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Dedicated to the memory of Ervin Fried

Abstract. It is shown that the Huq and the Smith commutators
do not coincide in the variety of near-rings.

1. Introduction

As the title shows, the paper is devoted to commutators of ideals
(normal subobjects) in the variety (category) of near-rings, and its
main purpose is to present a counter-example, due to the third named
author, showing that, in the case of near-rings, the Huq and the Smith
commutators need not coincide. For readers less familiar with these
commutators, let us recall:

What we call the Huq commutator is a category-theoretic concept
introduced by Huq [10]. In the case of a semi-abelian [12] variety C of
universal algebras, such as the varieties of groups, rings or near-rings,
it can be defined as follows: Given X in C and normal subalgebras
A and B of X, the Huq commutator [A,B]H is the smallest normal
subalgebra C of X such that the canonical homomorphism A ∗ B →
X/C factors through the canonical homomorphism A ∗ B → A × B.
Briefly, the existence of such a factorization means that the canonical
homomorphism A × B → X/C is well defined. Here A ∗ B stands for
the free product (in categorical terms, the coproduct or sum) of A and
B.

The Smith commutator is a concept originally introduced by Smith
[15] for congruences in a Mal’tsev (that is, congruence permutable)
variety. Together with its various generalizations this notion is well
known not only in universal algebra but also in category theory (see
e.g. [13] and references therein). In the formulation given in [11], for
an algebra X in a Mal’tsev variety with Mal’tsev term p(x, y, z) and
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2 G. JANELIDZE, L. MÁRKI, AND S. VELDSMAN

two congruences α and β on X, the commutator [α, β]S is the smallest
congruence on X for which the function

p : {(x, y, z) | (x, y) ∈ α and (y, z) ∈ β} → X/[α, β]S

sending (x, y, z) to the [α, β]S-class of p(x, y, z) is a homomorphism.

When X belongs to a semi-abelian variety C (and in some more
general situations), there is a one-to-one correspondence between the
normal subalgebras and the congruences on X. Therefore, for nor-
mal subalgebras A and B of X and their corresponding congruences α
and β on X, one would expect that the congruence corresponding to
[A,B]H coincides with the Smith commutator [α, β]S. However, this
is not the case in general, which, in a sense, is already suggested by
the commutator constructions of Higgins [9]; the first explicit counter-
example (‘digroups’: two independent group structures on the same
set with the same identity element) was constructed much later in a
joint work of the first named author and Bourn (unpublished, but later
mentioned, first in [3], in the form of an observation on change-of-base
functors for split extensions). Another counter-example (loops) was
given recently by Hartl and van der Linden [8]. The question of when
these two commutators coincide, is of sufficient importance to justify
a condition “Smith = Huq” in universal algebra around which several
theories have been developed, see for example [14].

Let us recall that a near-ring N is a system N = (N, 0,+,−, ·) in
which (N, 0,+,−) is a group (not necessarily commutative), (N, ·) is
a semigroup (with x · y written as xy), and the right distributive law
(x+y)z = xy+xz holds. Notice that 0x = 0 is an identity in near-rings
but x0 = 0 need not be valid. In the semi-abelian variety of near-rings
the normal subalgebras are called ideals, and A C N if and only if A
is a subgroup of (N, 0,+,−) with an and n(a + m) − nm in A for all
a ∈ A and n,m ∈ N . The next two sections give more information on
these two commutators for near-rings, while the last section presents
our counter-example.

Throughout this paper N denotes a near-ring, A and B ideals of N ,
and α and β the corresponding congruences. Furthermore, we shall
write [A,B]H for the Huq commutator of A and B and [A,B]S for the
ideal corresponding to the Smith commutator [α, β]S.

2. The Huq commutator for near-rings

Apart from the two commutator operations we are interested in, we
introduce two more operations on ideals, namely:
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[A,B]G, the ideal of N generated by the usual group-theoretic com-
mutator of A and B considered as subgroups of the additive group of
N ; that is, [A,B]G is the ideal of N generated by the set

{a+ b− a− b | a ∈ A, b ∈ B}.
A •B, the ideal of N generated by the set

{a(b+ a′)− aa′ | a, a′ ∈ A and b ∈ B}.
For our ideals A and B, [A,B]H is the smallest ideal of N for which

the canonical map θ0 : A × B → N/[A,B]H is a near-ring homomor-
phism; the subscript 0 indicates here that we are dealing with ideals,
that is, with congruence classes of 0; later we shall deal with congru-
ences themselves. The homomorphism θ0 must send elements of the
form (a, 0) and (0, b) to the classes of a and b, respectively, and so

θ0(a, b) = a+ b+ [A,B]H ,
as follows from (a, b) = (a, 0) + (0, b). This formula gives easily:

Theorem 1. [A,B]H = [A,B]G ∨ (A • B) ∨ (B • A) in the lattice of
sub-near-rings of N (or, equivalently, in the lattice of ideals of N).
That is, [A,B]H is the ideal of N generated by all elements of the form
a+ b− a− b, a(b+ a′)− aa′ and b(a+ b′)− bb′, where a and a′ are in
A, and b and b′ are in B.

Proof. Just observe that:
– the map θ0 preserves addition if and only if [A,B]G ⊆ [A,B]H ;
– the map θ0 preserves multiplication if and only if

aa′ + bb′ − (a+ b)(a′ + b′)

is in [A,B]H for all a, a′ ∈ A and b, b′ ∈ B;
– these relations hold since θ0 is a homomorphism;
– as follows from the right distributive law and the fact that [A,B]H

is an ideal in N containing [A,B]G, for all a, a′ ∈ A and b, b′ ∈ B,
aa′ + bb′− (a+ b)(a′ + b′) is in [A,B]H if and only if so are all elements
of the form a(b+ a′)− aa′ and b(a+ b′)− bb′. �

3. The Smith commutator for near-rings

As experience with the Smith commutator theory shows, and as
even suggested, in a sense, by classical affine geometry (see e.g. [7]),
the suitable congruence counterpart of the map θ0 is the map

θ : {(x, y, z) ∈ N3 | x− y ∈ A and y − z ∈ B} → N/[A,B]S (3.1)

defined by θ(x, y, z) = x − y + z where [A,B]S is the smallest ideal
of N for which θ is a near-ring homomorphism. This gives a simple
characterization of the Smith commutator, perfectly analogous to the
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definition of the Huq commutator, and explicitly mentioned in [11]
(referring to [13]) in a more general context.

The next theorem will be a counterpart of Theorem 1. In order to
formulate it, we introduce two more operations on ideals A,B,C and
D of N ; this time a ternary and a quaternary operation, respectively:

– C(A,B,C) is the ideal of N generated by the set

{a(b+ c)− ac | a ∈ A, b ∈ B, c ∈ C};
note that C(A,B,A) = A •B.

– C ′(A,B,C,D) is the ideal of N generated by the set

{a(b+ c+ d)− a(c+ d) + ad− a(b+ d) | a ∈ A, b ∈ B, c ∈ C, d ∈ D}.

Theorem 2. [A,B]S = [A,B]G∨C(A,B,N)∨C(B,A,N)∨C ′(N,A,B,N)
in the lattice of sub-near-rings of N (or, equivalently, in the lattice of
ideals of N). That is, [A,B]S is the ideal of N generated by all elements
of the forms

a+b−a−b, a(b+x)−ax, b(a+x)−bx, x(a+b+y)−x(b+y)+xy−x(a+y)
(3.2)

where a ∈ A, b ∈ B and x, y ∈ N .

Proof. We begin as in the proof of Theorem 1. Being a homomorphism,
θ preserves addition and multiplication. Preservation of addition is
equivalent to [A,B]G ⊆ [A,B]S or, in other words, that all elements of
the form a + b − a − b with a ∈ A and b ∈ B are in [A,B]S. Next, θ
preserves multiplication if and only if [A,B]S contains all elements of
the form

xx′ − yy′ + zz′ − (x− y + z)(x′ − y′ + z′) (3.3)

with x− y and x′− y′ in A and y− z and y′− z′ in B. Denoting x− y,
x′ − y′, y− z and y′ − z′ by a, a′, b and b′, respectively, we can rewrite
(3.3) as

(a+ b+ z)(a′ + b′ + z′)− (b+ z)(b′ + z′) + zz′− (a+ z)(a′ + z′), (3.4)

and then, using the right distributive law, as

a(a′ + b′ + z′) + b(a′ + b′ + z′) + z(a′ + b′ + z′)− z(b′ + z′)− b(b′ + z′)

+zz′ − z(a′ + z′)− a(a′ + z′). (3.5)

We need to show that given a congruence ∼ on N with a + b ∼ b + a
for all a in A and b in B, all elements of the forms (3.2) are congruent
to 0 if and only if so are all elements of the form (3.5).

“If”: Just note that in the cases a′ = b = z = 0, a = b′ = z = 0, and
a = b = 0, the expression (3.5) reduces to a(b′+z′)−az′, b(a′+z′)−bz′,
and z(a′ + b′ + z′)− z(b′ + z′) + zz′ − z(a′ + z′), respectively.
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“Only if”: Assuming that all elements of the forms (3.2) are congru-
ent to 0, we have:

a(a′ + b′ + z′) + b(a′ + b′ + z′) + z(a′ + b′ + z′)− z(b′ + z′)− b(b′ + z′)

+zz′ − z(a′ + z′)− a(a′ + z′)

∼ a(a′ + b′ + z′) + b(a′ + b′ + z′)− b(b′ + z′) + z(a′ + b′ + z′)

−z(b′ + z′) + zz′ − z(a′ + z′)− a(a′ + z′)

(since z(a′ + b′ + z′)− z(b′ + z′) is in A and −b(b′ + z′) is in B,

whence these elements commute up to [A,B]G)

∼ a(a′ + b′ + z′) + b(a′ + b′ + z′)− b(b′ + z′)− a(a′ + z′)

(since z(a′ + b′ + z′)− z(b′ + z′) + zz′ − z(a′ + z′) ∼ 0)

∼ a(a′ + b′ + z′)− a(a′ + z′) (since b(a′ + b′ + z′)− b(b′ + z′) ∼ 0)

∼ 0.

�

4. Huq 6= Smith

As mentioned in the Introduction, the purpose of this section is
to give an example of a near-ring N with ideals A and B for which
[A,B]S 6= [A,B]H . Since the inclusion [A,B]H ⊆ [A,B]S (trivially)
holds in general, inequality here means strict inclusion.

Example. We take N = Ψ, the near-ring constructed in [16] using
an idea of Betsch and Kaarli [1]. Its underlying group is M3 = M ×
M ×M where M is any abelian group with a nonzero proper subgroup
K, and its multiplication is defined by

(m1,m2,m3)(n1, n2, n3) =

{
(m2, 0, 0) if n2 6= 0 6= n3

(0, 0, 0) otherwise.

We then take A = M ×K × {0} = {(m1,m2,m3) ∈M3 | m2 ∈ K and
m3 = 0} and B = M × {0} ×M = {(m1,m2,m3) ∈ M3 | m2 = 0}.
Then:

– [A,B]G = {0} since M3 is an abelian group.
– C(A,B,N) = K × {0} × {0} = {(m1,m2,m3) ∈M3 | m1 ∈ K and

m2 = 0 = m3}. Indeed, on the one hand, C(A,B,N) ⊆ K×{0}×{0} by
the definition of multiplication in N , and, on the other hand, for every
non-zero k ∈ K, we have (k, 0, 0) = (0,−k, 0)[(0, 0, k) + (0, k,−k)] −
(0,−k, 0)(0, k,−k) ∈ C(A,B,N), and also C(A,B,A) = K×{0}×{0}.

– C(B,A,N) = {0} × {0} × {0}, since bx = 0 for every b ∈ B and
every x ∈ N , and also C(B,A,B) = {0} × {0} × {0}.

– C ′(N,A,B,N) = M × {0} × {0} = {(m1,m2,m3) ∈ M3 | m2 =
m3 = 0}. Indeed, on the one hand xy ∈ M × {0} × {0} for every
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x and y in N , making the inclusion C ′(N,A,B,N) ⊆ M × {0} × {0}
obvious; on the other hand, for every non-zero m ∈ M , we choose
any non-zero k ∈ K, and we have (m, 0, 0) = (0,m, 0)[(0, k, 0) +
(0, 0,m) + (0, 0, 0)] − (0,m, 0)[(0, 0,m) + (0, 0, 0)] + (0,m, 0)(0, 0, 0) −
(0,m, 0)[(0, k, 0) + (0, 0, 0)] ∈ C ′(N,A,B,N).

Therefore [A,B]S = M × {0} × {0}, by Theorem 3. At the same
time, using Theorem 1 and the calculation above, we obtain

[A,B]H = [A,B]G ∨ (A • B) ∨ (B • A) = [A,B]G ∨ C(A,B,A) ∨
C(B,A,B) = K × {0} × {0}.

That is, [A,B]H 6= [A,B]S, as desired.

Remarks. (a) Obviously, the same (counter-)example can be used
in any full subcategory C of the category of near-rings closed under
finite products, subobjects and quotient objects, containing the above
near-ring N (for at least one M). Moreover, if we allow the ground
category to be homological in the sense of [2], then the same applies
to, say, all sub-quasi-varieties of the variety of near-rings.

(b) In particular, we can take C in (a) to be the category of all
finite near-rings (using a finite abelian group M); the category of zero-
symmetric near-rings, that is, those near-rings X in which x0 = 0 for
every x ∈ X; the variety of near-rings in which the constants form
an ideal, cf. [4] or [5]; or we could even require all near-rings to have
commutative addition, and/or to satisfy the identity xyz = 0.

(c) As mentioned in the example above, we have xy ∈M×{0}×{0}
for every x and y in N , which implies [N,N ]S ⊆M ×{0}×{0} (which
is in fact equality, since we know that [A,B]S = M×{0}×{0}). On the
other hand, xy = (0, 0, 0) = 0 for every x ∈ N and y ∈M ×{0}× {0},
which implies [N,M×{0}×{0}]S = 0. This shows that N is a nilpotent
object of class 2.

(d) We do not fully understand the role and behaviour of the oper-
ations •, C and C ′; further investigations, including comparisons with
weighted commutators [6], may yield here more information.
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