Lifting (2,k)-generators of linear groups

A. MARÓTI
MTA Alfréd Rényi Institute of Mathematics
Reáltanoda utca 13-15, H-1053, Budapest, Hungary
e-mail: maroti@renyi.hu
C. TAMBURINI BELLANI
Dipartimento di Matematica e Fisica
Università Cattolica
Via Musei 41, Brescia, Italy
e-mail: c.tamburini@dmf.unicatt.it
Dedicated to Karl Gruenberg

Let $\ell=k h$, where k, h are orders of arbitrary elements of $\mathrm{SL}_{2}(q)$ subject to $k \geq 3, h \geq 3$ and $(k, h)=1$. For q even allow also $k=4$ or $h=2$. We describe ($2, \ell$)-generating pairs of $\mathrm{PSL}_{n}(q)$, for all $n \geq 5$ and $q>2$.

Keywords: $(2, \ell)$-generating pairs; Finite simple groups.

1. Introduction

A $(2, \ell)$-generating pair of a group G consists of two elements, of respective orders 2 and ℓ, which generate G. Clearly $\ell \geq 3$, unless G is abelian or dihedral. The authors of [2] study the problem of finding uniform $(2, k)$-generating pairs for the finite classical groups $\mathrm{PSL}_{4}(q), \mathrm{PSp}_{4}(q)$ and $\operatorname{PSU}_{4}\left(q^{2}\right)$, with $k \geq 3$ the order of some element of $\mathrm{SL}_{2}(q)$, including $k=4$ when q is even. In Theorem 3.1 of this paper we lift their $(2, k)$-generating pairs of $\mathrm{PSL}_{4}(q)$ to $(2, \ell)$-generating pairs of $\mathrm{PSL}_{n}(q)$, for all $n \geq 5$. Here $\ell=k h$, where k, h are orders of arbitrary elements of $\mathrm{SL}_{2}(q)$ subject to $k \geq 3, h \geq 3$ and $(k, h)=1$. For q even we allow also $k=4$ or $h=2$. Most likely the same construction, with $\ell=k$ and σ in (2) of order h dividing k, produces $(2, k)$-generating pairs of $\operatorname{PSL}_{n}(q), n \geq 5$. This would be the best possible generalization. But the proof becomes much more intricate.

Let \mathbb{F}_{q} be the Galois field of order $q=p^{a}$, where p is a prime, and \mathbb{F}_{q}^{*} be the set of its non-zero elements. For k as above, except in the case $(k, q)=\left(4,2^{a}\right)$, let $\gamma=\left(\begin{array}{cc}0 & -1 \\ 1 & s\end{array}\right)$ be a rational canonical form of $\mathrm{SL}_{2}(q)$ having order k, and consider the matrices:

$$
x=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{1}\\
0 & 0 & 0 & 1 \\
d & 0 & 0 & 0 \\
0 & d & 0 & 0
\end{array}\right), d= \pm 1, \quad y=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & r \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & s
\end{array}\right), r \in \mathbb{F}_{q}^{*} .
$$

Clearly $x^{2}=d I$. Moreover y has the same order k of γ, except when $s=0$ and $q=2^{a}$, in which case y has order 4 . When necessary, we identify x, y with their projective images, of respective orders 2 and k.

Lemma 1.1. If $q>3$, for fixed $s \in F_{q}$ and $d= \pm 1$, there exists $r \in \mathbb{F}_{q}^{*}$ such that $\mathbb{F}_{q}=\mathbb{F}_{p}\left[s, r^{2}\right]$ and $r \neq \pm \sqrt{d}(s-2)$.

The easy proof can also be deduced from Lemma 5.3 of [2], where the following result is proved (Theorem 11.1):

Theorem 1.1. Assume that x, y are defined as in (1) with $s \in \mathbb{F}_{q}, r \in \mathbb{F}_{q}^{*}$ such that $\mathbb{F}_{q}=\mathbb{F}_{p}\left[s, r^{2}\right]$ and $r \neq \pm \sqrt{d}(s-2)$. Then

$$
\langle x, y\rangle=\mathrm{SL}_{4}(q) .
$$

In particular the groups $\mathrm{SL}_{4}(q), q>3$, and $\mathrm{PSL}_{4}(q), q>2$, are $(2, k)-$ generated for all $k \geq 3$ which correspond to the order of some element of $\mathrm{SL}_{2}(q)$, including $k=4$ when q is even.

For the reader's convenience, we note that the assumptions on k are equivalent to the following: $k \geq 3, k$ divides $q-1$ or k divides $q+1$ or $k \in\{p, 2 p\}$.

2. Definition of the $(2, \ell)$-generating pairs

Let $\ell=k h$, where k, h are orders of arbitrary elements of $\mathrm{SL}_{2}(q)$ subject to the conditions $k \geq 3, h \geq 3$ and $(k, h)=1$. For q even allow also $k=4$ or $h=2$. For all $n \geq 5$, we lift any $(2, k)$-generating pair (x, y) of $\operatorname{PSL}_{4}(q)$ to a $(2, \ell)$-generating pair (X, Y) of $\mathrm{PSL}_{n}(q)$ via the following blocks:

$$
\sigma:=\left(\begin{array}{cc}
0 & -1 \tag{2}\\
1 & t
\end{array}\right), \quad \pi_{\lambda}:=\left(\begin{array}{cc}
0 & 1 \\
\lambda & 0
\end{array}\right), \lambda= \pm 1 .
$$

Here $t \in \mathbb{F}_{q}$ is such that σ has order h.

Denoting by e_{1}, \ldots, e_{4} the canonical basis of \mathbb{F}_{q}^{4}, let y_{3} be the restriction of y in (1) to $\left\langle e_{2}, e_{3}, e_{4}\right\rangle$, namely:

$$
y_{3}:=\left(\begin{array}{ccc}
1 & 0 & r \tag{3}\\
0 & 0 & -1 \\
0 & 1 & s
\end{array}\right), \quad r \in \mathbb{F}_{q}^{*} .
$$

For $n=2 m+3 \geq 5$, in (2) take $\lambda=1$ and define

$$
X:=\left(\begin{array}{ccccc}
\pm 1 & & & & \tag{4}\\
& \pi_{1} & & & \\
& & \ldots & & \\
& & & \pi_{1} & \\
& & & & x
\end{array}\right), \quad Y:=\left(\begin{array}{lll}
\sigma & & \\
& \cdots & \\
& & \sigma \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}\right)
$$

where x is as in (1) with $d=1, \pi_{1}$ and σ are as in (2), and the sign \pm is chosen so that det $X=1$. In (4) the number of blocks π_{1} is $m-1$ and the number of blocks σ is m.

For $n=2 m+4 \geq 6$, in (2) take $\lambda=1$ if $n \equiv 0(\bmod 4), \lambda=-1$ if $n \equiv 2(\bmod 4)$, and define:

$$
X:=\left(\begin{array}{llll}
\pi_{\lambda} & & & \tag{5}\\
& \cdots & & \\
& & \pi_{\lambda} & \\
& & & x
\end{array}\right), \quad Y:=\left(\begin{array}{llll}
1 & & & \\
& \sigma & & \\
& & \cdots & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}\right)
$$

where x is as in (1) with $d=\lambda, \sigma$ and π_{λ} are as in (2). In (5) the number of blocks π_{λ} and σ is m.

Note that X^{2} is scalar and Y has order $\ell=k h$.

3. The result

For each m such that $1 \leq m \leq n$, we consider the subgroup $S_{m}(q)$ of $\mathrm{SL}_{n}(q)$ defined as follows:

$$
S_{m}(q):=\left(\begin{array}{ll}
I_{n-m} & \\
& \mathrm{SL}_{m}(q)
\end{array}\right)
$$

For the reader's convenience, we give a direct proof of a fact which is well known, namely:

Lemma 3.1. Let σ and π_{-1} be defined as in (2). For all $n \geq 4$, set

$$
\Sigma:=\left(\begin{array}{ll}
\sigma & \\
& I_{n-2}
\end{array}\right), \quad \Pi:=\left(\begin{array}{ll}
\pi_{-1} & \\
& I_{n-2}
\end{array}\right) .
$$

Then $\operatorname{SL}_{n}(q)=\left\langle S_{n-1}(q), \Sigma\right\rangle=\left\langle S_{n-1}(q), \Pi\right\rangle$.
Proof. Consider the elementary transvection $\tau_{1}:=I+E_{2,3}$ and let $g \in$ $\{\Sigma, \Pi\}$. Then $\tau_{1}^{g}=I+E_{1,3}$. Using the transitivity of $\mathrm{SL}_{n-1}(q)$ on the nonzero vectors of \mathbb{F}_{q}^{n-1}, it is easy to see that the conjugates of $I+E_{1,3}$ under $S_{n-1}(q)$ include all root subgroups $I+\mathbb{F}_{q} E_{1, j}, 2 \leq j \leq n$.

In a similar way, consider the elementary transvection $\tau_{2}:=I+E_{3,2}$. Then $\tau_{2}^{g}=I+E_{3,1}\left(\bmod S_{n-1}(q)\right)$. As above, the conjugates of $I+E_{3,1}$ under $S_{n-1}(q)$ include all root subgroups $I+\mathbb{F}_{q} E_{j, 1}, 2 \leq j \leq n$. Since $\mathrm{SL}_{n}(q)$ is generated by the elementary root sugroups $I+\mathbb{F}_{q} E_{i, j}, i \neq j$, (see, e.g. [1]) our claim follows.

Theorem 3.1. Assume $n \geq 5$. Define X, Y respectively as in (4) or (5) according to n odd or even. If $r \in \mathbb{F}_{q}^{*}$ is such that $\mathbb{F}_{q}=\mathbb{F}_{p}\left[s, r^{2}\right]$ and $r \neq \pm \sqrt{d}(s-2)$, then:

$$
\langle X, Y\rangle=\mathrm{SL}_{n}(q)
$$

In particular the group $\operatorname{SL}_{n}(q), q>3$ and $n \not \equiv 2(\bmod 4)$ if q is odd, is $(2, \ell)$-generated. The group $\mathrm{PSL}_{n}(q), q>2$, is $(2, \ell)$-generated.

Proof. The subspace $U=\left\langle e_{1}, \ldots, e_{n-3}\right\rangle$, generated by the first $n-3$ vectors of the canonical basis, is Y-invariant. So we define:

$$
Y_{n-3}:=\left(\begin{array}{cc}
Y_{\mid U} & \\
& I_{3}
\end{array}\right), \quad Y_{3}:=\left(\begin{array}{cc}
I_{n-3} & \\
& y_{3}
\end{array}\right)
$$

By the assumption that k and h are coprime, we have:

$$
\langle Y\rangle=\left\langle Y_{n-3}\right\rangle \times\left\langle Y_{3}\right\rangle
$$

It follows that $\langle X, Y\rangle$ contains the subgroup $H:=\left\langle X, Y_{3}\right\rangle \leq C_{2} \times \mathrm{SL}_{4}(q)$. Using Theorem 1.1 and the fact that the group $\mathrm{SL}_{4}(q)$ is perfect, we get that $H^{\prime}=S_{4}(q) \leq\langle X, Y\rangle$. By induction we may assume that

$$
S_{n-1}(q) \leq\langle X, Y\rangle
$$

Noting that $\Sigma^{-1} Y \in S_{n-2}(q)$ if n is odd, and that either $\Pi X \in S_{n-1}(q)$ or $\Pi^{-1} X \in S_{n-1}(q)$ if n is even, we deduce $\Sigma \in\langle X, Y\rangle$ if n is odd, $\Pi \in\langle X, Y\rangle$ if n is even. Our claim follows from Lemma 3.1.

References

1. R. Carter, Simple groups of Lie type, Wiley and Sons, London, 1972.
2. M. Pellegrini, C. Tamburini Bellani and M.A. Vsemirnov, Uniform $(2, k)$ generation of 4-dimensional classical groups (submitted).
