d-WISE GENERATION OF SOME INFINITE GROUPS

ANDREA LUCCHINI, ATTILA MARÓTI, DARREN SEMMEN

ABSTRACT. What is the largest possible size of a subset of $SL(n, \mathbb{Z})$ from which every pair of elements will be a generating set? We prove a general result on generation probabilities in profinite groups that suggests the cardinality of a maximal such subset equals that of the analogous subset of $SL(n, \mathbb{Z}/2\mathbb{Z})$.

Let d be a positive integer greater than or equal to 2, and let G be a discrete or profinite group that can be topologically generated by d elements. If there is a largest integer m with the property that there exists an m-tuple of elements of G such that any d entries together (topologically) generate G then denote this number by $\mu_d(G)$, and otherwise set $\mu_d(G)$ equal to ∞ . If G cannot be generated by d elements then set $\mu_d(G) = 0$.

A motivation for studying $\mu_d(G)$ is given by Theorem 12.

Another reason why the function $\mu_d(G)$ may be interesting is that it can be computed explicitly for certain groups G. For if G is any of the groups S_n for sufficiently large odd n, or A_n for sufficiently large n congruent to 2 modulo 4, or GL(n,q), PGL(n,q), SL(n,q), PSL(n,q) for n at least 12 and not congruent to 2 modulo 4, or M_{11} , or M_{23} , then there is an explicit and exact formula for $\mu_d(G)$. (For d = 2 this formula is found in [2], [3] and [4] respectively where it is also shown that $\mu_2(G) = \sigma(G)$ where $\sigma(G)$ is defined in the first paragraph of Section 2. Now apply Lemma 2 to conclude that $\mu_d(G) = (d-1)\mu_2(G)$.)

If n is a positive integer greater than or equal to 2 then the group $SL(n,\mathbb{Z})$ is 2-generated. Hence, it makes sense to investigate $\mu_d(SL(n,\mathbb{Z}))$. Since $SL(n,\mathbb{Z}/2\mathbb{Z})$ is a factor group of $SL(n,\mathbb{Z})$, we certainly have $\mu_d(SL(n,\mathbb{Z})) \leq \mu_d(SL(n,\mathbb{Z}/2\mathbb{Z}))$. This, Lemma 2, Fact 8 taken from [3], and a bit of computation yields that $\nu_d(G)$ defined by

$$(b \cdot \mu_d(G))/((d-1)(\prod_{\substack{i=1 \ b \neq i}}^{n-1} (2^n - 2^i) + \lfloor N(b)/2 \rfloor))$$

is less than $1 + 2^{-n+1}$ for $G = SL(n, \mathbb{Z})$ and $n \ge 12$ where b is the smallest prime divisor of n, the integer N(b) is the number of subspaces of a fixed n-dimensional vector space over the field of 2 elements and $\lfloor x \rfloor$ denotes the largest integer less than or equal to x. Moreover, by Fact 8 taken from [3], if the answer to the following question is affirmative for $n \ge 12$, then we also have $\nu_d(SL(n,\mathbb{Z})) \ge 1$ for $n \ge 12$.

Question 1. Is it true that $\mu_d(SL(n,\mathbb{Z})) = \mu_d(SL(n,\mathbb{Z}/2\mathbb{Z}))$ for all integers n and d greater than or equal to 2?

Everything we do in this paper is intended to suggest that the answer should be "yes" rather than "no". We prove that for $n \ge 12$ the answer is "yes" if we replace $SL(n,\mathbb{Z})$ by its profinite completion, and so $1 \le \nu_d(\widehat{SL(n,\mathbb{Z})}) < 1 + 2^{-n+1}$

 $^{^0\}mathrm{Research}$ of the second author was partially supported by NSF Grant DMS 0140578 and by OTKA T049841.

Date: 1st of May 2008.

for $n \ge 12$ (with equality on the left-hand-side if (but not necessarily only if) n is not congruent to 2 modulo 4). Furthermore, when $n \ge 3$, the probability is positive that a random $\mu_d(\widehat{SL(n,\mathbb{Z})})$ -tuple will have the property that any d entries will together generate $\widehat{SL(n,\mathbb{Z})}$. Since $SL(n,\mathbb{Z})$ is dense in its profinite completion, this suggests that the answer to our question is "yes", though it hardly proves it.

1. Computing
$$\mu_d(SL(n,\mathbb{Z}))$$

For a group G let $\sigma(G)$ denote the minimal cardinality of a covering of G, i.e., a collection of proper subgroups whose union is G. If G cannot be expressed as a union of proper subgroups, i.e., G is cyclic, then set $\sigma(G) = \infty$.

Our first observation is what allows us to compute explicit formulae for μ_d .

Lemma 2. If the non-cyclic group G can be generated by 2 elements, then

$$(d-1)\mu_2(G) \le \mu_d(G) \le (d-1)\sigma(G).$$

Proof. The result is trivial if $\mu_2(G) = \infty$. So suppose that $\mu_2(G)$ is finite. Suppose g_1, \ldots, g_n pairwise generate G. Let x be a (dn - n)-tuple whose first (d - 1) entries equal g_1 , whose second (d - 1) entries equal g_2 , etc. Then, any d entries of x will generate G. The second inequality follows from the fact that, for any d entries of a tuple τ to generate G, if \mathcal{C} is a covering of G then at most d - 1 entries of τ can belong to any one element of \mathcal{C} .

The simplest case of the discrete general linear group is the only one we can handle.

Lemma 3. $\mu_d(SL(2,\mathbb{Z})) = 4(d-1) = \mu_d(SL(2,\mathbb{Z}/2\mathbb{Z})).$

Proof. Because $SL(2,\mathbb{Z})$ is pairwise generated by the four matrices,

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \text{ and } \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix},$$

we have $\mu_2(SL(2, \mathbb{Z}/2\mathbb{Z})) \geq \mu_2(SL(2, \mathbb{Z})) \geq 4$. On the other hand, the group $SL(2, \mathbb{Z}/2\mathbb{Z})$ is isomorphic to the symmetric group on three letters and so has a minimal covering consisting of the Sylow 3-subgroup and the three Sylow 2-subgroups. Now apply Lemma 2.

For $n \geq 3$ we will move to the profinite completion $SL(n,\mathbb{Z})$ of $SL(n,\mathbb{Z})$. Three of the easy observations can be stated for any profinite group.

Lemma 4. For any profinite group G that can be generated topologically by d elements,

 $\mu_d(G) = \min\{\mu_d(G/N) \mid N \text{ is an open normal subgroup of } G\}.$

Proof. Clearly, $\mu_d(G) \leq \mu_d(G/N)$ for each open normal subgroup N. Suppose that the positive integer ℓ is such that $\mu_d(G/N) \geq \ell$ for each open normal subgroup N. Let X_N be the subset of $(G/N)^\ell$ whose elements are exactly those tuples from which any choice of d entries will form a set that generates G/N. Let Y_N be the preimage of X_N in G^ℓ . Then each Y_N is closed and the intersection of any finite number of the Y_N is nonempty. Since G is compact, the intersection is non-empty and so $\mu_d(G) \geq \ell$. **Fact 5** (Neumann, [8]). If G is a group that is the union of finitely many proper subgroups then

 $\sigma(G) = \min\{\sigma(G/N) \mid N \text{ is a finite-index normal subgroup of } G\}.$

Lemma 6. For any group G we have both $\mu_d(G) = \mu_d(G/\Phi(G))$ and $\sigma(G) = \sigma(G/\Phi(G))$, where $\Phi(G)$ denotes the Frattini subgroup of G.

Note that $SL(n,\mathbb{Z})$ has the congruence subgroup property for $n \geq 3$ (cf. [1] or [7]). This is why we next consider groups of the form $SL(n,\mathbb{Z}/N\mathbb{Z})$, where N is a positive integer.

Let N be a positive integer with prime power decomposition $N = p_1^{r_1} \dots p_t^{r_t}$. Then, by the Chinese Remainder Theorem, $SL(n, \mathbb{Z}/N\mathbb{Z}) = \prod_{i=1}^t SL(n, \mathbb{Z}/p_i^{r_i}\mathbb{Z})$. We also have $\Phi(SL(n, \mathbb{Z}/N\mathbb{Z})) = \prod_{i=1}^t \Phi(SL(n, \mathbb{Z}/p_i^{r_i}\mathbb{Z}))$.

Lemma 7. Let n and N be positive integers with $n \ge 5$. Let α denote μ_d or σ . Then, $\alpha(SL(n, \mathbb{Z}/N\mathbb{Z})) = \min_{1 \le i \le t} \{\alpha(PSL(n, \mathbb{Z}/p_i\mathbb{Z}))\}$, where p_1, \ldots, p_t are the distinct prime divisors of N.

$$\begin{aligned} \alpha(SL(n,\mathbb{Z}/N\mathbb{Z})) &= \alpha(SL(n,\mathbb{Z}/N\mathbb{Z})/\Phi(SL(n,\mathbb{Z}/N\mathbb{Z}))) \\ &= \alpha\left(\prod_{i=1}^{t} SL(n,\mathbb{Z}/p_i^{r_i}\mathbb{Z})/\Phi(SL(n,\mathbb{Z}/p_i^{r_i}\mathbb{Z}))\right) \\ &= \alpha\left(\prod_{i=1}^{t} PSL(n,\mathbb{Z}/p_i\mathbb{Z})\right) \\ &= \min_{1 \le i \le t} \alpha(PSL(n,\mathbb{Z}/p_i\mathbb{Z})), \end{aligned}$$

where the first equality follows from Lemma 6, the third equality follows from a result of Weigel [9, Theorem B], and the last equality follows from the fact that the direct summands are non-isomorphic simple groups. \Box

Fact 8 (Theorems 1.1 and 1.2 of [3]). Let n be a positive integer greater than or equal to 12, let b be the smallest prime divisor of n, and let N(b) denote the number of subspaces of the n-dimensional vector space over $\mathbb{Z}/p\mathbb{Z}$ which have dimension not divisible by b. Then,

$$\mu_2(SL(n,\mathbb{Z}/p\mathbb{Z})) = \frac{1}{b} \prod_{\substack{i=1\\b \nmid i}}^{n-1} (p^n - p^i) + \lfloor N(b)/2 \rfloor,$$

where $\lfloor x \rfloor$ denotes the largest integer less than or equal to x. Also, $\sigma(SL(n, \mathbb{Z}/p\mathbb{Z}))$ equals $\mu_2(SL(n, \mathbb{Z}/p\mathbb{Z}))$ unless n is congruent to 2 modulo 4 and p equals 2, in which case

$$\sigma(SL(n, \mathbb{Z}/2\mathbb{Z})) = \frac{1}{2} \prod_{\substack{i=1\\2 \nmid i}}^{n-1} (2^n - 2^i) + \lfloor N(2)/2 \rfloor + \frac{2^{n/2}}{2^{n/2} + 1} \begin{bmatrix} n\\n/2 \end{bmatrix}_2,$$

where $\begin{bmatrix} n \\ n/2 \end{bmatrix}_2$ denotes the number of (n/2)-dimensional subspaces of an n-dimensional vector space over $\mathbb{Z}/2\mathbb{Z}$.

Theorem 9. Let n be a positive integer greater than or equal to 12. Then, the following three statements are true.

- (1) $\mu_d(SL(n,\mathbb{Z})) = \mu_d(SL(n,\mathbb{Z}/2\mathbb{Z})).$
- (2) $\sigma(SL(n,\mathbb{Z})) = \sigma(SL(n,\mathbb{Z})) = \sigma(SL(n,\mathbb{Z}/2\mathbb{Z})).$
- (3) If n is not congruent to $2 \mod 4$ then

$$\mu_d(SL(n,\mathbb{Z})) = (d-1)\mu_2(SL(n,\mathbb{Z}/2\mathbb{Z})).$$

Proof. Remember that $SL(n, \mathbb{Z})$ has the congruence subgroup property when $n \geq 3$.

Fact 5 and Lemma 7 show that $\sigma(SL(n,\mathbb{Z}))$ and $\sigma(SL(n,\mathbb{Z}))$ both equal the minimum of $\sigma(PSL(n,\mathbb{Z}/p\mathbb{Z}))$, where p ranges over all prime natural numbers. By Fact 8, this minimum occurs when p = 2.

By Lemmas 4 and 7, $\mu_d(SL(n,\mathbb{Z}))$ will equal the minimum of $\mu_d(PSL(n,\mathbb{Z}/p\mathbb{Z}))$, where p ranges over all prime natural numbers. By Lemma 2 and Fact 8, this minimum occurs when p = 2.

When n is not congruent to 2 modulo 4, Fact 8 states that $\sigma(SL(n, \mathbb{Z}/2\mathbb{Z}))$ equals $\mu_2(SL(n, \mathbb{Z}/2\mathbb{Z}))$ and the rest of the third statement then follows from Lemma 2. \Box

2. Generation probabilities in profinite groups

Next we will show that, whenever $n \geq 3$ and $d \geq 2$, the probability is positive that a randomly chosen $\mu_d(\widehat{SL(n,\mathbb{Z})})$ -tuple with entries from $\widehat{SL(n,\mathbb{Z})}$ has the property that any d entries will together generate $\widehat{SL(n,\mathbb{Z})}$. This will follow from Theorem 12 and the fact (see page 442 of [5]) that whenever $n \geq 3$ and $d \geq 2$, the probability is positive that a randomly chosen d-tuple with entries from $\widehat{SL(n,\mathbb{Z})}$ will generate $\widehat{SL(n,\mathbb{Z})}$. (On the other hand, $\widehat{SL(2,\mathbb{Z})}$ is virtually profree and the probability is zero that a randomly chosen pair of elements will generate the group.)

Let G be a profinite group that can be generated by d elements. Let ν be the normalized Haar measure of G; abusing notation, we also denote by ν the corresponding measure on direct products of copies of G. For any $k \geq d$, let $\Omega(G, k, d)$ be the set of k-tuples of elements of G with the property that every d distinct entries together generate G. Let $P(G, k, d) = \nu(\Omega(G, k, d))$ and P(G, d) =P(G, d, d).

For each open normal subgroup N of G, define P(G, N, d) as follows. Let π : $G^d \twoheadrightarrow (G/N)^d$ be the canonical quotient map. For any $x \in \Omega(G/N, d, d)$, let P(G, N, d) be $\nu(\pi^{-1}(x) \cap \Omega(G, d, d))/\nu(\pi^{-1}(x))$. By Lemma 10, this is independent of the choice of x, so P(G, d) = P(G/N, d)P(G, N, d).

Lemma 10. Let N be an open normal subgroup of G and let $\pi : G^d \to (G/N)^d$ be the canonical quotient map. For any elements x and y of $\Omega(G/N, d, d)$,

$$\nu(\pi^{-1}(x) \cap \Omega(G, d, d)) = \nu(\pi^{-1}(y) \cap \Omega(G, d, d)).$$

Proof. Once this is proven for all finite groups G, the result for profinite G will pass through the inverse limit.

For finite G, we proceed by induction on the cardinality of N. Let C be the collection of proper subgroups H of G that satisfy HN = G. By induction, for each $H \in \mathcal{C}$, $|H \cap N|^d P(H, H \cap N, d)$ equals the number of elements of $\pi^{-1}(x)$ with the property that every d distinct entries together generate H. Thus,

$$\frac{\nu(\pi^{-1}(x) \cap \Omega(G, d, d))}{\nu(\pi^{-1}(x))} = 1 - \sum_{H \in \mathcal{C}} \left(\frac{|H \cap N|^d}{|N|^d}\right) P(H, H \cap N, d),$$

and the latter value is independent of the choice of x.

The following technical lemma will make short work of the main theorem:

Lemma 11. If N is an open normal subgroup of G then

$$P(G,k,d) \ge P(G/N,k,d) \left(1 - (1 - P(G,N,d)) \binom{k}{d}\right).$$

Proof. Clearly, if $(g_1, \ldots, g_k) \in \Omega(G, k, d)$, then $(g_1N, \ldots, g_kN) \in \Omega(G/N, k, d)$. So, assume $(g_1N, \ldots, g_kN) \in \Omega(G/N, k, d)$ and let

$$\Lambda = \{ (n_1, \dots, n_k) \in N^k \mid (g_1 n_1, \dots, g_k n_k) \notin \Omega(G, k, d) \}.$$

To prove the lemma it suffices to show that $\nu(\Lambda)/\nu(N^k) \leq (1 - P(G, N, d))\binom{k}{d}$.

For each subset $I = \{i_1, \ldots, i_d\}$ of $\{1, \ldots, k\}$ with cardinality d, let Λ_I equal

$$\{(n_1,\ldots,n_k)\in N^k\mid \langle g_{i_1}n_{i_1},\ldots,g_{i_d}n_{i_d}\rangle\neq G\}.$$

The lemma then follows from the fact that $\nu(\Lambda_I)/\nu(N^k) = 1 - P(G, N, d)$ and $\Lambda = \bigcup_I \Lambda_I$.

Theorem 12. For a profinite group G and a positive integer d, the following two conditions are equivalent.

(1) P(G, d) > 0.(2) $P(G, \mu_d(G), d) > 0.$

The condition that P(G, d) > 0 for some positive integer d is equivalent to G having polynomial maximal subgroup growth. This is a theorem of Mann [5] and Mann and Shalev [6].

Proof. Projection from $\Omega(G, \mu_d(G), d)$ to $\Omega(G, d, d)$ yields the implication of (1) from (2). We only show that (1) implies (2).

We want to prove that if P(G, d) > 0 and $\Omega(G, k, d) \neq \emptyset$ then P(G, k, d) > 0.

Because G can be topologically generated by a finite number of elements, it possesses a countable descending chain of open normal subgroups, N_i , that has trivial intersection. Since $\lim_{i\to\infty} P(G/N_i, d) = P(G, d) > 0$ and, for all i, $P(G, d) = P(G/N_i, d)P(G, N_i, d)$, we see that $\lim_{i\to\infty} P(G, N_i, d) = 1$. Therefore there exists a natural number i such that $(1 - P(G, N_i, d)) \binom{k}{d} < 1$. Setting N equal to N_i in Lemma 11, we conclude that P(G, k, d) > 0.

References

- Bass, H.; Lazard, M.; Serre J.-P. Sous-groupes d'indice fini dans SL(n, Z). Bull. Amer. Math. Soc. 70 (1964), 385–392.
- [2] Blackburn, S. Sets of permutations that generate the symmetric group pairwise. J. Combin. Theory Ser. A 113 (2006), no. 7, 1572-1581.
- [3] Britnell, J. R.; Evseev, A; Guralnick, R. M.; Holmes, P. E.; Maróti, A. Sets of elements that pairwise generate a linear group. J. Combin. Theory Ser. A. 115 (2008), no. 3, 442-465.
- [4] Holmes, P. E.; Maróti, A. Pairwise generation of sporadic simple groups. Submitted for publication.
- [5] Mann, A. Positively finitely generated groups. Forum Math. 8 (1996), 429–459.
- [6] Mann, A.; Shalev, A. Simple groups, maximal subgroups and probabilistic aspects of profinite groups. Israel J. Math. 96 (1996), 449–468.
- [7] Mennicke, J. L. Finite factor groups of the unimodular group. Ann. of Math. (2) 81 (1965), 31–37.
- [8] Neumann, B. H. Groups covered by permutable subsets. J. London Math. Soc. 29, (1954), 236-248.
- [9] Weigel, T. On the profinite completion of arithmetic groups of split type. Lois d'algèbres et variétés algébriques (Editor: M. Goze), Collection Travaux en cours. 50, (1996), 79–101.

Andrea Lucchini, Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova, Italy.

 $E\text{-}mail\ address:\ lucchini@math.unipd.it$

Attila Maróti. Current address: The Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, CA 94720-5070, USA. Previous address: Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA.

 $E\text{-}mail\ addresses:\ attilam@msri.org\ and\ maroti@usc.edu$

Darren Semmen, Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA. E-mail address: semmen@usc.edu

6