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Abstract. Let G be a finite group, F a field, and V a finite dimensional
FG-module such that G has no trivial composition factor on V . Then the
arithmetic average dimension of the fixed point spaces of elements of G on V
is at most (1/p) dim V where p is the smallest prime divisor of the order of
G. This answers and generalizes a 1966 conjecture of Neumann which also
appeared in a paper of Neumann and Vaughan-Lee and also as a problem in
The Kourovka Notebook posted by Vaughan-Lee. Our result also generalizes
a recent theorem of Isaacs, Keller, Meierfrankenfeld, and Moretó. We also
classify precisely when equality can occur. Various applications are given. For
example, another conjecture of Neumann and Vaughan-Lee is proven and some
results of Segal and Shalev are improved and/or generalized concerning BFC
groups.

Dedicated to Peter M. Neumann on the occasion of his 70th birthday.

1. Introduction

Let G be a finite group, F a field, and V a finite dimensional FG-module. For
a non-empty subset S of G we define

avgdim(S, V ) =
1
|S|
∑
s∈S

dim CV (s)

to be the arithmetic average dimension of the fixed point spaces of all elements
of S on V . Here CV (s) is the set of fixed points of s on V . In his 1966 DPhil
thesis Neumann [12] conjectured that if V is an irreducible non-trivial FG-module
then avgdim(G, V ) ≤ (1/2) dim V . This problem was restated in 1977 by Neumann
and Vaughan-Lee [13] and was posted in 1982 by Vaughan-Lee in The Kourovka
Notebook [9] as Problem 8.5. The conjecture was proved by Neumann and Vaughan-
Lee [13] for solvable groups G and also in the case when |G| is invertible in F . Later
Segal and Shalev [17] showed that avgdim(G, V ) ≤ (3/4) dim V for an arbitrary
finite group G. This was improved by Isaacs, Keller, Meierfrankenfeld, and Moretó
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[8] to avgdim(G, V ) ≤ ((p + 1)/2p) dim V where p is the smallest prime factor of
|G|. Our first main theorem is

Theorem 1.1. Let G be a finite group, F a field, and V a finite dimensional FG-
module. Let N be a normal subgroup of G that has no trivial composition factor
on V . Then avgdim(Ng, V ) ≤ (1/p) dim V for every g ∈ G where p is the smallest
prime factor of the order of G.

Theorem 1.1 not only solves the above-mentioned conjecture of Neumann and
Vaughan-Lee but it also generalizes and improves the resul in many ways. First
of all, G need not be irreducible on V ; the only restriction we impose is that G
has no trivial composition factor on V . Secondly, we prove the bound (1/2) dim V
not just for avgdim(G, V ) but for avgdim(S, V ) where S is an arbitrary coset of
a normal subgroup of G with a certain property. Thirdly, Theorem 1.1 involves a
better general bound, namely (1/p) dim V where p is the smallest prime divisor of
|G|.

We next turn to the question of when we can have equality in Theorem 1.1.
Note that the example [8, Page 3129] of a completely reducible FG-module V for
an elementary abelian p-group G shows that avgdim(G, V ) = (1/p) dim V can occur
in Theorem 1.1. There are examples for equality in Theorem 1.1 even when V is
an irreducible module. Let p be an arbitrary odd prime, let G be the extraspecial
p-group of order p1+2a (for a positive integer a) of exponent p, let N = Z(G), let
F be an algebraically closed field of characteristic different from p, and let V be
an irreducible FG-module of dimension pa. Then for every element x ∈ G \ N
we have dim CV (x) = (1/p) dim V and so avgdim(Ng, V ) = (1/p) dim V for every
g ∈ G. In particular we have avgdim(H,V ) = (1/p) dim V for every subgroup H of
G containing N .

We give a different proof of Theorem 1.1 in characteristic 0 and combine the
ideas of that proof with Theorem 1.1 to show:

Theorem 1.2. Let G be a finite group, F a field, and V a finite dimensional
FG-module with no trivial composition factors. Let p be the smallest prime factor
of |G|. Then avgdim(G, V ) = (1/p) dim V if and only if G/CG(V ) is a group of
exponent p.

In his DPhil thesis [12] Neumann showed that if V is a non-trivial irreducible
FG-module for a field F and a finite solvable group G then there exists an element
of G with small fixed point space. Specifically, he showed that there exists g ∈ G
with dim CV (g) ≤ (7/18) dim V . Neumann conjectured that in fact, there should
exists g ∈ G such that dim CV (g) ≤ (1/3) dim V . Segal and Shalev [17] proved, for
an arbitrary finite group G, that there exists an element g ∈ G with dim CV (g) ≤
(1/2) dim V . Later, under milder conditions (V is a completely reducible FG-
module with CV (G) = 0), Isaacs, Keller, Meierfrankenfeld, and Moretó [8] showed
that there exists an element g ∈ G with dim CV (g) ≤ (1/p) dim(V ) where p is the
smallest prime divisor of |G|. Under even weaker conditions we improve this latter
result.

Corollary 1.3. Let G be a finite group, F a field, and V a finite dimensional FG-
module. Let N be a normal subgroup of G that has no trivial composition factor on
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V . Let x be an element of G and let p be the smallest prime factor of the order of
G. Then there exists an element g ∈ Nx with dim CV (g) ≤ (1/p) dim V and there
exists an element g ∈ N with dim CV (g) < (1/p) dim V .

Note that Corollary 1.3 follows directly from Theorem 1.1 just by noticing that
dim CV (1) = dim V . Note also that if V is irreducible and faithful in Corollary 1.3
then no non-trivial normal subgroup of G has a non-zero fixed point on V and so
the N above can be any non-trivial normal subgroup of G. During the last stage of
the writing of this paper Neumann’s above-mentioned conjecture was proved in [6];
if V is a non-trivial irreducible FG-module for a finite group G then there exists
an element g ∈ G such that dim CV (g) ≤ (1/3) dim V .

Let clG(g) denote the conjugacy class of an element g in a finite group G, and
for a positive integer n and a prime p let np denote the p-part of n. In [8] Isaacs,
Keller, Meierfrankenfeld, and Moretó conjecture that for any primitive complex
irreducible character χ of a finite group G the degree of χ divides |clG(g)| for some
element g of G. Using their result mentioned before the statement of Corollary 1.3
they showed that if χ is an arbitrary primitive complex irreducible character of a
finite solvable group G and p is a prime divisor of |G| then χ(1)p divides (|clG(g)|)3
for some g ∈ G. Using Theorem 1.1 we may prove more than this.

Corollary 1.4. Let χ be an arbitrary primitive complex irreducible character of a
finite solvable group G and let p be a prime divisor of |G|. Then the number of g ∈ G

for which χ(1)p divides (|clG(g)|)3 is at least (2|G|)/(1 + k) where k = logp |G|p.
Furthermore if χ(1)p > 1 then there exists a p′-element g ∈ G for which p3 · χ(1)p

divides (|clG(g)|)3.

Recall that a chief factor of a finite group is a section X/Y of G with Y < X both
normal in G such that there is no normal subgroup of G strictly between X and Y .
Note that X/Y is a direct product of isomorphic simple groups. If X/Y is abelian,
then it is an irreducible G-module. If X/Y is non-abelian, then G permutes the
direct factors transitively. A chief factor is called central if G acts trivially on X/Y
and non-central otherwise. Let G be a finite group acting on another finite group
Z by conjugation. For a non-empty subset S of G define

geom(S, Z) =

(∏
s∈S

|CZ(s)|

)1/|S|

to be the geometric mean of the sizes of the centralizers of elements of S acting on
Z. Similarly, for a non-empty subset S of G define

avg(S, Z) =
1
|S|
∑
s∈S

|CZ(s)|

to be the arithmetic mean of the sizes of the centralizers of elements of S acting
on Z. Our next result is a non-abelian version of Theorem 1.1 proved using some
recent work of Fulman and the first author [5].

Theorem 1.5. Let G be a finite group with X/Y = M a non-abelian chief factor
of G with X and Y normal subgroups in G. Then, for any g ∈ G, we find that
geom(Xg,M) ≤ avg(Xg,M) ≤ |M |.41.
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Let ccf(G) and ncf(G) be the product of the orders of all central and non-central
chief factors (respectively) of a finite group G. (In case these are not defined put
them equal to 1.) These invariants are independent of the choice of the chief series
of G. Let F (G) denote the Fitting subgroup of G. Note that F (G) acts trivially
on every chief factor of G. Using Theorems 1.1 and 1.5 we prove

Theorem 1.6. Let G be a finite group. Then geom(G, G) ≤ ccf(G) · (ncf(G))1/p

where p is the smallest prime factor of the order of G/F (G).

By taking the reciprocals of both sides of the inequality of Theorem 1.6 and
multiplying by |G|, we obtain the following result.

Corollary 1.7. Let G be a finite group. Then ncf(G) ≤
(∏

g∈G |clG(g)|
)p/((p−1)|G|)

where p is the smallest prime factor of the order of G/F (G).

A group is said to be a BFC group if its conjugacy classes are finite and of
bounded size. A group G is called an n-BFC group if it is a BFC group and the
least upper bound for the sizes of the conjugacy classes of G is n. One of B. H.
Neumann’s discoveries was that in a BFC group the commutator subgroup G′ is
finite [11]. One of the purposes of this paper is to give an upper bound for |G′|
in terms of n for an n-BFC group G. Note that CG(G′) is a finite index nilpotent
subgroup. Thus, F (G) is well defined for BFC groups.

If G is a BFC group, then there is a finitely generated subgroup H with H ′ = G′

and G = HCG(G′) = HF (G). Then H has a finite index central torsionfree
subgroup N . Set J = H/N . So J ′ and G′ are G-isomorphic. In particular,
ncf(J) = ncf(G). Clearly, G/F (G) ∼= J/F (J). Thus, for the next result, it suffices
to consider finite groups. Our first main theorem on BFC groups follows from
Corollary 1.7 (by noticing that |clG(1)| = 1 and that in that result, we may always
assume the action is faithful).

Theorem 1.8. Let G be an n-BFC group with n > 1. Then ncf(G) < np/(p−1) ≤
n2, where p is the smallest prime factor of the order of G/F (G).

Theorem 1.8 solves [13, Conjecture A].

Not long after B. H. Neumann’s proof that the commutator subgroup G′ of a
BFC group is finite, Wiegold [20] produced a bound for |G′| for an n-BFC group
G in terms of n and conjectured that |G′| ≤ n(1/2)(1+log n) where the logarithm
is to base 2. Later Macdonald [10] showed that |G′| ≤ n6n(log n)3 and Vaughan-
Lee [19] proved Wiegold’s conjecture for nilpotent groups. For solvable groups the
best bound to date is |G′| ≤ n(1/2)(5+log n) obtained by Neumann and Vaughan-Lee
[13]. In the same paper they showed that for an arbitrary n-BFC group G we have
|G′| ≤ n(1/2)(3+5 log n). Using the Classification of Finite Simple Groups (CFSG)
Cartwright [2] improved this bound to |G′| ≤ n(1/2)(41+log n) which was later further
sharpened by Segal and Shalev [17] who obtained |G′| ≤ n(1/2)(13+log n). Applying
Theorem 1.8 at the bottom of [17, Page 511] we arrive at a further improvement of
the general bound on the order of the derived subgroup of an n-BFC group.

Theorem 1.9. Let G be an n-BFC group with n > 1. Then |G′| < n(1/2)(7+log n).
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A word ω is an element of a free group of finite rank. If the expression for ω
involves k different indeterminates, then for every group G, we obtain a function
from Gk to G by substituting group elements for the indeterminates. Thus we can
consider the set Gω of all values taken by this function. The subgroup generated
by Gω is called the verbal subgroup of ω in G and is denoted by ω(G). An outer
commutator word is a word obtained by nesting commutators but using always
different indeterminates. In [4] Fernández-Alcober and Morigi proved that if ω is an
outer commutator word and G is any group with |Gω| = m for some positive integer
m then |ω(G)| ≤ (m− 1)m−1. They suspect that this bound can be improved to a
bound close to one obtainable for the commutator word ω = [x1, x2]. By noticing
that every conjugacy class of a group G has size at most the number of commutators
of G we see that Theorem 1.9 yields

Corollary 1.10. Let G be a group with m commutators for some positive integer
m at least 2. Then |G′| < m(1/2)(7+log m).

Segal and Shalev [17] showed that if G is an n-BFC group with no non-trivial
abelian normal subgroup then |G| < n4. We improve and generalize this result
in Theorem 1.11. For a finite group X, let k(X) denote the number of conjugacy
classes of X.

Theorem 1.11. Let G be an n-BFC group with n > 1. If the Fitting subgroup
F (G) of G is finite, then |G| < n2k(F (G)). In particular, if G has no non-trivial
abelian normal subgroup then |G| < n2.

Since F (G) has finite index in G, the hypotheses of Theorem 1.11 imply that
G is finite. Note that even more is true than Theorem 1.11; if G is a finite group
then |G| ≤ a2k(F (G)) where a = |G|/k(G) is the (arithmetic) average size of a
conjugacy class in G (this is [7, Theorem 10 (i)]). If b denotes the maximal size of a
set of pairwise non-commuting elements in G then, by Turán’s theorem [18] applied
to the complement of the commuting graph of G, we have a < b + 1. Thus if G
is a finite group with no non-trivial abelian normal subgroup then |G| < (b + 1)2.
This should be compared with the bound |G| < c(log b)3 holding for some universal
constant c with c ≥ 220 which implicitly follows from [15, Lemma 3.3 (ii)] and
should also be compared with the remark in [15, Page 294] that for a non-abelian
finite simple group G we have |G| ≤ 27 · b3.

The final main result concerns n-BFC groups with a given number of generators.
Segal and Shalev [17] proved that in such groups the order of the commutator
subgroup is bounded by a polynomial function of n. In particular they obtained
the bound |G′| ≤ n5d+4 for an arbitrary n-BFC group G that can be generated by
d elements. By applying Theorem 1.8 to [17, Page 515] we may improve this result.

Corollary 1.12. Let G be an n-BFC group that can be generated by d elements.
Then |G′| ≤ n3d+2.

Finally, the following immediate consequence of Corollary 1.12 sharpens [17,
Corollary 1.5].

Corollary 1.13. Let G be a d-generator group. Then

|{[x, y] : x, y ∈ G}| ≥ |G′|1/(3d+2)
.
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The example Tm(p) [13, Page 213] shows that Theorem 1.9, Corollary 1.10,
Corollary 1.12, and Corollary 1.13 are close to best possible.

We point out that Theorem 1.1 for p odd requires only the Feit-Thompson Odd
Order Theorem [3]. However, most of the results in this paper depend on CFSG as
do the results in [17] and [8] (for groups of even order).

2. Proof of Theorem 1.1

Our first lemma sharpens and generalizes [13, Theorem 6.1].

Lemma 2.1. Let G be a finite group, F a field, and V a finite dimensional FG-
module. Let N be an elementary abelian normal subgroup of G such that CV (N) =
0. Then avgdim(Ng, V ) ≤ (1/p) dim V for every g ∈ G where p is the smallest
prime factor of the order of G.

Proof. We may assume that F is algebraically closed. Let us consider a counterex-
ample with |G| and dim V minimal. It clearly suffices to assume that G = 〈g,N〉.
We may assume that V is irreducible (since if we have the inequality on each com-
position factor of V we have it on V ). Finally, we may assume that N acts faithfully
on V . If N does not act homogeneously on V , then g transitively permutes the
components in an orbit of size t ≥ p and so every element in Ng has a fixed point
space of dimension at most (1/t) dim V ≤ (1/p) dim V . So we may assume that
the elementary abelian group N acts homogeneously on V . This means that it
acts as scalars on V . Thus N ≤ Z(G) and G/Z(G) is cyclic. It follows that G is
abelian and so dim V = 1. At most 1 element in the coset Ng is the identity and
so avgdim(Ng, V ) ≤ (1/|N |) dim V ≤ (1/p) dim V . The result follows. �

We first need a result about generation of finite groups. This is an easy conse-
quence of the proof of the main results of [1].

Theorem 2.2. Let G be a finite group with a minimal normal subgroup N =
L1 × . . . × Lt for some positive integer t with Li

∼= L for all i with 1 ≤ i ≤ t for
a non-abelian simple group L. Assume that G/N = 〈xN〉 for some x ∈ G. Then
there exists an element s ∈ L1 ≤ N such that |{g ∈ Nx : G = 〈g, s〉}| > (1/2)|N |.

Proof. First suppose that t = 1. This is an immediate consequence of [1, Theorem
1.4] unless G is one of Sp(2n, 2), n > 2, S2m+1 or L = Ω+(8, 2) or A6.

If G = Sp(2n, 2), n > 2, then the result follows by [1, Proposition 5.8]. If
G = S2m+1, then apply [1, Proposition 6.8].

Suppose that L = A6. Note that the proper overgroups of s of order 5 in A6 are
two subgroups isomorphic to A5 (of different conjugacy classes) and the normalizer
of the subgroup generated by s. The result follows trivially from this observation.

Finally consider L = Ω+(8, 2). We take s to be an element of order 15. It follows
by the discussion in [1, Section 4.1] that given G, there is an element of order 15
satisfying the result (although it is possible that the choice of s depends on which
G occurs).
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Now assume that t > 1. Write x = (u1, . . . , ut)σ where σ just cyclically permutes
the coordinates of N (sending Li to Li+1 for i < t) and ui ∈ Aut(Li). By conju-
gating by an element of the group Aut(L1) × . . . × Aut(Lt) we may assume that
u2 = . . . = ut = 1 (we do not need to do this but it just makes the computations
easier).

Let f : Nx → Aut(L1) be the map sending wx to the projection of (wx)t in
Aut(L1). Write w = (w1, . . . , wt) with wi ∈ Li. Then f(wx) = wtwt−1 . . . w1u1

is in L1u1. Moreover, we see that every fiber of f has the same size. By the case
t = 1, we know that the probability that 〈f(wx), s〉 = 〈L1, u1〉 is greater than 1/2.

We claim that if L1 ≤ 〈f(wx), s〉, then G = 〈wx, s〉. The claim then implies the
result. So assume that L1 ≤ 〈(f(wx), s〉 and set H = 〈wx, s〉. Let M ≤ N be the
normal closure of s in J := 〈(wx)t, s〉. This projects onto L1 by assumption, but is
also contained in L1, whence M = L1. So L1 ≤ H. Since any element of Nx acts
transitively on the Li, it follows that N ≤ H and so G = H. �

The next result we need is Scott’s Lemma [16].

Lemma 2.3 (Scott’s Lemma). Let G be a subgroup of GL(V ) with V a finite
dimensional vector space. Suppose that G = 〈g1, . . . , gr〉 with g1 · · · gr = 1. Then

r∑
i=1

dim[gi, V ] ≥ dim V + dim[G, V ]− dim CV (G).

We will apply this in the case r = 3. Noting that dim V = dim[x, V ]+dim CV (x)
for any x, we can restate this as:

3∑
i=1

dim CV (gi) ≤ dim V + dim CV (G) + dim V/[G, V ].

Theorem 2.4. Let G be a finite group. Assume that G has a normal subgroup
E that is a central product of quasisimple groups. Let V be a finite dimensional
FG-module for some field F such that E has no trivial composition factor on V .
If g ∈ G, then avgdim(gE, V ) ≤ (1/2) dim V .

Proof. Let us consider a counterexample with |G| and dim V minimal. There is no
loss of generality in assuming that F is algebraically closed, G = 〈E, g〉, and then
assuming that V is an irreducible (hence absolutely irreducible) and faithful FG-
module. If Z(E) 6= 1, the result follows by Lemma 2.1 (by taking N = Z(E) and
noting that Z(E) is completely reducible on V with CV (Z(E)) = 0 (since V is a
faithful FG-module)). So we may assume that E is a direct product of non-abelian
simple groups. If V is not a homogeneous FE-module, then g transitively permutes
the homogeneous components and so any element in gE has fixed point space of
dimension at most (1/2) dim V . So we may assume that V is a homogeneous FE-
module. Thus E = L1×. . .×Lm with the Li’s non-abelian simple groups. So V is a
direct sum of say t copies of V1⊗ . . .⊗Vm where Vi is an irreducible nontrivial FLi-
module. (Since G/E is cyclic and V is irreducible, it follows that t = 1 (by Clifford
theory) but we will not use this fact.) We may replace E by a minimal normal
subgroup of G contained in E (the hypothesis on the minimal normal subgroup
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will hold by Clifford’s theorem) and so assume that g transitively permutes the
isomorphic subgroups L1, . . . , Lm.

Let s ∈ L1 ≤ E be chosen so that Y := {y ∈ gE : 〈y, s〉 = G} has size larger
than (1/2)|E|. Such an element exists by Theorem 2.2. Set c = dim CV (s). If
y ∈ Y then, by Lemma 2.3 (applied to the triple (y, s, (ys)−1)), we have

c + dim CV (y) + dim CV (ys) ≤ dim V.

For any y ∈ Y ′ := gE \ Y , we at least have

dim CV (y) + dim CV (ys) ≤ dim V + c.

Thus,

2
∑

y∈gE

dim CV (y) =
∑

y∈gE

(
dim CV (y) + dim CV (ys)

)
is at most

|Y |(dim V − c) + |Y ′|(dim V + c) < |E|dim V.

This gives avgdim(gE) ≤ (1/2) dim V as required. �

We now prove Theorem 1.1. As usual, we may assume that F is algebraically
closed, V is an irreducible FG-module, and N acts faithfully on V . Let A be a
minimal normal subgroup of G contained in N . Since V is a faithful completely
reducible FN -module, A has no trivial composition factor on V . Now apply Lemma
2.1 and Theorem 2.4 to conclude that avgdim(Ag, V ) ≤ (1/p) dim V where p is the
smallest prime divisor of |G|. Since Ng is the union of cosets of A, the result follows.

3. Proof of Theorem 1.2

We first consider fields of characteristic 0.

Lemma 3.1. Let G be a finite group, C the field of complex numbers, and V a
finite dimensional CG-module. For an element g ∈ G and a root of unity a ∈ C let
ag denote the multiplicity of a as an eigenvalue of g. Then

∑
g∈G ag =

∑
g∈G bg as

long as a and b have the same order in C∗.

Proof. Let a and b be roots of unity of the same order. Let m be the exponent of
G with µ a primitive m-th root of unity. Let σ be an element of the automorphism
group of the field Q(µ) with σ(a) = b. Let e be a positive integer such that
σ(µ) = µe. Then e is relatively prime to m and hence also to |G|. Thus, the map
G → G with g 7→ ge is a bijection on G and so

∑
g∈G bg =

∑
g∈G bge =

∑
g∈G ag,

whence the result. �

The Möbius function µ(n) of a positive integer n is 0 if n is not square free and
is (−1)m if n is square free and the number of (distinct) prime divisors of n is m.
For a positive integer n let s(n) be the sum of primitive nth roots of unity (in C).
We recall the following well known result.

Lemma 3.2. For a positive integer n we have s(n) = µ(n).
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Proposition 3.3. Let G be a finite group, let F be a field such that |G| is invertible
in F , let V be a finite dimensional FG-module with no trivial FG-composition
factor, and let p be the smallest prime divisor of the order of G/CG(V ). Then
avgdim(G, V ) ≤ (1/p) dim V with equality if and only if the exponent of G/CG(V )
is p.

Proof. By avgdim(G, V ) = avgdim(G/CG(V ), V ) we see that it is sufficient to
assume that CG(V ) = 1. Since |G| is invertible, there is no loss in assuming that
char(F ) = 0.

Let χ be the character of the FG-module V . Then, by hypothesis, 〈1G, χ〉 =
0, that is,

∑
g∈G χ(g) = 0. Let n1, n2, . . . , nm be the possible distinct orders of

elements of G with n1 = 1 and n2 = p. Since χ(g) is the sum of the eigenvalues
of the matrix of g acting on V , Lemma 3.1 shows that there exist positive integers
k1, k2, . . . , km with

0 =
∑
g∈G

χ(g) =
m∑

i=1

kis(ni).

Letting ϕ(n) denote the Euler function of n, we may write the previous equation
as

0 =
m∑

i=1

(kiϕ(ni))(s(ni)/ϕ(ni)) ≥ k1 − (|G|dim V − k1)(1/(p− 1))

since s(ni)/ϕ(ni) > (−1)/(p − 1) for all i with 2 < i ≤ m. This gives k1 ≤
(1/p)|G|dim V with equality if and only if the exponent of G is p. �

Now we prove Theorem 1.2. By Proposition 3.3, we know that equality always
occurs when G/CG(V ) is a group of exponent p. Hence, it remains to show that
whenever avgdim(G, V ) = (1/p) dim V , then G/CG(V ) is a group of exponent p.

Choose a minimal counterexample to this latter statement with respect to |G|
and dim V . As before, we may assume that CG(V ) = 1. By Proposition 3.3, we
may also assume that r := char(F ) divides the order of G.

We claim that V is an irreducible FG-module. For suppose not and W is a
non-trivial proper submodule of V . By the minimality of dim V and by the fact
that

avgdim(G, V ) ≤ avgdim(G, W )+avgdim(G, V/W ) ≤ (1/p) dim W+(1/p) dim V/W,

we have that G/CG(W ) and G/CG(V/W ) are groups of exponent p. Let N be the
normal subgroup of G which acts trivially on both W and V/W . Note that N is
an r-group. So G = PN where P is a Sylow p-subgroup of G of exponent p. Since
G is a counterexample to the above statement, N 6= 1. For any element g ∈ P
we have avgdim(gN, V ) ≤ dim CV (g). (This can be seen by observing that some
power of an arbitrary element gn is conjugate to g. Moreover, avgdim(N,V ) ≤
(1/r) dim V < (1/p) dim V . Thus,

avgdim(G, V ) = |P |−1
∑
g∈P

avgdim(gN, V ) < avgdim(P,N) = (1/p) dim V,

a contradiction.
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So we may assume that V is an irreducible FG-module. Let M be a minimal
normal subgroup of G. By Theorem 1.1, we have avgdim(Mg, V ) ≤ (1/p) dim V
for each coset Mg of M in G, so avgdim(Mg, V ) = (1/p) dim V must hold for each
coset Mg of M in G. In particular, by the minimality of G, the group M is an
elementary abelian p-group. Since G is not a p-group, we can choose g ∈ G of prime
order s > p such that G = 〈g,M〉 (by the minimality of G). (The module V remains
an irreducible FG-module (by the minimality of dim V ) and CG(V ) = 1 continues
to hold since both M and g acts faithfully on V .) If M is central in G, then G is
abelian and dim V = 1. In this case avgdim(G, V ) = (1/|G|) dim V < (1/p) dim V ,
a contradiction. If M is not central, then g permutes the eigenspaces of M in an
orbit of size s > p (for some divisor t of s) and so avgdim(Mg, V ) ≤ (1/t) dim V <
(1/p) dim V , which is again a contradiction. This proves Theorem 1.2.

4. Proof of Corollary 1.4

Let us first prove the first statement of Corollary 1.4. By making the assumptions
of the proof of [8, Corollary D], it is sufficient to show that the number of g ∈ G
such that dim CV (g) ≤ (1/2) dim V is at least

2|G|
1 + logp |G|p

≤ 2|G|
2 + dim V

.

But this is clear by Theorem 1.1 noting that dim V is even.

Let us prove the second statement of Corollary 1.4. Use the notations and
assumptions of the last part of the proof of [8, Corollary D]. Let H be a Hall
p′-subgroup of G. Since V is a completely reducible G-module with CV (G) = 0,
the vector space V is also a completely reducible H-module with CV (H) = 0.
Hence applying Corollary 1.3 to the H-module V we get that there exists g ∈ H
with dim CV (g) < (1/2) dim V . So the last displayed inequality of the proof of [8,
Corollary D] becomes

|clG(g)|p
p

≥ χ(1)1/3

since dim V is even. From this we get that p3χ(1) ≤ |clG(g)|p3.

5. Proof of Theorem 1.5

Note that Y centralizes M and so there is no loss in working in G/Y and assuming
that X = M is a minimal normal subgroup of G. Set H = 〈M, g〉 and so assume
that g acts transitively on the direct factors of M .

We compute the arithmetic mean of the positive integers |CM (x)| for x ∈ gM .
All elements in a given M -conjugacy class in gM have the same centralizer size. If
h ∈ gM , then the M -conjugacy class of h has |M : CM (h)| elements. Thus, we see
that the arithmetic mean is precisely the number of M -conjugacy classes in gM .
By [5, Lemma 2.1], this is at most k(M), the number of conjugacy classes in M . By
[5, Proposition 5.3], this is at most |M |.41. Since the geometric mean is bounded
above by the arithmetic mean, the result follows.
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6. Proof of Theorem 1.6

Let us fix a chief series for a finite group G. Let N be the set of non-central
chief factors of this series. Let p be the smallest prime factor of the order of
G/F (G). If N ∈ N is abelian then, by Theorem 1.1 (noting that F (G) acts
trivially on N), we have geom(G, N) ≤ |N |1/p. If N ∈ N is non-abelian then,
by Theorem 1.5 and the Feit-Thompson Odd Order Theorem [3], we again have
geom(G, N) ≤ |N |1/p. Notice also that for any g ∈ G we have the inequality
|CG(g)| ≤ ccf(G)

∏
N∈N |CN (g)|. From these observations Theorem 1.6 already

follows since

geom(G, G) =
( ∏

g∈G

|CG(g)|
)1/|G|

≤ ccf(G)
( ∏

g∈G

∏
N∈N

|CN (g)|
)1/|G|

=

= ccf(G)
( ∏

N∈N

∏
g∈G

|CN (g)|
)1/|G|

= ccf(G)
( ∏

N∈N
geom(G, N)

)
≤

≤ ccf(G)
( ∏

N∈N
|N |1/p

)
= ccf(G) · (ncf(G))1/p

.
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