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Abstract

In a recent paper Külshammer, Olsson, Robinson gave a d- analogue
for the Nakayama conjecture for symmetric groups where d ≥ 2 is an
arbitrary integer. We prove that there is a natural d-analogue of the
Nakayama conjecture for alternating groups whenever d is 2 or an arbi-
trary odd integer greater than 1. This generalizes an old result of Kerber.

1 Introduction

Let d be a prime. A d-block of a finite group G is usually defined to be a minimal
two-sided ideal of the group algebra FG where F is an algebraically closed field
of characteristic d. It is a basic fact of modular representation theory that each
complex irreducible character of G is assigned to a unique d-block. In this case
we say that the character is in the d-block.

Recently, motivated by earlier work [2] on Hecke algebras, Külshammer,
Olsson, Robinson [6] extended the definition of a d-block of a finite group for
all integers d ≥ 2. Let C be the union of a set of conjugacy classes of a finite
group G, and let Irr(G) be the set of complex irreducible characters of G. They
defined a C-block to be a non-empty subset B of Irr(G) which is minimal subject
to the following condition. If χ ∈ B, ψ ∈ Irr(G), and if there exists a natural
number k and a sequence χ = χ0, . . . , χk = ψ so that for all 0 ≤ i < k the
truncated inner product of χi and χi+1 across C, that is, the inner product

〈χi, χi+1〉C :=
1
|G|

∑

g∈C
χi(g)χi+1(g), (1)

is not 0, then ψ ∈ B. If the expression (1) is not 0 for the irreducible characters
χi and χi+1, then it is said that the characters are directly C-linked. We indeed
got a more general definition of a block, since if d is prime and if C is the set of
all elements of G with orders relatively prime to d, then the C-blocks of G are
precisely the subsets of Irr(G) corresponding to the usual d-blocks of G.

To state a main result of [6] we need some more definitions from that paper.
The complex irreducible characters χλ of the symmetric group Sn are labelled
naturally by partitions λ of n. Let d ≥ 2 be an arbitrary integer. The d-core γλ

of the partition λ is the partition that we get after removing all d-hooks from
λ. We say that B ⊆ Irr(Sn) is a combinatorial d-block of Sn if B consists of
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all irreducible characters of Sn that are labelled by partitions with the same d-
core. Külshammer, Olsson, Robinson [6] proved that if d ≥ 2, then C-blocks and
combinatorial d-blocks for Sn are the same if C is the set of all elements of Sn

which have no cycle (of their disjoint cycle decompositions) of length divisible by
d. If d is a prime, then this gives the so-called Nakayama conjecture proved by
Brauer and Robinson [1]. The Nakayama conjecture has a natural analogue for
alternating groups An proved by Kerber [5] (see also Theorem 6.1.46 of [4], and
for a partial result see the doctoral thesis of Puttaswamaiah [10]). Let λ′ denote
the associate partition of the partition λ. (The diagram of λ′ is obtained from
the diagram of λ by interchanging its rows with its columns.) Let ResSn

An
(χλ) be

the restriction of the character χλ to the group An, and let d be a prime. The
theorem of Kerber states that if λ = γλ, then each irreducible constituent of
ResSn

An
(χλ) is the only element in its d-block, and if λ 6= γλ, then to the d-block

of an irreducible constituent of ResSn

An
(χλ) there belong just the constituents of

such restrictions ResSn

An
(χµ), where γµ = γλ or γµ = γλ′ . Now let d ≥ 2 be an

arbitrary integer, and define a combinatorial d-block of An by the combinatorial
description of a d-block we just mentioned.

In this paper we prove the following generalization of the above-mentioned
result of Kerber.

Theorem 1.1. Let d be 2 or an arbitrary odd integer greater than 1. Let C
be the set of all permutations of the alternating group An so that no cycle of
their disjoint cycle decompositions has length divisible by d. Then C-blocks and
combinatorial d-blocks coincide for An.

When d is a prime, then this theorem reduces to Kerber’s result, so there is
nothing to prove in case d = 2. In fact, most of our argument for the proof of
Theorem 1.1 only works for d > 1 odd in which case we are able to prove an even
stronger result (see Theorem 2.1) using ideas from [8]. If d is an even integer
greater than 2, then there are integers n for which the conclusion of Theorem
1.1 is false.

Finally, we note that C-blocks are investigated for other classes of groups
also. In connection with Broué’s conjectures, Jean-Baptiste Gramain [3] studied
generalized blocks of some groups of Lie rank one.

2 Preliminaries

Let H be an arbitrary (finite or infinite) set of positive integers. Following [8]
we say that a permutation (of finite order) is H-regular if for all h ∈ H no
cycle (of its disjoint cycle decomposition) has length equal to h. Let G be the
symmetric group Sn or the alternating group An, and let H(G) denote the set of
H-regular elements of G. For complex irreducible characters α, β of G we define
〈α, β〉H(G) as in (1). We will prove the following generalization of Theorem 1.1
for d > 1 odd.

Theorem 2.1. Let d > 1 be odd, and let H be a set of positive integers so
that d ∈ H and all elements of H are divisible by d. Then H(An)-blocks and
combinatorial d-blocks are the same for An.

To perform our calculations for the proof of Theorem 2.1, we will first need
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to move from An to Sn and then to a generalized symmetric group Zd o Sw for
some integer w.

How can we label the characters of An? As in the Introduction, for any
partition λ, we denote the associate partition by λ′. If λ = λ′, then it is
said that the partition λ is self-associate. Otherwise it is non-associate. The
irreducible characters of An are canonically labelled by symbols λ0, µ+, µ−

where {λ, λ′} and µ run through the set of all associate pairs of non-associate and
the set of all self-associate partitions of n, respectively. Denote the irreducible
character of An associated to the non-associate partition λ by χλ0 . This is
exactly the restriction to An of both irreducible characters χλ and χλ′ of Sn.
For convenience, let us call such a character a stalk. Denote the irreducible
characters of An associated to the self-associate partition µ by χµ+ and χµ− .
These are characters of An such that the restriction to An of the irreducible
character χµ = χµ′ of Sn is χµ+ +χµ− . Let us call such characters cherries. For
the time being, this is all we will need to know about characters of An. Later we
will introduce formulas (4) and (5). For more information the reader is referred
to [4].

To prepare our step of moving from Sn to the relevant generalized symmet-
ric group, we need some more definitions. Let d > 1 be an arbitrary integer.
For a partition λ we denote the d-core of λ by γλ, and the d-quotient by βλ.
(The d-core, γλ (as mentioned earlier) is the partition obtained by removing
all d-hooks from λ, and the d-quotient is a d-tuple of partitions recording the
d-hook removals obtained by moving from λ to its d-core.) Note that the empty
partition, the partition of 0, could occur as a d-core. There are 1− 1 correspon-
dences between partitions of n with a fixed d-core and their d-quotients. Let us
fix one. If there are w hooks of length d to be removed from λ to go to its d-core,
then w is called the d-weight of βλ. The d-quotients serve as a natural index
set for the conjugacy classes and the irreducible characters of the generalized
symmetric group Zd o Sw. If λ is a partition of n so that βλ has d-weight w,
then we denote the associated character of Zd o Sw by χβλ

. Again, the reader
is referred to [4] for detailed information. Finally, by Pages 61-63 of [9] and by
Theorem 4.53 of [11], for each partition λ, there is a sign, σλ, called the d-sign
of λ which is equal to (−1)

P
i li where li is the leg length of the i-th d-hook to be

removed from λ when ‘moving down’ to its d-core γλ along an arbitrary path.
We will make use of the simple observation that if d > 1 is odd, then σλ = σλ′ .

We will next describe a certain set of elements of the group Zd o Sw. Let
d > 1 be a positive integer, and let H be any set of positive integers so that all
elements of H are divisible by d. Put Hd = {h/d : h ∈ H}. Following [8], we
define an Hd-regular element of Zd o Sw to be an element (a1, . . . , aw)σ where
(a1, . . . , aw) is in the base group Zd

w (which we consider to be the w-th power
of the group of complex d-th roots of unity) and σ is a permutation of Sw, such
that for all h ∈ H, the product of the aj ’s corresponding to each h-cycle of σ
is different from 1. The set of all Hd-regular elements is a union of conjugacy
classes of Zd oSw. Let us denote this set by Hd(Zd oSw). For complex irreducible
characters α, β of Zd o Sw we define 〈α, β〉Hd(ZdoSw) as in (1).

With the notations above, Theorem 5.1 of [8] states that if d > 1 is an
arbitrary integer, and λ, µ are arbitrary partitions of n, then

〈χλ, χµ〉H(Sn) = 〈σλχβλ
, σµχβµ〉Hd(ZdoSw) (2)
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holds. Formula (2) is a generalization of the ‘perfect isometry’ of [6].
In this paper, as in [6] and [8], the ‘perfect isometry’ will only be applied in

the special case when χβλ
is the trivial character 1 of the generalized symmetric

group Zd o Sw. A special case of Theorem 5.2 of [8], and a slight extension of
Theorem 5.12 of [6], is the following. If d ∈ H, then for all irreducible characters
χβµ

of Zd o Sw, the algebraic integer

dww! · 〈1, χβµ〉Hd(ZdoSw)

χβµ
(1)

is an integer so that

dww! · 〈1, χβµ
〉Hd(ZdoSw)

χβµ
(1)

≡ (−1)w (mod d). (3)

We are now in the position to prove our theorems.

3 The proof of Theorem 2.1

Let n ≥ 2 and d > 1 be arbitrary integers. Let H be a set of positive integers
so that d ∈ H and all elements of H are divisible by d.

We prove Theorem 2.1 in steps.

Lemma 3.1. Let d > 1 be an arbitrary odd integer. For all α ∈ Irr(An), the
truncated inner product 〈1An , α〉H(An) is non-zero if and only if α is inside the
combinatorial d-block of the trivial character 1An .

Proof. If α is a cherry, then by Frobenius reciprocity, we have 〈1An , α〉H(An) =
〈1Sn , χλ〉H(Sn) for some self-associate partition λ of n where 1Sn denotes the
trivial character of Sn. Now by the ‘perfect isometry’ (2) and by (3) we see
that 〈1Sn , χλ〉H(Sn) 6= 0 if and only if 1Sn and χλ are in the same combinatorial
d-block of An.

If α is a stalk, then by Frobenius reciprocity again, we have 〈1An , α〉H(An) =
〈1Sn , χµ +χµ′〉H(Sn) for some non-associate partition µ of n. We have four cases
to consider. If γµ = γ(n) 6= γµ′ or if γµ 6= γ(n) = γµ′ , then again by the ‘perfect
isometry’ (2) and by (3) we see that 〈1Sn , χµ+χµ′〉H(Sn) 6= 0. If γµ 6= γ(n) 6= γµ′ ,
then 〈1Sn , χµ + χµ′〉H(Sn) = 0. Finally, in case γµ = γ(n) = γµ′ , we claim that
〈1Sn , χµ + χµ′〉H(Sn) 6= 0.

Let n = dw + r where w and r are integers such that 0 ≤ r ≤ d− 1. Let the
characters of Zd oSw corresponding to χµ and χµ′ be χβµ and χβµ′ , respectively.
By (2) we have

dww!〈1Sn , χµ + χµ′〉H(Sn) = dww!〈1ZdoSw , σµχβµ + σµ′χβµ′ 〉Hd(ZdoSw),

where σµ = σµ′ is the d-sign of µ and µ′. These are equal since d is odd. Notice
that the quotients βµ and βµ′ are associate to each other as necklaces, which
implies that χβµ(1) = χβµ′ (1). Hence, by (3), we see that

σµdww!〈1ZdoSw , χβµ + χβµ′ 〉Hd(ZdoSw)

χβµ(1)

is an integer congruent to 2σµ(−1)w modulo d. This is never 0. The proof of
the lemma is complete.
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By reading the proof of Lemma 3.1 more carefully, one can see that for
any stalk α and any irreducible character χ of An, the truncated inner product
〈α, χ〉H(An) is 0 if α and χ lie in different combinatorial d-blocks of An.

Next we investigate the truncated inner products of cherries. But before we
do so, we recall a few results from Page 67 of [4].

Let µ be a self-associate partition of n, and let h(µ) be the partition (of n)
with parts consisting of the main hooks of µ. Let d(µ) denote the product of all
parts of this partition h(µ). Now ResSn

An
(χµ) = χµ+ +χµ− . For all permutations

π of An of cycle-shape different from h(µ), it is known that χµ+(π) = χµ−(π) =
χµ(π)/2. Otherwise, if π has cycle-shape equal to h(µ), then it is a member of
one of two conjugacy classes of An. Let π+ and π− denote two representatives
of these conjugacy classes with respect to the following identities (see Theorem
2.5.13 of [4]):

χµ+(π±) =
1
2

(
χµ(π)±

√
χµ(π) · d(µ)

)
(4)

χµ−(π±) =
1
2

(
χµ(π)∓

√
χµ(π) · d(µ)

)
. (5)

We are now in the position to state

Lemma 3.2. Let d > 1 be an integer, and let α, β be irreducible characters of
An lying in different combinatorial d-blocks of An. Then 〈α, β〉H(An) = 0.

Proof. By the remark after Lemma 3.1 we may (and do) suppose that α and β
are cherries. There are two possibilities to consider: α and β are associate with
the same stalk or they are not.

Let us start with the case when α and β are associate with different stalks.
There are four cases to be dealt with. These are α = χµ± and β = χλ± where λ,
µ are different self-associate partitions of n. However, we only need to consider
one of these cases. Indeed, by Frobenius reciprocity we have

〈χµ+ , χλ−〉H(An) + 〈χµ+ , χλ+〉H(An) = 〈χµ, χλ〉H(Sn) =

= 〈χµ− , χλ+〉H(An) + 〈χµ− , χλ−〉H(An),

where 〈χµ, χλ〉H(Sn) = 0. So suppose that α = χµ+ and β = χλ+ . Define ε(µ)
to be 1 if the partition h(µ) is H-regular and to be 0 if it is not. Define ε(λ)
similarly. Now evaluating 〈χµ+ , χλ+〉H(An) using formula (4), we get

〈χµ+ , χλ+〉H(An) =
1
2
· 〈χµ, χλ〉H(An)+

+
1
4
· ε(µ)n!(2zµ)−1

(√
χµ(g) · d(µ)χλ(g−1)−

√
χµ(g) · d(µ)χλ(g−1)

)
+

+
1
4
· ε(λ)n!(2zλ)−1

(√
χλ(h) · d(λ)χµ(h−1)−

√
χλ(h) · d(λ)χµ(h−1)

)
=

=
1
2
· 〈χµ, χλ〉H(An),

where H(An) is considered as a union of conjugacy classes in Sn, where g and h
are permutations of cycle-shape µ and λ, respectively, and zµ, zλ are the orders
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of the centralizers of g and h, respectively. Since µ and λ are self-associate
partitions, both χµ and χλ vanish outside An, so we conclude that

1
2
· 〈χµ, χλ〉H(An) =

1
2
· 〈χµ, χλ〉H(Sn) = 0.

Suppose now that α and β are associate with the same stalk. Without loss of
generality, put α = χµ+ and β = χµ− for some self-associate d-core partition, µ.
Let us calculate 〈χµ+ , χµ−〉H(An). We use formulas (4), (5), and the facts that
zh(µ) = d(µ) (since h(µ) is a partition with distinct parts) and χµ(π) = ±1 where
π is an element of An of cycle-shape h(µ) (this follows from the Murnaghan-
Nakayama formula). Also note that π is an H-regular permutation since µ is a
d-core partition.

We have
〈χµ+ , χµ−〉H(An) =

1
2n!

(∑
χµ(g)χµ(g)+

+
n!

2zh(µ)

(
χµ(π) +

√
χµ(π)d(µ)

)
·
(
χµ(π)− χµ(π)

√
χµ(π)d(µ)

)
+

+
n!

2zh(µ)

(
χµ(π)−

√
χµ(π)d(µ)

)
·
(
χµ(π) + χµ(π)

√
χµ(π)d(µ)

))
=

=
1
2
· 〈χµ, χµ〉H(An) −

1
2
,

where the sum is over all elements g of H(An) of cycle-shape different from h(µ)
and where the last truncated inner product means that we are only summing
over the subset H(An) of Sn.

Since µ is a self-associate partition of n, we have

〈χµ, χµ〉H(An) = 〈χµ, χµ〉H(Sn).

Also, since µ is a d-core partition, by part (d) of Example 1.8 of [7] and by
the Murnaghan-Nakayama formula (see Example 7.5 of [7]), we see that χµ

vanishes off the set of H-regular permutations of Sn. From this we conclude
that 〈χµ, χµ〉H(An) = 1, and hence that 〈χµ+ , χµ−〉H(An) = 0.

So far we know that for all integers d > 1, combinatorial d-blocks for An are
unions of H(An)-linked blocks.

Let B be a combinatorial d-block of Sn consisting of characters labelled by
partitions with d-quotients of weight w. Let χτ ∈ B be the character of Sn for
which χβτ is the trivial character of Zd oSw. There are two cases to consider: τ
is a non-associate partition and τ is a self-associate partition.

Suppose that τ is a non-associate partition of n. In this case, notice that
in the proof of Lemma 3.1 we may replace the character 1An by χτ0 (and the
partition (n) by τ), and we may conclude that χτ0 is directly H(An)-linked to
(this definition is found after formula (1)) all characters in its combinatorial
d-block.

Let τ be a self-associate partition of n. First of all, we may (and do) suppose
that τ is not a d-core partition.

We claim that χτ+ is directly H(An)-linked to every irreducible charac-
ter α different from χτ− of its combinatorial d-block. If α := ResSn

An
(χλ) is
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a stalk where λ is some non-associate partition of n, then 〈χτ+ , α〉H(An) =
〈χτ , χλ〉H(Sn) 6= 0. If α := χµ+ is a cherry where µ is some self-associate parti-
tion of n, then the calculations in Lemma 3.2 yield

〈α, χτ+〉H(An) =
1
2
〈χµ, χτ 〉H(An) =

1
2
〈χµ, χτ 〉H(Sn) 6= 0.

The same is true if α = χµ− . This proves the claim.
Similarly, it is also true that χτ− is directly H(An)-linked to every irreducible

character α different from χτ+ of its combinatorial d-block.
By the fact that τ is not a d-core partition and by the two claims above,

we conclude that there exists a third character α in the combinatorial d-block
of An containing χτ+ and χτ− which is directly H(An)-linked to both χτ+ and
χτ− .

The proof of Theorem 2.1 is now complete.
What if d > 1 is arbitrary, not necessarily odd? From the above, we know

that combinatorial d-blocks are unions of H(An)-linked blocks for An. Can we
say more?

We remark, that by part (e) of Example 1.8 of [7], it follows - in the last
case of the proof above - that χτ can only correspond to the trivial character of
Zd oSw if the d-quotient of τ is equal (as a necklace) to the d-quotient β(n) where
one entry is (w) and all other entries are the empty partitions. This happens
only if w = 0 or if w = 1. If w = 1 is the case, then γτ is self-associate and
hence d has to be odd. So in the case when τ is a self-associate partition of n,
there is no need to assume in the beginning that d is odd.

By Theorem 6.1.46 of [4], we see that the two notions coincide when d = 2
and when H is the set of all positive even integers. However, if d > 2 is even,
then combinatorial d-blocks and H(An)-linked blocks do not coincide for the
groups Ad, Ad+1, or Ad+3 if H is the set of all positive integers divisible by d.
Indeed, in the first two cases, there is no H(An)-linked block containing at least
two irreducible characters, however the combinatorial d-block containing the
trivial character contains at least two irreducible characters. The group Ad+3

contains precisely one conjugacy class of non H-regular elements. If the value of
an irreducible character of Ad+3 is 0 on this conjugacy class, then that character
forms a separate H(An)-linked block of its own. All irreducible characters not
vanishing on that conjugacy class form one H(An)-linked block. So there is
at most one H(An)-linked block of Ad+3 containing more than one irreducible
character. On the other hand, there are precisely two combinatorial d-blocks
having more than one irreducible character. (One associated to the d-core (3)
and the other to the d-core (2, 1).)
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[8] Maróti, A. A proof for a generalized Nakayama conjecture, submitted.

[9] Morris, A. O.; Olsson, J. B. On p-quotients for spin characters. J. Algebra
119 (1988), no. 1, 51–82.

[10] Puttaswamaiah, B. M. Group representations; alternating and generalized
symmetric groups. Ph.D. thesis, University of Toronto 1963.

[11] Robinson, G. de B. Representation theory of the symmetric group. Math-
ematical expositions. Toronto: University of Toronto Press, VIII, (1961).

Department of Mathematics, University of Southern California, Los Angeles,
CA 90089-1113, U.S.A.

E-mail address: maroti@usc.edu

8


