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Abstract. What is the largest possible size of a subset of SL(n,Z) from which
every pair of elements will be a generating set? We prove a general result on
generation probabilities in profinite groups that suggests the cardinality of a
maximal such subset equals that of the analogous subset of SL(n,Z/2Z).

Let d be a positive integer greater than or equal to 2, and let G be a discrete
or profinite group that can be topologically generated by d elements. If there is
a largest integer m with the property that there exists an m-tuple of elements
of G such that any d entries together (topologically) generate G then denote this
number by µd(G), and otherwise set µd(G) equal to ∞. If G cannot be generated
by d elements then set µd(G) = 0.

A motivation for studying µd(G) is given by Theorem 12.

Another reason why the function µd(G) may be interesting is that it can be
computed explicitly for certain groups G. For if G is any of the groups Sn for
sufficiently large odd n, or An for sufficiently large n congruent to 2 modulo 4, or
GL(n, q), PGL(n, q), SL(n, q), PSL(n, q) for n at least 12 and not congruent to 2
modulo 4, or M11, or M23, then there is an explicit and exact formula for µd(G).
(For d = 2 this formula is found in [2], [3] and [4] respectively where it is also shown
that µ2(G) = σ(G) where σ(G) is defined in the first paragraph of Section 2. Now
apply Lemma 2 to conclude that µd(G) = (d− 1)µ2(G).)

If n is a positive integer greater than or equal to 2 then the group SL(n,Z) is
2-generated. Hence, it makes sense to investigate µd(SL(n,Z)). Since SL(n,Z/2Z)
is a factor group of SL(n,Z), we certainly have µd(SL(n,Z)) ≤ µd(SL(n,Z/2Z)).
This, Lemma 2, Fact 8 taken from [3], and a bit of computation yields that νd(G)
defined by

(b · µd(G))/((d− 1)(
n−1∏

i=1
b-i

(2n − 2i) + bN(b)/2c))

is less than 1 + 2−n+1 for G = SL(n,Z) and n ≥ 12 where b is the smallest prime
divisor of n, the integer N(b) is the number of subspaces of a fixed n-dimensional
vector space over the field of 2 elements and bxc denotes the largest integer less than
or equal to x. Moreover, by Fact 8 taken from [3], if the answer to the following
question is affirmative for n ≥ 12, then we also have νd(SL(n,Z)) ≥ 1 for n ≥ 12.

Question 1. Is it true that µd(SL(n,Z)) = µd(SL(n,Z/2Z)) for all integers n and
d greater than or equal to 2?

Everything we do in this paper is intended to suggest that the answer should
be “yes” rather than “no”. We prove that for n ≥ 12 the answer is “yes” if we
replace SL(n,Z) by its profinite completion, and so 1 ≤ νd( ̂SL(n,Z)) < 1 + 2−n+1
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for n ≥ 12 (with equality on the left-hand-side if (but not necessarily only if) n is
not congruent to 2 modulo 4). Furthermore, when n ≥ 3, the probability is positive
that a random µd( ̂SL(n,Z))-tuple will have the property that any d entries will
together generate ̂SL(n,Z). Since SL(n,Z) is dense in its profinite completion, this
suggests that the answer to our question is “yes”, though it hardly proves it.

1. Computing µd( ̂SL(n,Z))

For a group G let σ(G) denote the minimal cardinality of a covering of G, i.e.,
a collection of proper subgroups whose union is G. If G cannot be expressed as a
union of proper subgroups, i.e., G is cyclic, then set σ(G) = ∞.

Our first observation is what allows us to compute explicit formulae for µd.

Lemma 2. If the non-cyclic group G can be generated by 2 elements, then

(d− 1)µ2(G) ≤ µd(G) ≤ (d− 1)σ(G).

Proof. The result is trivial if µ2(G) = ∞. So suppose that µ2(G) is finite. Suppose
g1, . . . , gn pairwise generate G. Let x be a (dn−n)-tuple whose first (d− 1) entries
equal g1, whose second (d − 1) entries equal g2, etc. Then, any d entries of x will
generate G. The second inequality follows from the fact that, for any d entries of
a tuple τ to generate G, if C is a covering of G then at most d− 1 entries of τ can
belong to any one element of C. ¤

The simplest case of the discrete general linear group is the only one we can
handle.

Lemma 3. µd(SL(2,Z)) = 4(d− 1) = µd(SL(2,Z/2Z)).

Proof. Because SL(2,Z) is pairwise generated by the four matrices,
(

1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
−1 0

)
, and

(
0 1
−1 −1

)
,

we have µ2(SL(2,Z/2Z)) ≥ µ2(SL(2,Z)) ≥ 4. On the other hand, the group
SL(2,Z/2Z) is isomorphic to the symmetric group on three letters and so has a min-
imal covering consisting of the Sylow 3-subgroup and the three Sylow 2-subgroups.
Now apply Lemma 2. ¤

For n ≥ 3 we will move to the profinite completion ̂SL(n,Z) of SL(n,Z). Three
of the easy observations can be stated for any profinite group.

Lemma 4. For any profinite group G that can be generated topologically by d ele-
ments,

µd(G) = min{µd(G/N) | N is an open normal subgroup of G}.

Proof. Clearly, µd(G) ≤ µd(G/N) for each open normal subgroup N . Suppose that
the positive integer ` is such that µd(G/N) ≥ ` for each open normal subgroup
N . Let XN be the subset of (G/N)` whose elements are exactly those tuples from
which any choice of d entries will form a set that generates G/N . Let YN be the
preimage of XN in G`. Then each YN is closed and the intersection of any finite
number of the YN is nonempty. Since G is compact, the intersection is non-empty
and so µd(G) ≥ `. ¤
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Fact 5 (Neumann, [8]). If G is a group that is the union of finitely many proper
subgroups then

σ(G) = min{σ(G/N) | N is a finite-index normal subgroup of G}.
Lemma 6. For any group G we have both µd(G) = µd(G/Φ(G)) and σ(G) =
σ(G/Φ(G)), where Φ(G) denotes the Frattini subgroup of G.

Note that SL(n,Z) has the congruence subgroup property for n ≥ 3 (cf. [1] or
[7]). This is why we next consider groups of the form SL(n,Z/NZ), where N is a
positive integer.

Let N be a positive integer with prime power decomposition N = pr1
1 · . . . · prt

t .
Then, by the Chinese Remainder Theorem, SL(n,Z/NZ) =

∏t
i=1 SL(n,Z/pri

i Z).
We also have Φ(SL(n,Z/NZ)) =

∏t
i=1 Φ(SL(n,Z/pri

i Z)).

Lemma 7. Let n and N be positive integers with n ≥ 5. Let α denote µd or σ.
Then, α(SL(n,Z/NZ)) = min1≤i≤t{α(PSL(n,Z/piZ))}, where p1, . . . , pt are the
distinct prime divisors of N .

Proof. We have

α(SL(n,Z/NZ)) = α(SL(n,Z/NZ)/Φ(SL(n,Z/NZ)))
= α

(∏t
i=1 SL(n,Z/pri

i Z)/Φ(SL(n,Z/pri
i Z))

)

= α
(∏t

i=1 PSL(n,Z/piZ)
)

= min1≤i≤t α(PSL(n,Z/piZ)),

where the first equality follows from Lemma 6, the third equality follows from a
result of Weigel [9, Theorem B], and the last equality follows from the fact that the
direct summands are non-isomorphic simple groups. ¤
Fact 8 (Theorems 1.1 and 1.2 of [3]). Let n be a positive integer greater than or
equal to 12, let b be the smallest prime divisor of n, and let N(b) denote the number
of subspaces of the n-dimensional vector space over Z/pZ which have dimension not
divisible by b. Then,

µ2(SL(n,Z/pZ)) =
1
b

n−1∏

i=1
b-i

(pn − pi) + bN(b)/2c,

where bxc denotes the largest integer less than or equal to x. Also, σ(SL(n,Z/pZ))
equals µ2(SL(n,Z/pZ)) unless n is congruent to 2 modulo 4 and p equals 2, in which
case

σ(SL(n,Z/2Z)) =
1
2

n−1∏

i=1
2-i

(2n − 2i) + bN(2)/2c+
2n/2

2n/2 + 1

[
n

n/2

]

2

,

where
[

n

n/2

]

2

denotes the number of (n/2)-dimensional subspaces of an n-dimen-

sional vector space over Z/2Z.

Theorem 9. Let n be a positive integer greater than or equal to 12. Then, the
following three statements are true.

(1) µd( ̂SL(n,Z)) = µd(SL(n,Z/2Z)).
(2) σ(SL(n,Z)) = σ( ̂SL(n,Z)) = σ(SL(n,Z/2Z)).
(3) If n is not congruent to 2 modulo 4 then

µd( ̂SL(n,Z)) = (d− 1)µ2(SL(n,Z/2Z)).
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Proof. Remember that SL(n,Z) has the congruence subgroup property when n ≥ 3.

Fact 5 and Lemma 7 show that σ(SL(n,Z)) and σ( ̂SL(n,Z)) both equal the
minimum of σ(PSL(n,Z/pZ)), where p ranges over all prime natural numbers. By
Fact 8, this minimum occurs when p = 2.

By Lemmas 4 and 7, µd( ̂SL(n,Z)) will equal the minimum of µd(PSL(n,Z/pZ)),
where p ranges over all prime natural numbers. By Lemma 2 and Fact 8, this
minimum occurs when p = 2.

When n is not congruent to 2 modulo 4, Fact 8 states that σ(SL(n,Z/2Z)) equals
µ2(SL(n,Z/2Z)) and the rest of the third statement then follows from Lemma 2. ¤

2. Generation probabilities in profinite groups

Next we will show that, whenever n ≥ 3 and d ≥ 2, the probability is positive that
a randomly chosen µd( ̂SL(n,Z))-tuple with entries from ̂SL(n,Z) has the property
that any d entries will together generate ̂SL(n,Z). This will follow from Theorem 12
and the fact (see page 442 of [5]) that whenever n ≥ 3 and d ≥ 2, the probability
is positive that a randomly chosen d-tuple with entries from ̂SL(n,Z) will generate
̂SL(n,Z). (On the other hand, ̂SL(2,Z) is virtually profree and the probability is

zero that a randomly chosen pair of elements will generate the group.)

Let G be a profinite group that can be generated by d elements. Let ν be
the normalized Haar measure of G; abusing notation, we also denote by ν the
corresponding measure on direct products of copies of G. For any k ≥ d, let
Ω(G, k, d) be the set of k-tuples of elements of G with the property that every d
distinct entries together generate G. Let P (G, k, d) = ν(Ω(G, k, d)) and P (G, d) =
P (G, d, d).

For each open normal subgroup N of G, define P (G,N, d) as follows. Let π :
Gd ³ (G/N)d be the canonical quotient map. For any x ∈ Ω(G/N, d, d), let
P (G,N, d) be ν(π−1(x)∩Ω(G, d, d))/ν(π−1(x)). By Lemma 10, this is independent
of the choice of x, so P (G, d) = P (G/N, d)P (G,N, d).

Lemma 10. Let N be an open normal subgroup of G and let π : Gd ³ (G/N)d be
the canonical quotient map. For any elements x and y of Ω(G/N, d, d),

ν(π−1(x) ∩ Ω(G, d, d)) = ν(π−1(y) ∩ Ω(G, d, d)).

Proof. Once this is proven for all finite groups G, the result for profinite G will pass
through the inverse limit.

For finite G, we proceed by induction on the cardinality of N . Let C be the
collection of proper subgroups H of G that satisfy HN = G. By induction, for each
H ∈ C, |H ∩N |dP (H,H ∩N, d) equals the number of elements of π−1(x) with the
property that every d distinct entries together generate H. Thus,

ν(π−1(x) ∩ Ω(G, d, d))
ν(π−1(x))

= 1−
∑

H∈C

( |H ∩N |d
|N |d

)
P (H, H ∩N, d),

and the latter value is independent of the choice of x. ¤

The following technical lemma will make short work of the main theorem:

Lemma 11. If N is an open normal subgroup of G then

P (G, k, d) ≥ P (G/N, k, d)
(

1− (1− P (G,N, d))
(

k

d

))
.
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Proof. Clearly, if (g1, . . . , gk) ∈ Ω(G, k, d), then (g1N, . . . , gkN) ∈ Ω(G/N, k, d). So,
assume (g1N, . . . , gkN) ∈ Ω(G/N, k, d) and let

Λ = {(n1, . . . , nk) ∈ Nk | (g1n1, . . . , gknk) 6∈ Ω(G, k, d)}.
To prove the lemma it suffices to show that ν(Λ)/ν(Nk) ≤ (1− P (G,N, d))

(
k
d

)
.

For each subset I = {i1, . . . , id} of {1, . . . , k} with cardinality d, let ΛI equal

{(n1, . . . , nk) ∈ Nk | 〈gi1ni1 , . . . , gid
nid
〉 6= G}.

The lemma then follows from the fact that ν(ΛI)/ν(Nk) = 1 − P (G,N, d) and
Λ =

⋃
I ΛI . ¤

Theorem 12. For a profinite group G and a positive integer d, the following two
conditions are equivalent.

(1) P (G, d) > 0.
(2) P (G,µd(G), d) > 0.

The condition that P (G, d) > 0 for some positive integer d is equivalent to G
having polynomial maximal subgroup growth. This is a theorem of Mann [5] and
Mann and Shalev [6].

Proof. Projection from Ω(G, µd(G), d) to Ω(G, d, d) yields the implication of (1)
from (2). We only show that (1) implies (2).

We want to prove that if P (G, d) > 0 and Ω(G, k, d) 6= ∅ then P (G, k, d) > 0.

Because G can be topologically generated by a finite number of elements, it pos-
sesses a countable descending chain of open normal subgroups, Ni, that has trivial
intersection. Since limi→∞ P (G/Ni, d) = P (G, d) > 0 and, for all i, P (G, d) =
P (G/Ni, d)P (G,Ni, d), we see that limi→∞ P (G,Ni, d) = 1. Therefore there exists
a natural number i such that (1 − P (G,Ni, d))

(
k
d

)
< 1. Setting N equal to Ni in

Lemma 11, we conclude that P (G, k, d) > 0. ¤
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