d-WISE GENERATION OF SOME INFINITE GROUPS

ANDREA LUCCHINI, ATTILA MARÓTI, DARREN SEMMEN

Abstract

What is the largest possible size of a subset of $S L(n, \mathbb{Z})$ from which every pair of elements will be a generating set? We prove a general result on generation probabilities in profinite groups that suggests the cardinality of a maximal such subset equals that of the analogous subset of $S L(n, \mathbb{Z} / 2 \mathbb{Z})$.

Let d be a positive integer greater than or equal to 2 , and let G be a discrete or profinite group that can be topologically generated by d elements. If there is a largest integer m with the property that there exists an m-tuple of elements of G such that any d entries together (topologically) generate G then denote this number by $\mu_{d}(G)$, and otherwise set $\mu_{d}(G)$ equal to ∞. If G cannot be generated by d elements then set $\mu_{d}(G)=0$.

A motivation for studying $\mu_{d}(G)$ is given by Theorem 12.
Another reason why the function $\mu_{d}(G)$ may be interesting is that it can be computed explicitly for certain groups G. For if G is any of the groups S_{n} for sufficiently large odd n, or A_{n} for sufficiently large n congruent to 2 modulo 4 , or $G L(n, q), P G L(n, q), S L(n, q), P S L(n, q)$ for n at least 12 and not congruent to 2 modulo 4 , or M_{11}, or M_{23}, then there is an explicit and exact formula for $\mu_{d}(G)$. (For $d=2$ this formula is found in [2], [3] and [4] respectively where it is also shown that $\mu_{2}(G)=\sigma(G)$ where $\sigma(G)$ is defined in the first paragraph of Section 2. Now apply Lemma 2 to conclude that $\mu_{d}(G)=(d-1) \mu_{2}(G)$.)

If n is a positive integer greater than or equal to 2 then the group $S L(n, \mathbb{Z})$ is 2-generated. Hence, it makes sense to investigate $\mu_{d}(S L(n, \mathbb{Z}))$. Since $S L(n, \mathbb{Z} / 2 \mathbb{Z})$ is a factor group of $S L(n, \mathbb{Z})$, we certainly have $\mu_{d}(S L(n, \mathbb{Z})) \leq \mu_{d}(S L(n, \mathbb{Z} / 2 \mathbb{Z}))$. This, Lemma 2, Fact 8 taken from [3], and a bit of computation yields that $\nu_{d}(G)$ defined by

$$
\left(b \cdot \mu_{d}(G)\right) /\left((d-1)\left(\prod_{\substack{i=1 \\ b \nmid i}}^{n-1}\left(2^{n}-2^{i}\right)+\lfloor N(b) / 2\rfloor\right)\right)
$$

is less than $1+2^{-n+1}$ for $G=S L(n, \mathbb{Z})$ and $n \geq 12$ where b is the smallest prime divisor of n, the integer $N(b)$ is the number of subspaces of a fixed n-dimensional vector space over the field of 2 elements and $\lfloor x\rfloor$ denotes the largest integer less than or equal to x. Moreover, by Fact 8 taken from [3], if the answer to the following question is affirmative for $n \geq 12$, then we also have $\nu_{d}(S L(n, \mathbb{Z})) \geq 1$ for $n \geq 12$.
Question 1. Is it true that $\mu_{d}(S L(n, \mathbb{Z}))=\mu_{d}(S L(n, \mathbb{Z} / 2 \mathbb{Z}))$ for all integers n and d greater than or equal to 2 ?

Everything we do in this paper is intended to suggest that the answer should be "yes" rather than "no". We prove that for $n \geq 12$ the answer is "yes" if we replace $S L(n, \mathbb{Z})$ by its profinite completion, and so $\left.1 \leq \nu_{d}(S \widehat{L(n, \mathbb{Z}})\right)<1+2^{-n+1}$

[^0]for $n \geq 12$ (with equality on the left-hand-side if (but not necessarily only if) n is not congruent to 2 modulo 4). Furthermore, when $n \geq 3$, the probability is positive that a random $\left.\mu_{d}(S \widehat{L(n, \mathbb{Z}})\right)$-tuple will have the property that any d entries will together generate $S \widehat{L(n, \mathbb{Z})}$. Since $S L(n, \mathbb{Z})$ is dense in its profinite completion, this suggests that the answer to our question is "yes", though it hardly proves it.

1. Computing $\mu_{d}(\widehat{S L(n, \mathbb{Z})})$

For a group G let $\sigma(G)$ denote the minimal cardinality of a covering of G, i.e., a collection of proper subgroups whose union is G. If G cannot be expressed as a union of proper subgroups, i.e., G is cyclic, then set $\sigma(G)=\infty$.

Our first observation is what allows us to compute explicit formulae for μ_{d}.
Lemma 2. If the non-cyclic group G can be generated by 2 elements, then

$$
(d-1) \mu_{2}(G) \leq \mu_{d}(G) \leq(d-1) \sigma(G)
$$

Proof. The result is trivial if $\mu_{2}(G)=\infty$. So suppose that $\mu_{2}(G)$ is finite. Suppose g_{1}, \ldots, g_{n} pairwise generate G. Let x be a $(d n-n)$-tuple whose first $(d-1)$ entries equal g_{1}, whose second $(d-1)$ entries equal g_{2}, etc. Then, any d entries of x will generate G. The second inequality follows from the fact that, for any d entries of a tuple τ to generate G, if \mathcal{C} is a covering of G then at most $d-1$ entries of τ can belong to any one element of \mathcal{C}.

The simplest case of the discrete general linear group is the only one we can handle.

Lemma 3. $\mu_{d}(S L(2, \mathbb{Z}))=4(d-1)=\mu_{d}(S L(2, \mathbb{Z} / 2 \mathbb{Z}))$.
Proof. Because $S L(2, \mathbb{Z})$ is pairwise generated by the four matrices,

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \text { and }\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right)
$$

we have $\mu_{2}(S L(2, \mathbb{Z} / 2 \mathbb{Z})) \geq \mu_{2}(S L(2, \mathbb{Z})) \geq 4$. On the other hand, the group $S L(2, \mathbb{Z} / 2 \mathbb{Z})$ is isomorphic to the symmetric group on three letters and so has a minimal covering consisting of the Sylow 3 -subgroup and the three Sylow 2-subgroups. Now apply Lemma 2.

For $n \geq 3$ we will move to the profinite completion $\widehat{S(n, \mathbb{Z})}$ of $S L(n, \mathbb{Z})$. Three of the easy observations can be stated for any profinite group.

Lemma 4. For any profinite group G that can be generated topologically by d elements,

$$
\mu_{d}(G)=\min \left\{\mu_{d}(G / N) \mid N \text { is an open normal subgroup of } G\right\}
$$

Proof. Clearly, $\mu_{d}(G) \leq \mu_{d}(G / N)$ for each open normal subgroup N. Suppose that the positive integer ℓ is such that $\mu_{d}(G / N) \geq \ell$ for each open normal subgroup N. Let X_{N} be the subset of $(G / N)^{\ell}$ whose elements are exactly those tuples from which any choice of d entries will form a set that generates G / N. Let Y_{N} be the preimage of X_{N} in G^{ℓ}. Then each Y_{N} is closed and the intersection of any finite number of the Y_{N} is nonempty. Since G is compact, the intersection is non-empty and so $\mu_{d}(G) \geq \ell$.

Fact 5 (Neumann, [8]). If G is a group that is the union of finitely many proper subgroups then

$$
\sigma(G)=\min \{\sigma(G / N) \mid N \text { is a finite-index normal subgroup of } G\} .
$$

Lemma 6. For any group G we have both $\mu_{d}(G)=\mu_{d}(G / \Phi(G))$ and $\sigma(G)=$ $\sigma(G / \Phi(G))$, where $\Phi(G)$ denotes the Frattini subgroup of G.

Note that $S L(n, \mathbb{Z})$ has the congruence subgroup property for $n \geq 3$ (cf. [1] or [7]). This is why we next consider groups of the form $S L(n, \mathbb{Z} / N \mathbb{Z})$, where N is a positive integer.

Let N be a positive integer with prime power decomposition $N=p_{1}^{r_{1}} \cdot \ldots \cdot p_{t}^{r_{t}}$. Then, by the Chinese Remainder Theorem, $S L(n, \mathbb{Z} / N \mathbb{Z})=\prod_{i=1}^{t} S L\left(n, \mathbb{Z} / p_{i}^{r_{i}} \mathbb{Z}\right)$. We also have $\Phi(S L(n, \mathbb{Z} / N \mathbb{Z}))=\prod_{i=1}^{t} \Phi\left(S L\left(n, \mathbb{Z} / p_{i}^{r_{i}} \mathbb{Z}\right)\right)$.

Lemma 7. Let n and N be positive integers with $n \geq 5$. Let α denote μ_{d} or σ. Then, $\alpha(S L(n, \mathbb{Z} / N \mathbb{Z}))=\min _{1 \leq i \leq t}\left\{\alpha\left(P S L\left(n, \mathbb{Z} / p_{i} \mathbb{Z}\right)\right)\right\}$, where p_{1}, \ldots, p_{t} are the distinct prime divisors of N.

Proof. We have

$$
\begin{aligned}
\alpha(S L(n, \mathbb{Z} / N \mathbb{Z})) & =\alpha(S L(n, \mathbb{Z} / N \mathbb{Z}) / \Phi(S L(n, \mathbb{Z} / N \mathbb{Z}))) \\
& =\alpha\left(\prod_{i=1}^{t} S L\left(n, \mathbb{Z} / p_{i}^{r_{i}} \mathbb{Z}\right) / \Phi\left(S L\left(n, \mathbb{Z} / p_{i}^{r_{i}} \mathbb{Z}\right)\right)\right) \\
& =\alpha\left(\prod_{i=1}^{t} P S L\left(n, \mathbb{Z} / p_{i} \mathbb{Z}\right)\right) \\
& =\min _{1 \leq i \leq t} \alpha\left(P S L\left(n, \mathbb{Z} / p_{i} \mathbb{Z}\right)\right),
\end{aligned}
$$

where the first equality follows from Lemma 6 , the third equality follows from a result of Weigel [9, Theorem B], and the last equality follows from the fact that the direct summands are non-isomorphic simple groups.

Fact 8 (Theorems 1.1 and 1.2 of [3]). Let n be a positive integer greater than or equal to 12, let b be the smallest prime divisor of n, and let $N(b)$ denote the number of subspaces of the n-dimensional vector space over $\mathbb{Z} / p \mathbb{Z}$ which have dimension not divisible by b. Then,

$$
\mu_{2}(S L(n, \mathbb{Z} / p \mathbb{Z}))=\frac{1}{b} \prod_{\substack{i=1 \\ b \nmid i}}^{n-1}\left(p^{n}-p^{i}\right)+\lfloor N(b) / 2\rfloor,
$$

where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x. Also, $\sigma(S L(n, \mathbb{Z} / p \mathbb{Z}))$ equals $\mu_{2}(S L(n, \mathbb{Z} / p \mathbb{Z}))$ unless n is congruent to 2 modulo 4 and p equals 2 , in which case

$$
\sigma(S L(n, \mathbb{Z} / 2 \mathbb{Z}))=\frac{1}{2} \prod_{\substack{i=1 \\
2 \nmid i}}^{n-1}\left(2^{n}-2^{i}\right)+\lfloor N(2) / 2\rfloor+\frac{2^{n / 2}}{2^{n / 2}+1}\left[\begin{array}{c}
n \\
n / 2
\end{array}\right]_{2},
$$

where $\left[\begin{array}{c}n \\ n / 2\end{array}\right]_{2}$ denotes the number of ($n / 2$)-dimensional subspaces of an n-dimensional vector space over $\mathbb{Z} / 2 \mathbb{Z}$.

Theorem 9. Let n be a positive integer greater than or equal to 12 . Then, the following three statements are true.
(1) $\left.\mu_{d}(S \widehat{L(n, \mathbb{Z}})\right)=\mu_{d}(S L(n, \mathbb{Z} / 2 \mathbb{Z}))$.
(2) $\sigma(S L(n, \mathbb{Z}))=\sigma(S \widehat{L(n, \mathbb{Z}}))=\sigma(S L(n, \mathbb{Z} / 2 \mathbb{Z}))$.
(3) If n is not congruent to 2 modulo 4 then

$$
\left.\mu_{d}(\widehat{S(n, \mathbb{Z}})\right)=(d-1) \mu_{2}(S L(n, \mathbb{Z} / 2 \mathbb{Z}))
$$

Proof. Remember that $S L(n, \mathbb{Z})$ has the congruence subgroup property when $n \geq 3$.
Fact 5 and Lemma 7 show that $\sigma(S L(n, \mathbb{Z}))$ and $\sigma(\widehat{S(n, \mathbb{Z})})$ both equal the minimum of $\sigma(P S L(n, \mathbb{Z} / p \mathbb{Z})$), where p ranges over all prime natural numbers. By Fact 8 , this minimum occurs when $p=2$.

By Lemmas 4 and $\left.7, \mu_{d}(\widehat{L(n, \mathbb{Z}})\right)$ will equal the minimum of $\mu_{d}(P S L(n, \mathbb{Z} / p \mathbb{Z}))$, where p ranges over all prime natural numbers. By Lemma 2 and Fact 8, this minimum occurs when $p=2$.

When n is not congruent to 2 modulo 4 , Fact 8 states that $\sigma(S L(n, \mathbb{Z} / 2 \mathbb{Z}))$ equals $\mu_{2}(S L(n, \mathbb{Z} / 2 \mathbb{Z}))$ and the rest of the third statement then follows from Lemma 2.

2. Generation probabilities in profinite groups

Next we will show that, whenever $n \geq 3$ and $d \geq 2$, the probability is positive that a randomly chosen $\mu_{d}(S \widehat{L(n, \mathbb{Z}})$)-tuple with entries from $S \widehat{L(n, \mathbb{Z})}$ has the property that any d entries will together generate $S \widehat{L(n, \mathbb{Z})}$. This will follow from Theorem 12 and the fact (see page 442 of [5]) that whenever $n \geq 3$ and $d \geq 2$, the probability is positive that a randomly chosen d-tuple with entries from $S \widehat{L(n, \mathbb{Z})}$ will generate $S \widehat{L(n, \mathbb{Z})}$. (On the other hand, $S \widehat{L(2, \mathbb{Z})}$ is virtually profree and the probability is zero that a randomly chosen pair of elements will generate the group.)

Let G be a profinite group that can be generated by d elements. Let ν be the normalized Haar measure of G; abusing notation, we also denote by ν the corresponding measure on direct products of copies of G. For any $k \geq d$, let $\Omega(G, k, d)$ be the set of k-tuples of elements of G with the property that every d distinct entries together generate G. Let $P(G, k, d)=\nu(\Omega(G, k, d))$ and $P(G, d)=$ $P(G, d, d)$.

For each open normal subgroup N of G, define $P(G, N, d)$ as follows. Let π : $G^{d} \rightarrow(G / N)^{d}$ be the canonical quotient map. For any $x \in \Omega(G / N, d, d)$, let $P(G, N, d)$ be $\nu\left(\pi^{-1}(x) \cap \Omega(G, d, d)\right) / \nu\left(\pi^{-1}(x)\right)$. By Lemma 10 , this is independent of the choice of x, so $P(G, d)=P(G / N, d) P(G, N, d)$.

Lemma 10. Let N be an open normal subgroup of G and let $\pi: G^{d} \rightarrow(G / N)^{d}$ be the canonical quotient map. For any elements x and y of $\Omega(G / N, d, d)$,

$$
\nu\left(\pi^{-1}(x) \cap \Omega(G, d, d)\right)=\nu\left(\pi^{-1}(y) \cap \Omega(G, d, d)\right) .
$$

Proof. Once this is proven for all finite groups G, the result for profinite G will pass through the inverse limit.

For finite G, we proceed by induction on the cardinality of N. Let \mathcal{C} be the collection of proper subgroups H of G that satisfy $H N=G$. By induction, for each $H \in \mathcal{C},|H \cap N|^{d} P(H, H \cap N, d)$ equals the number of elements of $\pi^{-1}(x)$ with the property that every d distinct entries together generate H. Thus,

$$
\frac{\nu\left(\pi^{-1}(x) \cap \Omega(G, d, d)\right)}{\nu\left(\pi^{-1}(x)\right)}=1-\sum_{H \in \mathcal{C}}\left(\frac{|H \cap N|^{d}}{|N|^{d}}\right) P(H, H \cap N, d),
$$

and the latter value is independent of the choice of x.
The following technical lemma will make short work of the main theorem:
Lemma 11. If N is an open normal subgroup of G then

$$
P(G, k, d) \geq P(G / N, k, d)\left(1-(1-P(G, N, d))\binom{k}{d}\right) .
$$

Proof. Clearly, if $\left(g_{1}, \ldots, g_{k}\right) \in \Omega(G, k, d)$, then $\left(g_{1} N, \ldots, g_{k} N\right) \in \Omega(G / N, k, d)$. So, assume $\left(g_{1} N, \ldots, g_{k} N\right) \in \Omega(G / N, k, d)$ and let

$$
\Lambda=\left\{\left(n_{1}, \ldots, n_{k}\right) \in N^{k} \mid\left(g_{1} n_{1}, \ldots, g_{k} n_{k}\right) \notin \Omega(G, k, d)\right\} .
$$

To prove the lemma it suffices to show that $\nu(\Lambda) / \nu\left(N^{k}\right) \leq(1-P(G, N, d))\binom{k}{d}$.
For each subset $I=\left\{i_{1}, \ldots, i_{d}\right\}$ of $\{1, \ldots, k\}$ with cardinality d, let Λ_{I} equal

$$
\left\{\left(n_{1}, \ldots, n_{k}\right) \in N^{k} \mid\left\langle g_{i_{1}} n_{i_{1}}, \ldots, g_{i_{d}} n_{i_{d}}\right\rangle \neq G\right\} .
$$

The lemma then follows from the fact that $\nu\left(\Lambda_{I}\right) / \nu\left(N^{k}\right)=1-P(G, N, d)$ and $\Lambda=\bigcup_{I} \Lambda_{I}$.

Theorem 12. For a profinite group G and a positive integer d, the following two conditions are equivalent.
(1) $P(G, d)>0$.
(2) $P\left(G, \mu_{d}(G), d\right)>0$.

The condition that $P(G, d)>0$ for some positive integer d is equivalent to G having polynomial maximal subgroup growth. This is a theorem of Mann [5] and Mann and Shalev [6].

Proof. Projection from $\Omega\left(G, \mu_{d}(G), d\right)$ to $\Omega(G, d, d)$ yields the implication of (1) from (2). We only show that (1) implies (2).

We want to prove that if $P(G, d)>0$ and $\Omega(G, k, d) \neq \emptyset$ then $P(G, k, d)>0$.
Because G can be topologically generated by a finite number of elements, it possesses a countable descending chain of open normal subgroups, N_{i}, that has trivial intersection. Since $\lim _{i \rightarrow \infty} P\left(G / N_{i}, d\right)=P(G, d)>0$ and, for all $i, P(G, d)=$ $P\left(G / N_{i}, d\right) P\left(G, N_{i}, d\right)$, we see that $\lim _{i \rightarrow \infty} P\left(G, N_{i}, d\right)=1$. Therefore there exists a natural number i such that $\left(1-P\left(G, N_{i}, d\right)\right)\binom{k}{d}<1$. Setting N equal to N_{i} in Lemma 11, we conclude that $P(G, k, d)>0$.

References

[1] Bass, H.; Lazard, M.; Serre J.-P. Sous-groupes d'indice fini dans $S L(n, \mathbb{Z})$. Bull. Amer. Math. Soc. 70 (1964), 385-392.
[2] Blackburn, S. Sets of permutations that generate the symmetric group pairwise. J. Combin. Theory Ser. A 113 (2006), no. 7, 1572-1581.
[3] Britnell, J. R.; Evseev, A; Guralnick, R. M.; Holmes, P. E.; Maróti, A. Sets of elements that pairwise generate a linear group. J. Combin. Theory Ser. A. 115 (2008), no. 3, 442-465.
[4] Holmes, P. E.; Maróti, A. Pairwise generation of sporadic simple groups. Submitted for publication.
[5] Mann, A. Positively finitely generated groups. Forum Math. 8 (1996), 429-459.
[6] Mann, A.; Shalev, A. Simple groups, maximal subgroups and probabilistic aspects of profinite groups. Israel J. Math. 96 (1996), 449-468.
[7] Mennicke, J. L. Finite factor groups of the unimodular group. Ann. of Math. (2) 81 (1965), 31-37.
[8] Neumann, B. H. Groups covered by permutable subsets. J. London Math. Soc. 29, (1954), 236-248.
[9] Weigel, T. On the profinite completion of arithmetic groups of split type. Lois d'algèbres et variétés algébriques (Editor: M. Goze), Collection Travaux en cours. 50, (1996), 79-101.

Andrea Lucchini, Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova, Italy.
E-mail address: lucchini@math.unipd.it
Attila Maróti. Current address: The Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, CA 94720-5070, USA. Previous address: Department
of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA.
E-mail addresses: attilam@msri.org and maroti@usc.edu
Darren Semmen, Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA.
E-mail address: semmen@usc.edu

[^0]: ${ }^{0}$ Research of the second author was partially supported by NSF Grant DMS 0140578 and by OTKA T049841.

 Date: 1st of May 2008.

