1

Lifting (2, k)-generators of linear groups

A. MARÓTI

MTA Alfréd Rényi Institute of Mathematics Reáltanoda utca 13-15, H-1053, Budapest, Hungary e-mail: maroti@renyi.hu

C. TAMBURINI BELLANI

Dipartimento di Matematica e Fisica Università Cattolica Via Musei 41, Brescia, Italy e-mail: c.tamburini@dmf.unicatt.it

Dedicated to Karl Gruenberg

Let $\ell = kh$, where k, h are orders of arbitrary elements of $SL_2(q)$ subject to $k \ge 3$, $h \ge 3$ and (k, h) = 1. For q even allow also k = 4 or h = 2. We describe $(2, \ell)$ -generating pairs of $PSL_n(q)$, for all $n \ge 5$ and q > 2.

Keywords: $(2, \ell)$ -generating pairs; Finite simple groups.

1. Introduction

A $(2, \ell)$ -generating pair of a group G consists of two elements, of respective orders 2 and ℓ , which generate G. Clearly $\ell \geq 3$, unless G is abelian or dihedral. The authors of [2] study the problem of finding uniform (2, k)-generating pairs for the finite classical groups $PSL_4(q)$, $PSp_4(q)$ and $PSU_4(q^2)$, with $k \geq 3$ the order of some element of $SL_2(q)$, including k = 4when q is even. In Theorem 3.1 of this paper we lift their (2, k)-generating pairs of $PSL_4(q)$ to $(2, \ell)$ -generating pairs of $PSL_n(q)$, for all $n \geq 5$. Here $\ell = kh$, where k, h are orders of arbitrary elements of $SL_2(q)$ subject to $k \geq 3$, $h \geq 3$ and (k, h) = 1. For q even we allow also k = 4 or h = 2. Most likely the same construction, with $\ell = k$ and σ in (2) of order h dividing k, produces (2, k)-generating pairs of $PSL_n(q)$, $n \geq 5$. This would be the best possible generalization. But the proof becomes much more intricate. $\mathbf{2}$

Let \mathbb{F}_q be the Galois field of order $q = p^a$, where p is a prime, and \mathbb{F}_q^* be the set of its non-zero elements. For k as above, except in the case $(k,q) = (4,2^a)$, let $\gamma = \begin{pmatrix} 0 & -1 \\ 1 & s \end{pmatrix}$ be a rational canonical form of $\mathrm{SL}_2(q)$ having order k, and consider the matrices:

$$x = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \end{pmatrix}, \ d = \pm 1, \quad y = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & r \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & s \end{pmatrix}, \ r \in \mathbb{F}_q^*. \tag{1}$$

Clearly $x^2 = dI$. Moreover y has the same order k of γ , except when s = 0 and $q = 2^a$, in which case y has order 4. When necessary, we identify x, y with their projective images, of respective orders 2 and k.

Lemma 1.1. If q > 3, for fixed $s \in F_q$ and $d = \pm 1$, there exists $r \in \mathbb{F}_q^*$ such that $\mathbb{F}_q = \mathbb{F}_p[s, r^2]$ and $r \neq \pm \sqrt{d}(s-2)$.

The easy proof can also be deduced from Lemma 5.3 of [2], where the following result is proved (Theorem 11.1):

Theorem 1.1. Assume that x, y are defined as in (1) with $s \in \mathbb{F}_q$, $r \in \mathbb{F}_q^*$ such that $\mathbb{F}_q = \mathbb{F}_p[s, r^2]$ and $r \neq \pm \sqrt{d}(s-2)$. Then

$$\langle x, y \rangle = \mathrm{SL}_4(q).$$

In particular the groups $SL_4(q)$, q > 3, and $PSL_4(q)$, q > 2, are (2, k)-generated for all $k \ge 3$ which correspond to the order of some element of $SL_2(q)$, including k = 4 when q is even.

For the reader's convenience, we note that the assumptions on k are equivalent to the following: $k \ge 3$, k divides q-1 or k divides q+1 or $k \in \{p, 2p\}$.

2. Definition of the $(2, \ell)$ -generating pairs

Let $\ell = kh$, where k, h are orders of arbitrary elements of $SL_2(q)$ subject to the conditions $k \ge 3$, $h \ge 3$ and (k, h) = 1. For q even allow also k = 4or h = 2. For all $n \ge 5$, we lift any (2, k)-generating pair (x, y) of $PSL_4(q)$ to a $(2, \ell)$ -generating pair (X, Y) of $PSL_n(q)$ via the following blocks:

$$\sigma := \begin{pmatrix} 0 & -1 \\ 1 & t \end{pmatrix}, \quad \pi_{\lambda} := \begin{pmatrix} 0 & 1 \\ \lambda & 0 \end{pmatrix}, \ \lambda = \pm 1.$$
(2)

Here $t \in \mathbb{F}_q$ is such that σ has order h.

Denoting by e_1, \ldots, e_4 the canonical basis of \mathbb{F}_q^4 , let y_3 be the restriction of y in (1) to $\langle e_2, e_3, e_4 \rangle$, namely:

$$y_3 := \begin{pmatrix} 1 & 0 & r \\ 0 & 0 & -1 \\ 0 & 1 & s \end{pmatrix}, \quad r \in \mathbb{F}_q^*.$$
(3)

For $n = 2m + 3 \ge 5$, in (2) take $\lambda = 1$ and define

$$X := \begin{pmatrix} \pm 1 & & \\ & \pi_1 & & \\ & & \ddots & \\ & & & \pi_1 \\ & & & & x \end{pmatrix}, \qquad Y := \begin{pmatrix} \sigma & & \\ & \ddots & & \\ & & \sigma \\ & & & y_3 \end{pmatrix}$$
(4)

where x is as in (1) with d = 1, π_1 and σ are as in (2), and the sign \pm is chosen so that det X = 1. In (4) the number of blocks π_1 is m - 1 and the number of blocks σ is m.

For $n = 2m + 4 \ge 6$, in (2) take $\lambda = 1$ if $n \equiv 0 \pmod{4}$, $\lambda = -1$ if $n \equiv 2 \pmod{4}$, and define:

$$X := \begin{pmatrix} \pi_{\lambda} & & \\ & \ddots & \\ & & \pi_{\lambda} \\ & & & x \end{pmatrix}, \qquad Y := \begin{pmatrix} 1 & & \\ & \sigma & \\ & & \ddots & \\ & & \sigma \\ & & & y_3 \end{pmatrix}$$
(5)

where x is as in (1) with $d = \lambda$, σ and π_{λ} are as in (2). In (5) the number of blocks π_{λ} and σ is m.

Note that X^2 is scalar and Y has order $\ell = kh$.

3. The result

For each m such that $1 \le m \le n$, we consider the subgroup $S_m(q)$ of $SL_n(q)$ defined as follows:

$$S_m(q) := \begin{pmatrix} I_{n-m} \\ \mathrm{SL}_m(q) \end{pmatrix}.$$

For the reader's convenience, we give a direct proof of a fact which is well known, namely:

Lemma 3.1. Let σ and π_{-1} be defined as in (2). For all $n \geq 4$, set

$$\Sigma := \begin{pmatrix} \sigma \\ I_{n-2} \end{pmatrix}, \quad \Pi := \begin{pmatrix} \pi_{-1} \\ I_{n-2} \end{pmatrix}.$$

4

Then $\operatorname{SL}_n(q) = \langle S_{n-1}(q), \Sigma \rangle = \langle S_{n-1}(q), \Pi \rangle.$

Proof. Consider the elementary transvection $\tau_1 := I + E_{2,3}$ and let $g \in \{\Sigma, \Pi\}$. Then $\tau_1^g = I + E_{1,3}$. Using the transitivity of $\mathrm{SL}_{n-1}(q)$ on the non-zero vectors of \mathbb{F}_q^{n-1} , it is easy to see that the conjugates of $I + E_{1,3}$ under $S_{n-1}(q)$ include all root subgroups $I + \mathbb{F}_q E_{1,j}, 2 \leq j \leq n$.

In a similar way, consider the elementary transvection $\tau_2 := I + E_{3,2}$. Then $\tau_2^g = I + E_{3,1} \pmod{S_{n-1}(q)}$. As above, the conjugates of $I + E_{3,1}$ under $S_{n-1}(q)$ include all root subgroups $I + \mathbb{F}_q E_{j,1}, 2 \leq j \leq n$. Since $\mathrm{SL}_n(q)$ is generated by the elementary root sugroups $I + \mathbb{F}_q E_{i,j}, i \neq j$, (see, e.g. [1]) our claim follows.

Theorem 3.1. Assume $n \geq 5$. Define X, Y respectively as in (4) or (5) according to n odd or even. If $r \in \mathbb{F}_q^*$ is such that $\mathbb{F}_q = \mathbb{F}_p[s, r^2]$ and $r \neq \pm \sqrt{d}(s-2)$, then:

$$\langle X, Y \rangle = \mathrm{SL}_n(q).$$

In particular the group $SL_n(q)$, q > 3 and $n \not\equiv 2 \pmod{4}$ if q is odd, is $(2, \ell)$ -generated. The group $PSL_n(q)$, q > 2, is $(2, \ell)$ -generated.

Proof. The subspace $U = \langle e_1, \ldots, e_{n-3} \rangle$, generated by the first n-3 vectors of the canonical basis, is Y-invariant. So we define:

$$Y_{n-3} := \begin{pmatrix} Y_{|U} \\ I_3 \end{pmatrix}, \qquad Y_3 := \begin{pmatrix} I_{n-3} \\ y_3 \end{pmatrix}.$$

By the assumption that k and h are coprime, we have:

$$\langle Y \rangle = \langle Y_{n-3} \rangle \times \langle Y_3 \rangle \,.$$

It follows that $\langle X, Y \rangle$ contains the subgroup $H := \langle X, Y_3 \rangle \leq C_2 \times SL_4(q)$. Using Theorem 1.1 and the fact that the group $SL_4(q)$ is perfect, we get that $H' = S_4(q) \leq \langle X, Y \rangle$. By induction we may assume that

$$S_{n-1}(q) \le \langle X, Y \rangle$$
.

Noting that $\Sigma^{-1}Y \in S_{n-2}(q)$ if n is odd, and that either $\Pi X \in S_{n-1}(q)$ or $\Pi^{-1}X \in S_{n-1}(q)$ if n is even, we deduce $\Sigma \in \langle X, Y \rangle$ if n is odd, $\Pi \in \langle X, Y \rangle$ if n is even. Our claim follows from Lemma 3.1.

References

- 1. R. Carter, Simple groups of Lie type, Wiley and Sons, London, 1972.
- 2. M. Pellegrini, C. Tamburini Bellani and M.A. Vsemirnov, Uniform (2, k)generation of 4-dimensional classical groups (submitted).