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Abstract. Let G be the alternating group Alt(n) on n letters. We prove that
for any ε > 0 there exists N = N(ε) ∈ N such that whenever n ≥ N and A, B,

C, D are normal subsets of G each of size at least |G|1/2+ε, then ABCD = G.

1. Introduction

Given two subsets A,B of a group G we denote by AB the set of products ab
where a ∈ A, b ∈ B. A subset A of G is called normal if gAg−1 = A for all g ∈ G.
Clearly, a subset of G is normal if and only if it is a union of conjugacy classes.
Observe that if A and B are normal sets, then AB = BA.

The covering number of a nontrivial conjugacy class C of a finite nonabelian
simple group G is the minimum positive integer k such that Ck = G. Brenner [2]
showed that almost all conjugacy classes of the alternating group Alt(n) have cover-
ing number at most 4, and observed that there are classes with covering number 4,
for example the class of fixed-point-free involutions (see the penultimate paragraph
of the Introduction).

Larsen and Shalev [5, Theorem 1.13] proved that an element g of the symmetric
group Sym(n) satisfies (gSym(n))2 = Alt(n) with probability tending to 1 as n→ ∞.
(Here and throughout the paper xG denotes the conjugacy class of an element x in
a finite group G.) For a related result see [5, Theorem 1.20]. Larsen and Shalev also
proved [5, Theorem 1.14] that if n is sufficiently large, then any element g ∈ Sym(n)
with at most n/5 fixed points satisfies (gSym(n))4 = Alt(n).

In this paper we take a different approach, considering the product of possibly
distinct normal sets. Larsen, Shalev and Tiep [6] proved that if ε > 0 is a constant,
then for sufficiently large n the following holds: whenever A,B are two normal
subsets of G = Alt(n) of size larger than ε|G|, then AB contains every nontrivial
element of G, and they proved that the same holds for simple groups of Lie type
of bounded rank. In this context, a subset is large if it has size at least the size
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of G multiplied by a universal positive constant (less than 1). Observe that using
their result it is easy to see that, if A,B,C are large normal subsets of G, then
ABC = G. We are interested in studying largeness related to the size of G raised
to a constant γ.

Let G = Alt(n) be the alternating group on n letters. In [7, Theorem 1.3] it is
proved that there exists γ with 0 < γ < 1 such that whenever 8 normal subsets of
G have size at least |G|γ , their product is G. It was asked if the same holds with
less than 8 normal sets. In this paper we prove that the result holds for 4 normal
sets and that if γ is close to 1/2, then this is best possible.

Theorem 1.1. For any ε > 0 there exists N ∈ N such that whenever n > N and
A,B,C,D are normal subsets of G = Alt(n) such that all of the numbers |A||B|,
|A||C|, |A||D|, |B||C|, |B||D|, |C||D| are at least |G|1+ε, then ABCD = G.

In particular Theorem 1.1 applies to the case in which the four normal subsets
have size not less than |G|1/2+ε, improving [7, Theorem 1.3] in the case of alternating
groups. The question of whether there exists γ with γ < 1 such that, whenever
A,B,C are normal subsets of G = Alt(n) with |A|, |B|, |C| ≥ |G|γ , then ABC = G
is still open, however Theorem 1.1 goes in this direction, since one of the four classes
is allowed to be very small. If we interpret largeness in the sense of Larsen, Shalev
and Tiep, then the product of any three large normal sets equals G, as seen above.

Theorem 1.1 is best possible in the following sense. Let n be a multiple of 4, let
G = Alt(n) and let x be a fixed-point-free involution in G. Let C be the conjugacy
class of x in G. Then, using the fact that (n/3)n ≤ n! ≤ (n/2)n whenever n ≥ 6,
which can be easily deduced from Stirling’s inequalities, one may see that if n is
sufficiently large, then |C| = (n− 1)!! = (n− 1)(n− 3) · · · 3 · 1 ≥ (2/3)n|G|1/2. This
implies that |C| is arbitrarily close to |G|1/2 in the sense that for every ε > 0 there
exists N ∈ N such that |C| ≥ |G|1/2−ε for every n ≥ N . However, as shown by
Brenner in [2, Lemma 3.06], C3 6= G and C4 = G. See also [9].

The paper is organized as follows. In Section 2 we introduce a useful tool by
Dvir and Rodgers used to decide whether a product of two conjugacy classes of
Sym(n) contains the n-cycles, for n odd, and the (n− 1)-cycles, for n even, based
on the number of disjoint cycles of an element in each class (Theorem 2.1). We then
relate this to our context (Lemma 2.3). In Section 3 we recall known facts about
character sums and how to apply them to products of conjugacy classes. In Section
4 we recall how to compute character values for the symmetric and alternating
groups. In Section 5 we finish the proof of Theorem 1.1.

2. The δ of a conjugacy class

Given a conjugacy class C of Alt(n) or Sym(n), let δ(C) := n− t, where t is the
number of disjoint cycles of an element of C. Dvir [3] proved a fact reformulated by
Rodgers [8, Theorem 1.1(iii)], which we will state here a particular case of. Denote
the set of all n-cycles in Sym(n) by On, and denote the set of all (n− 1)-cycles in
Sym(n) by On−1. Observe that if C is a conjugacy class of Sym(n) contained in
Alt(n) then δ(C) is even.

Theorem 2.1. Let A, B be two conjugacy classes of Sym(n) contained in Alt(n).
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(1) If n is odd and δ(A) + δ(B) > n− 1, then On ⊆ AB.
(2) If n is even and δ(A) + δ(B) > n, then On−1 ⊆ AB.

Using Dvir’s results, Rodgers proved the following [8, Lemma 2.2]:

Lemma 2.2. O2
n = O2

n−1 = Alt(n) for every n.

Let G = Alt(n). In order to apply Theorem 2.1 in our context, we need to
translate the condition |C| ≥ |G|γ , for a conjugacy class C of G and a constant γ,
into a lower bound for δ(C). This is precisely what we do in the following lemma.

Lemma 2.3. For every γ and ε with 0 < γ < 1 and 0 < ε < 1 there exists N ∈ N

such that for every n ≥ N , whenever x ∈ G = Alt(n) satisfies |xG| ≥ |G|γ , then
δ(xG) > (γ − ε)n.

Proof. Let γ and ε be arbitrary positive real numbers less than 1. Choose ε1 with
0 < ε1 < ε/(1 − γ + ε), and observe that ε1 < 1. Let x ∈ G = Alt(n) be such
that |xG| ≥ |G|γ . Let ri be the number of i-cycles in the cycle structure of x for
i = 1, . . . , t, where t is a fixed positive integer such that

1

2
ε1(1− γ + ε) <

1

t+ 1
< ε1(1− γ + ε).

Set s :=
∑t
i=1 ri. The number of disjoint cycles of x is at most n/(t+ 1) + s, thus

δ(xG) ≥ n− n

t+ 1
− s > n− ε1(1− γ + ε)n− s.

In order to prove the lemma, it is sufficient to show that s < n(1 − ε1)(1 − γ + ε)
for every sufficiently large n.

Observe that we may assume that s is not bounded above by a fixed universal
constant. In particular we assume that s > 3t.

By plugging x1 = . . . = xt = 1 into the well-known identity of multinomial
coefficients

(x1 + · · ·+ xt)
s =

∑

k1+...+kt=s

s!

k1! · · · kt!

t
∏

i=1

xkii ,

we obtain s!/ts ≤
∏t
i=1 ri!.

An easy application of Stirling’s inequality gives s! ≥ (s/3)s. Since γ > 0 and

|xG| ≥ |G|γ , x is not the identity and so
∏t
i=1 ri! ≤ |CG(x)| ≤ |G|1−γ . We obtain

(s/3t)s ≤ s!/ts ≤
t
∏

i=1

ri! ≤ |CG(x)| ≤ (n!/2)1−γ < nn(1−γ).

Taking natural logarithms we obtain s log(s/3t) < n (1− γ) log(n). Since s > 3t,
we obtain

s < n(1− γ)
log(n)

log(s/3t)
.

Let

A := {(n, s) ∈ N× N : ∃x ∈ G : |xG| ≥ |G|γ and s ≥ n(1− ε1)(1− γ + ε)}.
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In order to prove the result, it is enough to show that A is finite. Assume by
contradiction that A is infinite. Observe that, if (n, s) ∈ A, then

log(n)

log(s/3t)
=

log(n)

log(s)− log(3t)
≤ log(n)

log(n) + log((1− ε1)(1− γ + ε))− log(3t)
.

It follows that log(n)/ log(s/3t) tends to 1 as (n, s) ∈ A and n goes to infinity, since
ε1, γ, ε and t are fixed.

Since ε(1−ε1)
1−γ > ε

1−γ+ε > ε1, there exists ε2 such that 0 < ε2 <
ε(1−ε1)
1−γ − ε1. If

(n, s) ∈ A and n is sufficiently large, we have log(n)/ log(s/3t) ≤ 1 + ε2, therefore

s < n(1− γ)(1 + ε2) < n(1− γ)

(

1 +
ε(1− ε1)

1− γ
− ε1

)

= n(1− ε1)(1− γ + ε).

This contradicts the fact that (n, s) ∈ A. �

3. Background on character sums

Let Irr(G) denote the set of irreducible complex characters of a finite group G.

If A,B are conjugacy classes of G we are interested to know which conjugacy
classes the normal set AB contains. Fix a ∈ A, b ∈ B, g ∈ G. Then [1, page 43]
gives

|{(x, y) ∈ A×B : xy = g}| = |A||B|
|G|





∑

χ∈Irr(G)

χ(a)χ(b)χ(g)

χ(1)



 .

It follows that the conjugacy class of g in G is contained in the normal set AB if
and only if

(1)
∑

χ∈Irr(G)

χ(a)χ(b)χ(g)

χ(1)
6= 0.

Assume G is the alternating group Alt(n). The strategy to show that condition (1)
holds will often be the following: first, we separate the contribution of the trivial
character in the sum, which is 1, then we show that the remaining part tends to 0
when n tends to infinity. This implies that in this case condition (1) holds when n
is sufficiently large.

4. Background on characters of Alt(n)

In this section we review some basic facts about the characters of the alternating
and symmetric groups. Everything here may be found in [4, Chapter 2].

A partition λ = (λ1, . . . , λt) of n is a sequence of positive integers λ1 ≥ . . . ≥ λt
such that λ1 + · · ·+ λt = n. The partitions of n correspond bijectively to the cycle
structures of the elements of Sym(n) and to the Young diagrams of size n. Each
partition λ of n determines uniquely a complex irreducible character χλ of Sym(n),
and these are precisely the complex irreducible characters of Sym(n). We will use
the well-known Murnaghan-Nakayama rule to compute character values, and the
well-known hook length formula to compute character degrees.
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We define l to be n if n is odd and n − 1 if n is even. An l-hook will be a
hook of length l. An immediate consequence of the Murnaghan-Nakayama rule is
the following. Assume that λ is a partition of n and g ∈ Sym(n) is an l-cycle. If
λ contains an l-hook then χλ(g) = (−1)k where k is the leg length of the unique
l-hook of λ. If λ does not contain an l-hook, then χλ(g) = 0.

Before describing the irreducible complex characters of Alt(n) we introduce a no-
tation. The conjugacy class of an element g of Alt(n) may or may not be equal to
its conjugacy class in Sym(n). If it is (resp. if it is not), we call g a non-exceptional
(resp. exceptional) element, the conjugacy class of g a non-exceptional (resp. ex-
ceptional) class and the cycle type of g a non-exceptional (resp. exceptional) cycle
type. Since partitions of n correspond bijectively to cycle types, we may also talk
about exceptional and non-exceptional partitions. Recall that an element of Alt(n)
is exceptional if and only if the lengths of the cycles in its disjoint cycle decom-
position are odd and pairwise distinct (including 1-cycles), and that the conjugacy
class in Sym(n) of an exceptional element is the union of precisely two conjugacy
classes of Alt(n) of equal size. An important example of an exceptional element is
given by any l-cycle, where l is defined in the previous paragraph.

The irreducible complex characters of Alt(n) are described as follows. Let λ be
a partition of n. Denote by λ′ the partition adjoint to λ, obtained by reflecting
its Young diagram through the main diagonal. The partition λ is said to be self-
adjoint if λ = λ′. If λ 6= λ′, then the restriction of the character χλ to Alt(n) is
an irreducible character of Alt(n), which we denote by ψλ. Clearly, ψλ = ψλ′ in
this case. If λ = λ′, then the restriction of the character χλ to Alt(n) is the sum of
two irreducible characters ψ+

λ , ψ
−

λ of Alt(n). Every irreducible complex character

of Alt(n) is of the form ψλ where λ is a non-self-adjoint partition or ψ±

λ where λ is
a self-adjoint partition.

Given a self-adjoint partition λ of n, denote by h(λ) the partition whose parts
are the lengths of those hooks of λ whose heads are in the main diagonal. Observe
that h(λ) is an exceptional partition. For example, if λ is a self-adjoint hook, then
h(λ) is the partition (n).

Let λ be a partition of n and let x ∈ Alt(n). If λ 6= λ′, then ψλ(x) = χλ(x).
If λ = λ′ and the cycle type of x is not h(λ), then ψ±

λ (x) = χλ(x)/2. If λ = λ′

and the cycle type of x is h(λ), then x is an exceptional element, hence there exists
y ∈ Sym(n) which is conjugate to x in Sym(n) but not in Alt(n). Let hλii be the
length of the hook in λ with head in position (i, i). We have

ψ±

λ (x) =
1

2



χλ(x)±
√

χλ(x)
∏

i

hλii



 , ψ±

λ (y) =
1

2



χλ(y)∓
√

χλ(y)
∏

i

hλii



 .

An important consequence for us is the following. Let l be n if n is odd and
n − 1 if n is even and let x be an l-cycle. Let λ be a partition of n. If λ does not
contain an l-hook, then ψλ(x) = 0. Assume λ contains an l-hook. Observe that in
this case λ contains a unique l-hook. If λ 6= λ′, then ψλ(x) = χλ(x) = (−1)k where
k is the leg length of the l-hook contained in λ. If λ = λ′, then |ψ±

λ (x)| ≤
√
n.
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5. Proof of Theorem 1.1

In this section we prove Theorem 1.1. First we need a list of technical lemmas.

The following is a special case of [5, Theorem 1.2].

Theorem 5.1 (Larsen, Shalev). If σ ∈ Sym(n) has at most no(1) cycles of length
at most 5, then |χ(σ)| ≤ χ(1)1/5+o(1) for every complex irreducible character χ of
Sym(n).

This theorem will be applied in the special case when σ is an exceptional element
in Sym(n), and χ = χλ, where λ is a partition containing an n-hook for n odd and
an (n− 1)-hook for n even.

Let l be n if n is odd and n− 1 if n is even.

Lemma 5.2. Let n ≥ 9 and let G = Alt(n). Let ψ ∈ Irr(G) be a nontrivial
character associated to a partition λ of n containing an l-hook. Either ψ(1) ≥
n(n− 3)/2 or n is odd, ψ is equal to the restriction of χλ to G where λ = (n− 1, 1)
and ψ(1) = n− 1. Moreover if λ = λ′, then ψ(1) ≥ 2n−2/n2.

Proof. Since ψ is nontrivial, both λ and λ′ are different from (n). Let λ = λ′. The
hook length formula implies

ψ(1) =











1
2

(

n
n/2

) (n/2−1)2

n−1 if n is even,

1
2

(

n−1
(n−1)/2

)

if n is odd.

It follows that ψ(1) ≥ n(n − 3)/2 for n ≥ 9. In any case ψ(1) ≥ 2n−2/n2. Now
let λ 6= λ′. Let k ≥ 1 be the leg length of the unique l-hook contained in λ. We
will use the hook length formula to compute ψ(1). If n is odd, then ψ(1) =

(

n−1
k

)

.

This is either n− 1 or at least
(

n−1
2

)

. Let n be even. Without loss of generality, k
satisfies 1 ≤ k ≤ n/2− 1 and

ψ(1) = d(n, k) :=

(

n

k + 1

)

k(n− k − 2)

n− 1
.

We claim that d(n, k) ≥
(

n−1
2

)

. Observe that if k ≥ 3 we have k(n− k− 2) ≥ n− 3
whenever n ≥ 6, hence d(n, k) ≥ d(n, 1), and if n ≥ 8 then

d(n, 1) ≤ d(n, 2) ≤ d(n, 3).

This implies that if n ≥ 8 then, for any k between 1 and n/2−1, we have d(n, k) ≥
d(n, 1) = n(n− 3)/2. �

Denote the set of all l-cycles in Sym(n) by Ol.

Lemma 5.3. Let A and B be conjugacy classes of G = Alt(n), and let n be
sufficiently large.

(1) If A and B are exceptional classes, then AB contains Ol.
(2) If A and B are classes of l-cycles, then AB contains every exceptional class.
(3) If A is a class of l-cycles, then OlA = G.
(4) The product of any three classes of l-cycles equals G.
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Proof. We prove part (1). Assume A and B are exceptional classes ofG and letD be
the conjugacy class in G of an l-cycle. Let x ∈ A, y ∈ B, and g ∈ D. Let ψ ∈ Irr(G)
be arbitrary, and let λ be the partition of n associated to ψ. Then ψ(g) = 0, unless
the Young diagram of λ contains an l-hook, by Section 4. Therefore, it is enough
to show that (cf. Section 3) the rational number

Σ :=
∑

ψ

ψ(x)ψ(y)ψ(g)

ψ(1)

tends to 0 as n tends to infinity, where the sum is over the nontrivial irreducible
characters of G corresponding to partitions containing an l-hook. Let z be any of
x, y, or g. For such characters ψ we have |ψ(z)| ≤ |χλ(z)|, unless λ is self-adjoint
and z is an l-cycle. Let λ be self-adjoint, and assume z is an l-cycle. We have

|ψ(z)| ≤ √
n, which is at most ψ(1)

o(1)
as n → ∞ by Lemma 5.2. Since x, y, g are

exceptional elements, we obtain the following by Theorem 5.1 and Lemma 5.2 for
n sufficiently large.

|Σ| ≤
∑

ψ

∣

∣

∣

ψ(x)ψ(y)ψ(g)

ψ(1)

∣

∣

∣
=

∑

ψ

|ψ(x)||ψ(y)||ψ(g)|
ψ(1)

≤
∑

ψ

ψ(1)−3/5+o(1)

≤ (n− 1)−3/5+o(1) + n

(

n(n− 3)

2

)−3/5+o(1)

,

where the sums are over the nontrivial irreducible characters ψ of G associated to
partitions containing an l-hook. Therefore |Σ| tends to 0 as n→ ∞.

We prove part (2). Assume A, B are classes of l-cycles and C is any exceptional
class. We need to show that C ⊆ AB. Since the conjugacy class B−1 of the inverse
of an element of B is an exceptional class, A ⊆ CB−1 by part (1). Fix a ∈ A.
There exist b ∈ B, c ∈ C such that a = cb−1, so that c = ab ∈ AB. Since C is the
conjugacy class of c and AB is a normal set, C ⊆ AB follows.

We prove part (3). Let A be a class of l-cycles. Then, since OlOl = G (by Lemma
2.2), OlA contains a representative of every conjugacy class of Sym(n), therefore
OlA contains every non-exceptional class. On the other hand, Ol contains a class
of G consisting of l-cycles, hence OlA also contains every exceptional class by part
(2). It follows that OlA = G.

We prove part (4). Let A,B,C be classes of l-cycles. Then AB contains Ol by
part (1), so ABC = G by part (3). �

Lemma 5.4. Let A,B be conjugacy classes of G = Alt(n). If neither A nor B is
contained in Ol and AB contains an l-cycle, then AB contains Ol.

Proof. Let x ∈ A, y ∈ B. Choose two nonconjugate l-cycles d1, d2 of G such that
d1 ∈ AB. We need to show that d2 belongs to AB. Let

ai :=
∑

ψ∈Irr(G)

ψ(x)ψ(y)ψ(di)

ψ(1)
.

As explained in Section 3, the fact that d1 ∈ AB is equivalent to saying that a1 6= 0.
We need to show that a2 6= 0. We will show that a1 = a2.
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Section 4 implies that in the formula that defines ai the summation can be
done only over those ψ which are labelled by partitions containing an l-hook. If
λ is not a self-adjoint partition containing an l-hook, then there is precisely one
irreducible character ψ of G associated to λ and the corresponding summand is
the same in a1 and in a2. Assume now that λ = λ0 is the unique self-adjoint
partition of n containing an l-hook, so that the restriction of χλ0

to G is a sum of
two irreducible characters ψ+

λ0
and ψ−

λ0
. Since x, y, 1 are not of cycle type h(λ0),

we have ψ+
λ0
(x) = ψ−

λ0
(x), ψ+

λ0
(y) = ψ−

λ0
(y) and ψ+

λ0
(1) = ψ−

λ0
(1). It follows that

a1 − a2 =
ψ+
λ0
(x)ψ+

λ0
(y)

ψ+
λ0
(1)

·
(

ψ+
λ0
(d1) + ψ−

λ0
(d1)− ψ+

λ0
(d2)− ψ−

λ0
(d2)

)

.

The second factor equals χλ0
(d1)− χλ0

(d2), which is equal to 0 since d1 and d2 are
conjugate in Sym(n). �

Lemma 5.5. Let ε > 0. There exists N ∈ N such that the following holds for every
n ≥ N : whenever A and B are conjugacy classes of G = Alt(n) not contained in
Ol and |A||B| ≥ |G|1+ε, then AB ⊇ Ol.

Proof. If both A and B are exceptional, then the result follows from Lemma 5.3(1).
Assume without loss of generality that A is non-exceptional. Let B′ be the conju-
gacy class of Sym(n) containing B. We claim that AB′ ⊇ Ol. Write |A| = |G|γ1 ,
|B| = |G|γ2 , so that 0 < γi < 1 for i = 1, 2 and γ1 + γ2 ≥ 1+ ε. Lemma 2.3 implies
that if n is large enough, then δ(A) > n(γ1−ε/2) and δ(B) > n(γ2−ε/2), therefore

δ(A) + δ(B′) = δ(A) + δ(B) > n(γ1 + γ2 − ε/2− ε/2) ≥ n(1 + ε− ε) = n,

which implies that AB′ contains Ol by Theorem 2.1. We may assume that B′

properly contains B, that is, B is an exceptional class. Since AB′ contains Ol, the
normal set AB contains an l-cycle, hence AB contains Ol by Lemma 5.4. �

Lemma 5.6. Theorem 1.1 holds in the case when A, B, C, D are conjugacy classes.

Proof. Let l be n if n is odd and n−1 if n is even. If at least three of the classes A,
B, C, D consist of l-cycles, then the result follows from Lemma 5.3(4). Therefore
we may assume that A and B are not classes of l-cycles, so that Ol ⊆ AB by Lemma
5.5. If any of C,D is a class of l-cycles, then the result follows from Lemma 5.3(3)
and if C and D are not classes of l-cycles, then the result follows from Lemma 5.5
and Lemma 2.2. �

Proof of Theorem 1.1. Let |A| = |G|a, |B| = |G|b, |C| = |G|c, |D| = |G|d. For any
γ > 0 there exists N = N(γ) ∈ N such that whenever n > N , any normal subset S
of G of size at least |G|γ contains a conjugacy class of G of size at least |G|γ−ε/3
by [7, Lemma 4.2]. Applying this for n > max{N(a), N(b), N(c), N(d)} and for
(S, γ) = (A, a), (B, b), (C, c), (D, d) we obtain that there exist conjugacy classes
A0, B0, C0, D0 ofG contained in A, B, C, D respectively, such that |A0| ≥ |G|a−ε/3,
|B0| ≥ |G|b−ε/3, |C0| ≥ |G|c−ε/3 and |D0| ≥ |G|d−ε/3. The hypotheses of Theorem
1.1 hold for A0, B0, C0, D0 with the constant ε/3. Hence ABCD ⊇ A0B0C0D0 = G
by Lemma 5.6. �
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