CHARACTER EXPANSIVENESS IN FINITE GROUPS
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ABSTRACT. We say that a finite group G is conjugacy expansive if for any
normal subset S and any conjugacy class C' of G the normal set SC' consists
of at least as many conjugacy classes of G as S does. Halasi, Maréti, Sidki,
Bezerra have shown that a group is conjugacy expansive if and only if it is a
direct product of conjugacy expansive simple or abelian groups.

By considering a character analogue of the above, we say that a finite
group G is character expansive if for any complex character « and irreducible
character x of G the character ax has at least as many irreducible constituents,
counting without multiplicity, as a does. In this paper we take some initial
steps in determining character expansive groups.

1. INTRODUCTION

The product of two conjugacy classes in a finite group usually consists of many
conjugacy classes. In [8] a finite group G was called (conjugacy) expansive if for
any normal subset S and any conjugacy class C' of G the normal set SC consists
of at least as many conjugacy classes of G as S does. It has been proved in the
same paper that G is conjugacy expansive if and only if it is the direct product
of conjugacy expansive simple or abelian groups. Hence, to classify such groups
it is sufficient to determine which simple groups are conjugacy expansive. It is
conjectured that all simple groups are such groups. In fact, the groups La(¢) and
Suz(q) are all conjugacy expansive when simple and the 138 non-abelian finite
simple groups whose character table can be found in the Gap [5] character table
library are also conjugacy expansive [8].

In this paper the character analogue of conjugacy expansiveness is considered.
We say that a finite group G is character expansive if for any complex character «
and irreducible character x the number of irreducible constituents of the product ay
(counting without multiplicity) is at least the number of irreducible constituents of
«, again counting without multiplicity. For example, abelian groups are character
expansive.

Our first observations on character expansive groups are the following.

Theorem 1.1. For a character expansive group G we have the following.
(1) If G is solvable then it is abelian.
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(2) If G is almost simple then it is simple.
(3) If G is quasisimple then it is simple.

The ideas of [8, Section 3] can directly be translated to this character context to
prove the following.

Theorem 1.2. Let G be a direct product of groups. Then G is character expansive
if and only if every direct factor of G is character erpansive.

Theorems 1.1, 1.2, and the results on conjugacy classes above suggest us to
consider the following.

Problem 1.3. Is it true that a character expansive group is a direct product of
simple or abelian groups?

The converse of Problem 1.3 is false. For let n = k2 for some integer k at least
3. By [1, Theorem 5.6], there are four irreducible characters x1, X2 # Xa, X3 of
A, so that x1x2 = X3 = X1X2- This means that A,, cannot be character expansive
for n = k2. Furthermore, for the same reason, none of the sporadic simple groups
Coy, Cog, Cos, Fijy, M, Mz, Moy, and Th can be character expansive. (Using
the Hungarian algorithm [9] it can be shown by computer that among the 138
non-abelian simple groups in the Gap [5] library all other groups are character
expansive.)

Unfortunately we are unable to solve Problem 1.3. We can only show

Theorem 1.4. A minimal counterexample to Problem 1.3 has a unique minimal
normal subgroup and that is abelian and non-central.

Let G be a group which is the direct product of non-abelian finite simple groups
and let V' be a finite faithful irreducible F'G-module for some prime field F. For a
complex linear character A of V' let I(\) be the stabilizer of A in G and for a finite
group H let k(H) be the number of conjugacy classes of H. An affirmative answer
to the following problem would imply Problem 1.3.

Problem 1.5. With the notations and assumptions above, does there exists A €
Irr (V) with k(Ig(\)) < k(GQ)?

Interestingly, Problem 1.5 seems to be close to the k(GV') problem.
Theorem 1.6. With the notations and assumptions above, Problem 1.5 has an

affirmative solution if G is simple and (|G|,|V|) = 1, or if G = GL(n,2) and
[V| = 2™ with n > 3.

2. BASIC RESULTS

The paper [8] considered the following “weaker” notion than conjugacy expan-
siveness. We say that G is normal conjugacy expansive if for any normal subgroup
N and any conjugacy class C' of G the normal set NC consists of at least as many
conjugacy classes of G as N does.

Lemma 2.1. For a finite group G the following are equivalent.
(1) G is normal conjugacy expansive;
(2) G is a direct product of simple or abelian groups;
(3) k(G) = k(N)k(G/N) for all normal subgroups N of G.

Proof. This is part of [8, Theorem 1.1]. O
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In this note we try to find character analogues of the results in [8]. For this we
define n(a) to be the number of irreducible constituents, counting without multi-
plicity, of a character a of G. So G is character expansive if for any character «
and any irreducible character x we have n(a) < n(ay). Furthermore we say that
G is normal character expansive if for any normal subgroup N and any irreducible
character y of G we have n(1§) < n(1§ - x). Here n(1$) is clearly k(G/N). Also,
character expansiveness implies normal character expansiveness.

We hope to show that a group is normal character expansive if and only if it is
a direct product of simple or abelian groups. Our first observation is the following.

Lemma 2.2. Every factor group of a normal character expansive group is normal
character expansive.

Proof. This essentially follows from the correspondence theorem about normal sub-
groups in quotient groups. (I

Note that we do not know whether a normal subgroup of a normal character
expansive group is normal character expansive.

Lemma 2.3. Let N be a normal subgroup of a finite group G such that k(G/N) <
n(1§ - x) for any irreducible character x of G. Then the number of irreducible
characters of G lying above any irreducible character of N is at least k(G/N).

Proof. Let 6 be an arbitrary irreducible character of IV and let x be an irreducible
character of G lying above . Now, for an arbitrary irreducible character ¢ of G,
we have (1§ - x, %) = (x~, %) which is non-zero if and only if ¢ lies above 6. Thus
n(1§ - x) is equal to the number of irreducible characters of G' lying above . The
result follows. O

Lemma 2.4. Let N be a normal subgroup of a finite group G. Put H = G/N. Then
the number of irreducible characters of G lying above a fixed irreducible character 0
of N is at most k(Ig(0)). Hence if G is normal character expansive then k(H) <
k(Ig(0)). Furthermore if we also have that H is abelian then 0 is G-invariant.

Proof. The first statement is [4, Corollary, Page 178]. The second follows from
Lemma 2.3. For the third statement notice that |H| = k(H) < k(I (0)) < |H|. O

Finally, we will need an old result of Nagao [12, Lemma 1].

Lemma 2.5. Let N be a normal subgroup of a finite group G. Then k(G) <
E(N)k(G/N).

3. PrROOF OF THEOREM 1.1
The next three lemmas give all of Theorem 1.1.

Lemma 3.1. A solvable normal character expansive group is abelian.

Proof. Let G be a minimal counterexample to the statement of the lemma and let
N be a non-trivial normal subgroup of G. By Lemma 2.2 we know that G/N is
normal character expansive and so, by the minimality of G, we have that H = G/N
is abelian. Let 6 be an arbitrary irreducible character of V. Then 6 is G-invariant
by Lemma 2.4. Hence, by Lemma 2.3, we have k(N)k(G/N) < k(G). On the other
hand, by Lemma 2.5, we see that k(G) < k(N)k(G/N). We conclude that for any
normal subgroup N of G we have k(G) = k(N)k(G/N). Finally, apply Lemma 2.1
to conclude that G is abelian. (]
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Lemma 3.2. An almost simple normal character expansive group is simple.

Proof. Let G be an almost simple normal character expansive group with socle N.
Then the factor group G/N is normal character expansive by Lemma 2.2. Moreover
G/N is solvable by Schreier’s conjecture. Thus G/N is abelian by Lemma 3.1.
Thus every irreducible character of N is G-invariant, by Lemma 2.4. By Brauer’s
permutation lemma, this means that every conjugacy class of NV is G-invariant. But,
if G/N is non-trivial, this contradicts [2, Theorem C] which states that any outer
automorphism of a non-abelian finite simple group N fuses some of the conjugacy
classes of N. d

Lemma 3.3. A quasisimple normal character expansive group is simple.

Proof. Let G be a quasisimple normal character expansive group. Let Z be its
center. Then every proper normal subgroup N of G is contained in Z. Hence every
irreducible character of N is G-invariant. By Lemma 2.3, we have k(N)k(G/N) <
k(G) which forces k(G) = k(N)k(G/N) using Lemma 2.5. Now apply Lemma 2.1
to conclude that G is simple. (]

4. PROOF OF THEOREM 1.4

In order to prove Theorem 1.4, our first step is to show that any minimal normal
subgroup of a minimal counterexample to Problem 1.3 is abelian. To achieve this,
we need two lemmas.

Lemma 4.1. Let G be a primitive permutation group on a finite set 2. Then there
exists a subset A of Q with k(Ga) < k(G). In fact, A can be chosen so that |A| =1
or Gao = 1.

Proof. Put n = |©2]. We may assume that n > 3. Since k(A,_1) < k(4,) and
kE(Sn—1) < k(Sy), we may also assume that G does not contain A,,.

By [14, Theorem 2], there exists a subset A of Q with GAo = 1 unless G is
a member of an explicit list of 43 permutation groups (of degrees at most 32).
Using Gap [5] it can be checked that for all these exceptional groups G we have
k(Ga) < k(G) whenever |A] = 1. O

Lemma 4.2. For any non-abelian finite simple group G there exists a mon-trivial
irreducible character of G stabilized by Aut(G).

Proof. If G is a finite simple group of Lie type then such a character can be taken
to be the Steinberg character [7, Theorem A]. Otherwise we may assume that
|Out(G)| = 2. Assume the claim is false. Then }_, . 1) x(1)? = |G| — 1 is even
which is a contradiction. (]

Proposition 4.3. Let G be a minimal counterexample to Problem 1.3. Then every
minimal normal subgroup of G is abelian.

Proof. Let G be as in the statement of the proposition. Then every proper factor
group of G is a direct product of simple or abelian groups. Suppose for a contradic-
tion that N 2 S¢ is a minimal normal subgroup of G for some non-abelian simple
group S and some positive integer /.

Suppose £ = 1 and let M = S x Cg(S). Then G/Cqs(S) is almost simple and
normal character expansive. Hence, by Lemma 3.2, it is simple. So G = M which
is a contradiction. Thus ¢ > 1.
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The group G/N acts transitively (but not necessarily faithfully) on the set ¥
of simple factors of N. Clearly |X| = ¢ > 1. We may naturally think of N as
S1 X -+ x Sp with each S; isomorphic to S. Let Q be a system of maximal blocks
for G/N acting on X; the group G/N acts primitively on . Let the kernel of the
action of G/N on Q be K/N.

Now let A be a subset of Q with k((G/K),) < k(G/K). Such a set exists by
Lemma 4.1.

Let x be a non-trivial complex irreducible character of S stabilized by Aut(S).
Such a character exists by Lemma 4.2. Now consider the irreducible character
Y = @%_,1b; of N where v; € Irr(S;) for every i in {1,...,¢} with ¢; = x if S; is an
element of an element of A and v¢; = 1 otherwise. By our construction Ig(v) > K
and I6(1)/K = (G/K) 5.

Then k(G/N) = k(G/K)k(K/N) > k((G/K)A)k(K/N) > k(Ig/n(v)) where
the last inequality follows from Lemma 2.5. This is a contradiction to Lemma
2.4. ([

Lemma 4.4. Let G be a minimal counterexample to Problem 1.3. Then G has a
unique minimal normal subgroup and that is abelian.

Proof. By Proposition 4.3 every minimal normal subgroup of G is abelian. So for a
contradiction assume that N7 and No are two minimal (abelian) normal subgroups
of G. Note that G is non-solvable by Lemma 3.1. By the minimality of G and by
Lemma 2.2, we have G = G/N; = S1 X -+ x S, x A for some non-abelian simple
groups S1,...,S,, and abelian group A. Now fix an index i with 1 < i < m. Let
S; be the preimage of S; in G. Then S; is normal in G. Now again, G = G/Ny =
Hy X -++ x Hy, x B for some H;’s with H; 2 S; with 1 < j < m and abelian group
B. Since S; N Ny = 1, we have S; = S, for the image S; of S; in G = G/Ns. Since
S; is normal in G, it must be a direct product of simple and abelian groups. Hence
S; = U; x N; for some U; = S;. This implies that U; is a non-abelian minimal
normal subgroup in G. This contradicts Proposition 4.3.

O

Lemma 4.5. Let G be a minimal counterexample to Problem 1.3. Then the unique
minimal normal subgroup of G is not central.

Proof. Let N be the unique (abelian) minimal normal subgroup of G (Lemma
4.4). (Again, G is non-solvable by Lemma 3.1.) Suppose for a contradiction that
N < Z(G) (and is of prime order). Since G is normal character expansive, we have
E(N)k(G/N) < k(G) by Lemma 2.4. But then k(G) = k(N)k(G/N) by Lemma
2.5. By the minimality of G and Lemma 2.2, G/N = T x A for some group T which
is a direct product of non-abelian finite simple groups and some abelian group A.
For a simple direct factor S of T let S be the preimage of S in G. Clearly, S is
normal in G. If no S is quasisimple then we arrive to a contradiction as in Lemma
4.4. So assume that a given S is quasisimple. By repeated use of Lemma 2.5 and
noting that equality in Lemma 2.5 occurs for direct products, we have
k(S)k(G/S)k(N) = k(G/N)k(N) = k(G) < k(S)k(G/S)

which gives k(S)k(N) < k(S). Hence, again by Lemma 2.5, k(S) = k(S)k(N). But
this contradicts Lemma 2.1. O

This finishes the proof of Theorem 1.4.
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5. PROBLEM 1.5 IMPLIES PROBLEM 1.3

Let H be a minimal counterexample to Problem 1.3. By Theorem 1.4 the group
H has a unique minimal normal subgroup V and this is abelian and non-central.
Thus V is (a non-trivial) irreducible G-module where G = H/V is a direct product
of simple or abelian groups (Lemma 2.2). By Lemma 2.4, we have k(G) < k(Ig(N))
for every X € Irr(V).

Let us call a pair (V, @) with the above properties bad, allowing V to be a com-
pletely reducible G-module. We will show that an affirmative answer to Problem
1.5 implies that bad pairs do not exist.

So suppose that (V,G) is a bad pair with |G| + |V| minimal.

Suppose that G = T x A where T is a group which is a direct product of non-
abelian finite simple groups and A is abelian. (T is non-trivial by part (1) of
Theorem 1.1.) We have that

IeNT/T = 16(\)/(Ia(\) NT) = Ic(X)/I7(A)
is an abelian group of order at most |A| for any A € Irr(V'). Hence
Al k(T) = k(G) < k(I(N) < k(IT(N)) - |A]

for any A € Irr(V') where the last inequality follows from Lemma 2.5. Since V is a
completely reducible T-module, the pair (V,T) is bad, hence we may assume that
G=T.

Let W be a non-trivial irreducible G-submodule of V' and let U be a submodule
of V' complementing W. Consider the irreducible characters A = Ay ® 1y of V
where Ay runs through the set of irreducible characters of W and 1y is the trivial
character of U. We clearly have k(G) < k(Ig(\)) = k(Ig(Aw)). This means that
the pair (W, G) is bad. Hence V' = W and we assume from now on that V is an
irreducible G-module.

Let M = Cg(V). Then

K(G/M)E(M) = K(G) < k(Ig(V) < k(Ig(\)/M)k(M)

implies k(G/M) < k(Ig(\)/M) for every A € Irr(V). This means that the pair
(V,G/M) is bad. Hence M =1 and we may assume that V is a faithful G-module.
But such a pair (V,G) cannot exist by Problem 1.5.

6. PROOF OF THEOREM 1.6

Let V be a finite faithful irreducible F'G-module for a prime field F' and a non-
abelian finite simple group G.

Suppose first that (|G|, |V|) = 1. Since the action is coprime, Irr(V') and V are
isomorphic G-sets. Hence, to prove Theorem 1.6 in this case, it is sufficient to find
a vector v in V' with k(Cg(v)) < k(G).

If G has a regular orbit on V' then there is nothing to show. If G = A,, (with n >
5) and V is the deleted permutation module coming from the permutation module
with permutation basis {ey,...,e,} then Cy, (e; —es) = A,p_o and k(4,_2) <
k(A;). Otherwise, if G has no regular orbit on V and V is not a deleted permutation
module then (V, G) belongs to a finite list of examples as in the table following [6,
Theorem 2.2]. There information can be found about H, a subgroup of smallest
possible size with H = Cg(v) for some v € V. It can readily be checked that
k(H) < k(G) in all cases.

This proves the first part of Theorem 1.6.
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Now suppose that G = GL(n,2) and |V| = 2" with n > 3. Here the action is no
longer coprime, but by Brauer’s permutation lemma we know that G has exactly
two orbits on Irr(V). By [13, Example 13.1 (ii)], we have Ig(A) = AGL(n — 1,2)
for every non-trivial A € Irr(V). So if ¢, denotes k(GL(r,2)) for r > 1 and ¢y =1
then k(I¢(\) = S2"Z7 ¢,. Hence the inequality Y'_) ¢, < ¢, must be shown for
all n > 3. This is true for n < 50 by Gap [5]. So assume that n > 50.

For non-negative integers s and n let p(s,n) be the number of partitions of n
with at most s parts. For a non-negative integer m put

Cnm = ZZ (_1)Sp(87j)'

s=0 j=0
——
n=(s+1)(m+s/2)+j

Also’ put ay = 271_(2[("_1)/2]+2[(”_1)/2]_1+. . +2[”/3]> and bn — EEZ/:?’&_l Cn,m2m~
Then it can be derived from [10, Pages 28-29] that

Cp = Qp + by,

Next we will bound ¢, ,, in various important cases.
If [n/4] <m < [n/3] — 1 then 0 < ¢, ;, < n/8+ 1.
If [n/5] <m < [n/4] — 1 then |cp | < n?/50 +n/10 + 2.
Moreover for any integer k > 8 with 1 < [n/k] <m < [n/(k—1)] — 1 we have

lenm| <nF73/(2- (k- 2)1).

Furthermore, in general, |c, | < n - p(n) where p(n) denotes the number of par-
titions of n. For p(n) we have the explicit upper bound p(n) < e™V?"/3 found in

[3] and also the exact values of p(n) for n < 150 from [5]. Using these we can show
the following lemma for n > 100.

Lemma 6.1. We have 2" — 1.5-2"/2 < ¢, for allm and ¢, < 2™ —0.63 - on/2 for
n > 8.

Proof. By the above this is true for n > 500. For smaller values of n the inequalities
can be checked by Mathematica [11]. O

In order to complete the proof (of the second part) of Theorem 1.6 we need to
show that Z?;OI ¢i < ¢p, holds (for n > 50). It can be checked that

Thus we have 37 ¢; < 2+ 311 (2! —0.63-2%/2) by Lemma 6.1. This and Lemma
6.1 imply that

n—1

2n/2 —1
Zci§2"+l—0.63~7<
i=0 \/5_1

2" — 1522 < ¢,.
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