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Abstract. We show that the minimal base size b(G) of a finite primitive permutation
group G of degree n is at most 2(log |G|/ logn) + 24. This bound is asymptotically best
possible since there exists a sequence of primitive permutation groups G of degrees n
such that b(G) = ⌊2(log |G|/ logn)⌉ − 2 and b(G) is unbounded. As a corollary we show
that a primitive permutation group of degree n that does not contain the alternating
group Alt(n) has a base of size at most max{

√
n, 25}.

1. Introduction

Let G be a permutation group acting on a finite set Ω of size n. A subset Σ of Ω is
called a base for G if the pointwise stabilizer of Σ in G is trivial. The minimal size of a
base for G on Ω is denoted by bΩ(G) or by b(G) in case Ω is clear from the context.

The minimal base size of a primitive permutation group has been much investigated.
Already in the nineteenth century Bochert [6] showed that b(G) ≤ n/2 for a primitive
permutation group G of degree n not containing Alt(n). This bound was substantially
improved by Babai to b(G) < 4

√
n log n, for uniprimitive groups G, in [2], and to the

estimate b(G) < 2c
√
logn for a universal constant c, for doubly transitive groups G not

containing Alt(n), in [3]. (Here and throughout the paper the base of the logarithms is 2

unless otherwise stated.) The latter bound was improved by Pyber [30] to b(G) < c(log n)2

where c is a universal constant. These estimates are elementary in the sense that their
proofs do not require the Classification of Finite Simple Groups (CFSG). Using CFSG,
Liebeck [23] classified all primitive permutation groups G of degree n with b(G) ≥ 9 log n.

It is easy to see that any permutation groupG of degree n satisfies |G| < nb(G), and hence
b(G) > log |G|/ log n. A well-known question of Pyber [31, Page 207], going back to 1993,
asks whether there exists a universal constant c such that b(G) < c(log |G|/ log n) for all
primitive groups G. This question generalizes other conjectures in the area: for example,
the Cameron-Kantor conjecture, which asserts that every almost simple primitive group
in a non-standard action has base size bounded by a universal constant C; and Babai’s
conjecture, that there is a function f : N → N such that any primitive group that has no
alternating or classical composition factor of degree or dimension greater than d, has base
size less than f(d).
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The Cameron-Kantor conjecture was proved in [25] (and in a strong form with C = 7
in [7], [10]). Babai’s conjecture was proved in [17] with f a quadratic function (improved
to a linear function in [25]).

Despite a great deal of attention, Pyber’s conjecture remained open until very recently,
when it was proved in [13]. It is shown in [13] that there exists a universal constant c > 0
such that for every primitive permutation group G of degree n we have

b(G) < 45(log |G|/ log n) + c.

To obtain a more explicit, usable bound, one would like to reduce the multiplicative
constant 45 in the above, and also to estimate the constant c.

In this paper we achieve this aim. Our main result is the following.

Theorem 1.1. Let G be a primitive permutation group of degree n. Then the minimal
base size b(G) satisfies

b(G) ≤ 2
log |G|
log n

+ 24.

The multiplicative constant 2 in Theorem 1.1 is best possible, as is shown by the fol-
lowing.

Proposition 1.2.

(i) For every positive integer k there exists a sequence of finite primitive permutation
groups Gn of degrees n such that as n→ ∞,

(b(Gn) log n)/ log |Gn| → 2k/(k + 1).

(ii) There is an infinite sequence of primitive permutation groups Hn of degrees n such
that b(Hn) = ⌊2(log |Hn|/ log n)⌉ − 2 for all n and b(Hn) is unbounded.

A corollary of Theorem 1.1 and its proof is the following.

Corollary 1.3. Let G be a primitive permutation group of degree n not containing Alt(n).
Then G has a base of size at most max{

√
n, 25}.

Theorem 1.1 is proved for almost simple groups in the next two sections (see Theorems
2.1, 3.1 and 4.2): alternating and symmetric groups are handled in §2, and classical
groups in §3. The remaining non-affine primitive groups are covered in §4 (see Theorem
4.1), and affine groups in §5 (Theorem 5.1). Proposition 1.2 follows from Proposition 2.6
and Proposition 5.3. Finally, Corollary 1.3 is proved in Section 6.

2. Alternating and symmetric groups

In this section we consider the minimal base sizes of alternating and symmetric groups
in primitive actions. Here is the main result.

Theorem 2.1. Let G be a primitive permutation group of degree n with socle isomorphic
to Alt(m) for some integer m ≥ 5. Then

b(G) ≤ 2
log |G|
log n

+ 16.

In the proof of Theorem 2.1, we may assume that 19 ≤ b(G) ≤ log |G|. In particular
m ≥ 7 and G = Alt(m) or Sym(m).

Let Ω be a set of size n permuted by G, let α ∈ Ω and let H = Gα, a maximal
subgroup of G. There are three possiblities to consider, according to the action of H on
the underlying set {1, . . . ,m}:
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(1) H is intransitive: here H = (Sym(k)× Sym(m− k)) ∩G for some k ≤ m/2;
(2) H is transitive and imprimitive: here H = (Sym(b) ≀ Sym(a)) ∩G, where m = ab;
(3) H is primitive on {1, . . . ,m}.

In case (1), the action of G on Ω is the action on k-element subsets of {1, . . . ,m}, and in
case (2) the action is on partitions into a parts of size b. These actions are considered in
Sections 2.1 and 2.2, and the proof of Theorem 2.1 is completed in Section 2.3.

2.1. Action on subsets. Here we prove Theorem 2.1 in the case when the action is on
subsets (see Proposition 2.5). Let Sym(m) act on the set Ω(m, k) of all k-element subsets
of the set {1, . . . ,m}, where k ≤ m/2. Set n = |Ω(m, k)| =

(
m
k

)
. Let b(m, k) denote the

minimal size of a base for Sym(m) acting on Ω(m, k). For convenience set t = m/k.

A detailed study of the function b(m, k) was carried out in [20]. Here are the main
results from that paper that we need.

Theorem 2.2. ([20, Thm. 3.2, Cor. 4.3])

(i) We have b(m, k) ≤
⌈
log⌈t⌉(m)

⌉
(⌈t⌉ − 1) .

(ii) If k2 ≤ m, then

b(m, k) =
⌈2m− 2

k + 1

⌉
<

2m

k + 1
+ 1 =

2k

k + 1
t+ 1.

We shall need the following estimates for ln |Sym(m)|/ ln |Ω(m, k)|.

Lemma 2.3. We have( t

ln(t) + 1

)
(lnm− 1) <

ln |Sym(m)|
ln |Ω(m, k)|

<
( t

ln(t)

)
lnm.

Proof. By the inequalities

(m/k)k <

(
m

k

)
< (me/k)k and (m/e)m < m! < mm,

we have
m(lnm− 1)

k(ln(m/k) + 1)
<

ln |Sym(m)|
ln |Ω(m, k)|

<
m lnm

k ln(m/k)
=

m/k

ln(m/k)
lnm.

From this the lemma follows. �

The next result establishes the conclusion of Theorem 2.1 under the assumption that
k2 ≤ m.

Lemma 2.4. Assume that k2 ≤ m. Then

b(m, k) < 2
ln |Sym(m)|
ln |Ω(m, k)|

+ 4.

Proof. Assume first that k ≥ 8 > e2. By Theorem 2.2(ii) and Lemma 2.3, we have

b(m, k) lnn

ln |Sym(m)|
<

(2t+ 1

t

)( ln(t) + 1

ln(m)− 1

)
.

Since k ≥ 8 > e2, it follows that ln(t)+1
ln(m)−1 < 1. By this and Lemma 2.3,

b(m, k) < 2
ln |Sym(m)|

lnn
+
( ln(m)

ln(m)− 1

)( ln(t) + 1

ln(t)

)
.

It is easy to see that the second term is less than 4, giving the conclusion in this case
(k ≥ 8 > e2).
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Hence we may assume that k ≤ 7. A GAP [15] computation shows that the bound
in the conclusion of the lemma holds for 5 ≤ m ≤ 148 < e5. Thus assume also that
m ≥ 149 > e5.

If 2 ≤ k ≤ 7 then Theorem 2.2 gives b(m, k) < 2k
k+1 t+ 1, and so by Lemma 2.3,

b(m, k) lnn

ln |Sym(m)|
<

( 2k

k + 1
+
k

m

)( lnm− ln k + 1

lnm− 1

)
.

This is less than 2 for m ≥ 149 > e5. �

Here is the main result of this subsection.

Proposition 2.5. We have

b(m, k) ≤ 2
ln |Sym(m)|
ln |Ω(m, k)|

+ 16.

Proof. By Lemma 2.4, we may assume that k2 > m, which is equivalent to saying that
t2 < m.

Define r to be the integer r ≥ 2 with tr < m ≤ tr+1. Then by Theorem 2.2(i), we have
b(m, k) ≤ (r + 1)t. By Lemma 2.3, this gives

b(m, k) lnn

lnm!
<

(r + 1)(ln t+ 1)

r ln t− 1
.

A GAP [15] computation shows that the right hand side is less than 2 provided that r = 2
and t ≥ 149 > e5, or r = 3 and t ≥ 20 > e3, or r ≥ 4 and t ≥ 11.

If r = 3 and t ≤ 20 < e3, then 4t − 2(3 ln t−1
ln t+1 )t ≤ 16, which gives the conclusion (using

Lemma 2.3). Similarly, if r ≥ 4 and t < 11, then (r + 1)t − 2( r ln t−1
ln t+1 )t ≤ 11, giving the

conclusion.

This leaves the case where r = 2 and t ≤ 148 < e5. We first distinguish eleven
different cases according to some possible ranges of values of ln t. If ln t falls in any of the
intervals [ϵ, ϵ+ 0.2] where ϵ = 2.8 + 0.2ℓ and ℓ is a non-negative integer at most 10, then
3t− 2(2 ln t−1

ln t+1 )t ≤ 16. Thus we may assume that t < e2.8. But then m ≤ t3 < e8.4 < 4500.

By a GAP [15] calculation, we see that if 5 ≤ m ≤ 4500, then 3t− 2(2 ln t−1
ln t+1 )t ≤ 11. This

completes the proof. �

The final result of this subsection gives the first part of Proposition 1.2.

Proposition 2.6. Fix a positive integer k. Then as m→ ∞,

b(m, k) log |Ω(m, k)|
log |Sym(m)|

→ 2k/(k + 1).

Proof. Assume that m ≥ k2. Then, by Theorem 2.2(ii), b(m, k) =
⌈
2m−2
k+1

⌉
, and hence

b(m, k)/m→ 2
k+1 as m→ ∞. Also (m ln |Ω(m, k)|/ ln |Sym(m)|) → k by Lemma 2.3. The

result follows. �

2.2. Action on partitions. Now consider the minimal base size f(a, b) of the group
Sym(m) acting on the set Ω of all partitions of {1, . . . ,m} into a parts each of size b,
where m = ab and a, b ≥ 2. In this case n = |Ω| = m!/(b!aa!). Bases for this action were
studied in [5], where the following was proved.

Theorem 2.7. ([5]) Suppose b ≥ 3. Then one of the following holds:

(i) a ≥ b and f(a, b) ≤ 6;
(ii) a < b and f(a, b) ≤ loga(b) + 4.
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We shall need the following bound.

Lemma 2.8. Let a, b be integers with 2 ≤ a < b. Then

ln b

ln a
− 1 <

ln((ab)!)

ln
(

(ab)!
(b!)aa!

) .
Proof. Write g(a, b) = ln((ab)!) / ln

(
(ab)!
(b!)aa!

)
. Then using the bounds

√
2π · ℓ1/2

( ℓ
e

)ℓ

< ℓ! < e · ℓ1/2
( ℓ
e

)ℓ

which hold for all positive integers ℓ, we have

g(a, b) > ab(ln(ab)−1)
ln((ab)!)−a ln(b!)−ln(a!)

> ab(ln(ab)−1)

ln(e/
√
2π)+ab(ln a)+ 1

2
ln(ab)−a ln(

√
2π)− 1

2
a ln b− 1

2
ln a−a ln a+a

= ln(ab)−1

ln a+ 1
b
(1−ln a− 1

2
ln(2π))+ln(e/

√
2π)/(ab)+ 1

2b
((ln(b))/a−ln b)

≥ ln(ab)−1

ln a+ 1
b
(1−ln a− 1

2
ln(2π)− ln b

4
)+ln(e/

√
2π)/(ab)

≥

≥ ln(ab)−1

ln a+ 1
b
(1−ln 2− 1

2
ln(2π)− ln 3

4
+ln(e/

√
2π)/2)

> ln(ab)−1
ln a−(0.8)/b >

ln b
ln a − 1.

�

Here is the main result of this subsection.

Proposition 2.9. With the above notation, we have f(a, b) ≤ ln |Sym(m)|
lnn + 5.

Proof. If b ≥ 3, this follows immediately from Theorem 2.7. And for b = 2, Remark 1.6(ii)
of [8] gives f(a, 2) ≤ 3. �

2.3. Proof of Theorem 2.1. Let G = Alt(m) or Sym(m) act primitively on a set Ω, and
let H be a point-stabilizer in G. The cases where Ω is a set of k-subsets or partitions of
{1, . . . ,m} have been dealt with in Propositions 2.5 and 2.9. Hence by the remarks at the
beginning of the section, we may assume that H is primitive on {1, . . . ,m}. In this case,
it is proved in [8, Cor. 2] that bΩ(G) ≤ 5. This completes the proof of Theorem 2.1.

3. Classical groups

In this section we study base sizes of primitive actions of classical groups. Our main
result is the following.

Theorem 3.1. Let G be an almost simple primitive permutation group of degree n whose
socle is a classical simple group. Then b(G) ≤ 2(log |G|/ log n) + 16.

We shall divide the proof of this theorem into several subcases. First we give a definition,
taken from [25]. Let G be an almost simple group with socle G0, a classical group with
natural module V , a vector space of dimension d over a field Fq of characteristic p. We
call a maximal subgroup M of G a subspace subgroup if it is reducible on V , or is an
orthogonal group on V embedded in a symplectic group with p = 2; more specifically, M
is a subspace subgroup if one of the following holds:

(1) M = GU for some proper nonzero subspace U of V , where U is totally singular,
non-degenerate, or, if G is orthogonal and p = 2, a nonsingular 1-space (U is any
subspace if G0 = PSL(V ));
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(2) G0 = PSL(V ), G contains a graph automorphism of G0, and M ∩G0 = (G0)U,W
where U,W are proper nonzero subspaces of V , dimV = dimU+dimW and either
U ⊆W or V = U ⊕W ;

(3) G0 = Sp2m(q), p = 2 and M ∩G0 = O±
2m(q).

Note that in (3), if we regard G0 as the isomorphic orthogonal group O2m+1(q), then
M ∩ G0 = O±

2m(q) is the stabilizer of a hyperplane of the natural module of dimension
2m+ 1.

IfM is a subspace subgroup, we call the action of G on the coset space G/M a subspace
action.

Bases for non-subspace actions of classical groups were studied in detail in [7], so our
main task is to prove Theorem 3.1 for subspace actions. First we require the following
general bound.

Proposition 3.2. Let G be as above, and suppose M is as in (1), so that the coset space
X = G/M is a G-orbit of k-dimensional subspaces of V , for some k. Assume also that
k ≤ d/2. Then

log |G|
log |X|

≥ d

tk
− 1,

where t = 1 if G0 = PSL(V ), and t = 2 otherwise.

Proof. Observe that |G| > q(d
2/t)−d, while

|X| ≤
(
d

k

)
q

:=
(qd − 1)(qd − q) · · · (qd − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
≤

(
qd

qk−1

)k

= qdk−k2+k.

Hence
log |G|
log |X|

≥ (d2/t)− d

dk − k2 + k
≥ d

tk
− 1.

�

3.1. Action on an orbit of subspaces. In this subsection we prove Theorem 3.1 for
subspace actions of classical simple groups as in case (1) in the list above. This is the
main part of the proof of the theorem.

Theorem 3.3. Let G be a simple classical group on V , a vector space of dimension d over
Fq. Let X be a G-orbit of k-dimensional subspaces of V with k ≤ d/2, on which G acts
primitively. Then

bX(G) ≤ d

k
+ 11.

Proof. In every subcase, we will define a base B ⊂ X of G in a number of steps. We do
this by starting with B = ∅ and at each step adding some subspaces to B. Throughout
the proof, G(B) denotes the pointwise stabilizer of B – that is, the set of group elements
that fix all the subspaces in B.

Action on the set of all k-dimensional subspaces.

First, let us assume that X is the set of all k-dimensional subspaces. Let d = ak + r
for a ≥ 2 and 0 ≤ r < k. Take any direct sum decomposition V = V1 ⊕ . . .⊕ Va ⊕ U with

dimVi = k for 1 ≤ i ≤ a, and let V1, . . . , Va ∈ B. Fix a basis Bi = {x(i)1 , . . . , x
(i)
k } ∈ Vi for

each i and define W1 = ⟨
∑a

i=1 x
(i)
s | 1 ≤ s ≤ k⟩ ∈ X and put W1 into B. Then the matrix

form of the restriction of a g ∈ G(B) to V1 ⊕ . . .⊕Va is a block diagonal matrix with equal
blocks (with respect to the basis B1 ∪ . . . ∪ Ba). Define Mg = [gV1 ]B1 = [gV2 ]B2 = . . . =
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[gVa ]Ba and let {γ, δ} ⊂ SL(V2) be a generating set of SL(V2) and C = [γ]B2 , D = [δ]B2

be their matrix forms. Then g ∈ G(B) fixes the subspaces

W2 = ⟨x(1)s + γ(x(2)s ) | 1 ≤ s ≤ k⟩ ∈ X, W3 = ⟨x(1)s + δ(x(2)s ) | 1 ≤ s ≤ k⟩ ∈ X

if and only if Mg commutes with both C and D. Thus, putting W2 and W3 into B, it
follows that G(B) acts as scalars on V1 ⊕ . . .⊕ Va. Finally, if r > 0 then let {f1, . . . , fr} be
a basis of U and define

W4 = ⟨f1, . . . , fr, x(1)r+1, . . . , x
(1)
k ⟩, W5 = ⟨f1 + x

(2)
1 , . . . , fr + x(2)r , x

(2)
r+1, . . . , x

(2)
k ⟩.

Adding W4 and W5 to B it is easy to see that G(B) contains only scalar transformations.

Thus, bX(G) ≤ a+ 5 ≤ d
k + 5 for this case.

Action on an orbit of non-degenerate subspaces.

Now we turn to the case when G is a group fixing some non-degenerate form [ , ] on
V and X is a G-orbit of non-degenerate subspaces. In the special case d = 2k, we also
assume that the Witt index of elements of X is no more than the Witt index of elements
of X⊥ (this is only interesting in the orthogonal case, when k is even and V has Witt
index k− 1). This will guarantee that the sums defining ui and vi below will have at least
two terms.

Let d = ak + r with 1 ≤ r ≤ k and take any orthogonal decomposition V = V1 ⊕
. . .⊕ Va ⊕ Va+1 with V1, . . . , Va ∈ X. Put V1, . . . , Va into B. Then any g ∈ G(B) also fixes

Va+1 = (
∑a

i=1 Vi)
⊥.

Let l and m ≤ 2 denote the Witt index and the Witt defect of the subspaces in X, so
k = 2l + m. First, let us assume that l ≥ 1. Then for every 1 ≤ s ≤ a, the subspace

Vs is a direct sum of orthogonal subspaces Vs = V
(h)
s ⊕ V

(m)
s , where each V

(h)
s contains

a basis Bs = {x(s)1 , . . . , x
(s)
l , y

(s)
1 , . . . , y

(s)
l } with [x

(s)
i , x

(s)
j ] = [y

(s)
i , y

(s)
j ] = 0, [x

(s)
i , y

(s)
j ] =

δij for all i, j and V
(m)
s has dimension and Witt defect m. (For orthogonal groups of

characteristic 2, we also have Q(x
(s)
i ) = Q(y

(s)
i ) = 0 for all i, where Q is the underlying

quadratic form.) Furthermore, let l′ be the minimum of l and the Witt index of Va+1

and m′ = dim(Va+1) − 2l′. Similarly to the above, choose an orthogonal decomposition

Va+1 = V
(h)
a+1 ⊕ V

(m)
a+1 along with a basis Ba+1 = {x(a+1)

1 , . . . , x
(a+1)
l′ , y

(a+1)
1 , . . . , y

(a+1)
l′ } of

V
(h)
a+1 satisfying [x

(a+1)
i , x

(a+1)
j ] = [y

(a+1)
i , y

(a+1)
j ] = 0, [x

(a+1)
i , y

(a+1)
j ] = δij for 1 ≤ i, j ≤ l′,

and define x
(a+1)
i = y

(a+1)
i = 0 for l′ < i ≤ l.

For 1 ≤ i ≤ l, define

ui =

a+1∑
s=1

x
(s)
i , vi =

(a+1)∑
s=1

y
(s)
i .

We define the subspaces

W
(h)
1 = ⟨u1, . . . , ul, y

(1)
1 , . . . , y

(1)
l ⟩, W

(h)
2 = ⟨x(1)1 , . . . , x

(1)
l , v1, . . . , vl⟩,

W
(h)
3 = ⟨u1, . . . , ul, y

(2)
1 , . . . , y

(2)
l ⟩, W

(h)
4 = ⟨x(2)1 , . . . , x

(2)
l , v1, . . . , vl⟩.

Then Wt := W
(h)
t ⊕ V

(m)
1 ∈ X for each 1 ≤ t ≤ 4. Adding W1,W2,W3,W4 to B, we see

that any g ∈ G(B) fixes each V
(h)
s and, moreover, the matrix form of each restriction g

V
(h)
s

satisfies [
g
V

(h)
1

]
B1

=
[
g
V

(h)
2

]
B2

= . . . =
[
g
V

(h)
a

]
Ba

=

(
Ag 0
0 Bg

)
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for some Ag, Bg ∈ GL(l, q). The use of the x
(a+1)
i , y

(a+1)
i as summands in the ui and vi

also implies that [
g
V

(h)
a+1

]
Ba+1

=

(
A′

g 0
0 B′

g

)
,

where A′
g and B′

g are left upper l′ × l′ submatrices of Ag and Bg, respectively.

Adding also the subspace W5 = W
(h)
5 ⊕ V

(m)
1 with W

(h)
5 := ⟨x(1)i , y

(1)
i + x

(2)
i | 1 ≤ i ≤ l⟩

we can also guarantee that Ag = Bg holds for any g ∈ G(B).

Let B
(x)
2 = {x(2)1 , . . . , x

(2)
l } and V

(x)
2 be the subspace spanned by B

(x)
2 . Choose φ,ψ ∈

End(V
(x)
2 ) generating End(V

(x)
2 ) as an algebra. Define

W
(h)
6 = ⟨x(1)i + φ(x

(2)
i ), y

(1)
i | 1 ≤ i ≤ l⟩, W

(h)
7 = ⟨x(1)i + ψ(x

(2)
i ), y

(1)
i | 1 ≤ i ≤ l⟩.

and let W6 := W
(h)
6 ⊕ V

(m)
1 , W7 := W

(h)
7 ⊕ V

(m)
1 . Adding W6,W7 to B, we see that g

V
(x)
2

commutes with both φ and ψ for any g ∈ G(B). Thus g
V

(x)
2

is a scalar transformation.

Therefore, any g ∈ G(B) acts as a scalar on V
(h)
1 ⊕ . . .⊕ V

(h)
a+1.

For every 1 ≤ s ≤ a+1, choose other orthogonal decompositions Vs = V
(h)′
s ⊕V (m)′

s such

that each V
(h)′
s is isometric to V

(h)
s and V

(h)
s +V

(h)′
s = Vs. Applying similar constructions

as forW1, . . . ,W4 before, by adding 4 further subspaces to B we can synchronize the action

of any g ∈ G(B) on each V
(h)′
s with its action on each V

(h)
t . Thus, now each g ∈ G(B) acts

as a scalar on the whole vector space V1 ⊕ . . .⊕ Va+1. Thus, bX(G) ≤ a+ 7 + 4 ≤ d
k + 11

in this case.

Now, let us assume that l = 0, so k = m ≤ 2. The case k = 1 is trivial. The case
k = m = 2 implies that V is orthogonal. We can also assume that a ≥ 3, since otherwise
d ≤ 6. Then each Vs has a basis x(s), y(s) with Q(x(s)) = 1, Q(y(s)) = α, [x(s), y(s)] = 1,
where α ∈ Fq is such that the polynomial t2 + t + α is irreducible over Fq. Additionally,
choose an arbitrary spanning set {xa+1, ya+1} of Va+1. Since {Q(z) | z ∈ Vs} = Fq, we can
define

u1 =
a+1∑
s=2

x(s) + z(1), v1 =
a+1∑
s=2

y(s) + w(1), u2 =
a−1∑
s=1

x(s) + z(a), v2 =
a−1∑
s=1

y(s) + w(a)

with z(1), w(1) ∈ V1, z
(a), w(a) ∈ Va such that Q(u1) = Q(u2) = 1, Q(v1) = Q(v2) = α.

Now, let

W1 = ⟨u1, y(2)⟩, W2 = ⟨u1, y(3)⟩, W3 = ⟨x(2), v1⟩, W4 = ⟨x(3), v1⟩,

W5 = ⟨u2, y(1)⟩, W6 = ⟨u2, y(2)⟩, W7 = ⟨x(1), v2⟩, W8 = ⟨x(2), v2⟩.

Adding eachWi to B we see that the restriction of any g ∈ G(B) to the subspaces V1, . . . , Va
has matrix form[

gV1

]
{x(1),y(1)}

= . . . =
[
gVa

]
{x(a),y(a)}

=

(
c 0
0 d

)
for some c, d ∈ Fq.

Using that Q(g(xs)) = 1, Q(g(y(s))) = α, [g(x(s), g(y(s))] = 1 it follows that c = m = ±1,

so any g ∈ G(B) acts on V1 ⊕ . . .⊕ Va as a scalar transformation. The use of x(a+1), y(a+1)

guarantees that g ∈ G(B) is a scalar on the whole of V . Thus, bX(G) ≤ d
k +8 for this case.

Action on an orbit of totally singular subspaces.

From now on, let X be the set of k-dimensional totally singular subspaces of V . Again,
we can assume that k ≥ 2.
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Let l be the Witt index and let m ≤ 2 be the Witt defect of V , so k ≤ l (since otherwise
X = ∅) and d = 2l +m. Let l = ak + r for 0 ≤ r < k and denote w(s) = k for 1 ≤ s ≤ k
and w(a + 1) = r. Take an orthogonal decomposition V = V1 ⊕ . . . ⊕ Va ⊕ Va+1 ⊕ U
such that Vs has dimension 2w(s) and Witt index w(s) for each 1 ≤ s ≤ a + 1. For

every 1 ≤ s ≤ a + 1 let Bs = {x(s)1 , . . . , x
(s)
w(s), y

(s)
1 , . . . , y

(s)
w(s)} be a basis of Vs such that

V
(x)
s = ⟨x(s)1 , . . . , x

(s)
w(s)⟩, V

(y)
s = ⟨y(s)1 , . . . , y

(s)
w(s)⟩ are w(s)-dimensional singular subspaces,

and [x
(s)
i , y

(s)
j ] = δij for every 1 ≤ i, j ≤ w(s). Furthermore, define x

(a+1)
i = y

(a+1)
i = 0 for

r < i ≤ k. Finally, take the additional k-dimensional singular subspaces

V
(x)′

a+1 = ⟨x(a+1)
1 , . . . , x

(a+1)
r , x

(1)
r+1, . . . , x

(1)
k ⟩,

V
(y)′

a+1 = ⟨y(a+1)
1 , . . . , y

(a+1)
r , y

(1)
r+1, . . . , y

(1)
k ⟩.

Let ui =
∑(a+1)

s=1 x
(s)
i , vi =

∑(a+1)
s=1 y

(s)
i for 1 ≤ i ≤ k and define

W1 = ⟨u1, . . . , uk⟩, W2 = ⟨v1, . . . , vk⟩.

First, add each of the subspaces V
(x)
1 , V

(y)
1 , . . . , V

(x)
a , V

(y)
a , V

(x)′

a+1 , V
(y)′

a+1 ,W1,W2 to B. Then
the subspaces Vs for each 1 ≤ s ≤ a+ 1 are fixed by any g ∈ G(B) and the restrictions gVs

have matrix form [
gV1

]
B1

= . . . =
[
gVa

]
Ba

=

(
Ag 0
0 (Ag)

−T

)
,[

gVa+1

]
Ba+1

=

(
A′

g 0

0 (A′
g)

−T

)
,

where Ag ∈ GL(k, q) and A′
g is the left upper r × r submatrix of Ag.

Next, we define additional k-dimensional singular subspaces of the form

W (x)(C) =
⟨ a+1∑

s=1

(
x
(s)
j +

k∑
i=1

cijy
(s)
i

) ∣∣∣ 1 ≤ j ≤ k
⟩
,

W (y)(C) =
⟨ a+1∑

s=1

(
y
(s)
j +

k∑
i=1

cijx
(s)
j

) ∣∣∣ 1 ≤ j ≤ k
⟩
,

where C = (cij) ∈ M(k, q). The subspaces W (x)(C) and W (y)(C) are singular if the
matrix C is symmetric (when V is a symplectic space) or anti-symmetric (when V is an

orthogonal or a unitary space). Furthermore, g ∈ G(B) fixes W
(x)(C) (resp. W (y)(C)) if

and only if AT
g C = CA−1

g (resp. AgC = CA−T
g ) holds.

First, let us assume that V is a symplectic space and choose C,D ∈ M(k, q) sym-
metric matrices, which generate the full matrix algebra M(k, q) (as an algebra). Adding

W (y)(I),W (y)(C),W (y)(D) to B we see that any g ∈ G(B) satisfies Ag = A−T
g , and, there-

fore, AgC = CAg, AgD = DAg. It follows that Ag is a scalar matrix for any g ∈ G(B).
Thus, g acts as a scalar on the whole V = V1 ⊕ . . .⊕ Va ⊕ Va+1.

Now, let V be an orthogonal or unitary space and choose antisymmetric matrices C =

E12−E21, D =
∑k−1

i=2 (Ei,i+1−Ei+1,i). (Here {Eij | 1 ≤ i, j ≤ k} denotes the usual basis of

the full matrix algebraM(k, q).) Add the subspacesW (x)(C),W (y)(C),W (x)(D),W (y)(D)
to B and let g ∈ G(B). Then we have AgCA

T
g = AT

g CAg = C and AgDA
T
g = AT

gDAg = D.
Using the implication

AXAT = X, ATY A = Y ⇒ AXY = AXATY A = XY A,

we see that Ag commutes with every product P of C’s and D’s with an even number
of terms. Similarly, AgPA

T
g = AT

g PAg = P holds for every product P of C’s and D’s
with an odd number of terms. In particular, Ag commutes with CD = E13, −DC =
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E31,−CD2C = E11 etc. Continuing this way, we see that Ag = λ·I is a scalar matrix. The
equation AgCA

T
g = C also shows that λ2 = 1 and so Ag = A−T

g = ±I. Thus, any g ∈ G(B)
is a scalar transformation on V1 ⊕ . . . ⊕ Va+1. If U ̸= 0, we can choose a k-dimensional

singular subspace V
(x)
a+2 ≤ V1 ⊕ U satisfying V1 + V

(x)
a+2 = V1 + U . Let x

(a+2)
1 , . . . , x

(a+2)
k be

any basis of V
(x)
a+2. Adding the subspaces V

(x)
a+2, ⟨x

(a+2)
1 + y

(1)
1 , . . . , x

(a+2)
k + y

(1)
k ⟩ to B gives

the result. So, bX(G) ≤ 2a+ 10 ≤ d
k + 10.

The above argument works if X is the set of all totally singular subspaces, which is
indeed a G-orbit in most cases. The only exception is when V is an orthogonal space,
d = 2k, and G = Ω+(V ), so we assume this from now on. Then two totally singular
k-dimensional subspaces V1, V2 are in the same G-orbit if and only if dim(V1 ∩ V2) ≡ k
(mod 2). Since the full orthogonal group O(V ) interchanges the two G-orbits, it does
not matter, which orbit we choose. Note that in the above construction the subspaces

V
(x)
1 , V

(y)
1 ,W (x)(C),W (y)(C),W (x)(D),W (y)(D) are in the same G-orbit provided that k

is even (the further subspaces defined in the proof are now meaningless). So, bX(G) ≤ 6
in this case. Now, let k be odd, and choose an orthogonal decomposition V = ⟨x, y⟩ ⊕ U ,
where x, y is a hyperbolic pair. Then dimU = d− 2 = 2(k− 1), so the above construction
works for a GU -orbit of (k− 1)-dimensional totally singular subspaces of U , since k− 1 is
even. That is, there are 6 totally singular (k − 1)-dimensional subspaces U1, . . . , U6 of U ,
which form a base for the action of GU on U . By construction,

U1 = ⟨x1, . . . , xk−1⟩, U2 = ⟨y1, . . . , yk−1⟩

with [xi, yj ] = δij for 1 ≤ i, j ≤ k − 1. Define the subspaces Vs = ⟨x⟩ ⊕ Us for 1 ≤ s ≤ 6.
Furthermore, let

W1 = ⟨y, y1, x2, . . . , xk−1⟩, W2 = ⟨y, x1, y2, . . . , yk−1⟩.

Then all of V1, . . . , V6,W1,W2 are totally singular k-dimensional subspaces with pairwise
odd-dimensional intersections, so they are in the same G-orbit X. Adding V1, . . . , V6, W1,
W2 to B we see that any g ∈ G(B) fixes the subspaces ⟨x⟩ = V1 ∩ V2, ⟨y⟩ = W1 ∩W2 and
U = (V1 + V2) ∩ (W1 +W2). Furthermore, g ∈ G(B) also fixes Us = Vs ∩ U for each s, so
gU is a scalar transformation by the definition of the Us. Adding also the subspace

W3 = ⟨x+ x1, y − y1, x2, . . . , xk−1⟩ ∈ X

to B, we get that any g ∈ G(B) is a scalar transformation on the whole of V . Hence
bX(G) ≤ 9 in this case. �

Remark 3.4. By a more detailed argument, Burness, Guralnick and Saxl were able to
calculate the exact base size for a classical group over an algebraically closed field acting on
an orbit of subspaces of its natural module [9, Section 4]. While part of their constructions
could be translated to the finite case, we had to give new constructions for other cases.
(This is especially true for the orthogonal case, since, in contrast to the finite case discussed
above, in any dimension there is just one type of non-degenerate orthogonal space over an
algebraically closed field.)

3.2. Action on pairs of subspaces. In this subsection we handle the subspace actions
arising from case (2) in the list after the statement of Theorem 3.1.

Proposition 3.5. Let G = PSL(V ) = PSLd(q), and let M be the stabilizer in G of a pair
U,W of nonzero subspaces, where dimU = k < d/2, dimW = d − k, and either U ⊆ W
or V = U ⊕W . Let X be the coset space G/M . Then

bX(G) ≤ d

k
+ 11 ≤ 2

log |G|
log |X|

+ 12.
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Proof. Let Xk be the set of all k-dimensional subspaces of V . A straightforward compu-
tation shows that |X| < |Xk|2. Clearly bX(G) ≤ bXk

(G). Now the result follows from
Theorem 3.3 and Proposition 3.2. �

3.3. Proof of Theorem 3.1. Let G be an almost simple group with socle G0, a clas-
sical group on V , a vector space of dimension d over Fq. Suppose G acts faithfully and
primitively on a set Ω.

If the action of G on Ω is not a subspace action, then b(G) ≤ 5 by [7]. Hence we may
assume that the action is a subspace action, so that one of the cases (1), (2), (3) listed
after the statement of Theorem 3.1 holds.

In case (1), Ω = UG is an orbit of G on k-dimensional subspaces, for some k, and
we can assume that k ≤ d/2 (by replacing U with U⊥ if necessary, in the case where
G0 ̸= PSL(V ), and by considering the equivalent action of G on (d − k)-spaces, when
G0 = PSL(V )). Now Theorem 3.3 and Proposition 3.2 give

b(G0) ≤
d

k
+ 11 ≤ 2

log |G|
log |Ω|

+ 13.

Hence we can choose a set B of at most d
k +11 points of Ω such that G(B)∩G0 = 1, so that

G(B) is isomorphic to a subgroup of G/G0. This is a soluble group possessing a normal
series of length at most 3 with cyclic factor groups. Since the base size of a cyclic linear

group is 1, by [33], it follows that b(G) ≤ 2 log |G|
log |Ω| + 16, as required.

Now consider case (2): here G0 = PSL(V ) and Ω = {U,W}G where U,W are subspaces
of dimensions k, d−k and either U ⊆W or V = U⊕W . In the latter case, if k = d/2 then
G0 has an element interchanging U and W , and (G,Ω) is not a subspace action (it is a
C2-action in the terminology of [7]). Hence we may assume that k < d/2. Now Proposition

3.5 implies that b(G0) ≤ 2 log |G|
log |Ω| + 12, and this yields the result as above.

Finally, consider case (3): hereG0 = Sp2m(q), p = 2 andM∩G0 = O±
2m(q), whereM is a

point-stabilizer in G. Regarding G0 as the isomorphic orthogonal group O2m+1(q), the set
Ω is an orbit ofG0 on hyperplanes of the natural module V2m+1(q). Hence bΩ(G0) ≤ 2m+1,

which is less than 2 log |G|
log |Ω| + 3, and the conclusion follows again.

This completes the proof of Theorem 3.1.

4. Non-affine primitive permutation groups

In this section we prove the main Theorem 1.1 for primitive groups which are not of
affine type.

Theorem 4.1. Let G be a primitive permutation group of degree n. Assume that G is
not of affine type. Then b(G) ≤ 2(log |G|/ log n) + 24.

According to the O’Nan-Scott theorem (see for example [24]), non-affine primitive
groups are of the following types: almost simple, diagonal type, product type, and twisted
wreath type. We shall deal with these types separately in the following subsections.

4.1. Almost simple groups. For this case we prove

Theorem 4.2. Let G be an almost simple primitive permutation group of degree n. Then
b(G) ≤ 2(log |G|/ log n) + 16.

Proof. Theorems 2.1 and 3.1 give the result when the socle of G is an alternating or
classical group. For the remaining cases, the socle of G is a group of exceptional Lie type
or a sporadic group. In these cases we have b(G) ≤ 7 by [10] and [11]. �
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4.2. Diagonal type groups. Work of Fawcett [14] (and also Gluck, Seress, Shalev [17,
Remark 4.3]) implies that, in the diagonal type case, we have

b(G) ≤ (log |G|/ log n) + 3. (1)

4.3. Product type groups. Bases for primitive groups of product type were studied
by Burness and Seress in [12]. We will use their notation. Let Ω = Γk for some set Γ
and integer k ≥ 2. There exists a primitive group H ≤ Sym(Γ) of almost simple type
or of diagonal type such that the following holds. Let the socle of H be T . Let P be
the (transitive) action of G on the set of the k direct factors of Soc(G) = T k. We have
T k ≤ G ≤ H ≀ P .

We recall two definitions. A distinguishing partition for a finite group X acting on a
finite set Σ is a coloring of the points of Σ in such a way that every element of X fixing
this coloring is contained in the kernel of the action of X on Σ. The minimal number of
parts (or colors) of a distinguishing partition is called the distinguishing number of X and
is denoted by d(X).

Let d(P ) be the distinguishing number of the transitive permutation group P . By [13,

Theorem 1.2], we have d(P ) ≤ 48 k
√
|P |.

4.3.1. The case when H is almost simple. Assume that H ≤ Sym(Γ) is an almost simple
group with socle T . We follow not only [12] here but [13, §4]. However we avoid the
use of the bound |Out(T )| ≤ |T |α, since this is expensive. Instead we use the estimate

|Out(T )| ≤ |Γ| found in [1, Lemma 2.7]. Thus |G| ≥ |T |k|P | ≥ (|H|k|P |)/|Γ|k. This gives
log(|H|k|P |)/ log |Ω| ≤ (log |G|/ log |Ω|) + 1.

By using the idea of [12, Lemma 3.8] combined with Lemma 2.1 of [13], we see that

b(G) <
log d(P )

log |Γ|
+ 1 + b(H) <

log |P |
log |Ω|

+ b(H) + 4, (2)

since |Γ| ≥ 5. By Theorem 4.2, this gives

b(G) <
log |P |
log |Ω|

+ 2
log |H|
log |Γ|

+ 20 < 2
log(|H|k|P |)

log |Ω|
+ 20 ≤ 2

log |G|
log |Ω|

+ 22.

4.3.2. The case when H is of diagonal type. Now assume that H is of diagonal type.
Here Soc(H) = T = Sℓ, where S is a non-abelian simple group and ℓ ≥ 2. We have
Sℓ ≤ H ≤ Sℓ.(Out(S) × Q) where Q ≤ Sym(ℓ) is the permutation group induced by the
conjugation action of H on the ℓ factors of Sℓ.

The set Γ can be thought of as the set of right cosets in H of the subgroup H0 =

(D×Q)∩H whereD denotes the diagonal subgroup of Aut(S)ℓ. In particular, |Γ| = |S|ℓ−1.
By (1), b(H) ≤ (log |H|/ log |Γ|) + 3 ≤ 8, provided that ℓ ≤ |S|. Thus, in view of (2), we
may assume that ℓ ≥ 3.

Let C be the set of complete representatives of the right cosets in H of the subgroup H0

consisting of the elements of Sℓ where the first coordinate is 1. Let s1 and s2 be elements
of S such that they together generate S. Let γ0, γ1, γ2 ∈ C be those elements for which
every coordinate of γ0 is 1, all but the first coordinate of γ1 is s1, and all but the first
coordinate of γ2 is s2. Consider the pointwise stabilizer Q0 of {H0γ0,H0γ1,H0γ2}. This
group Q0 is contained in the stabilizer H0 of H0γ0. For any element h0 ∈ H0 and any
index i in {1, 2}, we have H0γih0 = H0γ for some γ ∈ C with 1 or ℓ− 1 > 1 entries equal
to 1. Moreover if h0 is in Q0, then the first case must hold. Since the only automorphism
of S fixing both s1 and s2 is the identity, we see that Q0 is a subgroup of Q leaving C
invariant. Therefore, whenever q0 ∈ Q0 and γ ∈ C, we have (H0γ)q0 = H0γ

q0 for γq0 ∈ C.
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Let ω0, ω1, ω2 be those elements of Ω for which all k coordinates of Ω are H0γ0, H0γ1,
H0γ2, respectively. By the previous paragraph and the fact that G ≤ H ≀P , the pointwise
stabilizer in G of {ω0, ω1, ω2} is a permutation group R permuting the kℓ coordinates of
the vectors in Skℓ. More precisely, if the coordinates are labelled by the integers 1, . . . , kℓ,
then R is a permutation group on {1, . . . , kℓ} such that {jℓ + 1 | j ∈ {0, . . . , k − 1}} is
R-invariant. Since R is a subgroup of a transitive group on kℓ points which has order at
most |G|, we see, by [13, Theorem 1.2], that d(R) ≤ 48 kℓ

√
|G|.

Consider a distinguishing partition P with d(R) colors for the action of R on {1, . . . , kℓ}.
Define a new coloring of the R-invariant subset {1, . . . , kℓ} \ {jℓ+ 1 | j ∈ {0, . . . , k − 1}}
using no more than d(R)2 colors in the following way. For any integers j and u with
0 ≤ j ≤ k−1 and 1 < u ≤ ℓ color jℓ+u with the color (α, β) where α is the color of jℓ+1
in P and β is the color of jℓ+u in P. Clearly, no non-identity element of R preserves this
new coloring. For ℓ ≥ 3, we see, by Lemma 2.1 of [13], that G has a base B containing
{ω0, ω1, ω2} such that

b(G) ≤ |B| = 2
log d(R)

log |S|
+ 4 < 2

log |G|
kℓ log |S|

+ 6 = 2
log |G|
log n

+ 6.

4.4. Twisted wreath product type groups. This type was treated in Burness and
Seress [12, Section 4]. We follow their discussion. By the previous section we know
that if L is a primitive permutation group of product type acting on a set Ω, then we
have b(L) ≤ 2(log |L|/ log |Ω|) + 22. Let G be a primitive permutation group of twisted
wreath product type acting on the set Ω. Then G contains a regular normal subgroup
T k isomorphic to the direct product of k copies of a non-abelian simple group T . We
may write G = T kP where P is a transitive permutation group acting on k points. As
explained in [29, Section 3.6], we may embed G in a group of product type L which is of

the form (T 2)
k
.P . Thus b(G) ≤ b(L) ≤ 2(log |L|/ log |Ω|) + 22 = 2(log |G|/ log |Ω|) + 24.

This completes the proof of Theorem 4.1.

5. Affine primitive permutation groups

The main result of this section is

Theorem 5.1. Let G be an affine primitive permutation group of degree n. Then b(G) ≤
2(log |G|/ log n) + 16.

Let G be an affine primitive permutation group of degree n with a point-stabilizer
H. Then G = V H ≤ AGL(V ), where V is a finite vector space of order n = pk (p
prime), and the stabilizer H of the zero vector is an irreducible subgroup of GL(V ). Since
b(G) = b(H) + 1, Theorem 5.1 follows immediately from

Theorem 5.2. Let H be a subgroup of GL(V ) acting irreducibly on the finite vector space
V . Then bV (H) ≤ 2(log |H|/ log |V |) + 17.

In the above theorems, the multiplicative constant 2 is best possible, as shown by the
following example (which completes the proof of Proposition 1.2).

Proposition 5.3. Let V be a d-dimensional (d even) non-degenerate symplectic space
over the finite field Fq and let H = Sp(V ) with its natural action on V .

(i) Then bV (H) = d.
(ii) If G = V H ≤ AGL(V ) is the corresponding affine primitive permutation group,

then for sufficiently large values of q, we have

b(G) = ⌊2(log |G|/ log n)⌉ − 2.
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Proof. (i) Clearly, any basis of V (as a vector space) is also a base for H, so bV (H) ≤ d.
For the equality, let {b1, . . . , bl} ∈ V be any set of vectors with l ≤ d− 1. Then there is a
subspace U ≤ V containing {b1, . . . , bl} with dimU = d − 1. Hence it is enough to show
that for every such subspace U , there exists a non-identity g ∈ H that acts trivially on U .

Let U ≤ V be a subspace of dimension d − 1 and let [ , ] denote the non-degenerate
symplectic bilinear form on V preserved by H. Then the restriction of [ , ] to U is
degenerate: there exists 0 ̸= x ∈ U such that ⟨x⟩ = U⊥. Let y ∈ V \ U be arbitrary. We
claim that the map

A : cy + u 7→ c(y + x) + u (c ∈ Fq, u ∈ U)

is an element of H, which acts trivially on U . To see this, let c, d ∈ Fq and u, v ∈ U . Then
we have [A(cy + u), A(dy + v)] = [cy + u+ cx, dy + v + dx] = [cy + u, dy + v], proving the
claim.

(ii) This follows from a simple computation using the order formula for |Sp(V )|. �

It remains to prove Theorem 5.2. We do this in the following two subsections.

5.1. Primitive linear groups. In this subsection we prove Theorem 5.2 in the case
where H ≤ GL(V ) acts primitively on V as a linear group. In fact we prove the following
stronger bound for this case.

Theorem 5.4. Let V be a finite vector space, and let H ≤ GL(V ) be an irreducible,
primitive linear group on V . Then one of the following holds:

(i) b(H) ≤ 15;

(ii) b(H) ≤ 2 log |H|
log |V | + 9.

A version of Theorem 5.4 was proved in [26, 27] with a much worse multiplicative
constant, and unspecified constants in place of the constants 15 and 9. The proof of
Theorem 5.4 will be along the lines of that proof. However, in order to make our constants
explicit (and small), we need to improve several of the results in [26, 27].

For a field Fq and a positive integer m, by the natural module for the symmetric or
alternating group Sym(m) or Alt(m) over Fq, we mean the fully deleted permutation
module of dimension m′ = m− δ, where δ ∈ {1, 2}.

The first result is a version of Proposition 2.2 of [26] with an explicit constant:

Proposition 5.5. Let V = Vd(q) (q = pe) and G ≤ GL(V ), and suppose that E(G) is
quasisimple and absolutely irreducible on V . Then one of the following holds:

(i) E(G) = Alt(m) and V is the natural Alt(m)-module over Fq, of dimension d =
m− δ (δ ∈ {1, 2});

(ii) E(G) = Cld(q0), a classical group with natural module of dimension d over a
subfield Fq0 of Fq;

(iii) b(G) ≤ 6.

Proof. This is proved in [22]. �

The next result is an explicit version of [26, Proposition 3.6].

Proposition 5.6. Let V = Vd(q) (q = pe) and G ≤ GL(V ), and suppose that the Fitting
subgroup F (G) is absolutely irreducible on V . Then b(G) ≤ 13.

Proof. We begin by arguing exactly as in the proof of [26, 3.6] that F = F (G) can be
taken to be the central product of an extraspecial group s1+2m and the group Z = F∗

q of
scalars, where s is a prime and d = sm. We can also assume that G = NGL(V )(F ), so that
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G/F is isomorphic to either Sp2m(s) or O±
2m(2), with s = 2 in the latter case. Moreover,

q ≡ 1 mod s, and also q ≡ 1 mod 4 if s = 2 and G/F ∼= Sp2m(2).

Define F 0 = F.Z(G/F ), an extension of F by a group of order at most 2. By [32],
there are three vectors v1, v2, v3 ∈ V such that F 0

v1v2v3 = 1. So if we let J = Gv1v2v3 , then

J ∩ F 0 = 1 and J ∼= JF 0/F 0 is isomorphic to a subgroup of PSp2m(s) or O±
2m(2).

Obviously b(G) ≤ 3 + b(J). Assume for a contradiction that

b(J) > 10.

Then clearly d = dimV > 10, and V 10 =
∪

h∈J\1CV 10(h). Hence

|V |10 ≤
∑

h∈J\1

|CV (h)|10. (3)

For h ∈ J \1, Theorem 4.1 of [19] shows that there are 2m+1 conjugates of h that generate
G modulo F , and hence there are 2m+ 2 conjugates of h generating G. It follows that

dimCV (h) ≤
(
1− 1

2m+ 2

)
dimV.

Hence (3) gives |V |10/(2m+2) ≤ |J |, and so as |V | = qd = qs
m
, we have

q10s
m/(2m+2) ≤ |J | ≤

 |PSp2m(s)|, s odd, q ≡ 1 mod s
|Sp2m(2)|, s = 2, q ≡ 1 mod 4
|O±

2m(2)|, s = 2, q odd.
(4)

Straightforward computation shows that the only possible values satisfying (4) are s = 2,
q = 3 and m = 4 or 5. For m = 5 we have G/F ∼= O±

10(2), and in the above argument,
[19, 4.1] shows that we may replace 2m + 2 by 2m + 1 in (4), yielding a contradiction.
And if m = 4 then d = 24 = 16 and it is very easy to argue directly that b(G) ≤ 13, as
required. �

The next result is an improvement of Lemma 3.7 of [26].

Proposition 5.7. (i) Let Fq0 be a subfield of Fq, let q = qr0, and let M = F∗
q GLd(q0) ≤

GLd(q) = GL(V ), where F∗
q denotes the group of scalars. Then for the action of M on V

we have

b(M) ≤ d

r
+ 2.

(ii) Let q = pr with p prime, and let M = F∗
q Sym(m) ≤ GLm′(q) = GL(V ), where V is

the natural module for Sym(m) over Fq, of dimension m′ = m− δ (δ ∈ {1, 2}). Then

b(M) ≤
logpm

r
+ 4.

Proof. (i) Let λ1, . . . , λr be an Fq0-basis for Fq, and let e1. . . . , ed be the standard basis for

V = Fd
q (that is, ei = (0, . . . , 1, . . . 0) where the 1 is in the ith coordinate). Write d = kr+ l

with k, l ∈ Z and 0 ≤ l < r, and define

vi =
∑ir

j=(i−1)r+1 λjej (1 ≤ i ≤ k),

vk+1 =
∑d

j=kr+1 λjej .

If we write M0 = GLd(q0), it is easy to see that (M0)v1...vk+1
= 1. Hence if J =Mv1...vk+1

then J ∼= JM0/M0 is cyclic, and so by [33, 3.1], J has a base of size 1. Thus b(M) ≤
k + 2 ≤ d

r + 2.

(ii) This follows directly from the proof of [26, 3.7(ii)]. �
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As in [26], for H ≤ GL(V ) define b∗(H) to be the minimal size of a set B of vectors
such that any element of H that fixes every 1-space ⟨v⟩ with v ∈ B is necessarily a scalar
multiple of the identity. We call such a set B a strong base for H. By [26, 3.1],

b(H) ≤ b∗(H) ≤ b(H) + 1.

Next we give an improvement of Lemma 3.3(iii) of [26].

Lemma 5.8. Let V1, V2 be vector spaces over Fq with dimVi = ni and n1 ≤ n2, and let
Hi ≤ GL(Vi) for i = 1, 2. Denote by H1 ⊗H2 the image of H1 ×H2 acting in the natural
way on the tensor product V1 ⊗ V2.

If n1 ≤ b∗(H2), then

b(H1 ⊗H2) ≤
b∗(H2)

n1
+ 3.

Proof. We follows the proof of [26, Lemma 3.3(iii)]. Let b = b∗(H2). Assume n1 ≤ b, and
let y1, . . . , yb be a linearly independent strong base for H2 in V2. Let x1, . . . , xn1 be a basis
of V1.

Write b = rn1 + s with r, s integers and 0 ≤ s < n1 For 1 ≤ i ≤ r define

vi =

n1∑
k=1

xk ⊗ y(i−1)n1+k, Wi = ⟨xk ⊗ y(i−1)n1+k : 1 ≤ k ≤ n1⟩,

and set vr+1 =
∑s

k=1 xk ⊗ yrn1+k, Wr+1 = ⟨xk ⊗ yrn1+k : 1 ≤ k ≤ s⟩.
Consider the stabilizer L = (H1 ⊗ H2)v1...vr+1 . By Lemma 3.3(i) of [26], L stabilizes

V1 ⊗Wi for all 1 ≤ i ≤ r + 1.

Next choose C,D ∈ SLn1(q) generating SLn1(q), and for each i, define γi = C ⊗ 1, δi =
D ⊗ 1 ∈ GL(V1 ⊗Wi). Let

v =

r+1∑
i=1

viγi, w =

r+1∑
i=1

viδi.

At this point the argument at the end of the proof of [26, 3.3(iii)] shows that Lvw = 1.
Hence b(H1 ⊗H2) ≤ r + 3 ≤ n1

b + 3, as required. �

The next result is Theorem 1 of [27], with an explicit constant C = 14. The proof
is identical to that in [27], but using Propositions 5.5 and 5.6 at the end to justify that
C = 14 works.

Proposition 5.9. Let V = Vd(q), and let H be a subgroup of ΓL(V ) such that H acts
primitively on V and H0 := H ∩ GL(V ) is absolutely irreducible on V . Suppose that
b∗(H0) > 14. Then

H0 ≤ H0 ⊗
s⊗

i=1

Sym(mi)⊗
t⊗

i=1

Cldi(qi),

where s+ t ≥ 1 and the following hold:

(i) H0 ≤ GLd0(q) with b
∗(H0) ≤ 14

(ii) each factor Sym(mi) < GLm′
i
(q) and Cldi(qi) ≤ GLdi(q) is acting on the natural

module over Fq, where m
′
i = mi − δi, δi ∈ {1, 2}

(iii) d = d0 ·
∏s

1m
′
i ·

∏t
1 di

(iv) F ∗(H0) contains
∏s

1Alt(mi) ·
∏t

1Cldi(qi)
(∞).

The next result is an improvement of [27, Proposition 2].

Proposition 5.10. Let H,H0 be as in Proposition 5.9, with b∗(H0) > 14. Take m′
s =

max(m′
i : 1 ≤ i ≤ s) and dt = max(di : 1 ≤ i ≤ t) (define these to be 0 if s = 0 or t = 0,

respectively).
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(i) Suppose t ≥ 1 and m′
s ≤ dt, and let q = qrt . Then d < d2t , dt ≥ 14, and

b(H0) ≤ b(GLd/dt(q)⊗GLdt(qt)) ≤
d2t
dr

+ 5.

(ii) Suppose s ≥ 1 and m′
s > dt, and let q = pr. Then d < (m′

s)
2, m′

s ≥ 14, and

b(H0) ≤ b(GLd/m′
s
(q)⊗ Sym(ms)) ≤

ms logpms

dr
+ 6.

Proof. We follow the proof of [27, Proposition 2], but as the constants are different we
give a few details.

We proceed by induction on s+ t. For the base case s+ t = 1, we have H0 ≤ H0 ⊗M ,
where M = Cld1(q1) or Sym(m1). Consider the first case, and write q = qr1. Proposition

5.7 gives b(M) ≤ d1
r + 2, hence also b∗(M) ≤ d1

r + 3. If d0 = 1 the conclusion in (i) is
immediate, so assume d0 ≥ 2. As in the proof of [27, Proposition 2], we see that d0 ≤ d1.
Then Lemma 5.8 gives

b(H0) ≤ b∗(M)
d0

+ 3

≤ d1
rd0

+ 3
d0

+ 3

< d1
rd0

+ 5,

so that (i) holds (note that d1 ≥ 14 by [26, 3.3(ii)]). Similarly (ii) holds when M =
Sym(m1).

Now assume s + t ≥ 2. Let m be the maximum of dt and m′
s, and write M for the

corresponding group Cldt(qt) or Sym(ms). Note that m ≥ 14, since otherwise [26, 3.3(ii)]
implies that b∗(H0) ≤ 14. Let N be the tensor product of H0 and the other factors
Cldi(qi), Sym(mi), so that H0 ≤ N ⊗M . If b∗(N) ≤ 14 the conclusion follows as in the
s+ t = 1 case, so assume b∗(N) > 14.

Let m′ be the largest among the dimensions di,m
′
i omitting m, and write N1 for the

corresponding group Cldi(qi) or Sym(mi).

Consider the case where N1 = Cldi(qi). Let q = qui . By induction we have

b∗(N) ≤ b(N) + 1 ≤ d2im

du
+ 6 ≤ di

u
+ 6.

Suppose d ≥ m2. Then b∗(N) ≥ m by [26, 3.3(iv)], so Lemma 5.8 implies that

b(H0) ≤ b∗(N)

m
+ 3 ≤ di

um
+

6

m
+ 3.

Since m ≥ di and m > 14, this yields b(H0) < 5, a contradiction. Hence d < m2 in this
case. Now the conclusion of the proposition follows by the argument given for the s+t = 1
case.

Finally, consider the case where N1 = Sym(mi). Let q = pr. By induction,

b∗(N) ≤ b(N) + 1 ≤
(mi logpmi) ·m

dr
+ 7 ≤

logpmi

r
+ 8.

Now the argument of the previous paragraph gives the conclusion. �

Proof of Theorem 5.4

We are now in a position to prove Theorem 5.4.

We begin just as in the proof of [27, Corollary 3]. Suppose H ≤ GL(V ) acts primitively
and irreducibly on a finite vector space V defined over a field of size q0. Choose q = qr0
maximal such that H ≤ ΓLd(q) ≤ GLdr(q0). Write H0 = H ∩GLd(q) and V = Vd(q). By
[16, 12.1], H0 is absolutely irreducible on V .
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If b∗(H0) ≤ 14 then b(H) ≤ 15, and the conclusion of Theorem 5.4 holds. So assume
now that b∗(H0) > 14. Then H0 is given by Proposition 5.9, and (i) or (ii) of Proposition
5.10 holds.

Consider case (i) of Proposition 5.10. Write m = dt and q = qrt . Then d < m2,
H0 ▹ Clm(qt), m ≥ 14, and

b(H0) ≤ m2

dr
+ 5. (5)

From the order formulae for classical groups, we see that

logqt(|H
0|) ≥ logqt |Ω

±
m(qt)| ≥

1

2
m(m− 1)− 1.

Hence
log |H|
log |V |

≥
1
2m(m− 1)− 1

rd
,

and so (5) gives

b(H0) ≤ 2
log |H|
log |V |

+ 5 +
m+ 2

rd
< 2

log |H|
log |V |

+ 7.

This completes the proof in case (i) of Proposition 5.10.

To conclude, consider case (ii) of Proposition 5.10. Write m = ms, m
′ = m′

s and q = pr.
Then d < m2, H0 ▹Alt(m), m′ ≥ 14, and

b(H0) ≤
m logpm

dr
+ 6. (6)

Now |H0| ≥ 1
2m! > 1

2

(
m
e

)m
, and so

log |H|
log |V |

≥
m(logpm− logp e)− 1

rd
.

Hence (6) gives

b(H0) ≤ log |H|
log |V |

+ 6 +
m log2 e+ 3

rd
<

log |H|
log |V |

+ 8,

giving the conclusion of Theorem 5.4 (actually, a stronger version, with the constant 2
replaced by 1).

This completes the proof of Theorem 5.4.

5.2. Imprimitive linear groups. It remains to prove Theorem 5.2 in the case where the
irreducible linear group H ≤ GL(V ) acts imprimitively on V . Assume that H preserves
the direct sum decomposition V = V1 ⊕ · · · ⊕ Vt where V1, . . . , Vt are subspaces of V , and
t > 1 is chosen maximally. Let H1 be the stabilizer of V1 in H. Let us denote the minimal
base size of the action K1 of H1 on V1 by b(K1). By the choice of t, the action of K1 on
V1 is primitive, so by Theorem 5.4, we have b(K1) ≤ 15 or

b(K1) ≤ 2(log |K1|/ log |V1|) + 9.

If b(K1) ≤ 15, then, by [13, Theorem 3.4] and its proof, we have

b(H) ≤ log |H|/ log |V |+ b(K1) + 1 + (log 48/ log(2b(K1))) ≤ log |H|/ log |V |+ 17.

So assume now that b(K1) ≥ 16 and b(K1) ≤ 2(log |K1|/ log |V1|) + 9. In that case our
proof strictly follows the arguments of [13], but in order to be able to prove Theorem 5.2
we need to give more precise estimates for the constants appearing there. In the proof we
will freely use the concepts and notation of [13].

A main step in proving [13, Theorem 3.17] was to reduce the problem for linear groups
which do not preserve any tensor product decomposition of the vector space (possibly over
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a proper field extension of the base field). In order for the reduction argument to work, a
generalisation of the problem was needed.

Let us view H not just as a subgroup of GL(V ) but also as an abstract group. We will
define certain maps X : H → GL(V ). For this let TV denote the group

TV = {g ∈ GL(V ) | g(Vi) = Vi and g|Vi ∈ Z(GL(Vi)) ∀1 ≤ i ≤ t} ≃ (F×
q )

t

where Fq is the field of definition for V . According to [13, Definition 3.5] we say that a
map X : H → GL(V ) is a (mod TV )-representation of H if the following two properties
hold: (1) X(g) normalizes TV for every g ∈ H; and (2) X(gh)TV = X(g)X(h)TV for every
g, h ∈ H. We will always consider (mod TV )-representations X of H such that the group
X(H)TV acts transitively on the set of factors Π = {V1, . . . , Vt} of the above direct sum
decomposition of V . Let bX(H) denote the minimal base size of the group X(H)TV .

In the rest of this subsection we will show that if X is an imprimitive irreducible linear
representation of H preserving the decomposition V = V1 ⊕ · · · ⊕ Vt, then bX(H) ≤
2(log |H|/ log |V |) + 17, or b(H) ≤ 2(log |H|/ log |V |) + 17. Theorem 5.2 will follow by
specializing to the case when X is the identity.

If the representation of H is alternating-induced in the sense of [13, Section 3.2], then
b(H) ≤ 2(log |H|/ log |V |) + 17, by [13, Theorem 3.9].

By [13, Section 3.4] (and especially by [13, Corollary 3.15]), it is sufficient to establish the
proposed bound in the claim for b(H) or for bX(H) in case X is a (not necessarily linear)
(mod TV )-representation of H which is classical-induced satisfying the multiplicity-free
condition, in the sense of [13, Section 3.3]. Let X be such a representation of H.

Let N be the kernel of the action of H on Π. Let X : H → NGL(V (p))(TV )/TV be the
homomorphism defined by X(h) := X(h)TV /TV where V (p) denotes the vector space V
defined over the prime field (of size p) of Fq and where h ∈ H. In [13, Section 3.3] a bound
is given for bX(H). By the argument after [13, Theorem 3.11] (from the second to the
fifth paragraphs), we get bX(H) < (log |H|/ log |V |)+ 12 when X(N) = 1. So assume that
X(N) ̸= 1.

We use the notation (and a minor modification of the argument) of the paragraph
following [13, Theorem 3.11]. In this case Soc(X(N)) is a subdirect product of isomorphic
simple classical groups S1, . . . , St. The linking factor, denoted by r, is at most 2. We

have |N | ≥ |S1|t/r. Since b(K1) ≥ 16, the center of K1 has size less than |V1|1/16 and

|Out(S1)| ≤ |V1|6/16, (the latter by [18, Lemma 7.8]). Thus |S1| ≥ |K1|/|V1|1/2, which
implies |N | ≥ |K1|t/r/|V |1/2.

Assume that r = 1. By Theorem 5.4, we have

b(K1) ≤ 2(log |K1|/ log |V1|) + 9 = 2(log(|K1|t)/ log |V |) + 9 ≤ 2(log |N |/ log |V |) + 10.

By [13, Theorem 3.4] and its proof, we then get b(H) ≤ 2(log |H|/ log |V |) + 12 since
log |V1| ≥ 16.

Now assume that r = 2, so t = 2k for some integer k. By changing the order (if
necessary) of the summands in the direct sum V = ⊕t

i=1Vi, we can assume that the sets
∆i := {V2i−1, V2i}, for all i with 1 ≤ i ≤ k, form a system of H-blocks with S∆i :=
Soc(X∆i(N)) a full diagonal subgroup of S2i−1 × S2i. Here X∆i is defined as follows. Put
V∆i := V2i−1⊕V2i and let TV∆i

be defined analogously as TV . Let Xi : NH(∆i) → GL(V∆i)

be the (mod TV∆i
)-representation of NH(∆i) obtained naturally from X by restricting

first from H to NH(∆i) and then from V to V∆i . Now define X∆i to be the homomorphism
given by X∆i(h) := Xi(h)TV∆i

/TV∆i
for h ∈ NH(∆i). The multiplicity-free condition

(and the definition of ∆i) guarantees that there are no functions φi : V2i → V2i−1 and
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λi : NH(∆i) → F×
q such that φi is a semilinear invertible map and

X2i−1(g) = λi(g) · φiX2i(g)φ
−1
i

for every g ∈ CH(∆i). By using [21, Theorem 2.1.4], it follows that S1 ≃ PSL(V1). Thus,

|N | ≥ (qdim
2 V1−dimV1)t/2/|V |1/2, which means that

bX∆1
(NH(∆1)) ≤ dimV1 ≤ 2(log |N |/ log |V |) + 2.

Now we can apply [13, Theorem 3.4] to the H-invariant direct sum decomposition V =
⊕k

i=1V∆i to deduce that bX(H) ≤ 2(log |H|/ log |V |) + 3 + log 48 < 2(log |H|/ log |V |) + 9.

This completes the proof of Theorem 5.2.

6. Proof of Corollary 1.3

In this section we will prove Corollary 1.3. Let G be a primitive permutation group
of degree n. For later use, we recall the definition of standard actions of almost simple
primitive groups: these occur for groups with socle an alternating group Alt(m) or a
classical group. In the former case they are actions on an orbit of subsets or partitions of
{1, . . . ,m}; and in the latter, they are subspace actions (as defined in Section 3).

Assume first that G is Sym(m) or Alt(m) for some integerm ≥ 5. We consider standard
actions of G.

If the action of G is on a set of partitions of the underlying set of size m, then b(G) ≤
log n+4 by Theorem 2.7. The right hand side is less than

√
n for n ≥ 256, and b(G) < 12

otherwise.

Now assume that G acts on k-element subsets of {1, . . . ,m} for some integer k with
2 ≤ k ≤ m/2 and n =

(
m
k

)
. Assume also that b(G) ≥ 26.

Let k2 ≤ m. Then, by Theorem 2.2, b(G) ≤ 2m
k+1 + 1. Since b(G) ≥ 26, we have m ≥ 38

and n ≥ 625. For k = 2 and n ≥ 625 we get b(G) ≤ 2m
3 + 1 <

√
n. For k ≥ 3 and n ≥ 625

we find that m2 ≤
(
m
k

)
= n and so b(G) <

√
n.

Let k2 > m. Then k ≥ 3 since m ≥ 5. By Theorem 2.2, b(G) ≤
⌈
log⌈t⌉(m)

⌉
(⌈t⌉ − 1)

where t = m/k. Since b(G) ≥ 26, this forces m ≥ 18. In particular k ≥ 5 and n ≥ 625.
Thus assume that m ≥ 18, k ≥ 5, and n ≥ 625. Let k ≥ 8. By Theorem 2.2 and the
assumption k2 > m, we have b(G) ≤ (logm + 1)t < (2 log k + 1)t. Since t ≥ 2, it follows

that (2 log k + 1)t < tk/2 = (mk )
k/2 <

√(
m
k

)
. If 5 ≤ k ≤ 7, then b(G) ≤ 6(logm + 1), by

Theorem 2.2 (recall that m < k2). The right hand side is less than
√(

m
k

)
provided that

m ≥ 18 and 5 ≤ k ≤ m/2.

Next assume that G is a group as in Section 4.3.1. Let us use the notation and results
of that section. By (2), we have b(G) < log k + 1 + n1/k. For k ≥ 3 this is less than

√
n

since n ≥ 5k ≥ 125. Now let k = 2. Then G is a subgroup of Sym(t) ≀ Sym(2) with n = t2.
In this case b(G) ≤ t, that is, b(G) ≤

√
n.

At this point, by [28, Theorem 1.1], we may assume that |G| ≤ n1+logn (and n ≥ 26).

If G is as in Section 4.3.2 or as in Section 4.4, then n > 2500, and so by Theorem 1.1,

b(G) ≤ 2
log |G|
log n

+ 24 ≤ 2 log n+ 26 <
√
n.

If G is as in Section 4.2, we use Fawcett’s [14] bound b(G) ≤ (log |G|/ log n)+3 to obtain
b(G) ≤ log n+ 4 <

√
n provided n ̸= 60. If n = 60, then |G| ≤ 4n2, and so b(G) ≤ 5.

Assume that G is almost simple. If the action of G is non-standard, then b(G) ≤ 7 by
[7] and [10]. Thus assume that the action of G is standard. In particular the socle of G is
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a simple classical group or an alternating group. The case when the socle is an alternating
group was treated before.

Let G be an almost simple group with socle a classical group with natural module
a vector space of dimension d over some finite field. Since |G| ≤ n1+logn and b(G) ≤
2(log |G|/ log n) + 16, the latter by Theorem 3.1, we see that b(G) <

√
n for n ≥ 1600.

Thus assume that n < 1600. By Theorem 3.3 and Section 3.3, we have b(G) ≤ d+14. By
[21, Table 5.2.A], we find that d must be at most 11, and so b(G) ≤ 25.

Finally, assume that G is of affine type with n ≥ 4. Put n = pd where p is a prime and
d is an integer. Then b(G) ≤ 1 + d. This is at most pd/2 unless p = 2 and 2 ≤ d ≤ 5. In
particular b(G) ≤ 6 and n ≤ 32.

This completes the proof of Corollary 1.3.
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22 ZOLTÁN HALASI, MARTIN W. LIEBECK, AND ATTILA MARÓTI
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