February 24, 2011 13:23 WSPC - Proceedings Trim Size: 9in x 6in  Karl24feb

Lifting (2, k)-generators of linear groups

A. MAROTI

MTA Alfréd Rényi Institute of Mathematics
Redltanoda utca 13-15, H-1053, Budapest, Hungary
e-mail: maroti@renyi.hu

C. TAMBURINI BELLANI

Dipartimento di Matematica e Fisica
Universita Cattolica
Via Musei 41, Brescia, Italy
e-mail: c.tamburini@dmf.unicatt.it

Dedicated to Karl Gruenberg

Let ¢ = kh, where k, h are orders of arbitrary elements of SLa(g) subject
to k>3, h>3and (k,h) = 1. For ¢q even allow also k = 4 or h = 2. We
describe (2, £)-generating pairs of PSL,(q), for all n > 5 and ¢ > 2.
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1. Introduction

A (2,0)-generating pair of a group G consists of two elements, of re-
spective orders 2 and ¢, which generate G. Clearly ¢ > 3, unless G is
abelian or dihedral. The authors of [2] study the problem of finding uniform
(2, k)-generating pairs for the finite classical groups PSL4(q), PSp,(¢) and
PSU4(¢?), with k > 3 the order of some element of SLy(q), including k = 4
when ¢ is even. In Theorem 3.1 of this paper we lift their (2, k)-generating
pairs of PSL4(q) to (2, ¢)-generating pairs of PSL,,(q), for all n > 5. Here
¢ = kh, where k,h are orders of arbitrary elements of SLa(g) subject to
k>3, h >3 and (k,h) = 1. For ¢ even we allow also k = 4 or h = 2. Most
likely the same construction, with £ = k and o in (2) of order h dividing k,
produces (2, k)-generating pairs of PSL,,(¢), n > 5. This would be the best
possible generalization. But the proof becomes much more intricate.
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Let F, be the Galois field of order ¢ = p“, where p is a prime, and
7 be the set of its non-zero elements. For k as above, except in the case

(k,q) = (4,2%), let v = <(1) _sl> be a rational canonical form of SLy(q)

having order k, and consider the matrices:

0010 100 0
0001 010 r N

T = 4000 ,d==+1, y= 000 -1 , m€F,. (1)
0d00 001 s

Clearly x2 = dI. Moreover y has the same order k of v, except when s = 0
and ¢ = 2%, in which case y has order 4. When necessary, we identify z,y
with their projective images, of respective orders 2 and k.

Lemma 1.1. If ¢ > 3, for fized s € F; and d = *1, there exists r € F
such that Fy = T, [s,72] and r # £vd (s — 2).

The easy proof can also be deduced from Lemma 5.3 of [2], where the
following result is proved (Theorem 11.1):

Theorem 1.1. Assume that x,y are defined as in (1) with s € Fy, r € F
such that Fy = F, [s,72] and r # £v/d (s — 2). Then

In particular the groups SLy4(q), ¢ > 3, and PSLy(q), ¢ > 2, are (2,k)-
generated for all k > 3 which correspond to the order of some element of
SLa(q), including k = 4 when q is even.

For the reader’s convenience, we note that the assumptions on k are equiv-
alent to the following: k > 3, k divides ¢—1 or k divides ¢+1 or k € {p, 2p}.

2. Definition of the (2, £)-generating pairs

Let ¢ = kh, where k,h are orders of arbitrary elements of SLo(gq) subject
to the conditions k& > 3, h > 3 and (k,h) = 1. For ¢ even allow also k = 4
or h =2. For all n > 5, we lift any (2, k)-generating pair (z,y) of PSL4(q)
to a (2, ¢)-generating pair (X,Y) of PSL,(¢) via the following blocks:

0= ((1)_751> T = (gé),)\:il. (2)

Here t € I, is such that ¢ has order h.
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3
Denoting by eq, ..., e4 the canonical basis of Fé, let y3 be the restriction
of y in (1) to (eq, €3, €4), namely:
10 r
ys:=100-1], rely. (3)
01 s
For n =2m+3 > 5, in (2) take A = 1 and define
+1
o
1
X = Y = 4
7 i (4)
1
T Y3

where x is as in (1) with d = 1, m; and o are as in (2), and the sign =+ is
chosen so that det X = 1. In (4) the number of blocks 71 is m — 1 and the
number of blocks o is m.

For n = 2m +4 > 6, in (2) take A = 1 if n = 0 (mod 4), A = —1 if
n =2 (mod 4), and define:

DY

X = ) Y = (5)

Ys

where z is as in (1) with d = A, o and 7 are as in (2). In (5) the number
of blocks 7 and o is m.
Note that X? is scalar and Y has order ¢ = kh.

3. The result

For each m such that 1 < m < n, we consider the subgroup S;,(q) of SL,(q)

defined as follows:
In—m
Sml@) := ( SLm(Q)> '

For the reader’s convenience, we give a direct proof of a fact which is
well known, namely:

Lemma 3.1. Let o and w_1 be defined as in (2). For all n > 4, set

Pp— 0- Pp— 7r_1
s (7, ) m= (71, )
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Then SL,,(¢) = (Sn—1(q), %) = (Sn—1(q),II).

Proof. Consider the elementary transvection 7 := [ 4+ Es 3 and let g €
{3, 1I1}. Then 7{ = I + E; 3. Using the transitivity of SL;,,_1(¢) on the non-
zero vectors of Fg’l, it is easy to see that the conjugates of I + E 3 under
Sn—1(g) include all root subgroups I +FoE; ;,2 < j < n.

In a similar way, consider the elementary transvection m := I + E3 .
Then 75 = I + E51 (mod S,—1(q)). As above, the conjugates of I + Es;
under S,,_i(g) include all root subgroups I + F,FE;1, 2 < j < n. Since
SL,(q) is generated by the elementary root sugroups I +F,E; ;, i # j, (see,
e.g. [1]) our claim follows. |

Theorem 3.1. Assume n > 5. Define X, Y respectively as in (4) or (5)
according to n odd or even. If r € F; is such that F, = F) [s,7%] and

r#+Vd (s —2), then:
(X,Y) = SLn(q).

In particular the group SLy,(q), ¢ > 3 and n #Z 2 (mod 4) if q is odd, is
(2,0)-generated. The group PSL,(q), q¢ > 2, is (2,£)-generated.

Proof. The subspace U = (ey,...,e,—_3), generated by the first n — 3
vectors of the canonical basis, is Y-invariant. So we define:

Y| I,
Y;L—S::( IU[3>7 }/3:< 3y3>.

By the assumption that £ and h are coprime, we have:
(Y) = (Yn_3) x (Y3).
It follows that (X,Y") contains the subgroup H := (X,Y3) < Cy x SL4(q).
Using Theorem 1.1 and the fact that the group SL4(q) is perfect, we get
that H = S4(q) < (X,Y’). By induction we may assume that
S’n—l(q) < <X7 Y> .

Noting that X7'Y € S,,_5(q) if n is odd, and that either IIX € S, _1(q) or
71X € S,—1(q) if n is even, we deduce ¥ € (X,Y) if nis odd, Il € (X,Y)
if n is even. Our claim follows from Lemma 3.1. O
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