
NORMAL COVERINGS OF LINEAR GROUPS

JOHN R. BRITNELL AND ATTILA MARÓTI

Abstract. For a non-cyclic finite group G, let γ(G) denote the smallest num-
ber of conjugacy classes of proper subgroups of G needed to cover G. In this
paper we show that if G is in the range SLn(q) ≤ G ≤ GLn(q) for n > 2, then

n/π2 < γ(G) ≤ (n+1)/2. This result complements recent work of Bubboloni,
Praeger and Spiga on symmetric and alternating groups. We give various
alternative bounds, and derive explicit formulas for γ(G) in some cases.

1. Introduction

1.1. Normal coverings. Let G be a non-cyclic finite group. We write γ(G) for the
smallest number of conjugacy classes of proper subgroups of G needed to cover it.
In other words, γ(G) is the least k for which there exist subgroups H1, . . . , Hk < G
such that

G =
k∪

i=1

∪
g∈G

Hi
g.

We say that the set of conjugacy classes {Hi
G | i = 1, . . . , k} is a normal covering

for G.
Bubboloni and Praeger [7] have recently investigated γ(G) in the case that G is

a finite symmetric or alternating group. They show, for example, that if n is an
odd composite number then

ϕ(n)

2
+ 1 ≤ γ(Sn) ≤

n− 1

2
,

where ϕ is Euler’s totient function. Similar results are established for all values
of n, and for both Sn and An. Part of the motivation for their work comes from
an application in number theory.

It is a well-known theorem of Jordan that no finite group is covered by the
conjugates of any proper subgroup. A paraphrase of this statement is that γ(G) > 1
for any finite group G. It is known that there exists a finite solvable group G with
γ(G) = k for every k > 1 [9]. It has been shown in [4] that if G is one of the groups
GLn(q), SLn(q),PGLn(q) or PSLn(q), then γ(G) = 2 if and only if n ∈ {2, 3, 4}.
(Notice that γ is undefined for n = 1, since the groups are cyclic in this case.)
Other groups of Lie type possessing a normal covering of size 2 have been studied
in [5] and [6].
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In this paper we give bounds on γ(G), where SLn(q) ≤ G ≤ GLn(q), for all
values of n. In some cases we are able to give an exact value. Our bounds extend
without change to G/Z(G).

We introduce some notation. We write ⌊x⌋ for the integer part of a real number x.
As already noted above, ϕ denotes Euler’s function. We shall also use Lehmer’s
partial totient function, which we define here.

Definition. Let k and t be such that 0 ≤ t < k < n. We define the partial totient
ϕ(k, t, n) to be the number of integers x, coprime with n, such that

nt

k
< x <

n(t+ 1)

k
.

We give two separate upper bounds on γ(G).

Theorem 1.1. Let n ∈ N, and let ν = ν(n) be the number of prime factors of n.
Let p1, . . . , pν be the distinct prime factors of n, with p1 < p2 < · · · < pν . Let G be
a group such that SLn(q) ≤ G ≤ GLn(q). Then

(1) If ν ≥ 2 then

γ(G) ≤
(
1− 1

p1

)(
1− 1

p2

)
n

2
+ 2.

(2) If n > 6 then

γ(G) ≤
⌊n
3

⌋
+ ϕ(6, 2, n) + ν.

A great deal of information is given in [14, §6] about the function ϕ(6, t, n), from
which the following statement can be derived.

ϕ(n)

6
− ϕ(6, 2, n) =


0 if n is divisible either by 9, or by a prime

of the form 3k + 1 for k ∈ N,
1
12λ(n)2

ν otherwise, if n is divisible by 3,

1
6λ(n)2

ν otherwise, if n is not divisible by 3,

in which λ(n) = (−1)ℓ, where ℓ is the number of prime divisors of n counted with
multiplicity.

1.2. Independent sets of conjugacy classses. Let κ(G) be the size of the largest
set of conjugacy classes of G such that any pair of elements from distinct classes
generates G. We call such a set an independent set of classes. Guralnick and Malle
[12] have shown that κ(G) ≥ 2 for any finite simple group G. It is clear that
whenever γ(G) is defined, we have the inequality

κ(G) ≤ γ(G),

since if C is a normal covering of G, and if I is a independent set of classes, then
each element of C covers at most one element of I.

We establish two lower bounds for κ(G). By the observation of the previous
paragraph, these also operate as lower bounds for γ(G).

Theorem 1.2. Let n ∈ N, and let ν = ν(n) be the number of prime factors of n.
Let p1, . . . , pν be the distinct prime factors of n, with p1 < p2 < · · · < pν . Let G be
a group such that SLn(q) ≤ G ≤ GLn(q).
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(1) If ν ≥ 2 then
ϕ(n)

2
+ ν(n) ≤ κ(G).

(2) If ν ≥ 3, and if n is not equal to 6p or 10p for any prime p, then⌊
n+ 6

12

⌋
+ ϕ(12, 1, 3n) + ν ≤ κ(G).

Furthermore, if hcf(n, 6) = 1 then⌊
n+ 6

12

⌋
+ ϕ(12, 1, 3n) + ϕ(12, 0, n) + ν ≤ κ(G).

The values t = 0, 1 are not amongst those for which the function ϕ(12, t, n) is
evaluated explicitly in [14]. However, Theorem 10 of [14] gives the following general
estimate,

|ϕ(n)− kϕ(k, t, n)| ≤ (k − 1)2ν ,

where ν is the number of prime divisors of n. This yields the lower bound

ϕ(12, t, n) ≥ ϕ(n)

12
− 11

12
2ν .

There are certain cases in which an upper bound for γ(G) coincides with a lower
bound for κ(G). In these cases we must have γ(G) = κ(G), and we obtain a precise
formula.

Theorem 1.3. Let G be a group such that SLn(q) ≤ G ≤ GLn(q).

(1) If n = pa, where p is a prime and a ∈ N, and if n > 2, then

γ(G) = κ(G) =

(
1− 1

p

)
n

2
+ 1.

(2) If n = paqb where p and q are distinct primes and a, b ∈ N, then

γ(G) = κ(G) =

(
1− 1

p

)(
1− 1

q

)
n

2
+ 2.

(3) If n = 6p where p is a prime, then γ(G) = κ(G) = p+ 2.
(4) If n = 10p where p is a prime, then γ(G) = κ(G) = 2p+ 2.

Certain cases of Theorem 1.3 will require independent treatment, as they arise
as exceptional cases in the proof of Theorem 1.2.

1.3. Linear bounds. Theorem 1.1 (1), Theorem 1.2 (2), and Theorem 1.3, taken
together, imply that

(1)
n

12
< κ(G) ≤ γ(G) ≤ n+ 1

2
,

for all n > 2. The upper bound is exact when n is an odd prime. (When n = 2 it
is known that γ(G) = 2; see [4], or the remark after Proposition 4.1 below. It is
also easy to show that κ(G) = 2 in this case.) It follows immediately that

(2) lim sup
γ(G)

n
=

1

2
.

The lower bound for γ can be improved, as the following theorem indicates.

Theorem 1.4. Let G be a group such that SLn(q) ≤ G ≤ GLn(q). Then
n
π2 < γ(G).
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From the first part of Theorem 1.1 and from Theorem 1.4, it is easy to show that

(3)
1

π2
≤ lim inf

γ(G)

n
≤ 1

6
.

It follows from the theorems which we have stated, that γ(G) and κ(G) are
bounded above and below by monotonic functions which grow linearly with n. It
appears that the situation for symmetric groups is similar. It has been announced
in [3, §1.1], and will be demonstrated in a forthcoming paper [8] now in preparation,
that γ(Sn) and γ(An) are bounded above and below by linear functions of n. In
fact the numbers γ(Sn) and γ(GLn(q)) seem to be closely related; in all cases where
both are known exactly, they differ by at most 1. It is not hard to show, and it
is worth remarking in this connection, that the upper bounds stated for γ(G) in
Theorem 1.1 are also upper bounds for γ(Sn), improving marginally on those of [7,
Theorem A]. It should also be noted that all of our bounds are independent of the
field size q.

We establish the upper bounds of Theorem 1.1 in Section 2, by exhibiting explicit
normal coverings of the necessary sizes. This builds on work described in [2], in
which coverings of GLn(q) by proper subgroups are constructed. The two lower
bounds of Theorem 1.2 are proved in Section 3. Both are proved by exhibiting
an independent set of classes. This requires an account of overgroups of certain
special elements in GLn(q). For such an account we rely on [11], which provides a
classification of subgroups whose orders are divisible by primitive prime divisors of
qd−1, for all d > n/2. The remaining cases of Theorem 1.3 are brought together in
Section 4. Finally, Theorem 1.4 is established in Section 5. Its proof relies on work
from the doctoral thesis of Joseph DiMuro [10], which extends the classification of
[11] to cover all d ≥ n/3.

The classes of subgroups in our normal covering remain distinct, proper and
non-trivial in the quotient of G by Z(G). This is true also of the classes of maximal
overgroups which cover the conjugacy classes in our independent sets. It follows
that the bounds which we have stated for γ(G) and for κ(G) hold equally for
γ(G/Z(G)) and for κ(G/Z(G)).

2. Normal coverings of G

We shall write V for the space Fq
n. Throughout the paper, we assume that

SL(V ) ≤ G ≤ GL(V ).
We begin by introducing the classes of subgroups which we shall need for our

coverings. Proposition 2.1 below contains standard information about certain sub-
groups of GLn(q), and we shall not prove it here.

Proposition 2.1. (1) Let d be a divisor of n. There exist embeddings of
GLn/d(q

d) into GLn(q). All such embeddings are conjugate by elements
of SLn(q), and each has index d in its normalizer in GLd(q). If d is prime
then the normalizer is a maximal subgroup of GLn(q).

(2) Suppose that 1 ≤ k < n, and let U be a k-dimensional subspace of V . Then
the set stabilizer GU of U in G is a maximal subgroup of G. If W is another
k-dimensional subspace, then GU and GW are conjugate in G.

It will be convenient to have concise notation for these subgroups.
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Definition. (1) We refer to the maximal subgroups of Proposition 2.1 (1) as
extension field subgroups of degree d, and we write efs(d) for the conjugacy
class consisting of the intersections of all such subgroups with the group G.

(2) We refer to the subgroups of Proposition 2.1 (2) as subspace stabilizers of
dimension k, and we write ss(k) for the conjugacy class consisting of all
such subgroups.

The following technical lemma will be useful.

Lemma 2.2. (1) Suppose that X ∈ GL(V ), and that X stabilizes a k-dimensional
subspace of V . Then X stabilizes a subspace whose dimension is n− k.

(2) Let X ∈ GL(V ), and let p be a prime dividing n. If X lies in no extension
field subgroup of degree p, then it stabilizes a subspace of V whose dimension
is coprime with p.

Proof. (1) Suppose X stabilizes a space U of dimension k. Then the transpose
Xt acts on the dual space V ∗, and stabilizes the annihilator of U , which
has dimension n− k.

(2) If X stabilizes no subspace whose dimension is coprime with p, then every
irreducible divisor of its characteristic polynomial has degree divisible by p,
and must therefore split into p factors over Fqp . Suppose that the elemen-
tary divisors of X are fa1

1 , . . . , fat
t . For each i, let gi be an irreducible factor

of fi over Fqp , and let Y ∈ GLn/p(q
p) have elementary divisors ga1

1 , . . . , gat
t .

Then it is not hard to see that any embedding of GLn/p(q
p) into GLn(q)

must map Y to a conjugate of X.
�

We are now in a position to exhibit some normal coverings of G.

Lemma 2.3. (1) Let p be a prime dividing n. Then there is a normal covering
Cp for G given by

Cp = {efs(p)} ∪ {ss(k) | 1 ≤ k ≤ n/2, p - k}.

The size of Cp is

|Cp| =
⌊(

1− 1

p

)
n

2

⌋
+ 1 + ϵ,

where

ϵ =

{
1 if p = 2 and n/2 is odd,
0 otherwise.

This is minimized when p is the smallest prime divisor of n.
(2) Let p1 and p2 be distinct prime divisors of n. Then there is a normal

covering Cp1,p2 for G given by

Cp1,p2 = {efs(p1), efs(p2)} ∪ {ss(k) | 1 ≤ k < n/2, p1, p2 - k}.

The size of Cp1,p2 is

|Cp1,p2 | =
(
1− 1

p1

)(
1− 1

p2

)
n

2
+ 2.

This is minimized when p1 and p2 are the two smallest prime divisors of n.
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Proof. The sizes of the sets Cp and Cp1,p2 are easily seen to be as stated. That Cp
is a normal covering follows immediately from Lemma 2.2. So it remains only to
prove that Cp1,p2 is a normal covering.

Let X ∈ G, let fX be the characteristic polynomial of X, and let g1, . . . , gs be
the irreducible factors of fX over Fq, with degrees d1, . . . , ds respectively. Then
clearly there exist X-invariant subspaces U1, . . . , Us such that dimUi = di for all i,
and such that Ui ∩ Uj = {0} whenever i ̸= j. If any di is divisible by neither of
the primes p1 and p2, then X is contained in a subspace stabilizer from one of the
classes in Cp1,p2 . So we assume that each di is divisible by at least one of p1 or p2.
Suppose that da is divisible by p1 but not by p2, and that db is divisible by p2 but
not by p1. Then Ua ⊕ Ub is an X-invariant subspace, and its dimension is coprime
with p1 and p2; so again, X is in a subspace stabilizer from Cp1,p2 . But if no such da
and db can be found, then either all of the di are divisible by p1, or they are all
divisible by p2. In this case, X lies in an extension field subgroup either of degree p1
or of degree p2. �

We note that the argument of the last paragraph of this proof does not extend
to the case of three primes, p1, p2, p3. It is possible to find matrices whose invariant
subspaces all have dimensions divisible by one of those primes, but which lie in no
extension field subgroup. In the case that the primes are 2, 3 and 5, for instance,
there are 30-dimensional matrices whose irreducible invariant spaces have dimen-
sions 2, 3 and 25. (Another example is used in the proof of Proposition 4.4 below.)
This is the explanation for the appearance of the two smallest prime divisors of n
in the first upper bound of Theorem 1.1, which may at first seem a little curious.

The second upper bound of Theorem 1.1 is proved in a somewhat similar fashion.

Lemma 2.4. Let p1, . . . , pν be the distinct primes dividing n. Then there is a
normal covering D of G given by

D = {ss(k) | 1 ≤ k ≤ n/3}
∪ {ss(k) | n/3 < k ≤ n/2, hcf(k, n) = 1}
∪ {efs(pi) | 1 ≤ i ≤ ν}.

For n > 6, the size of D is ⌊n
3

⌋
+ ϕ(6, 2, n) + ν.

Proof. Let X ∈ G. Suppose that X is reducible, and that its smallest non-trivial
invariant subspace has dimension k. If k > n/3 then it is not hard to see (for
instance, by considering the irreducible factors of the characteristic polynomial)
that X stabilizes at most one other proper non-trivial subspace, of dimension n−k.
It follows that if p is a prime dividing both n and k, then X is contained in an
element of efs(p). It is now a straightforward matter to show that D is a normal
covering, and we omit further details. The size of D follows immediately from its
definition. �

3. Lower bounds for κ(G)

Recall that GLn(q) contains elements of order qn − 1, often known as Singer
elements. Such elements stabilize no non-trivial proper subspace of V . The deter-
minant of a Singer element generates the multiplicative group of Fq.
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In order to handle all groups G in the range SLn(q) ≤ G ≤ GLn(q) together, we
define a parameter α ∈ N as follows.

α =

{
0 if G = SLn(q),
−|GLn(q) : G| otherwise.

Let ζ be a generator of the multiplicative group of Fq. Then we have

G

SLd(q)
∼= ⟨ζα⟩.

Definition. (1) For d = 1, . . . , n, let Γd be a Singer element with determinant
ζ in GLd(q).

(2) For k < n/2, define

Σk = diag(Γk
α−1,Γn−k).

(3) For j < (n− 2)/4, define

Tj = diag(Γj
α−2,Γj+1,Γn−2j−1).

The reasons for defining α as above will be clear from the following remark.

Remark. (1) Since detΣk = detTj = ζα, we have Σk, Tj ∈ G.
(2) It is clear from the definition of α that (1 − q) < α ≤ 0, and hence that

|α − 2| < q + 1. It follows easily that the actions of the matrices Γk
α−1

and Γj
α−2 are irreducible for all k and j. Therefore the module Fq⟨Σk⟩ de-

composes into precisely two irreducible summands, and Fq⟨Tj⟩ decomposes
into precisely three irreducible summands.

Lemma 3.1. Suppose that n > 4. Let k < n/2, and if q = 2 then suppose that
n− k ̸= 6. Let j < (n− 2)/4, and if q = 2 then suppose that n− 2j − 1 ̸= 6.

(1) If M is a maximal subgroup of G containing Γn then M is an extension
field subgroup of prime degree.

(2) If M is a maximal subgroup of G containing Σk then M is either an exten-
sion field subgroup whose degree is a prime divisor of gcd(k, n), or else the
stabilizer of a subspace of dimension k or n− k.

(3) Let n have at least 3 distinct prime divisors. If M is a maximal subgroup
of G containing Tj, then M is the stabilizer of a subspace whose dimension
is one of j, j + 1, 2j + 1, n− 2j − 1, n− j − 1 or n− j.

Proof. Part (1) of the lemma is a result of Kantor [13].
For (n, q) ̸= (11, 2), part (2) of the lemma follows from part (2) of Theorem 4.1

of [2]. However a few comments are to be made about this assertion. The matrix
that we have called Σk is referred to as GLk in [2]. The result in [2] is stated only
for the groups GLn(q) and SLn(q), but the proof given there applies equally to
intermediate subgroups. Finally, the proof in [2] relies on the existence of primitive
prime divisors of qn−k − 1 (where n − k > 2), which is given by Zsigmondy’s
Theorem [17] for all pairs (q, n − k) except (2, 4) and (2, 6); the second of these
exceptions accounts for the excluded case in the statement of the present lemma.
The argument uses the classification in [11], of subgroups of GLn(q) whose order is
divisible by a prime divisor of qe − 1, where e > n/2.

To finish the proof of part (2) of the present lemma, we must consider the
exceptional case of the group GL11(2). In this case we require a reference directly
to the lists of [11]. We find that there are several irreducible subgroups whose



8 JOHN R. BRITNELL AND ATTILA MARÓTI

order is divisible by a primitive prime divisor 11 of 210 − 1; we must show that
none of these contains Σ1. All of these subgroups are almost simple, and have
a socle which is isomorphic either to one of the Mathieu groups M23 or M24, or
to the unitary group PSU5(2), or to a linear group SL2(11) or SL2(23). (These
subgroups may be found in Table 5 (lines 12 and 14) and Table 8 (lines 2, 7 and 9)
of [11].) Information about these groups may be found in [1]. None of these groups
themselves, nor any of their outer automorphism groups, have order divisible by 31.
Therefore an almost simple group of one of these types can contain no element of
order 210 − 1 = 3 · 11 · 31, which is the order of the element Σ1.

For the proof of part (3) of the lemma, we refer once again to the classification of
[11], this time for matrix groups whose order is divisible by a primitive prime divisor
of qn−2j−1 − 1. It is not hard to see that Tj has no overgroups of classical type.
The condition that n has 3 distinct prime divisors rules out the small dimensional
sporadic examples contained in Tables 1–7. Other examples are ruled out because
their order is less than qn−2j−1 − 1, which is the order of the summand Γn−2j−1

of Tj . �
We define a set of classes which will help us to establish the first of our lower

bounds for κ(G).

Definition. Define a set Φ of classes of G by

Φ = {[Σp] | p|n, p prime, p < n/2} ∪ {[Σk] | k < n/2, hcf(n, k) = 1},
where [g] denotes the conjugacy class of g.

Lemma 3.2. Let n > 2, and let ν(n) be the number of prime factors of n. Then

|Φ| = ϕ(n)/2 + ν(n)− ϵ,

where

ϵ =

{
1 if n = 2p for some odd prime p,
0 otherwise.

Proof. This is immediate from the definition of Φ. �
Lemma 3.2, together with the following two lemmas, will imply the first part of

Theorem 1.2.

Lemma 3.3. Φ is an independent set of classes.

Proof. Suppose that q ̸= 2, or that [Σn−6] /∈ Φ. Then Lemma 3.1 provides full
information about the maximal subgroups of G which contain elements of Φ, and
it is easy to check that the result holds in this case.

Next suppose that q = 2 and [Σn−6] ∈ Φ. (This implies that n ∈ {7, 8, 9, 11}.)
Lemma 3.1 gives full information about the maximal subgroups of G covering ele-
ments of the classes in Φ other than [Σn−6]. No class of subgroups contains elements
of more than one such class, and it is easy to check that none covers the element
Σn−6 itself. �
Lemma 3.4. Let n = 2p where p > 2 is a prime. Then κ(G) ≥ |Φ|+ 1.

Proof. The proof of Lemma 3.3 shows that in any normal covering of G, the distinct
classes in Φ are covered by distinct classes of subgroups. We add an extra conjugacy
class to Φ, namely the class represented by Σp = diag(Γp

α−1,Γp), where Γp is a
Singer element in GLp(q). This element stabilizes no subspace of dimension k for
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any k coprime with n; nor does it stabilize a subspace of dimension 2 or n − 2.
Therefore, by part (2) of Lemma 3.1, if Φ ∪ {[Σp]} is not an independent set of
classes, then Σp must lie in a subgroup in efs(2).

Note that since 2 and p are coprime, Σp
2 has two irreducible summands of

dimension p. It is not hard to show that these submatrices are not conjugate, and
neither of them is reducible over Fq2 ; it follows that Σp

2 is not contained in any
embedding of GLp(q

2) into G. Hence Σp itself is not contained in an embedding of
GLp(q

2) · 2. �

Lemmas 3.2, 3.3 and 3.4 complete the proof of part (1) of Theorem 1.2.

We define a second independent set of classes which yields the second lower
bound of Theorem 1.2. We shall require the following lemma.

Lemma 3.5. Let p be a prime divisor of n. Suppose that n has at least 3 distinct
prime divisors, and that n is not equal to 6q or 10q for any prime q. Then there
exists an integer wp such that (n− 2)/4 ≤ wp < n/2, and such that wp is divisible
by p, and by no other prime divisor of n. If p ̸= 3 then wp may be chosen so that
it is not divisible by 3.

Proof. Bertrand’s Postulate states that for every k > 3 there is a prime r such that
k < r < 2k− 2. The conditions on n imply that n ≥ 12p. So there is a prime r > 3
such that

n

4p
< r <

n

2p
.

If r is not itself a prime divisor of n, or if it is equal to p, then we may take wp = pr.
On the other hand, if r is a prime divisor of n other than p then clearly n = 3pr,
and since we have assumed that n ≥ 12p, we have r ≥ 5. Now we see that there
exists m equal either to r+ 1 or to r+ 2, such that m is not divisible by 3, and we
may take wp = pm. �

Definition. Let n be a number with at least 3 distinct prime divisors, and not
equal to 6p or 10p for any prime p. We define a set Ψ of classes of G by

Ψ = {[Tj ] | j < (n− 2)/4, j ≡ 1 mod 3}
∪ {[Σk] | n/4 < k < n/2, hcf(3n, k) = 1}
∪ {[Σ6b] | b < n/12, hcf(n, 6b) = 1}
∪ {

[
Σwp

]
| p|n, p prime},

where wp is as constructed in Lemma 3.5, and where [g] denotes the conjugacy class
of g.

To describe the size of the set Ψ we use Lehmer’s partial totient function ϕ(k, t, n),
which was defined before the statement of Theorem 1.1 above.

Lemma 3.6. Let n have ν distinct prime divisors, where ν ≥ 3, and suppose that
n is not equal to 6p or 10p for any prime p.

(1) If 2 or 3 divides n, then

|Ψ| =
⌊
n+ 6

12

⌋
+ ϕ(12, 1, 3n) + ν.
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(2) If hcf(n, 6) = 1, then

|Ψ| =
⌊
n+ 6

12

⌋
+ ϕ(12, 1, 3n) + ϕ(12, 0, n) + ν.

Proof. We write ⌈x⌉ for the least integer not less than x. The size X of the set
{[Tj ] | j < (n−2)/4, j ≡ 1 mod 3} is ⌈N/3⌉, where N = ⌊(n−2)/4⌋. By examining
residues modulo 12, it is not hard to show that X = ⌊(n+6)/12⌋, the first term in
our sum.

It is immediate from the definition of the function ϕ(k, t, n) that the size of the
set {[Σk] | n/4 < k < n/2, hcf(3n, k) = 1} is ϕ(12, 1, 3n). We observe that the set
{[Σ6b] | b < n/12, hcf(n, 6b) = 1} is empty if hcf(n, 6) ̸= 1; otherwise it has size
ϕ(12, 0, n). And clearly the set {

[
Σwp

]
| p|n, p prime} has size ν as required. �

To establish the second lower bound in Theorem 1.2, it will suffice to show that
any normal covering for G has size at least |Ψ|. This is done in the following lemma.

Lemma 3.7. Let n have at least 3 distinct prime divisors, and not equal to 6p or
10p for any prime p. Then Ψ is an independent set of classes.

Proof. Lemma 3.1 describes the maximal subgroups of G which contain elements
of the classes in Ψ. The elements Tj lie only in members of ss(ℓ) or ss(n − ℓ),
where ℓ ∈ {j, j + 1, 2j + 1}. Notice that if ℓ > n/4 then ℓ = 2j + 1, and hence
ℓ ≡ 3 mod 6. The elements Σk, where k is coprime with n, lie only in members
of ss(k) or ss(n − k). And the elements Σwp lie in subspace stabilizers and also
in elements of efs(p). It is easy to check that the values permitted for j, k, b
and wp ensure that no two elements of distinct classes in Ψ stabilize subspaces of
the same dimension. Therefore no two classes in Ψ can be covered by a single class
of subgroups. �

4. Several equalities

In this section we establish the various claims of Theorem 1.3. We do this simply
by comparing upper and lower bounds from earlier parts of the paper.

Proposition 4.1. If n = pa, where p is a prime and a ∈ N, and if n > 2, then

γ(G) = κ(G) =

(
1− 1

p

)
n

2
+ 1.

Proof. Lemma 2.3 and Lemma 3.3 together tell us that

|Φ| ≤ κ(G) ≤ γ(G) ≤ |Cp|.

But it is easy to check, using Lemma 3.2, that |Φ| = |Cp|, and that this number is
as claimed in the proposition. �

Remark. If n = 2, then the covering C2 has size 2. Since no finite group is covered
by a single class of proper subgroups, it follow that γ(G) = 2 in this case.

Proposition 4.2. If n = paqb where p and q are distinct primes and a, b ∈ N,
then

γ(G) = κ(G) =

(
1− 1

p

)(
1− 1

q

)
n

2
+ 2.
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Proof. As in the proof above, Lemma 2.3 with Lemmas 3.3 and 3.4 yield that

|Φ|+ ϵ ≤ κ(G) ≤ γ(G) ≤ |Cp,q|,

where ϵ = 1 if n = 2p (or n = 2q), and ϵ = 0 otherwise. But we see that
|Φ|+ ϵ = |Cp,q|, with this number being as claimed in the proposition. �

Proposition 4.3. If n = 6p where p is a prime, then

γ(G) = κ(G) = p+ 2.

Proof. In this case we have

|Φ| ≤ κ(G) ≤ γ(G) ≤ |C2,3|,

and it is easy to calculate that |Φ| = |C2,3| = p+ 2. �

Proposition 4.4. If n = 10p where p is a prime, then

γ(G) = κ(G) = 2p+ 2.

Proof. If p is 2 or 5 then the result follows from Proposition 4.2; if p = 3 then it
follows from Proposition 4.3. So we may assume that p > 5. Then we have

|Φ| ≤ κ(G) ≤ γ(G) ≤ |C2,5|,

but in this case we see that |Φ| = 2p+1 whereas |C2,5| = 2p+2. To prove that the
upper bound is sharp for κ(G), it will be sufficient to exhibit an element Y of G
which cannot be covered by any class of subgroups containing an element of any
conjugacy class in Φ. We define

Y = diag(Γp
α−2,Γ5,Γn−p−5).

Notice that n − p − 5 is even, and coprime with 5 and with p. It follows that Y
does not stabilize a subspace of dimension coprime with n. But certainly Y lies in
no extension field subgroup, and so it satisfies the required condition. �

5. Proof of Theorem 1.4

For a positive integer n, let f(n) be the number of partitions of n with exactly
three parts. By an elementary counting argument the following formula can be
found for f(n).

Lemma 5.1.

f(n) =


1
12 (n− 1)(n− 2) + 1

2⌊(n− 1)/2⌋ if 3 - n,

1
12 (n− 1)(n− 2) + 1

2⌊(n− 1)/2⌋+ 1
3 if 3 | n.

It follows from Lemma 5.1 that∣∣∣∣f(n)− n2

12

∣∣∣∣ ≤ 1

3
.

We define ϵn = f(n)− n2/12.
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Let P (n) be the set of partitions of n into three parts having no common divisor
greater than 1. Let g(n) = |P (n)|. Then we have f(n) =

∑
d|n g(d). By the Möbius

Inversion Formula, we obtain

g(n) =
∑
d|n

µ(d)f(n/d) =

∑
d|n

µ(d)
1

12
(n/d)

2

+

∑
d|n

µ(d)ϵn/d


>

n2

12

∑
d|n

µ(d)

d2

+

∑
d|n

µ(d)ϵn/d


>

n2

12

 ∏
p prime

(
1− 1

p2

)+

∑
d|n

µ(d)ϵn/d

 .

Since ∏
p prime

(
1− 1

p2

)
=

6

π2
,

we have

g(n) >

(
n2

2π2

)
+

∑
d|n

µ(d)ϵn/d

 .

Now since the number of divisors of n is less than 2
√
n, we obtain the following

lemma.

Lemma 5.2.
n2

2π2
− 2

3

√
n < g(n).

The next lemma is the principal step in our proof. It gives information about
the maximal overgroups in G, of an element of the form diag(Γa

α−2,Γb,Γc), where
the degrees a, b and c are coprime. The proof relies on knowledge of the subgroups
of GLn(q) whose order is divisible by a primitive prime divisor of qd − 1, where
d > n/3. An account of such subgroups has been given in the doctoral dissertation
of Joseph DiMuro [10]; this work extends the classification of [11], which deals with
the case d > n/2.1

Lemma 5.3. Let ν(n) ≥ 3 and let n ≥ 98. For λ = (a, b, c) ∈ P (n), with a ≤ b ≤ c,
and with a, b, c coprime, let g = gλ = diag(Γa

α−2,Γb,Γc). Then every maximal
overgroup M of g in G is a subspace stabilizer, except possibly in the following
cases.

(i) 2|n, c = n/2, and M ∼= G ∩ (GLn/2(q) ≀ C2);
(ii) 4|n, (a, b, c) = (2, (n−2)/2, (n−2)/2), and either M ∼= G∩(GLn/2(q) ≀C2),

or M ∼= G ∩ (GLn/2(q) ◦ GL2(q)). (Here ◦ is used to denote a central
product.)

1DiMuro’s dissertation aims to classify elements of GLn(q) of prime power order which act
faithfully and irreducibly on a subspace of dimension n/3 or greater. However we have been
informed by its author that there is at present a gap in the argument concerning those elements

whose orders are prime powers but not prime. For our purposes, only the results concerning
elements of prime order are required.
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Proof. We observe that V may be decomposed as Va ⊕ Vb ⊕ Vc, where Va, Vb and
Vc are g-invariant subspaces of dimensions a, b and c respectively. The action of g
on each of these summands is irreducible. It follows that g lies in the stabilizers of
proper subspaces of at least 4 different dimensions; and so g is covered by the class
ss(k) for at least 4 values of k.

Note that c > n/3, and that qc−1 divides the order of g. Hence a maximal over-
group M of g must belong to one of the classes of groups mentioned in Section 1.2
of [10]. We observe firstly that owing to our assumption that ν ≥ 3 and n ≥ 98,
the subgroup M cannot be any of those in Tables 1.1–1.9 of [10]; this immediately
rules out several of the Examples listed there. We shall go through the remaining
Examples.

Example 1. Classical examples. The determinant of g is a generator of the quotient
G/SLn(q), and so M cannot contain SLn(q).

Any element of a symplectic or orthogonal group is similar to its own inverse;
an element g of a unitary group is similar to its conjugate-inverse g−τ , where τ is
induced by an involutory field automorphism. (See [16], Section 2.6, or (3.7.2) for
groups in characteristic 2.)

If M normalizes a symplectic or orthogonal group H, then gq−1 lies in H itself,
and so gq−1 is similar to its own inverse. Then it is clear that Γc

q−1 is similar to
its own inverse (it does not matter here whether or not b = c). But this cannot be
the case since c > 2.

Similarly, if M normalizes a unitary group U then gq+1 lies in U , and it follows
that gq+1 is similar to its conjugate-inverse. But then it follows that Γc

q+1 is similar
to its conjugate-inverse, and it is easy to show that this is not the case.

Example 3. Imprimitive examples. Here M preserves a decomposition V = U1 ⊕
· · · ⊕ Ut for t ≥ 2. Let dimUi = m, so that n = mt. Recall that the ⟨g⟩-module
V is the direct sum of 3 irreducible submodules Va, Vb, Vc of dimensions a, b, c
respectively. So ⟨g⟩ has at most 3 orbits on the set of spaces Ui.

Let r be the smallest integer such that Vc is contained in the direct sum of r of
the spaces Ui. We observe that n/3 < c ≤ rm, and so m > n/3r. Without loss
of generality, we may assume that Vc ≤ W = U1 ⊕ · · · ⊕ Ur. It is clear that W
is g-invariant. Let g be the restriction of g to W . Then ⟨g⟩ acts transitively on
{U1, . . . , Ur}. Since g r acts in the same way on each Ui for i ≤ r, an upper bound
for the order of g is (qm−1)r. But since m ≤ n/r, and since n ≥ 98 by assumption,
we see that (qm − 1)r < qn/3 − 1 if r ≥ 4. Therefore we must have r ≤ 3.

It follows that Vc is a simple Fq⟨g r⟩-module. Now since g r commutes with the
projections of W onto its summands Ui, we see that at least one of the spaces Ui

contains an g r-invariant subspace of dimension c. So m > n/3, and hence r ̸= 3.
Suppose that r = 2. Since g r has two fixed spaces of dimension m, we see that

b = c = m, and that Vb ⊕ Vc ≤ W . If W < V , then W = Vb ⊕ Vc. Now we see
that m divides each of a and b + c = 2c. Since a, b, c are coprime, it follows that
m = 2. But this implies that n < 6, which contradicts the assumption that n ≥ 98.
So we may suppose that W = V . Then it is not hard to show that Va has two
irreducible summands as an ⟨g 2⟩-module. But this can occur only when a = 2, and
this accounts for the first of the exceptional cases of the lemma.

Finally, if r = 1 then m ≥ c > n/3, and so t = 2. It is easy to see, in this case,
that c = m = n/2, and this accounts for the second exceptional case of the lemma.
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Example 4. Extension field examples. If g stabilizes an Fqr -structure on V , then
gr lies in the image of an embedding of GLn/r(q

r) into GLn(q). Now if this is the
case then it is not hard, by considering the degrees of the eigenvalues of g over the
fields Fq and Fqr , to show that r must divide each of a, b, c. But this implies that
r = 1, since a, b, c are coprime.

Example 5. Tensor product decomposition examples. HereM stabilizes a non-trivial
tensor product decomposition V = V1 ⊗ V2. There is an embedding of the central
product GL(V1) ◦ GL(V2) into GLn(q), and M is the intersection of this group
with G. For x1 ∈ GL(V1) and x2 ∈ GL(V2), we write (x1, x2) for the corresponding
element of GL(V1) ◦GL(V2).

We shall suppose that V1 and V2 have dimensions n1 and n2 respectively, with
n1 ≤ n2. Then since c > n/3, it is not hard to see that we have n1 = 2.

Suppose that g ∈ M , and let g1 ∈ GL(V1) and g2 ∈ GL(V2) be such that

g = (g1, g2). Let h = gq
2−1. Since the order of g is coprime with q, we see that the

element gq
2−1

1 is the identity on V1, and so h = (1, h2) for some h2 ∈ GL(V ).
The largest dimension of an irreducible ⟨h⟩-subspace of V is c, and there are

at most 2 such subspaces. We obtain the ⟨h⟩-subspace decomposition of V up to
isomorphism by taking two copies of each summand of the ⟨h2⟩-subspace decompo-
sition of V2. It follows that there must be at least two summands of dimension c,
and hence that b = c and that a < b. It follows also that the a dimensional sum-
mand of g splits into two summands as an Fq⟨h⟩-module. But it is not hard to see
that this can occur only if a = 2, and so we have a = 2 and b = c = (n−2)/2. This
is the second exceptional case of the lemma.

Example 6. Subfield examples. These cannot occur, since g is built up using Singer
cycles, which do not preserve any proper subfield structure.

Example 7. Symplectic type examples. This class of groups exists only in prime-
power dimension, and cannot occur in the cases we are considering since we have
assumed that ν ≥ 3.

Example 8.(a) Permutation module examples. In this case S is an alternating
group Am for some m ≥ 5. Then it is known that the order of an element in M

is at most (q − 1) · eϑ
√
m logm where ϑ = 1.05314, by a result of Massias [15].

Here n = m − 1 or m − 2. But a routine calculation shows that the inequality

eϑ
√

(n+2) log(n+2) < (qn/3 − 1)/(q − 1) holds for all q ≥ 2, and for all n ≥ 98. (This
inequality fails when q = 2 and n = 97.)

Example 11. Cross-characteristic groups of Lie type. The examples not yet ruled
out are contained in Table 1.10 of [10]. But the order of an element of M is less
than n3, which is less than qn/3 − 1 for n ≥ 98. �

We are now in a position to complete the proof of Theorem 1.4.

Proof. Define a set Ω of classes of G by

Ω = {[Γα+q−1
n ]} ∪ {[gλ] : λ ∈ P (n)}.

Let C be a set of conjugacy classes of subgroups of G which covers Ω, of the smallest
size such that this is possible. Then clearly |C| ≤ γ(G). By the theorem of Kantor
[13] mentioned in the proof of Lemma 3.1 above, and by Lemma 5.3, we see that C
must contain a single class of extension field subgroups. If n ≥ 98 and ν ≥ 3
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then each remaining elements of C is either a class of subspace stabilizers, or else
one of the classes of subgroups mentioned in the exceptional cases of Lemma 3.1.
Each subspace stabilizer contains at most n/2 of the elements gλ, and each of the
exceptional classes contains at most n/4. Now, using Lemma 5.2, we see that

γ(G) ≥ |C| ≥ 1 +
2g(n)

n
>

n

π2
,

as required for the theorem.
To remove the conditions that n ≥ 98 and that ν ≥ 3, it is enough to observe

that the lower bound for κ(G) given by Theorem 1.2 is larger than n/π2 in any
case where either of these conditions fails. �
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