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Abstract. We prove that every finite simple group G of Lie type satisfies

G = UU−UU− where U is a unipotent Sylow subgroup of G and U− is its
opposite. We also characterize the cases for which G = UU−U . These results

are best possible in terms of the number of conjugates of U in the above

factorizations.

1. Introduction

Let G be a finite simple group of Lie type with defining characteristic p. We
address the problem of finding the minimal number m such that G is equal to the
product of m Sylow p-subgroups (unipotent Sylows) of G. This question has already
been considered by several authors before us. Liebeck and Pyber had proved [8,
Theorem D] that G is a product of no more than 25 Sylow p-subgroups. In [1]
it was claimed that the 25 can be replaced by 5, however no complete proof has
been published. A sketch of a proof of this claim for exceptional Lie type groups
can be found in a survey by Pyber and Szabó [10, Theorem 15]. Smolensky, Sury
and Vavilov [16, Theorem 1] considered the problem of unitriangular factorizations
of Chevalley groups over commutative rings of stable rank 1. When specializing
their results to elementary Chevalley groups over finite fields, they get that any
non-twisted finite simple group of Lie type is a product of four unipotent Sylows.
Later on, these results were extended by Smolensky in [11] to cover some twisted
Chevalley groups over finite fields or the field of complex numbers.

Here we give a unified self-contained treatment of the problem of finding minimal
length products of unipotent Sylows for all finite simple groups of Lie type, by
exploiting their split BN -pair structure. Our main result is the following theorem.

Theorem 1 Let G be a simple group of Lie type with defining characteristic p.

Let U be a Sylow p-subgroup of G and U− its opposite. Then G = (UU−)
2
, and

moreover, G = UU−U if and only if U is self-normalizing. In both cases these
factorizations are of minimal length.

After the completion of our work, and in parallel to its publication in preprint
form [6], Smolensky made available a preprint in which he shows that every Suzuki
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and Ree group is a product of four unipotent Sylow subgroups [12]. Thus, the
results in [14], [15], [16], [13], [11] and [12], combine to give a different proof of the
four Sylow claim of Theorem 1.

2. Preliminaries

The proof of Theorem 1 consists of two main steps: 1. A reduction to the case
where the Weyl group is Z2 (i.e., to groups G of rank 1), which is carried within
the framework of groups with a split BN -pair, and some extra assumptions to be
detailed in the sequel. 2. A derivation of a general necessary and sufficient criterion
for rank 1 groups satisfying an extended set of split BN -pair assumptions, that is
then verified to hold for the special case of groups with a σ-setup, using a result
from [5].

We would like to point out that although the proof of [16, Theorem 1] also uses
a “reduction to rank 1 argument” which is due to Tavgen′ [14], we do not know if
there is a more direct relation between this approach and ours.

We treat simple groups of Lie type in the setting of groups with a σ-setup as in
[7, Definition 2.2.1]. For this fix a prime p, a simple algebraic group K defined over
Fp and a Steinberg endomorphism σ of K, and consider K - the subgroup of CK(σ)
generated by all p-elements. All groups K obtained in this way are said to have
a σ-setup given by the pair (K,σ). The set of all groups possessing a σ-setup for
the prime p is denoted by Lie(p). Set Lie : = ∪Lie(p) where the union is over all
primes p. We have surjective homomorphisms Ku → K → Ka with central kernels
[7, Theorem 2.2.6], where the groups Ku, Ka ∈ Lie(p) are called the universal and
the adjoint version of K, respectively. Any finite simple group of Lie type can be
realized as the adjoint version Ka of some K ∈ Lie [7, Definition 2.2.8] (note that
the Tits group 2F4(2)′ is not in Lie). For G ∈ Lie we have [3, Chapter 2]:

(i) G is a group with a split BN -pair (B,N) and a finite Weyl group W , where
B = H n U ,

(ii) U is a Sylow p-subgroup of G,
(iii) G is generated by its p-elements.

3. Reduction to the case |W | = 2 for groups with a split BN-pair

For our purposes we will call a triple (H,U,N) a split BN -pair for a group G
if (H n U,N) satisfies the axioms of split BN -pairs in [3, §2.5] with respect to H
and U . We assume that the Weyl group W = N/H of the BN -pair is finite (this
certainly holds for finite groups), and so the longest element w0 = n0H of W exists
and defines subgroups U− := Uno and B− := Bno . For w ∈ W we sometimes use
ẇ to denote an arbitrary choice of an element of N such that w = ẇH. We use the
notation U−, Xi, Ui, X−i, Uw from [3, §2.5] for the BN -pair (B,N) and we label
with the upper-script ‘−’ the corresponding subgroups for (B−, N), i.e. when U
and B are replaced by U− and B− everywhere: (U−)−, X−i , U−i , X−−i, U

−
w . Note

that (U−)− = U , X−i = X−i, X
−
−i = Xi and that Xi = Us and X−i = U−s for some

simple reflection s. In addition, define Ls := 〈Us, U−s , H〉 and Gs := 〈Us, U−s 〉 for
any simple reflection s ∈W . Furthermore, we assume that the root subgroups Xα,
α ∈ Φ (Φ is the set of roots associated with W ) satisfy the commutator relations
[3, p.61].
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Lemma 3.1. Let G be a group with a split BN -pair (H,U,N). Suppose that G
is a product of k = 2m + ε ≥ 3 conjugates of U where m ≥ 1 is an integer and
ε ∈ {0, 1}. Then G = (UU−)

m
Uε.

Proof. By assumption, G = Ux1Ux2 · · ·Uxk for some elements x1, . . . , xk ∈ G.
This is equivalent to G = Ug1U · · ·Ugk−1U for some g1, . . . , gk−1 ∈ G [2, §2 Lem-
ma 1]. By the Bruhat expression of elements (w.r.t. H and U) we may assume
that gi ∈ N for all i. Indeed, by [3, Theorem 2.5.14], for each 1 ≤ i ≤ k − 1,
we have gi = uihiẇiu

′
i where ui ∈ U , hi ∈ H, wi ∈ W and u′i ∈ Uw ≤ U . S-

ince the hi lie in NG(U) we have Ug1U · · ·Ugk−1U = Uh1ẇ1U · · ·Uhk−1ẇk−1U =

Uẇ1U · · ·Uẇk−1U(h
ẇ1···ẇk−1

1 · · ·hk−1). Thus we have proved that G is a product of
k conjugates of U if and only if G = Ug1U · · ·Ugk−1U for some g1, . . . , gk−1 ∈ N ,

which is equivalent to G = UUg
−1
1 Ug

−1
2 · · ·Ug

−1
k−1 (same gi - see proof of [2, §2

Lemma 1]).
Let n ∈ N be arbitrary, and let w = nH. By [3, Proposition 2.5.12] we have

U = Uw0wUw =
(
U ∩ Un0(n0n)

)
(U ∩ Un0n) ,

which gives

Un
−1

=
(
U ∩ Un0(n0n)

)n−1

(U ∩ Un0n)
n−1

=
(
Un
−1

∩ U
)(

Un
−1

∩ Un0

)
≤ UU−.

However, since U,Uw0w, Uw are all subgroups, U = Uw0wUw implies U = UwUw0w,

and hence we also get Un
−1 ≤ U−U . Therefore

G = UUg
−1
1 Ug

−1
2 · · ·Ug

−1
k−1 ⊆ U

(
UU−

) (
U−U

) (
UU−

) (
U−U

)
· · · = UU−UU−U · · · ,

where we have used U2 = U and (U−)
2

= U−, and the claim follows. �

In the following lemma we collect known results about minimal (non-abelian)
Levi subgroups which will be used in the sequel. First note that for a fixed split BN -
pair (H,U,N) we have the (split) BN -pair opposite to (B,N) given by (H,U−, N).
Clearly, for any g ∈ G, (Bg, Ng) is a split BN -pair, and if g ∈ N then Bg ∩N = H
so Bg = H n Ug. In particular this applies to g = n0.

Lemma 3.2. Let G have a split BN -pair (H,U,N). Let w0 be the longest element
of the Weyl group N/H and s = nsH a simple reflection with respect to (H,U,N).
Then

(a) U = UsUw0s = Uw0sUs and U− = U−s U
−
w0s = U−w0sU

−
s ,

(b) Ls ⊆ NG(Uw0s) ∩NG(U−w0s).

Proof. Any s = nsH in W is simple with respect to (H,U,N) if and only if it
is simple with respect to (H,U−, N). This follows from [3, Propositions 2.2.6
and 2.2.7] and the fact that the positive roots with respect to (H,U−, N) are the
negative roots with respect to (H,U,N). So I := {s1, ..., sl}, the set of simple
reflections for (H,U,N), is a set of simple reflections for both of these BN pairs
and s = si for some i ∈ {1, . . . , l}. Since Ls is the subgroup XiH ∪ XiHniXi =
〈Xi, X−i, H〉 [3, Corollary 2.6.2], X−i = X−i and X−−i = Xi, it follows that Ls =

〈X−i , X
−
−i, H〉 is a (minimal) standard Levi subgroup with respect to both (B,N)

and (B−, N).
Now (a) follows from [3, Proposition 2.5.11] and (b) is a particular case of [3,

Proposition 2.6.4]. �
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The following lemma is [16, Lemma 4].

Lemma 3.3. Let G be a group and let X ⊆ G satisfy X = X−1 and G = 〈X〉. If
∅ 6= Y ⊆ G is such that XY ⊆ Y then Y = G.

Proposition 3.4. Let G be a group with a split BN -pair such that the conjugates of

U in G generate G. Let k ≥ 2 be an integer and assume further that Gs = (UsU
−
s )

k

for every simple reflection s then G = (UU−)
k
.

Proof. Set X := {ug|u ∈ U, g ∈ G}. Then X = X−1 since U is a subgroup of G,

and G = 〈X〉 since G is the normal closure of U . Set Y := (UU−)
k
. By Lemma

3.3 our claim will follow if we show that XY ⊆ Y . Thus it suffices to show that
ugY ⊆ Y for any u ∈ U and g ∈ G. By [3, Theorem 2.5.14], for any g ∈ G
there exist u′ ∈ U , h ∈ H, w ∈ W and u′′ ∈ Uw ≤ U such that g = u′hnwu

′′.

Hence ug = uu
′hnwu

′′
=
(
uu
′h
)nwu

′′

. But uu
′h ∈ U , so it is sufficient to prove that

unvY ⊆ Y for all u, v ∈ U and n ∈ N . Now we claim that the last statement follows

if we prove that N normalizes Y . For suppose that N normalizes Y = (UU−)
k
.

We have:

unv
(
UU−

)k
= v−1n−1unv

(
UU−

)k
= v−1n−1un

(
UU−

)k
= v−1n−1u

(
UU−

)k
n = v−1n−1

(
UU−

)k
n

= v−1
(
UU−

)k
n−1n =

(
UU−

)k
.

Thus we prove that N normalizes (UU−)
k
. Since H clearly normalizes (UU−)

k
,

and N is generated by a set I of representatives for simple reflections together with

H, it is sufficient to prove that (UU−)
k

is normalized by all n in I. Fix a simple
reflection s = nH. By Lemma 3.2.(a), UU− = UsUw0sU

−
w0sU

−
s . By Lemma 3.2.(b),

each of Us and U−s commutes with both Uw0s and U−w0s. This, and the assumption

Gs = (UsU
−
s )

k
, give:(
UU−

)k
=
(
UsU

−
s

)k (
Uw0sU

−
w0s

)k
= Gs

(
Uw0sU

−
w0s

)k
.

Since Ls = GsH we can assume n ∈ Gs and hence nGs = Gsn. Since n ∈ Gs ≤
Ls, Lemma 3.2.(b) gives n

(
Uw0sU

−
w0s

)k
=
(
Uw0sU

−
w0s

)k
n. Combining everything

together yields:

n
(
UU−

)k
= nGs

(
Uw0sU

−
w0s

)k
= Gsn

(
Uw0sU

−
w0s

)k
= Gs

(
Uw0sU

−
w0s

)k
n =

(
UU−

)k
n,

and the proof that N normalizes (UU−)
k

is concluded. �

Remark 3.5. If G is generated by U and U− then the use of Lemma 3.3 in the

above proof can be avoided as follows. If N normalizes (UU−)
k

then (UU−)
k

is

stable under conjugation by n0H and so it is equal to (U−U)
k
. It is easy to see

that if this equality holds then G = (UU−)k.

4. The case |W | = 2

In this section we prove (Lemma 4.2) a criterion for a group G of rank 1 to

satisfy G = (UU−)
2
.
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Lemma 4.1. Let G be a group with a split BN -pair (H,U,N) and a Weyl group
W = {1, s1}. Set (U−)

∗
:= U−−{1}. Fix an arbitrary n1 ∈ N such that s1 = n1H,

and set

H̃ :=
{
h ∈ H|∃u− ∈

(
U−
)∗
, Uu−U = Un1hU

}
.

Then:

(a) U (U−)
∗
U = Un1H̃U .

(b) UU−UU− = UU−
(
{1} ∪ n1H̃n1H̃

)
∪ Un1H̃.

Proof. (a) Since W = {1, s1} we have

G = B ∪Bn1B = UH ∪ UHn1HU = UH ∪ Un1HU ,

where the union on the right is disjoint. By [3, Proposition 2.5.5(i)], B ∩ U− = 1.
Hence (U−)

∗ ⊆ Un1HU . Thus, for every u− ∈ (U−)
∗

there exists h ∈ H such that

Uu−U = Un1hU . But, by definition, h ∈ H̃, so this proves U (U−)
∗
U ⊆ Un1H̃U .

The reverse inclusion is also clear and hence U (U−)
∗
U = Un1H̃U .

(b) Note that since each element of H normalizes both U and U−, the set H̃
commutes with U . Also, w0 = s1 and hence n1Un

−1
1 = U− and n1U

−n−11 = U .
Given this and the relation in (a) we get:

UU−UU− = U
(
U−
)∗
UU− ∪ UU− = Un1H̃UU

− ∪ UU−

= UU−n1H̃U
− ∪ UU− = UU−Un1H̃ ∪ UU−

= U
(
U−
)∗
Un1H̃ ∪ Un1H̃ ∪ UU−

= Un1H̃Un1H̃ ∪ Un1H̃ ∪ UU−

= UU−n1H̃n1H̃ ∪ Un1H̃ ∪ UU−

= UU−
(
{1} ∪ n1H̃n1H̃

)
∪ Un1H̃. �

Lemma 4.2. Let G be a group with a split BN -pair (H,U,N) and Weyl group W =
{1, s1}. Using the notation of Lemma 4.1, the following conditions are equivalent:

(a) (U−)
∗ ∩ Un1hU 6= ∅ for all h ∈ H. Equivalently H = H̃.

(b) U (U−)
∗
U = Un1HU .

(c) G = (UU−)
2
.

Proof. By definition H̃ ⊆ H and by Lemma 4.1 (a), U (U−)
∗
U = Un1H̃U . Hence

(a) and (b) are equivalent. To finish the proof observe that

G = B ∪Bn1B = (B ∪Bn1B)n1 = Bn1 ∪Bn1Bn1 = Bn1 ∪BB−

= Un1H ∪ UU−H,

where the union on the r.h.s. is disjoint. Since the sets H̃ and n1H̃n1 are both

contained in H, we have Un1H̃ ⊆ Un1H, and UU−
(
{1} ∪ n1H̃n1H̃

)
⊆ UU−H.

Since G = Un1H ∪ UU−H is a disjoint union, Lemma 4.1 (b) implies that G =

(UU−)
2

if and only if Un1H̃ = Un1H and UU−
(
{1} ∪ n1H̃n1H̃

)
= UU−H. Thus,

by Lemma 4.1 (a), we get that (c) implies (b), and it is also clear that (a) implies
(c). �
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5. Groups with a σ-setup

Any K ∈ Lie has a split BN -pair (H,U,N), where U is a Sylow p-subgroup for
the defining characteristic p, descending from the algebraic group K [7, Theorem
2.3.4]. More precisely, if T ⊆ B is a pair of σ-stable maximal torus and Borel
subgroup of K then B = B ∩K and N = NK(T )∩K form a BN -pair for K and if

U is the unipotent radical of K, i.e., B = T nU , then B = HnU where H = T ∩K
and U = U ∩K is a Sylow p-subgroup of K (as in [7, Section 3.4]).

Remark 5.1. 1.) Some groups in Lie have split BN -pairs for different primes p,
e.g. A1(4) = A1(5) [7, Theorem 2.2.10].

2.) For any simple reflection s, if K ∈ Lie(p) then Ks ∈ Lie(p), and if K is
universal then so is Ks by [7, Theorem 2.6.5.(f)].

3.) Note also that if K is universal [7, Theorem 1.10.4] then, by a result of
Steinberg [9, Theorem 24.15], Ku = CK(σ) so B, N , H and U are the centralizers

of σ in B, N , T and U respectively.

Lemma 5.2. Let Ku ∈ Lie(p) be universal of rank 1 and let U be a Sylow p-

subgroup of Ku. Then Ku = (UU−)
2
.

Proof. First note that since Ku is universal, the corresponding algebraic group Ku

is universal (or simply connected in a different terminology [7, Definition 1.10.5]).
By Remark 5.1.3, Ku is a finite group of Lie type. The possible types for rank 1
are A1, 2A2, 2B2 and 2G2 (see for example [9, Table 23.1]) and the possibilities for
Ku can be read off from [7, Theorem 1.10.7].

Let p be the defining characteristic of Ku. By [3, §1.19], we need to consider, for
all powers q of p, the groups SL2(q), SU3(q2), 2B2(q2) if p = 2 and q2 = 22n−1 for
some n ≥ 0 and 2G2(q2) if p = 3 and q2 = 32n−1 for some n ≥ 0.

Now Ku satisfies the assumptions of Lemma 4.2, so, in particular we use the
notation of Lemma 4.2. For Ku = SL2(q) condition (a) of the lemma is easi-
ly verified - for the calculation see [4, §6.1]. For the remaining cases we use [5,
Proposition 4.1]. By this result, for every h ∈ H there exists y ∈ U such that

yn1 ∈ U−hU = n−11 Un1hU . Multiplying by n−11 on the left, and using
(
n−11

)2 ∈ H,

we obtain n−11 yn1 ∈ Un1
((
n−11

)2
h
)
U . Observe that 1 /∈ Un1

((
n−11

)2
h
)
U , and

hence n−11 yn1 ∈ (U−)
∗
. Moreover, as h varies over H, so does

(
n−11

)2
h. Hence,

condition (a) of Lemma 4.2 holds for this case, and the claim follows. �

Remark 5.3. Note that the groups denoted by SUn(q2) in [3, §1.19] are denoted
by SUn(q) in [9, Example 21.2]. Note also that for the groups 2B2(22n−1) the
universal and the adjoint versions are isomorphic [3, §1.19]. Moreover since the
center Z(Ku) lies in CZ(Ku)

(σ) [9, Corollary 24.13] it follows that Z(Ku) = 1

except if Ku = SL2(q) and q is odd (here Z(Ku) = Z2) or Ku = SU3(q2) and 3
divides q + 1 (here Z(Ku) = Z3). Excluding these exceptions, Ku is isomorphic to
its adjoint version, i.e. Ku

∼= Ka and condition (a) of Lemma 4.2 can be checked
with the calculation in [4, §13.7].

The next lemma is an analogue for the split BN -pair setting, of an observation
of [16].

Lemma 5.4. If G is a group with a split BN -pair (H,U), then H ∩UU−U = {1}.
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Proof. Let h ∈ H ∩ UU−U . Then h ∈ u1U
−u2, with u1, u2 ∈ U . Equivalent-

ly, u−11 hu−12 = h
(
u−11

)h
u−12 ∈ U−. But h

(
u−11

)h
u−12 ∈ B = HU , and hence

h
(
u−11

)h
u−12 ∈ B ∩ U− = {1} [3, Proposition 2.5.5(i)]. Using H ∩ U = {1} this

gives h = 1. �

Proof of Theorem 1. We will show that G = (UU−)2 for each G ∈ Lie. As
explained in Section 2, this set of groups includes all finite simple groups of Lie
type (and some more). Since G satisfies the assumptions of Proposition 3.4, we
can assume that G is in Lie of rank 1. Moreover, since there is a surjective homo-
morphism Ku → K which maps unipotent Sylows onto unipotent Sylows, we can
assume that G is universal. A universal G in Lie of rank 1 satisfies G = (UU−)2

by Lemma 5.2.
Suppose H 6= 1. By Lemma 5.4, H∩UU−U = {1} and so, employing Lemma 3.1,

G is a product of at least four unipotent Sylow subgroups, and hence G = (UU−)2

is of minimal length. Suppose now that H = 1. By [2, Theorem 5], G = BB−B,
where B = UH and B = U−H. Substituting H = 1 gives G = UU−U . Moreover,
H = 1 if and only if U is self-normalizing. �
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