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Università Cattolica

Via Musei 41, Brescia, Italy

e-mail: c.tamburini@dmf.unicatt.it

Dedicated to Karl Gruenberg

Let ` = kh, where k, h are orders of arbitrary elements of SL2(q) subject
to k ≥ 3, h ≥ 3 and (k, h) = 1. For q even allow also k = 4 or h = 2. We
describe (2, `)-generating pairs of PSLn(q), for all n ≥ 5 and q > 2.

Keywords: (2,`)-generating pairs; Finite simple groups.

1. Introduction

A (2, `)-generating pair of a group G consists of two elements, of re-
spective orders 2 and `, which generate G. Clearly ` ≥ 3, unless G is
abelian or dihedral. The authors of [2] study the problem of finding uniform
(2, k)-generating pairs for the finite classical groups PSL4(q), PSp4(q) and
PSU4(q2), with k ≥ 3 the order of some element of SL2(q), including k = 4
when q is even. In Theorem 3.1 of this paper we lift their (2, k)-generating
pairs of PSL4(q) to (2, `)-generating pairs of PSLn(q), for all n ≥ 5. Here
` = kh, where k, h are orders of arbitrary elements of SL2(q) subject to
k ≥ 3, h ≥ 3 and (k, h) = 1. For q even we allow also k = 4 or h = 2. Most
likely the same construction, with ` = k and σ in (2) of order h dividing k,
produces (2, k)-generating pairs of PSLn(q), n ≥ 5. This would be the best
possible generalization. But the proof becomes much more intricate.
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Let Fq be the Galois field of order q = pa, where p is a prime, and
F∗q be the set of its non-zero elements. For k as above, except in the case

(k, q) = (4, 2a), let γ =
(

0 −1
1 s

)
be a rational canonical form of SL2(q)

having order k, and consider the matrices:

x =


0 0 1 0
0 0 0 1
d 0 0 0
0 d 0 0

 , d = ±1, y =


1 0 0 0
0 1 0 r

0 0 0 −1
0 0 1 s

 , r ∈ F∗q . (1)

Clearly x2 = dI. Moreover y has the same order k of γ, except when s = 0
and q = 2a, in which case y has order 4. When necessary, we identify x, y

with their projective images, of respective orders 2 and k.

Lemma 1.1. If q > 3, for fixed s ∈ Fq and d = ±1, there exists r ∈ F∗q
such that Fq = Fp

[
s, r2

]
and r 6= ±

√
d (s− 2).

The easy proof can also be deduced from Lemma 5.3 of [2], where the
following result is proved (Theorem 11.1):

Theorem 1.1. Assume that x, y are defined as in (1) with s ∈ Fq, r ∈ F∗q
such that Fq = Fp

[
s, r2

]
and r 6= ±

√
d (s− 2). Then

〈x, y〉 = SL4(q).

In particular the groups SL4(q), q > 3, and PSL4(q), q > 2, are (2, k)-
generated for all k ≥ 3 which correspond to the order of some element of
SL2(q), including k = 4 when q is even.

For the reader’s convenience, we note that the assumptions on k are equiv-
alent to the following: k ≥ 3, k divides q−1 or k divides q+1 or k ∈ {p, 2p}.

2. Definition of the (2, `)-generating pairs

Let ` = kh, where k, h are orders of arbitrary elements of SL2(q) subject
to the conditions k ≥ 3, h ≥ 3 and (k, h) = 1. For q even allow also k = 4
or h = 2. For all n ≥ 5, we lift any (2, k)-generating pair (x, y) of PSL4(q)
to a (2, `)-generating pair (X,Y ) of PSLn(q) via the following blocks:

σ :=
(

0 −1
1 t

)
, πλ :=

(
0 1
λ 0

)
, λ = ±1. (2)

Here t ∈ Fq is such that σ has order h.
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Denoting by e1, . . . , e4 the canonical basis of F4
q, let y3 be the restriction

of y in (1) to 〈e2, e3, e4〉, namely:

y3 :=

 1 0 r

0 0 −1
0 1 s

 , r ∈ F∗q . (3)

For n = 2m+ 3 ≥ 5, in (2) take λ = 1 and define

X :=


±1

π1

. . .

π1

x

 , Y :=


σ

. . .

σ

y3

 (4)

where x is as in (1) with d = 1, π1 and σ are as in (2), and the sign ± is
chosen so that det X = 1. In (4) the number of blocks π1 is m− 1 and the
number of blocks σ is m.

For n = 2m + 4 ≥ 6, in (2) take λ = 1 if n ≡ 0 (mod 4), λ = −1 if
n ≡ 2 (mod 4), and define:

X :=


πλ

. . .

πλ
x

 , Y :=


1
σ

. . .

σ

y3

 (5)

where x is as in (1) with d = λ, σ and πλ are as in (2). In (5) the number
of blocks πλ and σ is m.

Note that X2 is scalar and Y has order ` = kh.

3. The result

For each m such that 1 ≤ m ≤ n, we consider the subgroup Sm(q) of SLn(q)
defined as follows:

Sm(q) :=
(
In−m

SLm(q)

)
.

For the reader’s convenience, we give a direct proof of a fact which is
well known, namely:

Lemma 3.1. Let σ and π−1 be defined as in (2). For all n ≥ 4, set

Σ :=
(
σ

In−2

)
, Π :=

(
π−1

In−2

)
.
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Then SLn(q) = 〈Sn−1(q),Σ〉 = 〈Sn−1(q),Π〉.

Proof. Consider the elementary transvection τ1 := I + E2,3 and let g ∈
{Σ,Π}. Then τg1 = I +E1,3. Using the transitivity of SLn−1(q) on the non-
zero vectors of Fn−1

q , it is easy to see that the conjugates of I +E1,3 under
Sn−1(q) include all root subgroups I + FqE1,j , 2 ≤ j ≤ n.

In a similar way, consider the elementary transvection τ2 := I + E3,2.
Then τg2 = I + E3,1 (mod Sn−1(q)). As above, the conjugates of I + E3,1

under Sn−1(q) include all root subgroups I + FqEj,1, 2 ≤ j ≤ n. Since
SLn(q) is generated by the elementary root sugroups I+FqEi,j , i 6= j, (see,
e.g. [1]) our claim follows.

Theorem 3.1. Assume n ≥ 5. Define X,Y respectively as in (4) or (5)
according to n odd or even. If r ∈ F∗q is such that Fq = Fp

[
s, r2

]
and

r 6= ±
√
d (s− 2), then:

〈X,Y 〉 = SLn(q).

In particular the group SLn(q), q > 3 and n 6≡ 2 (mod 4) if q is odd, is
(2, `)-generated. The group PSLn(q), q > 2, is (2, `)-generated.

Proof. The subspace U = 〈e1, . . . , en−3〉, generated by the first n − 3
vectors of the canonical basis, is Y -invariant. So we define:

Yn−3 :=
(
Y|U

I3

)
, Y3 :=

(
In−3

y3

)
.

By the assumption that k and h are coprime, we have:

〈Y 〉 = 〈Yn−3〉 × 〈Y3〉 .

It follows that 〈X,Y 〉 contains the subgroup H := 〈X,Y3〉 ≤ C2 × SL4(q).
Using Theorem 1.1 and the fact that the group SL4(q) is perfect, we get
that H ′ = S4(q) ≤ 〈X,Y 〉. By induction we may assume that

Sn−1(q) ≤ 〈X,Y 〉 .

Noting that Σ−1Y ∈ Sn−2(q) if n is odd, and that either ΠX ∈ Sn−1(q) or
Π−1X ∈ Sn−1(q) if n is even, we deduce Σ ∈ 〈X,Y 〉 if n is odd, Π ∈ 〈X,Y 〉
if n is even. Our claim follows from Lemma 3.1.
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