
ON PARTIAL AUGMENTATIONS OF ELEMENTS IN INTEGRAL
GROUP RINGS

VICTOR BOVDI AND ATTILA MARÓTI

Abstract. Inner relations are derived between partial augmentations of certain
elements (units or idempotents) in group rings.

1. Introduction

Let KG be the group ring of a group G over a commutative ring K with identity.
Let U(KG) be the group of units of KG. The subgroup

V (KG) =
{∑

g∈G

αgg ∈ U(KG) | αg ∈ K,
∑
g∈G

αg = 1
}

of U(KG) is called the normalized group of units of KG. It is easy to see that if
U(K) denotes the group of units of the ring K, then

U(KG) = V (KG)× U(K)

and that G is a subgroup of V (KG).
For g ∈ G let gG denote the conjugacy class of g in G. Let u =

∑
g∈G αgg ∈ KG.

For y ∈ G let νy(u) =
∑

g∈yG αg be the partial augmentation of u with respect to y.

Observe that νx(u) is the same for all x ∈ yG.

The element Tr(n)(u) =
∑

g∈G{n} αg ∈ K is called the nth generalized trace of

the element u (see [2, p. 2932]), where G{n} is the set of elements of order pn of G

where n is a non-negative integer and p is a prime. Clearly, Tr(0)(u) coincides with
ν1(u) = α1 of u ∈ KG.

Let K = Z, the ring of integers. Let u =
∑

g∈G αgg ∈ V (ZG) be a torsion unit,

that is, an element of finite order |u|. There are several connections between |u|,
the partial augmentations νg(u) (g ∈ G) and Tr(i)(u) for i = 0, 1, . . . , |u|. Such
a relationship was first obtained by Higman and Berman (see [2, p. 2932] or [14]),
namely that ν1(u) = 0 for a finite group G. More generally, it is also a consequence
of the Higman-Berman Theorem that νg(u) = 0 for every central element g of a finite
group G. The Higman-Berman Theorem was extended for arbitrary groups G by
Bass and Bovdi (see [2, Fact 1.2, p. 2932], [3, Proposition 8.14, p. 185], [4]). Note
that it is still an open question whether νg(u) = 0 for every central element g of an
arbitrary group G?
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The spectrum of a group is the set of orders of its torsion elements. A main unsolved
problem in the theory of integral group rings is the Spectrum Problem (SP) which
says that the spectra of G and V (ZG) coincide. A stronger version of SP was the
Zassenhaus Conjecture (ZC), which says that for a finite group G each torsion unit of
V (ZG) is rationally conjugate to an element of G. The ZC can also be reformulated
in terms of conditions on νg(u) for each torsion unit u ∈ V (ZG). A historical overview
of this topic may be found in the survey [13].

For certain finite groups G, the cornerstone for solving the ZC is the so-called
Luthar-Passi method introduced in [12]. Together with results such as [9, Proposition
5], [10, Proposition 3.1], [11, Proposition 2.2], [7] and (p, q)-character theory from [6],
the Luthar-Passi method provides ZC for certain groups G (see [13]) as well as a
counterexample to ZC (see [8]).

After the negative solution of the ZC a question asked by Bovdi (see [2, Fact 1.5,
p. 2932]) is gaining relevance. Is it true that if u is a torsion unit of ZG of order pn

where p is a prime and n is a positive integer, then Tr(i)(u) = 0 for all i < n and

Tr(n)(u) = 1?
Note that the above methods work exclusively only when G is finite. With the

exception of the Bass-Bovdi Theorem, there is no result which gives a restriction for
νg(u) where G is an infinite group and u is a torsion unit.

Recall that the Möbius function µ is defined on the set of positive integers as follows:
µ(1) = 1, µ(n) = 0 if n is divisible by the square of a prime, and µ(n) = (−1)` if

n =
∏`

i=1 pi where p1, . . . , p` are distinct primes.
Our first result is a new relation between partial augmentations of a torsion unit

of ZG where G is a finite group.

Theorem 1. Let u ∈ V (ZG) be a torsion unit of the integral group ring ZG of a
finite group G. Let k, n be positive integers such that k is coprime to the exponent
of G. If n and k are both congruent to 1 modulo |u|, then for every s ∈ G we have

νs(u) =
∑
r|t|n

µ(r) ·
( ∑

xG, ∃y∈G:

y(knr)/t=xk∼s

νx(u)
)
.

(1)

Formula (9), which is part of the proof of Theorem 1, may be of independent interest.
The proof of Theorem 1 also depends on the following result in which G is not
necessarily a finite group and u is not necessarily a unit.
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Theorem 2. Let u be an element of the integral group ring ZG of a group G. Let p
be a prime and q = q′ ·m a positive integer such that m is the p-part of q and q′ is
not divisible by p. For every s ∈ G we have

νs(u
q) ≡

∑
r|t|q′

µ(r) ·
( ∑

xG, ∃y∈G:

y
qr
t =xm∼s

νx(uq
′
)
)

(mod p).
(2)

In the special case when G is a finite group and u ∈ ZG is a torsion unit the main
result of Wagner (see [15]) could be compared with our Theorem 2.

Note that Theorem 2 may be applied to the case when u is a nilpotent element of
ZG with nilpotency index larger than q′.

Let G be a finite group. Let Q and C be the fields of rational and complex numbers
respectively. If e is an idempotent of CG, then ν1(e) ∈ Q and 0 < ν1(e) < 1 unless
e ∈ {0, 1} (see [17]). Furthermore, |νg(e)|2 ≤ |gG| · ν1(e) (see [16, Theorem 2,
p. 208]) and

∑m
i=1 |νi(e)|2/|aGi | ≤ 1, where {a1, . . . , am} is a set of representatives

of the conjugacy classes of G (see [9, Corollary 2.6, p. 2330]).
A consequence of Theorem 2 is a new relation between the partial augmentations

of an idempotent in QG where G is an arbitrary group.

Corollary 1. Let e be an idempotent of QG of a group G. Let β ∈ Z such that
u = βe ∈ ZG. Let p be a prime and q = q′ ·m a positive integer such that m is the
p-part of q and q′ is not divisible by p. If p does not divide β, then for every s ∈ G
we have

νs(u) ≡
∑
r|t|q′

µ(r) ·
( ∑

xG, ∃y∈G:

y
qr
t =xm∼s

νx(u)
)

(mod p).
(3)

Moreover, if G is finite and p > 4q′ · |β| · |G|3/2, then in (3) equality holds.

2. Proofs

Proof of Theorem 2. For elements x and y in G we write x ∼ y if x is conjugate to y.
Let s ∈ G. We wish to give an expression for νs(u

q). We need some notation.
Consider the set K = {(g1, . . . , gq) ∈ Gq | g1 · · · gq ∼ s}. There is a permutation π

acting on K by sending (g1, g2, . . . , gq) ∈ K to (g2, . . . , gq, g1) ∈ K. Let t be a positive
divisor of q. Let the union of those 〈π〉-orbits on K which have lengths dividing t be
denoted by

Kt = {(g1, . . . , gq) ∈ K | gi+t = gi for every i with 1 ≤ i ≤ q − t}

and let the union of orbits length t onK beK∗t . Observe thatK = Kq andKt = ∪r|tK∗r .
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Write u =
∑

g∈G αgg ∈ ZG. It is easy to see that

(4) νs(u
q) =

∑
(g1,...,gq)∈K

q∏
j=1

αgj =
∑
t|q

∑
(g1,...,gq)∈K∗t

q∏
j=1

αgj .

Since K∗t is the union of all 〈π〉-orbits of length exactly t, the multiplicity of each
summand in the sum

∑
(g1,...,gq)∈K∗t

∏q
j=1 αgj is divisible by t. Thus (4) provides

νs(u
q) ≡

∑
t|q
p-t

∑
(g1,...,gq)∈K∗t

q∏
j=1

αgj ≡
∑
t|q′

∑
(g1,...,gq)∈K∗t

q∏
j=1

αgj

≡
∑
t|q′

∑
(g1,...,gq)∈K∗t

( q′∏
j=1

αgj

)m
≡
∑
t|q′

∑
(g1,...,gq)∈K∗t

q′∏
j=1

αgj (mod p).

(5)

If f1 and f2 are two functions from Z to Z such that f1(t) =
∑

r|t f2(r), then f2(t) =∑
r|t µ(r)f1(t/r). This is the Möbius inversion formula (see [1, Theorem 2.9,p. 32]).
For positive integers t and r, put

f1(t) =
∑

(g1,...,gq)∈Kt

q′∏
j=1

αgj and f2(r) =
∑

(g1,...,gq)∈K∗r

q′∏
j=1

αgj .

The Möbius inversion formula then yields

(6)
∑

(g1,...,gq)∈K∗t

q′∏
j=1

αgj =
∑
r|t

µ(r)
∑

(g1,...,gq)∈Kt/r

q′∏
j=1

αgj .

Formulas (5) and (6) yield

νs(u
q) ≡

≡
∑
t|q′

(∑
r|t

µ(r)
∑

(g1,...,gq)∈Kt/r

q′∏
j=1

αgj

)
≡
∑
r|t|q′

µ(r) ·
( ∑

(g1,...,gq)∈Kt/r

q′∏
j=1

αgj

)

≡
∑
r|t|q′

µ(r) ·
( ∑

(g1,...,gq′ )∈Gq′

(g1···gt/r)qr/t=(g1···gq′ )m∼s

q′∏
j=1

αgj

)

≡
∑
r|t|q′

µ(r) ·
( ∑

xG, ∃y∈G:

yqr/t=xm∼s

νx(uq
′
)
)

(mod p).

�
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Proof of Theorem 1. Let s, p, q, q′ and m be as in Theorem 2. Let n = q′ and m = p.
By (2) of Theorem 2 we have

νs(u
np) ≡

∑
r|t|n

µ(r) ·
( ∑

xG, ∃y∈G:

ynpr/t=xp∼s

νx(un)
)

(mod p).
(7)

Let k be a positive integer coprime to the exponent e of G. Choose p such that p ≡ k
(mod e). There are infinitely many such primes by Dirichlet’s theorem on arithmetic
progressions [1, Chapter 7].

Since p ≡ k (mod e), in (7) we have y
npr
t = y

nkr
t and xp = xk. Moreover, unp = unk

by the Cohn-Livingstone Theorem [7, Corollary 4.1]. This yields

νs(u
nk) ≡

∑
r|t|n

µ(r) ·
( ∑

xG, ∃y∈G:

ynkr/t=xk∼s

νx(un)
)

(mod p).
(8)

The absolute value of every partial augmentation of G is at most
√
|G| (really

νy(x)2 ≤ |yG|) by [9, Corollary 2.3, p. 2329] or [5]. The number of summands on the
right-hand side of (8) is at most (2

√
n)2 · |G|. Choose p such that p > (2

√
n)2 · |G|3/2.

Since both sides of the congruence (8) have absolute value less than p,

νs(u
nk) =

∑
r|t|n

µ(r) ·
( ∑

xG, ∃y∈G:

y(knr)/t=xk∼s

νx(un)
)
.

(9)

If k and n are both congruent to 1 modulo |u|, then we get (1). �

Proof of Corollary 1. Let s, p, q, q′ and m be as in Theorem 2. Since ur = βr−1u, we

get νs(u
r) = νs(β

r−1u) = βr−1νs(u), where r ∈ {q, q′}. Theorem 2 gives

βq−q′νs(u) ≡
∑
r|t|q′

µ(r) ·
( ∑

xG, ∃y∈G:

yqr/t=xm∼s

νx(u)
)

(mod p).

Congruence (3) follows by observing that βq−q′ = (βm)q
′
β−q

′ ≡ 1 (mod p) since m is
a p-power.

The absolute value of the left-hand side of (3) is at most |β|·
√
|G| and the absolute

value of the right-hand side of (3) is at most (2
√
q′)2 ·|G|·|β|·

√
|G|, by [16, Theorem

2, p. 208]. If p > 4q′ · |β| · |G|3/2, then equality in (3) holds. �
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