primitive group different from
Alt(n), or (v, w) is contained in a maximal imprimitive subgroup of Sym(€2).

Let H be a maximal subgroup in Sym(f2). Let A be the number of conjugates of H
containing a fixed element of V. (Notice that h is well-defined since V' is a conjugacy
class of elements in Sym(n).) The number of ordered pairs (u, K) such that u € V,
the subgroup K is conjugate to H, and u € K is equal to (hn!)/((n —r)r!) and less
than (n!/|H|)|H| = n!. Hence h < (n —r)rl.

Let H be a maximal imprimitive subgroup of Sym(2). Then it is easy to see
that |HNV| < 27/2(2([(n—7)/2]")?)/(n —r). For a maximal primitive subgroup H
not containing Alt(Q2) we have |H N V| < |H| < 3™ by [20].

By [15], there are at most o(1)n conjugacy classes of transitive maximal sub-
groups in Sym(€).

Hence, for a fixed r, the number of neighbors of v in T is
d < o(1)r12"/ D+ n([(n — r)/2])2.

Since
gn—r—l < (n—r)!
n=r+1 " 2([(n—r)/2)*
we have
—(n/2)4r+1 r, 30—(n/2)+r+2) | V1]
d < o(1)r2 n(n—r+1)! < (0(1)7’ n°2 )7,

where the second inequality followed from 7! < r” and
(n—r+ 1) <n?*n—r—1=n?V].
There exists a universal constant ¢ so that whenever 2rlogr + 2r + ¢ < n, then

o(1)r™n32=(/2+7+2 < 1 Hence d < |V;|/2 provided that 2rlogr + 2r + ¢ < n.
This completes the proof of Theorem 1.3.

8. TWO CONSEQUENCES OF A THEOREM OF LIEBECK AND SHALEV

For a finite group G let P(G) denote the probability that two randomly chosen
elements from G generate G. Let m(G) be the minimal index of a proper subgroup
in G. We begin with

Theorem 8.1 (Liebeck, Shalev, [16]). There exist constants ¢1, ca > 0 such that

C1 C2
1-—L <pG)<1l-—2_
mie) =D
for all non-abelian finite simple groups G. Moreover, we have liminf m(G)(1 —
P(G)) =1 and limsupm(G)(1 — P(G)) = 3 where the limits are taken as G ranges
over all non-abelian finite simple groups.

We will present an application (Theorem 1.4) of the upper bound of Theorem
8.1 and an application (Theorem 1.5) of the lower bound of Theorem 8.1.
We continue with the following observation.

Lemma 8.1. Let G be a finite group. For a proper subgroup H of index m in G
we have P(G) < 1 — (1/m?) and for a normal subgroup N of G we have P(G) <
P(G/N).
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Proof. The first claim is clear since P(G) < 1 — (|H|?/|G|?) = 1 — (1/m?). The

second claim follows from
IGI*P(G) = {(g,h) € G* : (9,h) = G}| < [{(g9,h) € G*: (4N, hN) = G/N}| =

= [NI*{(¢N,hN) € (G/N)*: (gN,hN) = G/N}| = |G|*P(G/N).
O

Note that if G is not solvable then it admits a monolithic group with non-abelian
socle as an epimorphic image. By Lemma 8.1, to show Theorem 1.4, it is sufficient
to assume that G is a monolithic primitive group with Soc(G) = S* for some non-
abelian finite simple group S and positive integer ¢t. Clearly G has a subgroup of
index t and 60" < |S|" < |G|. We may assume that ¢ = 1. For if ¢ > 1, then, by
Lemma 8.1, we have

P(G) <1—(1/t?) <1—(1/60%/3) <1—(1/|G|*3).

Now G/S is isomorphic to a subgroup of Out(S) and so there exists a positive
constant d; with |G/S|? < (1/d)|G|*/3. By Lemma 8.1, P(G) < 1 — (dy/|G|'/?)
provided that G # S. Hence we may assume that G = S. Then there exists a
positive constant dy so that P(G) < 1 — (co/m(G)) < 1 — (da/|G|*/3) where ¢y is
as in Theorem 8.1. Finally, to establish Theorem 1.4, take d to be the minimum of
d1 and dg.

We now turn to the proof of Theorem 1.5.

Let K,.(t) be the complete r-partite graph with ¢ vertices in each class, or equiv-
alently the Turdn graph T'(rt,r). Define s, (n) (for 0 < e < 1/(2(r —1))) to be the
greatest ¢ such that every graph of order n and the integer part of

r—2 9
(2(r 7t 6)”
edges contains a K,.(t). The graph K,.(¢) contains every r-colorable graph on rt
vertices. Erdés and Stone [9] found a weak lower bound for s, .(n) for n sufficiently
large. The correct order of s, ¢(n) in terms of n was found by Bollobés and Erdds [2]:
for any given r and € there are constants k1 (7, €) and ka(r, €) such that k1 (r, €) logn <
Sre(n) < ka(r,e)logn. Chvétal and Szemerédi [6] then determined the nature of
the dependence on r and ¢, up to a constant:

5logn
log(1/¢)

logn
5001og(1/€)

< spe(n) <

for sufficiently large n.

Let c; be as in Theorem 8.1. Let dy; and dy; be positive constants so that
whenever G is a non-abelian finite simple group with m(G) < 4c¢; then every r-
colorable graph on at most ds1m(G)(log|G|/logm(G)) vertices is a subgraph of
I'(G) for any r < dy1m(G). (Note that this is possible since there are at most
finitely many non-abelian finite simple groups G with m(G) < 4c¢y.) Let dg 2 be
a positive constant so that ds om(G)(log |G|/logm(G)) < |G| for any non-abelian
finite simple group G.

Let G be a non-abelian finite simple group with 4¢; < m(G). Let n = |G|. By
Theorem 8.1, the number of edges in I'(G) is at least (1 — (c1/m(G)))(n?/2). Let r
be the integer part of m(G)/(2¢1) and let € be 1/(4(r — 1)). Then

(% +e)n? < (1 (cl/m(G)))%Q’
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and so I'(G) contains a K,.(t) for t < s, (n). Hence I'(G) contains (as subgraphs)
every r-colorable graph on at most

rlogn
5001og(4(r — 1))

vertices. Finally, there exist universal positive constants d; 2 and dz 3 (independent
of G) so that d; om(G) < r and

logn rlogn
logm(G) — 500log(4(r — 1))
Now let di be the minimum of d ;, and dy » and let d2 be the minimum of dy 1, d2 2,

and dg 3. One can see that d; and d; are suitable constants satisfying the statement
of Theorem 1.5.

dg 3m(G)

)

9. FINITE SIMPLE GROUPS

In this section G denotes a non-abelian finite simple group. Let a denote w, ¥,
or 0. For a positive number z define «(z) to be the number of positive integers n
at most z with the property that there exists a non-abelian finite simple group G
so that a(G) = n. In this section we prove

Theorem 9.1. a(z) = (2v/2 + 0(1))(vz)/(In ).

Let the minimal index of a proper subgroup in G be denoted by m(G). The proof
of Theorem 9.1 depends on Theorem 1.5 and on the following corollary of results of
Stringer.

Theorem 9.2 (Stringer, [23]). Apart from at most finitely many positive integers
n we have n® < w(Alt(n)).

For i = 0, 1, let a;(x) be the number of integers a(G;) so that a(G;) < =z
where Gy = PSL(2, ¢) for some odd prime power g and G; = PSL(2, q), Suz(q) for
some even prime power g, PSL(3,¢q), or Alt(n). Let as(x) be the number of pairs
(d1 - m(G),G) so that d; - m(G) < z and G # PSL(2, ¢), PSL(3, q), Alt(n), Suz(q)
where d; is a constant from Theorem 1.5.

By the Prime Number Theorem and by Theorems 2.5, 2.7, 5.1, 3.2, 9.2, it follows
that ag(z) = (2v2 + 0(1))(v/z)/(Inz) and that a;(x) = (o(1)y/z)/(Inxz). These
observations together with Theorem 1.5 and ag(z) < a(z) < Z?:o a;(z) imply
that to prove Theorem 9.1 it is sufficient to establish

Lemma 9.1. as(x) = (o(1)v/z)/(Inx).

Proof. In counting all pairs (dy - m(G),G) with d; - m(G) < z it is sufficient to
assume that G is a Lie group different from PSL(2, q), PSL(3, ¢), Suz(q). (We may
exclude the sporadic simple groups since there are only finitely many of them.)

The precise values of the minimal indices m(G) of proper subgroups in the Lie
groups G can be found (for example) in Table 1 on page 60 of [7]. Every numerical
entry of this table is either a positive integer, an infinite sequence depending on one
variable, or a doubly infinite sequence depending on two variables. We may ignore
all positive integer entries of Table 1. Notice that all other numerical entries of
Table 1 give rise to simply or to doubly infinite series of strictly increasing positive
integers. Since there are only finitely many entries in the table, it is sufficient to
verify that every numerical entry (or sequence) has (o(1)y/x)/(Inz) members that
are at most x/d;.
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Consider the numerical entry m(G,,(q)) associated to the Lie group G = G, (q)
where n denotes the Lie rank (or twisted Lie rank) of G, the prime power ¢ is
the size of the field over which G is defined, and where G,,(¢) stands for a single
entry in Table 1 of [7]. It is easy to see by inspection that if  is large enough and

m(Gn(q)) < x/e, then g < (at:/dl)l/3 and n < In(xz/dy). Hence there are indeed

(o(1)y/z)/(Inz) pairs (m(G,(q)), Gn(q)) with m(G,(q)) < n/d;. O
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