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ATTILA MARÓTI AND M. CHIARA TAMBURINI BELLANI

Abstract. It is well known that a non-abelian finite simple group G can be
generated by two elements, i.e. it is 2-generated. We show that the direct
product of n copies of G is 2-generated, where n is the smallest integer larger

than 2
p
|G|. This answers a question of Wiegold.

1. Introduction

Let G be a non-abelian finite simple group. In 1936 Hall [12] showed that
the largest non-negative integer h(G, k) such that the direct product of h(G, k)
copies of G can be generated by k elements, i.e. it is k-generated, is h(G, k) =
ϕ(G, k)/|Aut(G)| < |G|k−1, where ϕ(G, k) is the number of k-tuples of elements
of G that generate G. (For an alternative proof of this fact see [15, Corollary 7].)
Since we know that G is 2-generated (see [1]), we have h(G) = h(G, 2) ≥ 1.

For a non-identity element g1 of G let d(g1) be the number of elements g2 in G
such that 〈g1, g2〉 = G. Put d(G) = min1 6=g∈G d(g). If d(G) ≥ 1 then we say that G
has spread 1. Erfanian and Wiegold [7] showed that h(G) tends to infinity as |G|
tends to infinity, assuming that G has spread 1. If P (G) = ϕ(G, 2)/|G|2 denotes the
probability that a random ordered pair of elements generates G then [18, Theorem
1.6] says that P (G) = 1−O(1/m(G)) where m(G) denotes the minimal index of a
proper subgroup of G. From this an asymptotic formula readily follows for h(G).
However, for applications, it would be useful to have an explicit lower bound for
h(G). In this paper we prove the following.

Theorem 1.1. For any non-abelian finite simple group G we have 2
√
|G| < h(G).

This answers [16, Problem 17.116] posed by Wiegold which is to show
√
|G| ≤

h(G). Note that in the abstract of [6] it is claimed that this problem is due to
Erfanian and Wiegold dating back to 1996.

Problem 17.116 of [16] has been solved for projective special linear groups [5],
for certain symplectic groups [6], and for alternating groups [19]. Our proof of
Theorem 1.1 is independent from these papers. In fact, by Hall’s result above, in
the case when G is different from A5 and A6, Theorem 1.1 is a direct consequence
of the following.

Theorem 1.2. Let G be a non-abelian finite simple group different from A5 and
A6. Then (2 · |Aut(G)|

√
|G|)/(|G| − 1) < d(G).
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Our proof of Theorem 1.2 depends heavily on the papers of Guralnick, Kantor
[10] and Breuer, Guralnick, Kantor [2]. We must also note that, as shown by Gural-
nick, Liebeck, Saxl, Shalev [11] and Fulman, Guralnick [9] one can asymptotically
do much better than Theorem 1.2.

The reader will learn that the papers [10] and [2] would allow better explicit
bounds in Theorems 1.1 and 1.2. However our main motivation was to answer
Wiegold’s question, keeping the paper short.

2. Preliminaries

Let S be the set of non-abelian finite simple groups whose members are Sp2m(2)
with m ≥ 3, Ω+

8 (2), A6
∼= Sp4(2)′, Ω7(3), PΩ+

8 (3), A7, PSp4(3) ∼= SU4(2), A5,
and M11. By a result of Breuer, Guralnick, Kantor [2, Theorem 1.1] for any non-
abelian finite simple group G there exists a (given) conjugacy class C such that for
any 1 6= g ∈ G the number of elements s in C with 〈s, g〉 = G is at least λ|C| where
λ = 13/42 if G ∈ S and λ = 2/3 if G 6∈ S.

For our proof of Theorem 1.2 we will need a lower bound for |C|, that is, an
upper bound for |CG(s)| where s denotes a representative of C.

In Section 3 of this paper we recall general results about centralizer sizes of
elements in classical groups. We apply these bounds to fill in the corresponding
columns in the tables in Section 4. In Section 5 we give an upper bound for |CG(s)|,
when G is a non-classical non-abelian simple group. In Section 6, with the help of
the various tables, we perform most of the necessary calculations to show that the
inequality (2) of Theorem 6.1 is satisfied. The case of PSL2(q), which needs a more
detailed analysis, is postponed to Section 7. The last Section of this paper deals
with the finitely many simple groups left out from the proof of Theorem 1.2.

The invariants |G| and |Out(G)| will be taken from [17, Pages 170-171]. The
first three columns of Table 9 will be taken from [10, Table III] and [20, Table 1].
In various cases the exact value of |CG(s)| will be taken from the Atlas [3].

3. Bounds for centralizers in classical groups

In this paper we set q = pf , where p is a prime and f is an integer. Also SUd(q)
denotes the special unitary group defined over the field of order q2.

For the reader’s convenience, we recall some basic facts, used in the next section.

Lemma 3.1. Let X be an absolutely irreducible subgroup of GLd(q) with center Z.
For x ∈ X, set s = Zx. Then

|CX/Z(s)| 6 |CX(x)| 6 |CGLd(q)(x)|.
Proof. The group Z consists of scalar matrices, by the absolute irreducibility of X.
Thus the preimage of CX/Z(s) in X is the group C = {g ∈ X | xg = ρx, ρI ∈ Z}.
The map g 7→ ρ is a homomorphism from C into Z, with kernel CX(x). Hence∣∣C∣∣ 6 |CX(x)| |Z| 6 ∣∣CGLd(q)(x)

∣∣ |Z|. Our claim follows from CX/Z(s) = C/Z. ¤
Assume first that x is an irreducible element of GLd(q). The rational canonical

form of x must be a companion matrix. It follows that the characteristic polynomial
m(t) is also the minimum polynomial of x. In particular m(t) is irreducible in Fq[t]
since, by Schur’s Lemma, CMatd(q)(x) is a division algebra. Thus the subalgebra
Fq[x], generated by x, is a field of order qd. Actually Fq[x] = CMatd(q)(x), since this
centralizer has dimension d over Fq, by a formula of Frobenius (see [14, Theorem
3.16, p. 207]). Thus CGLd(q)(x) is cyclic of order qd − 1.

When X is a classical group, we need the more precise upper bounds for |CX(x)|,
given in Table 1. They were determined by B. Huppert in [13]. In this table we
assume x ∈ X, with x irreducible, having centralizer of maximal order.
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Table 1

X d |CX(x)|
SLd(q) any (qd − 1)/(q − 1)
SUd(q) odd (qd + 1)/(q + 1)

Spd(q), SO−d (q), GO−d (q) even qd/2 + 1
Ω−d (q) even (qd/2 + 1)/(2, q + 1)

Let us explain row one of Table 1. If x ∈ SLd(q) is irreducible, then there
exists an element y in CGLd(q)(x) of order qd − 1. If α ∈ Fqd is an eigenvalue
of y, the other eigenvalues are αq, . . . , αqd−1

. It follows that α has order qd − 1.
Hence det y = α1+q+···+qd−1

has order q − 1 and generates F∗q . This explains why∣∣CSLd(q)(x)
∣∣ =

(
qd − 1

)
/ (q − 1).

Now let d = d1 + · · · + dk and x belong to GLd1(q) × · · · × GLdk
(q). Clearly

Fd
q = V1 ⊕ · · · ⊕ Vk, where each Vi is an 〈x〉-module, of dimension di. In this case

we write x = blockdiag(x1, . . . , xk). If V is endowed with a non-singular scalar
product J such that Vi is orthogonal to Vj for all i 6= j, we say that x is of type
d1 ⊥ · · · ⊥ dk. This follows the notation of the paper [2].

Lemma 3.2. Let x = blockdiag(x1, . . . , xk) where x1, . . . , xk are irreducible, with
pairwise different characteristic polynomials of degrees d1, . . . , dk. Then

(1) CGLd(q)(x) = CGLd1 (q)(x1)× · · · × CGLdk
(q)(xk).

If x belongs to a classical group X, preserving a non-singular scalar product J , and
x is of type d1 ⊥ · · · ⊥ dk, then for all i 6 k:

(i) the restriction Ji of J to Vi is non-singular;
(ii) for any c ∈ CX(x), its projection ci in GLdi(q) preserves Ji.

Proof. Let V = Fd
q . Clearly V = V1 ⊕ · · · ⊕ Vk, where the Vi-s are irreducible,

pairwise non-isomorphic 〈x〉-modules. If W is an 〈x〉-submodule isomorphic to
Vi, for some i 6 k, then W = Vi. To see this, we may assume i = 1 and put
U = V1 ⊕ · · · ⊕ Vk−1. From W/(W ∩ U) ∼= (W + U)/U ≤ V/U ∼= Vk we have
W ≤ U . By induction on k we conclude that W = V1.

For any c ∈ CGLd(q)(x), the map w 7→ cw is an 〈x〉-isomorphism from Vi to cVi.
Thus cVi = Vi for all i 6 k, whence (1).

As to the second part of the statement, we may assume that J is the matrix of
the form with respect to the canonical basis. Under our assumptions we get J =
blockdiag(J1, . . . , Jk). Part (i) follows immediately. To say that g ∈ X preserves J
means that gT Jgσ = J , for a fixed automorphism σ of Fq of order 1 or 2. Part (ii)
also follows. ¤

Remark. In the paper we apply Lemma 3.2 only for k ≤ 3. On the other
hand, in one occasion we need to deal with the slightly different case in which
x = blockdiag(x1, x2, x2) where x1 and x2 are irreducible, with different character-
istic polynomials of degrees d1 and d2. As the centralizer of x must preserve the
homogeneous components of the natural module, it is easy to see that

CGLd(q)(x) = CGLd1 (q)(x1)×GL2(qd2).

For further use we recall the standard embedding of GLm(q) into SO+
2m(q), given

by A 7→ blockdiag(At, A−1). Here we assume that SO+
2m(q) preserves the quadratic

form
∑m

i=1 xix−i. Under this embedding SLm(q) maps into Ω+
2m(q) = SO+

2m(q)
′
.

Lemma 3.3. The following inequalities hold for all q.
(1) Let k and n be integers with 1 ≤ k ≤ n/2. Then (qn−k + 1)(qk + 1) ≤ 2qn.
(2) Let k1, k2, n be integers with 2 ≤ k1 ≤ k2 ≤ n− k1 − k2. Then we have

(qk1 + 1)(qk2 + 1)(qn−k1−k2 + 1) ≤ 2qn.



4 ATTILA MARÓTI AND M. CHIARA TAMBURINI BELLANI

(3) (q + 1)(q2 + 1)(q4 + 1) ≤ 2q7.

Proof.
(1) This is equivalent to show that qn−k + qk + 1 ≤ qn, that is to see that

1 + (1/qk) ≤ qn−2k(qk − 1). For (k, q) 6= (1, 2) the claim follows from 1 + (1/qk) ≤
qk − 1. For (k, q) = (1, 2) it can be checked directly.

(2) Observe that qi + 1 ≤ 3
√

2 · qi whenever i = k1, k2, or n − k1 − k2. Now
multiply together the left and right-hand sides of the three inequalities.

(3) The inequality is equivalent to (q7 − 1)/(q − 1) < q7 which is clear. ¤

4. Classical groups

Let X be a linear classical group, with center Z, such that G = X/Z is a non-
abelian finite simple group. For x ∈ X we denote by s = Zx its projective image
in G. In this section, for each conjugacy class C of G described in [2, Section 5],
we call s a representative of C and find a convenient upper bound for |CG(s)|. In
finding this upper bound we use the ideas of Section 3. It is worth noting that our
x corresponds to s in the notation of [2, Section 5].

For positive integers n and m we write (n,m) both for the ordered pair and for
the greatest common divisor of n and m. Confusion should not arise.

Table 2
G type of s |CG(s)| ≤ |G| |Out(G)|

PSp2m(q)
q even A2 qm + 1 qm2 ∏m

i=1(q
2i − 1) ≤ 2f

(m, q) 6= (2, 2)
PSp2m(q)

q odd B2 2qm 1
2qm2 ∏m

i=1(q
2i − 1) 2f

m ≥ 5
PSp2m(q)

q odd, 2 ≤ m ≤ 4 A2 qm + 1 1
2qm2 ∏m

i=1(q
2i − 1) 2f

(m, q) 6= (2, 3), (3, 5), (3, 7)
PSp6(q), q = 5, 7 B2 2q3 1

2q9
∏3

i=1(q
2i − 1) 2

The groups PSp2(q) ∼= PSL2(q) and PSp4(3) ∼= PSU4(2) will be treated in Table
8 and Table 7 respectively. We also have PSp4(2) ∼= S6.

Types A2. In rows one and three of Table 2, let x be an irreducible element in
Sp2m(q) of order qm +1. In this case, by Lemma 3.1 and Table 1, |CG(s)| ≤ qm +1.

Type B2. In rows two and four of Table 2, setting δ = (2,m), let x be an element
in Sp2m(q) of type 2δ ⊥ (2m − 2δ) and order lcm(qδ + 1, qm−δ + 1). By Lemmas
3.1, 3.2 and Table 1 we have |CG(s)| ≤ (qδ +1)(qm−δ +1) ≤ 2qm, where the second
inequality follows from Lemma 3.3.

Table 3
G type of s |CG(s)| ≤ |G| |Out(G)|

PΩ+
2m(q) A3 2qm ≥ 1

4qm(m−1)(qm − 1)
∏m−1

i=1 (q2i − 1) ≤ 8f
m > 4
PΩ+

8 (q) B3 8q8 ≥ 1
4q12(q2 − 1)(q4 − 1)2(q6 − 1) ≤ 24f

q ≥ 5
PΩ+

8 (2) C3 15 212 · 35 · 52 · 7 6
PΩ+

8 (3) D3 20 212 · 312 · 52 · 7 · 13 24
PΩ+

8 (4) A3 5 · 65 224 · 35 · 54 · 7 · 13 · 172 12
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The groups PΩ+
6 (q) ∼= PSL4(q) are treated in Table 8 and the groups PΩ+

4 (q)
and PΩ+

2 (q) are not simple.

Type A3. Consider rows one and five of Table 3. Let x be an element of Ω+
2m(q)

of type (m− δ)− ⊥ (m + δ)− and order (q(m−δ)/2+1)(q(m+δ)/2+1)/(4, q−1) where
δ = 1 if m is odd and δ = 2 if m is even. By Lemmas 3.1, 3.2 and Table 1 we have
|CG(s)| ≤ (q(m−δ)/2 +1)(q(m+δ)/2 +1). For row one this is at most 2qm by Lemma
3.3. In row five the exact upper bound is 5 · 65.

Type B3. Consider row two of Table 3. Let x ∈ X = Ω+
8 (q) be as in [2, Lemma

5.15]. By [2, Lemma 3.6], we have |CX(x)| ≤ 4q2(q4 − 1)(q2 − 1) < 8q8. Whence
|CG(s)| < 8q8 by Lemma 3.1.

Type C3. Consider row three of Table 3. Let x be an element of Ω+
8 (2) of order

15, arising from the embedding of SL4(2) into Ω+
8 (2). Then s has order 15 and is

self-centralizing in G (see also the Atlas [3]).

Type D3. Consider row four of Table 3. Let x be an element of Ω+
8 (3) of order

40, arising from the embedding of SL4(3) into Ω+
8 (3). Then s has order 20 and is

self-centralizing in G (see also the Atlas [3]).

Table 4
G type of s |CG(s)| ≤ |G| |Out(G)|

PΩ−2m(q) A4 2qm ≥ 1
4qm(m−1)(qm + 1)

∏m−1
i=1 (q2i − 1) ≤ 8f

m ≥ 11
PΩ−2m(q) 2qm if m 6= 9

m ≥ 7 odd B4 q21 if m = 9 ≥ 1
4qm(m−1)(qm + 1)

∏m−1
i=1 (q2i − 1) ≤ 8f

(m, q) 6= (7, 2)
PΩ−2m(q) C4 qm + 1 ≥ 1

4qm(m−1)(qm + 1)
∏m−1

i=1 (q2i − 1) ≤ 8f
m ∈ {4, 5, 6, 8, 10}

PΩ−14(2) C4 27 + 1 242 · 39 · 53 · 72 · 11 · 13 · 17 · 31 · 43 2

We have PΩ−6 (q) ∼= PSU4(q) and PΩ−4 (q) ∼= PSL2(q2). These groups will be
treated in Tables 6 and 8 respectively. The groups PΩ−2 (q) are not simple. Note
that the groups G = PΩ−2m(q) with m ≥ 11 odd are considered both in rows one
and two.

Type A4. Consider row one of Table 4. Let x be an element of Ω−2m(q) of type
(2m− 10)− ⊥ 6− ⊥ 4− and order lcm(qm−5 + 1, q3 + 1, q2 + 1)/(2, q − 1). By
Lemmas 3.1, 3.2 and Table 1, we have |CG(s)| ≤ (qm−5 + 1)(q3 + 1)(q2 + 1). By
Lemma 3.3, this is at most 2qm.

Type B4. In row two of Table 4, let x ∈ X = Ω−2m(q) of type (m + 1)− ⊥
(m− 5)− ⊥ 4− and order lcm(q(m+1)/2 + 1, q(m−5)/2 + 1, q2 + 1)/(2, q − 1). For
m 6= 9 the same argument used in type A4 leads to the same upper bound. Let
m = 9. Then, by Lemma 3.1, Table 1 and by the remark after Lemma 3.2, we have
that |CG(s)| ≤ |CX(x)| ≤ (q5 + 1)|GL2(q4)|/(q − 1). If q > 2 then this is clearly
less than q21 while for q = 2 it is less than 221.

Type C4. Consider rows three and four of Table 4. Let x be an irreducible
element of Ω−2m(q) of order (qm +1)/(2, q−1). By Lemma 3.1 and Table 1, we have
|CG(s)| ≤ qm + 1.
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Table 5

G type of s |CG(s)| ≤ |G| |Out(G)|
Ω2m+1(3) A5 3m+1 1

23m2 ∏m
i=1(3

2i − 1) 2
m ≥ 4 even
Ω2m+1(3) B5 3m+1 1

23m2 ∏m
i=1(3

2i − 1) 2
m ≥ 5 odd
Ω2m+1(q)
q > 3 odd A5 qm+1 1

2qm2 ∏m
i=1(q

2i − 1) 2f
m ≥ 3
Ω7(3) A5 34 29 · 39 · 5 · 7 · 13 2

For q even we have Ω2m+1(q) ∼= PSp2m(q) and for all q we have Ω5(q) ∼= PSp4(q).
These groups were treated in Table 2.

Type A5. Consider rows one, three and four of Table 5. Let x = s be an element
of Ω2m+1(q) of type 1 ⊥ 2m− and order (qm + 1)/2. By Table 1 and Lemma 3.2,
|CG(s)| ≤ (q − 1)(qm + 1) < qm+1.

Type B5. Consider row two of Table 5. Let x = s be an element of Ω2m+1(3)
of type [3] ⊥ (2m− 2)− (here the first component is not irreducible) and order
3(3m−1 + 1)/2. Using Table 1 it is easy to see that |CG(s)| ≤ 3(3m−1 + 1) ≤ 3m+1.

Table 6
G type of s |CG(s)| ≤ |G| |Out(G)|

PSU2m+1(q)
(m, q) 6= (1, 3), A6 q2m+1+1

q+1
1

(2m+1,q+1)q
(2m+1)m

∏2m+1
i=2 (qi − (−1)i) 2(2m + 1, q + 1)f

(1, 5), (2, 2)
PSU2m(q)

m ≥ 2 B6 q2m−1 + 1 1
(2m,q+1)q

(2m−1)m
∏2m

i=2(q
i − (−1)i) ≤ 2(2m, q + 1)f

(m, q) 6= (2, 2),
(2, 3), (3, 2)

Table 7

G |s| |CG(s)| ≤ |G| |Out(G)|
PSU3(3) 6 12 25 · 33 · 7 2
PSU3(5) 10 10 24 · 32 · 53 · 7 6
PSU4(2) 9 9 26 · 34 · 5 2
PSU4(3) 7 7 27 · 36 · 5 · 7 8
PSU5(2) 11 11 210 · 35 · 5 · 11 2
PSU6(2) 11 11 215 · 36 · 5 · 7 · 11 6

The group PSU3(2) is not simple.

Type A6. In row one of Table 6, let x be an irreducible element of SU2m+1(q)
and order (q2m+1 +1)/(q+1). Then by Table 1 and Lemma 3.1, we have |CG(s)| ≤
(q2m+1 + 1)/(q + 1).

Type B6. In row two of Table 6, let x be an element of SU2m(q) of type 1 ⊥
(2m − 1) of order q2m−1 + 1. Then by Table 1 and Lemmas 3.1 and 3.2, we have
|CG(s)| ≤ q2m−1 + 1.

Type A8. Consider row one of Table 8. Let x be an element of SLd(q) of type
e⊕ (d− e) and order lcm(qe − 1, qd−e − 1)/(q − 1) where e is (d + 1)/2 if d is odd,
is d/2 + 2 if d ≡ 2 (mod 4), and is d/2 + 1 if d ≡ 0 (mod 4). By Lemmas 3.1, 3.2,
and Table 1, we have (q − 1)|CG(s)| ≤ (qe − 1)(qd−e − 1) ≤ qd − 1.
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Type B8. Consider rows two and four to ten of Table 8. Let x be an irreducible
element in SLd(q) of order (qd − 1)/(q − 1). By Table 1 we see that x is self-
centralizing. The bound for |CG(s)| follows by Lemma 3.1.

Type C8. Consider row three of Table 8. Let x be an element in X = SL6(q) of
type 1⊕ 5 and order q5− 1. By Lemma 3.2 and Table 1, we have |CX(x)| = q5− 1.
The bound for |CG(s)| follows by Lemma 3.1.

Table 8
G type of s |CG(s)| ≤ |G| |Out(G)|

PSLd(q)
d ≥ 8, d 6= 11 A8 qd−1

q−1
1

(d,q−1)q
d(d−1)/2

∏d
i=2(q

i − 1) 2(d, q − 1)f
(d, q) 6= (8, 2), (10, 2)

PSLd(q)
d = 2, q 6= 4, 5, 7, 9 or B8 qd−1

q−1
1

(d,q−1)q
d(d−1)/2

∏d
i=2(q

i − 1) ≤ 2(d, q − 1)f
d = 3, q 6= 4 or
d = 4, 5, 7, 11

PSL6(q) C8 q5 − 1 1
(6,q−1)q

15
∏6

i=2(q
i − 1) ≤ 2(6, q − 1)f

q ≥ 7
PSL10(2) B8 1023 245 · 36 · 52 · 73 · 11 · 17 · 312 · 73 · 127 2
PSL8(2) B8 255 228 · 35 · 52 · 72 · 17 · 31 · 127 2
PSL6(5) B8 3906 213 · 34 · 515 · 7 · 11 · 13 · 312 · 71 4
PSL6(4) B8 1365 230 · 36 · 53 · 72 · 11 · 13 · 17 · 31 12
PSL6(3) B8 364 211 · 315 · 5 · 7 · 112 · 132 4
PSL6(2) B8 63 215 · 34 · 5 · 72 · 31 2
PSL3(4) B8 21 26 · 32 · 5 · 7 12

We have PSL2(4) ∼= PSL2(5) ∼= A5, PSL3(2) ∼= PSL2(7) and PSL2(9) ∼= A6. The
alternating groups will be treated in Table 12.

5. The remaining simple groups

In this section we consider non-classical, non-abelian finite simple groups. For
each such group G we describe the conjugacy class C (taken from [10] or [2]) by
giving a representative s of the class. Then we give bounds for |CG(s)|.
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Table 9
G |s| |NG(〈s〉)|

|s| |G| |Out(G)|
2B2(q), q2

0 +
√

2q0 + 1,
q = 22k+1, q0 = 2k

√
2 4 q2(q2 + 1)(q − 1) f

k ≥ 1
2G2(q), q2

0 +
√

3q0 + 1,
q = 32k+1, q0 = 3k

√
3 6 q3(q3 + 1)(q − 1) f

k ≥ 1
2F4(q), q4

0 +
√

2q3
0 + q2

0 +
√

2q0 + 1,
q = 22k+1, q0 = 2k

√
2 12 q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1) f

k ≥ 1
G2(q), q2 − q + 1 6 q6(q6 − 1)(q2 − 1) ≤ 2f
q ≥ 5

3D4(q) q4 − q2 + 1 4 q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) 3f
F4(q) q4 − q2 + 1 12 q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1) ≤ 2f
q ≥ 4
E6(q) q6 + q3 + 1 9 ≥ 1

3q36
∏

i∈{12,9,8,6,5,2}(q
i − 1) ≤ 6f

2E6(q) q6 − q3 + 1 9 ≥ 1
3q36

∏
i∈{12,9,8,6,5,2}(q

i − (−1)i) ≤ 6f

q ≥ 4
E7(q) (q + 1)(q6 − q3 + 1) 18 ≥ 1

2q63
∏

i{18,14,12,10,8,6,2}(q
i − 1) ≤ 2f

q ≥ 4
E8(q) q8 + q7 − q5 − q4 − q3 + q + 1 30 q120

∏
i∈{30,24,20,18,14,12,8,2}(q

i − 1) f

Table 10
G |s| |CG(s)| ≤ |G| |Out(G)|

G2(3) 13 13 26 · 36 · 7 · 13 2
G2(4) 13 13 212 · 33 · 52 · 7 · 13 2

2F4(2)′ 13 13 211 · 33 · 52 · 13 2
F4(2) 17 17 224 · 36 · 52 · 72 · 13 · 17 2
F4(3) 73 22 · 3 · 73 215 · 324 · 52 · 72 · 132 · 41 · 73 1
2E6(2) 19 32 · 19 236 · 39 · 52 · 72 · 11 · 13 · 17 · 19 6
2E6(3) 19 · 37 |SU3(27).3| 219 · 336 · 52 · 73 · 132 · 19 · 37 · 41 · 61 · 73 2
E7(2) 43 · 3 3 · |SU3(7)| 263 · 311 · 52 · 73 · 11 · 13 · 17 · 19 · 31 · 43 · 73 · 127 1
E7(3) 4 · 19 · 37 12 · |SU3(27)| 223 · 363 · 52 · 73 · 112 · 133 · 19 · 37 · 41 · 61 · 73 · 547 · 757 · 1093 2

We have 2G2(3)′ ∼= PSL2(8) and G2(2)′ ∼= PSU3(3). These groups were treated
in Tables 8 and 7 respectively.

The bounds given in Table 10 for the centralizer sizes of elements s in G = F4(2),
F4(3), 2E6(2), 2E6(3), E7(2), and E7(3) need an explanation. By [10, Table IV], in
all cases there is exactly one maximal overgroup of 〈s〉 in G. These subgroups of G
are Sp8(2), 3D4(3).3, SU3(8).3, SU3(27).3, SU8(2), and 2.2E6(3).2 in the respective
cases. This gives the entry in column three for G = 2E6(3). An element of order
17 in Sp8(2) is self-centralizing (see also [8]). This gives the corresponding entry
for G = F4(2). For G = F4(3) we can choose the element s of order 73 to lie in
3D4(3), and so by Table 9 it has centralizer in G of order at most 73 · 4 · 3.
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Table 11
G sG |CG(s)| |G| |Out(G)|

M11 11A 11 24 · 32 · 5 · 11 1
M12 10A 10 26 · 33 · 5 · 11 2
M22 11A 11 27 · 32 · 5 · 7 · 11 2
M23 23A 23 27 · 32 · 5 · 7 · 11 · 23 1
M24 21A 21 210 · 33 · 5 · 7 · 11 · 23 1
J1 19A 19 23 · 3 · 5 · 7 · 11 · 19 1
J2 10C 10 27 · 33 · 52 · 7 2
J3 19A 19 27 · 35 · 5 · 17 · 19 2
J4 29A 29 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43 1

Fi22 16A 32 217 · 39 · 52 · 7 · 11 · 13 2
Fi23 23A 23 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23 1
Fi ′24 29A 29 221 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29 2
Co3 21A 21 210 · 37 · 53 · 7 · 11 · 23 1
Co2 23A 23 218 · 36 · 53 · 7 · 11 · 23 1
Co1 35A 35 221 · 39 · 54 · 72 · 11 · 13 · 23 1
Suz 14A 28 213 · 37 · 52 · 7 · 11 · 13 2
McL 15A 30 27 · 36 · 53 · 7 · 11 2
He 14C 14 210 · 33 · 52 · 73 · 17 2
Ru 29A 29 214 · 33 · 53 · 7 · 13 · 29 1
Th 27A 27 215 · 310 · 53 · 72 · 13 · 19 · 31 1
HS 15A 15 29 · 32 · 53 · 7 · 11 2
HN 19A 19 214 · 36 · 56 · 7 · 11 · 19 2
O

,
N 31A 31 29 · 34 · 5 · 73 · 11 · 19 · 31 2

Ly 37A 37 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67 1
B 47A 47 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47 1
M 59A 59 246 · 320 · 59 · 76 · 112· 1

133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

Now let G = 2E6(2). By [8], an element of order 19 in SU3(8).3 has centralizer
of size at most 32 · 19. Let G = E7(2). In [10, Page 771] it is said that CG(s) ≤
C3 × SU3(7).

Finally let G = E7(3). Put H = 2.2E6(3). Then the group H.2 contains an
element s of order 4 · 19 · 37. In fact t = s4 is contained in H. We clearly have

|CG(s)| = |CH.2(s)| ≤ |CH.2(t)| ≤ 2 · |CH(t)|.

Let N be the normal subgroup of H of order 2. Then N is central in H and t̄ = tN
has order 19 · 37. By row seven of Table 10, we have |CH/N (t̄)| ≤ |SU3(27).3|. The
entry in the last row of Table 10 now follows from |CH(t)| = 2 · |CH/N (t̄)|.

Table 12

G s |CG(s)| ≤ |G| |Out(G)|
An

n ≥ 5 A12 (n/2)2 n!/2 2
n 6= 6
A6 |s| = 5 5 6!/2 4

Type A12. Consider row one of Table 12. Let n = 2m be even. Then let s be a
permutation which is the product of two disjoint cycles, one of length m−(2,m−1)
and one of length m + (2,m− 1). If n is odd, then let s be an n-cycle.
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6. Computations

Let S, λ, C and s be as in Section 2.

Theorem 6.1. Theorem 1.2 follows for the group G if the inequality

(2) α · |G| ≥ |CG(s)|2|Out(G)|2
holds where α = 0.0225 if λ = 13/42 and α = 0.1 if λ = 2/3.

Proof. Suppose that G is a non-abelian finite simple group for which (2) holds
where s ∈ G is an element described in the previous sections. Notice that we have

α < (λ/2)2(59/60)2 ≤ (λ/2)2((|G| − 1)/|G|)2
since A5 is the smallest non-abelian finite simple group. Applying this estimate to
the left-hand side of (2) and taking square roots we get

(λ/2)
|G| − 1
|G|

√
|G| > |CG(s)||Out(G)|.

Multiplying both sides of this previous inequality by |G|, rearranging and using the
fact that |C| = |G|/|CG(s)|, one can deduce the inequality

λ|C| > 2|Aut(G)||
√
|G||

|G| − 1
.

Now Theorem 1.2 follows by [2, Theorem 1.1]. ¤
The rest of this section is dedicated to analyze most of the non-abelian simple

groups, in order to show that inequality (2) of Theorem 6.1 is satisfied. For the
groups left out in this analysis, we show directly in Sections 7 and 8 that they
satisfy Theorem 1.2 (with the exception of A5 and A6).

Theorem 6.2. Let G = PSpd(q) where d ≥ 4 but (d, q) 6= (4, 2), (4, 3), and (4, 4).
Let s be as in Table 2. Then we have

0.0225 · |G| ≥ |CG(s)|2|Out(G)|2.
Proof. Let d = 2m. Consider Table 2. In all cases we have |CG(s)| ≤ 2 · qm and
|Out(G)| ≤ 2f . Using these bounds it is sufficient to prove the inequality

qm2−2m
m∏

i=1

(q2i − 1) ≥ (12800/9) · f2.

For m = 2 this holds for q ≥ 5. Otherwise, for a fixed q, the minimum of the left-
hand side occurs at m = 3. Hence it is sufficient to see q3(q2− 1)(q4− 1)(q6− 1) ≥
(12800/9)f2 which is always the case. ¤

As said before, we do not consider the case PSp4(2) ∼= S6. The cases PSp4(3) ∼=
PSU4(2) and PSp4(4), are treated in Theorem 6.6 and Section 8 respectively.

Theorem 6.3. Let G = PΩ+
d (q) where d ≥ 8. Let s be as in Table 3. Then we

have
0.0225 · |G| ≥ |CG(s)|2|Out(G)|2.

Proof. Put d = 2m. First let m > 4. Then by the entries in Table 3 it is sufficient
to show

qm(m−1)(qm − 1)
m−1∏

i=1

(q2i − 1) ≥ 45512 · q2mf2.

After rearranging and using the bound f < q, it is sufficient to prove

qm2−3m−2(qm − 1)
m−1∏

i=1

(q2i − 1) ≥ 45512.
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The left-hand side of the previous inequality takes its minimum at (m, q) = (5, 2).
After evaluating the left-hand side at this minimum we see that the inequality is
valid.

Now let m = 4 and q ≥ 5. In this case it is sufficient to show the inequality

(q2 − 1)(q4 − 1)
2
(q6 − 1) ≥ 6.6 · 106 · q4f2.

Now since q4f2 ≤ q6 − 1, it is sufficient to show (q2 − 1)(q4 − 1)2 ≥ 6.6 · 106. But
this is clear for q = 5.

Finally, for (d, q) = (8, 2), (8, 3), and (8, 4) the statement of the theorem can
readily be checked from Table 3. ¤
Theorem 6.4. Let G = PΩ−d (q) where d ≥ 8. Let s be as in Table 4. Then we
have

0.1 · |G| ≥ |CG(s)|2|Out(G)|2.
Proof. Let d = 2m ≥ 8. First suppose that m 6= 9. Then |CG(s)| ≤ 2qm and
|Out(G)| ≤ 8f ≤ 8q. Using these bounds it is sufficient to verify the inequality

qm2−3m−2(qm + 1)
m−1∏

i=1

(q2i − 1) ≥ 10240.

The left-hand side of this previous inequality takes its minimum at (m, q) = (4, 2)
and this minimum is larger than 10240.

Now suppose that m = 9. In this case we have a different upper bound on
|CG(s)|, namely q21. Applying this estimate it is sufficient to show

q28(q9 + 1)
8∏

i=1

(q2i − 1) ≥ 2560.

But this latter inequality is clear. ¤
Theorem 6.5. Let G = Ωd(q) where d ≥ 7 is odd and q ≥ 3. Let s be as in Table
5. Then we have

0.1 · |G| ≥ |CG(s)|2|Out(G)|2.
Proof. Let d = 2m + 1. Using the bound |CG(s)| ≤ qm+1 and the fact that
|Out(G)| = 2f it is sufficient to show the inequality

qm2−2m−2
m∏

i=1

(q2i − 1) ≥ 80f2.

But this is clear for m ≥ 3 and q ≥ 3. ¤
Theorem 6.6. Let G = PSUd(q) where d ≥ 3 and (d, q) 6= (3, 2), (3, 8). Let s be
as in Table 6. Then we have

0.1 · |G| ≥ |CG(s)|2|Out(G)|2

unless if (d, q) = (4, 2) in which case we have

0.0225 · |G| ≥ |CG(s)|2|Out(G)|2.
Proof. The statements of the theorem can readily be checked if (d, q) = (3, 3), (3, 5),
(5, 2), (4, 2), (4, 3), or (6, 2). So from now on assume that (d, q) is different from
these tuples.

First assume that d = 2m+1 is odd. Let m ≥ 2. Then it is sufficient to consider
the inequality

0.025
(2m + 1, q + 1)

q(2m+1)m
2m∏

i=2

(qi − (−1)i) ≥ (q2m+1 + 1)f2.
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To prove this for m ≥ 2 it is sufficient to see that

q2(2m+1)(q − 1)(q3 + 1)(q4 − 1) ≥ 40(q2m+1 + 1)f2

holds. But this is clear. Now let m = 1. Then it is sufficient to see the validity of
the inequality

q3(q2 − 1)(q + 1)2 ≥ 40(3, q + 1)3f2(q3 + 1).

But this holds unless q = 2, 3, 5, or 8.
Now let d = 2m be even with m ≥ 2. Then it is sufficient to consider the

inequality

q(2m−1)m
( 2m−2∏

i=2

(qi − (−1)i)
)
(q2m − 1) ≥ 40(q2m−1 + 1)f2(2m, q + 1)3

which holds unless (m, q) = (2, 2) or (2, 3). ¤

As said before PSU2(q) ∼= PSp2(q) and the group PSU3(2) is not simple.

Theorem 6.7. Let G = PSLd(q) with d ≥ 3 and (d, q) 6= (3, 2), (3, 3), (3, 4), (3, 5),
(3, 8), and (4, 2). Let s be as in Table 7. Then we have

0.1 · |G| ≥ |CG(s)|2|Out(G)|2.
Proof. First assume that d ≥ 4. Since |Out(G)| ≤ 2(q − 1)q and |CG(s)| ≤ (qd −
1)/(q − 1), to prove the inequality in the statement of the theorem it is sufficient
to consider the inequality

1
40(q − 1)

qd(d−1)/2
d−1∏

i=2

(qi − 1) ≥ (qd − 1)q2.

To prove this inequality it is sufficient to consider the inequality

(3) qd(d−1)/2
d−1∏

i=2

(qi − 1) ≥ 40 · qd+3.

If d ≥ 5 then d(d−1)/2−(d+3) ≥ 2, so in order to verify (3) for d ≥ 5 it is sufficient
to see q2

∏d−1
i=2 (qi − 1) ≥ 40. But the left-hand side of this latter inequality takes

its minimum for (d, q) = (5, 2) and 22
∏4

i=2(2
i − 1) > 40 so we are done. Now let

d = 4. Then by (3) we have

(q2 − 1)(q3 − 1) ≥ 40q

which is true for all q ≥ 3.
Now let d = 3. Since |Out(G)| ≤ 6f and |CG(s)| ≤ (q3−1)/(q−1), to prove the

inequality in the statement of the theorem it is sufficient to consider the inequality

q3(q2 − 1)(q − 1)2 ≥ 1080(q3 − 1)f2.

To prove this inequality it is sufficient to consider the following inequality

(q2 − 1)(q − 1)2 ≥ 1080f2.

But this holds unless q = 2, 3, 4, 5, or 8. ¤

Theorem 6.8. Let G be an exceptional simple group of Lie type, a sporadic simple
group, or an alternating group of degree at least 9. Then the inequality (2) is
satisfied.

Proof. This follows by inspection of Tables 9-12. For G = 2B2(8) note that an
element of order 13 in G is self-centralizing (see [8]). ¤
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Theorem 6.1 and Theorems 6.2-6.8 give the proof of Theorem 1.2 (and hence of
Theorem 1.1) for the group G, unless G is one of the following groups: PSL2(q),
PSp4(4), PSU3(8), PSL3(3), PSL3(4), PSL3(5), PSL3(8), A7, and A8

∼= PSL4(2).

7. The groups PSL2(q)

Denote by Φ(m) the Euler function, i.e., the number of integers i such that
1 6 i < m with (i,m) = 1.

Theorem 7.1. Let G = PSL2(q), with q > 11. Then

d(G) > 1
3

Φ
(

q + 1
(2, q − 1)

) (
q2 − q

)
.

Proof. Fix 1 6= g1 ∈ G. Let C be a conjugacy class of elements of order m = q+1
(2,q−1)

in PSL2(q). By [2, Theorem 1.1] there are at least (2/3)|C| = (2/3)(q2−q) elements
g2 ∈ C such that 〈g1, g2〉 = G (since q ≥ 11). For each power gi

2 such that (i,m) = 1,
we have 〈g2〉 = 〈gi

2〉, hence 〈g1, g
i
2〉 = G. Under the assumption q > 11, two powers

gi
2, gj

2 (with (i, m) = (j,m) = 1 and −m/2 6 i, j 6 m/2) are conjugate in G only if
j = ±i. This means that there are 1

2 Φ(m) conjugacy classes Ci in G, of elements
of order m, to which we may apply [2, Theorem 1.1]. Our claim follows. ¤

Let G = PSL2(q) with q ≥ 13. In order to prove Theorem 1.2 (whence Theorem
1.1) for these groups, it is sufficient to deduce from Theorem 7.1 the inequality

|G| − 1
|G| · Φ

(
q + 1

(2, q − 1)

)
· q2 − q

6f
> 2

√
|G|.

Using f 6 √
q and the well known fact Φ(m) > √

m whenever m > 6, the previous
inequality holds if

59
60

√
q − 1 > 60 · 12.

This is true if q > 151. For the intermediate values of q we use direct calculation.
That leaves us with the groups A5

∼= PSL2(4) ∼= PSL2(5), PSL2(7), PSL2(8),
A6

∼= PSL2(9), and PSL2(11).
By [8], one finds h(A5) = 19 > 2

√
60 and h(A6) = 53 > 2

√
360. This proves

Theorem 1.1 for these groups.
By [8], one also finds d(PSL2(7)) = 80, d(PSL2(8)) = 336, and d(PSL2(11)) =

384. The statement of Theorem 1.2 can be checked directly for these groups.

8. The remaining groups

In this section we prove Theorem 1.2 (and hence Theorem 1.1) for the remaining
groups G = PSp4(4), PSU3(8), PSL3(3), PSL3(4), PSL3(5), PSL3(8), A7, and
A8

∼= PSL4(2).
By [8], one finds d(PSL3(3)) = 2784, d(PSL3(4)) = 8448, d(A7) = 720 and

d(A8) = 4992. The statement of Theorem 1.2 can be checked directly for these
groups.

Let G be any of the four remaining groups and let s be as in Section 4. Suppose
that the generators of the cyclic group 〈s〉 fall into k conjugacy classes of G. Then
we clearly have d(G) ≥ (2/3)k · |C| by [2, Theorem 1.1] since G does not belong to
S. The value for k is 4 if G = PSp4(4), is 6 if G = PSU3(8), is 10 for G = PSL3(5),
and is 24 for PSL3(8). Hence, to prove Theorem 1.2 for these groups, it remains
to show the variation of the inequality (2) with α replaced by 0.1 · k2. In all four
cases the statement of Theorem 1.2 hold.
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