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Abstract. In this paper we investigate connections in the behaviour of a ring and
the polynomial rings over it with respect to a given radical.

1. Introduction

In this paper all rings are associative, not necessarily with an identity. Let A be
a ring and X be a (possibly infinite) set of commuting indeterminates over A. We
will consider the polynomial ring A[X] over A; if X = {x} then we write A[x] in
place of A[{x}]. Marks [8] called a ring NI if the set of its nilpotent elements is an
ideal. Smoktunowicz [10] constructed an NI ring over which the polynomial ring is
not NI. Han, Lee and Yang [6] called a ring polynomial NI if R[X] is NI for every
finite set X of commuting indeterminates, and investigated NI and polynomial NI
rings. Our aim in the present paper is to extend a part of their results from N to
an arbitrary radical R in the sense of Kurosh and Amitsur.

For undefined notions and basic results in radical theory we refer to [4]. The
semisimple class of a radical class R will be denoted by SR.

2. Definitions and Examples

DEFINITION 1. For an arbitrary radical R, a ring A is said to be RI if R(A)
contains all subrings S ⊆ A such that S ∈ R, and R-reduced if it has no non-zero
subring S such that S ∈ R. (If R is the nil radical then the R-reduced rings are
exactly the reduced rings.) Denote by R∗(A) the sum of all subrings S ⊆ A such
that S ∈ R.

The following can be considered as a reformulation of an observation of Mc-
Connell [9, Proposition 1.2] (see conditions (ii) and (iii) there), so we give it here
without proof.
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PROPOSITION 1 (cf. [9, Proposition 1.2]). For a ring A and a radical R, the
following are equivalent.

(i) A is an RI ring.
(ii) R(A) = R∗(A).
(iii) A/R(A) is an R-reduced ring. �

DEFINITION 2. A ring A is said to be polynomial RI if A[X] is RI for every finite
set X of commuting indeterminates.

Clearly, if A[X] is RI for a finite set X and Y is a subset of X then A[Y ] is also
RI. In particular, if a ring A is polynomial RI for a radical R then A is RI.

Next we present examples of RI rings and polynomial RI rings.

NOTATION. The following symbols will be used:
B is the Baer (prime) radical,
L is the Levitzki radical,
N is the Köthe (nil) radical,
J is the Jacobson radical,
G is the Brown–McCoy radical.

It is well known that B ⊂ L ⊂ N ⊂ J ⊂ G, where all inclusions are strict.

Example 1. Every zero ring A0 is polynomial RI for any radical R.

Indeed, let S0 ⊆ A0, S0 ∈ R. Since S0 / A0, we have S0 ⊆ R(A0). Thus we
obtain R∗(A0) ⊆ R(A0), so A0 is an RI ring by Proposition 1. Next, for any finite
set X and any natural number n, A0[X] is also a zero ring, hence it is an RI ring,
and thus A0 is a polynomial RI ring.

Recall that a radical R is said to be strict if, for every ring A, R(A) contains all
subrings S ⊆ A such that R(S) = S. Clearly, a radical R is strict if and only if
every ring A is RI.

Example 2. For a strict radical R, every ring A is polynomial RI. In particular,
this holds for any A-radical R in the sense of Gardner [3].

Indeed, if X is a finite set of commuting indeterminates and R(S) = S ⊆ A[X],
then S ⊆ R(A[X]) by the strictness of R.

Example 3. Let Q be the rational number field and U(Q) be the upper radical of
Q (the largest radical for which Q is semisimple). Let R be any radical such that
J ⊆ R ⊆ U(Q). Then Q is not an RI ring.

Indeed, take the set J of all rational numbers with even numerator and odd
denominator. J is obviously a ring and, for any a = 2k

2m+1 ∈ J , it is straightforward

to check that b = a
a−1 = 2k

2(k−m)−1) ∈ J , and b is a solution of the equation

a ◦ b =: a+ b−ab = 0. Hence (J, ◦) is a group, that is, J is a Jacobson radical ring.
Thus J ∈ J ⊆ R ⊆ U(Q). Hence 0 6= J = R(J), and R(Q) = 0. Therefore Q is not
an RI ring.

Example 4. Q is a polynomial RI ring for any radical R such that B ⊆ R ⊆ N.
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Clearly, N(Q[X]) = 0 because Q[X] is a reduced ring. Therefore R(Q[X]) = 0.
And since Q[X] has no non-zero nilpotent elements, if S = R(S) ∈ N for a subring
S of Q[X] then S = 0. Thus Q is a polynomial RI ring.

The following is clear.

Example 5. The matrix ring Mn(F ) over an arbitrary field F (n ≥ 2) is not a
polynomial RI ring for any radical R such that B ⊆ R ⊆ U(Mn(F )).

The next two examples are taken from [6].

Example 6. Let F be a field, Z be the ring of integers and {tn | n ∈ Z} be com-
muting indeterminates over F . Set

A = F [{tn}n∈Z]/({tn1
tn2
tn3
| n3 − n2 = n2 − n1 > 0})

and R = A[x, σ], the skew polynomial ring in one indeterminate x over A, where
σ is the F -automorphism of A satisfying σ(tn) = tn+1 for all n ∈ Z. Then R is
polynomial NI.

Example 7. Smoktunowicz [10, Theorem 12] constructed a ring R (in fact, an al-
gebra over an arbitrary countable field) such that A is nil but the polynomial ring
A[x, y] in two commuting indeterminates is not nil. Hence A is NI but not polyno-
mial NI. (If we want a ring with identity with the same property then we can take
the Dorroh extension of A with Z.) On the other hand, by Example 2 above, A is
polynomial RI for any strict radical R.

DEFINITION 3. Let R be an arbitrary radical and x1, x2, . . . , xn, . . . be commut-
ing indeterminates. Put Rn = {A | A[x1, . . . , xn] ∈ R}. Clearly, R = R0 ⊇ R1 ⊇
· · · ⊇ Rn ⊇ . . . . Gardner [2] proved that each Rn (n = 0, 1, 2, . . . ) is a radical.

DEFINITION 4. For an arbitrary radical R, a ring A is said to be an absolute
R-ring if A[x1, . . . , xn] ∈ R for all n ≥ 0, hence for the class R of all absolute
R-rings we have R =

⋂
n∈N Rn, and R is a radical class.

DEFINITION 5. A class M of rings is said to be polynomially extensible if A[x] ∈
M for all rings A ∈M.

The following notion was introduced in [15].

DEFINITION 6. Let R be a radical, κ be a cardinal number and X be a set of
commuting indeterminates of cardinality κ. To indicate the latter, we write Xκ for
X; to allow a unified treatment, we also write X0 for the empty set. We say that
R has the κ-Amitsur property if, for all rings A,

R(A[Xκ]) = (A ∩R(A[Xκ]))[Xκ].

For κ = 1 we say that R has the Amitsur property.

By [15, Proposition 2.6], if a radical R has the κ-Amitsur property for some
cardinal κ then it has the λ-Amitsur property for all λ with κ ≤ λ.
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3. Results

We start with a result on strict radicals.

THEOREM 2. For a strict radical R, the following are equivalent.
(i) R(A[x]) = R(A)[x] for every ring A.

(ii) R has the Amitsur property.
(iii) SR is polynomially extensible.

Proof. (i) =⇒ (ii): Krempa [7, Theorem 1] observed that R has the Amitsur prop-
erty if and only if (A ∩R(A[x])) = 0 implies R(A[x]) = 0. Now, R(A) is a radical
subring of R(A)[x] hence, by condition (i), also of R(A[x]), so R(A) ⊆ R(A[x])
since R is strict. Therefore R(A) ⊆ A ∩R(A[x]), hence if the latter is zero then
also R(A) = 0, and then R(A[x]) = R(A)[x] = 0 as well.

(ii) =⇒ (i): As we have seen just before, R(A) ⊆ A ∩R(A[x]) and, since R is
strict, R(A)[x] ⊆ R(A[x]). By the Amitsur property, (A∩R(A[x]))[x] = R(A[x]) ∈
R, and then also A∩R(A[x]) ∈ R, being a homomorphic image of (A∩R(A[x]))[x].
Clearly, A ∩R(A[x]) is an ideal of A, whence A ∩R(A[x]) ⊆ R(A). So we have

R(A)[x] ⊆ R(A[x]) = (A ∩R(A[x]))[x] ⊆ R(A)[x]

which yields R(A[x]) = R(A)[x].
(ii) ⇐⇒ (iii): Stewart [12, Proposition 3.1] proved that every strict radical is

polynomially extensible, and by [14, Theorem 3.6] a radical R is polynomially
extensible and has the Amitsur property if and only if both R and SR are polyno-
mially extensible, which gives the equivalence of conditions (ii) and (iii). �

Remark. Stewart [12] constructed a strict radical R such that R(A[x]) 6= R(A)[x]
for some ring A, so not every strict radical has the Amitsur property.

For what comes next, the following observation of Divinsky and Suliński will be
needed. Notice that the ring Z[Xκ] of polynomials with integer coefficients operates
on A[Xκ] by multiplication in the obvious way.

PROPOSITION 3 (cf. [1, Theorem]). Let R be a radical and Xκ be a set of
commuting indeterminates. For any polynomial f ∈ Z[Xκ], we have fR(A[Xκ]) ⊆
R(A[Xκ]). �

THEOREM 4. Let R be a radical with the Amitsur property, and A be any ring.
The following conditions are equivalent:
(i) A is polynomial RI.
(ii) For every natural number n ≥ 0, R(A[Xn]) = R∗(A[Xn]) = R(A)[Xn] =

R∗(A)[Xn].
(iii) For every natural number n ≥ 0, A[Xn]/R(A[Xn]) is R-reduced.
(iv) For every natural number n ≥ 0, A[Xn] is RI.
(v) R(A) is an absolute R-ring and, for every natural number n ≥ 0, A

R(A) [Xn]

is R-reduced.

Proof. (i) =⇒ (ii): Since A is polynomial RI, A[Xn] is RI, hence by Proposition
1, R(A[Xn]) = R∗(A[Xn]). Clearly, R(A) ∈ R is a subring of A[Xn]. Since A[Xn]
is RI, we have R(A) ⊆ R(A[Xn]) and also R∗(A) ⊆ R(A[Xn]). By Lemma 3,
R(A)[Xn] ⊆ R(A[Xn]) and also R∗(A)[Xn] ⊆ R(A[Xn]). Now we have

R(A)[Xn] ⊆ R∗(A)[Xn] ⊆ R(A[Xn]) = R∗(A[Xn]) .
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Since R has the Amitsur property, it has also the n-Amitsur property, therefore
R(A[Xn]) = (A∩R(A[Xn]))[Xn]. Clearly, A∩R(A[Xn]) ∈ R, so A∩R(A[Xn]) ⊆
R(A). Thus R(A)[Xn] ⊇ R(A[Xn]), and we have proved all the equalities in
condition (ii).

(ii) =⇒ (iii): Since R(A[Xn]) = R∗(A[Xn]), every R-radical subring of A[Xn]
is in R(A[Xn]). Therefore A[Xn]/R(A[Xn]) has no non-zero radical subring, as
required.

(iii) =⇒ (iv): Since A[Xn]/R(A[Xn]) is R-reduced, every R-radical subring of
A[Xn] is in R(A[Xn]). Thus A[Xn] is RI.

(iv) =⇒ (i): Clear by definition.
(ii) =⇒ (v): From R(A[Xn]) = R(A)[Xn], R(A) is an absolute R-ring. From

R∗(A[Xn]) = R(A)[Xn] we have that A[Xn]
R(A)[Xn]

is R-reduced. But

A[Xn]

R(A)[Xn]
∼=

A

R(A)
[Xn] ,

whence the latter ring is also R-reduced.
(v) =⇒ (i): Since R(A) is an absolute R-ring, R(A)[Xn] is a radical ideal of

A[Xn]. Thus R(A)[Xn] ⊆ R(A[Xn]), and then as above, R(A)[Xn] = R(A[Xn])
because R has the Amitsur property. Therefore

A[Xn]

R(A[Xn])
=

A[Xn]

R(A)[Xn]
∼=

A

R(A)
[Xn],

and the last ring is R-reduced. �

Han, Lee and Yang [6, Proposition 1.4] gave several equivalent conditions for a
ring A to be polynomial NI, under the condition that there is a common bound for
the indices of nilpotency of the nilpotent elements of A. Using Theorem 4 above,
we show that several of these conditions are equivalent without any restriction on
the ring A.

PROPOSITION 5. The following conditions on a ring A are equivalent:
(i) A is polynomial NI.
(ii) N(A) is absolute nil and A/N(A) is a reduced ring.
(iii) A/R(A) is an R-reduced ring, where R is any radical such that N ⊆ R ⊆ J.
(iv) A[X] is polynomial NI for some set X of commuting indeterminates.

Proof. As is well known, N has the Amitsur property, hence Theorem 4 applies.
(i) =⇒ (ii): By (v) of Theorem 4, N(A) is absolute nil, and since (A/N(A))[x1, . . . , xn]

is reduced, A/N(A) is also.
(ii) =⇒ (i): Since A/N(A) is reduced, (A/N(A))[Xn] is reduced for any n. Again

by Theorem 4, our claim follows.
(ii) ⇐⇒ (iii): Since N(A) is absolute nil, N(A) = N(A). By [15, Proposition

2.12], R(A) = N(A) = N(A), and since A/N(A) is reduced, A/R(A) is also. Hence
(ii) and (iii) are equivalent.

(i) ⇐⇒ (iv) is clear. �

The following question is asked in [6]:
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Question 1. Let A be a ring such that A[x] is NI. Is then A polynomial NI?

Now it is natural to ask:

Question 2. Let A be a ring such that A[x] is RI for some radical R. Is then A
polynomial RI?

Let P denote the class of all polynomial rings in one indeterminate. For any
radical R we consider the lower radical R1 = L(R ∩ P) determined by the (homo-
morphic closure of) the class R ∩ P.

PROPOSITION 6. Suppose that, for a radical R, Question 2 has a positive
answer for every ring A. Then R1 = R1 = R2 = . . . .

Proof. Let A be in R1, so that A[x] ∈ R; then by the assumption A[x, y] ∈ R, and
so A[x][y] ∈ R. Hence A ∈ R2, thus R1 = R2 and R1 = R1. �

COROLLARY 7. Let R be a radical such that R1 6= R1 or R1 6= R2. Then
Question 2 has a negative answer for some A. �

COROLLARY 8. If either R1 = R1 or R1 = R2 for a radical R, then R1 =
R1 = R2 = . . . . �

Example 8. Question 2 has a negative answer for the Jacobson radical J. Indeed,
by Smoktunowicz and Puczy lowski [11, Theorem 4.1], there exists a ring A such
that A[x] ∈ J \N. So A ∈ J1 but A /∈ J2 because the latter would mean A[x, y] ∼=
(A[x])[y] ∈ J and, as is well known, B[y] ∈ J implies B ∈ N (see e.g. [4, Proposition
4.9.27]).

Gardner [2] asked whether the chain R = R0 ⊇ R1 ⊇ · · · ⊇ Rn ⊇ . . . terminates
for every radical class R. In this connection, Gardner [2] gives examples of radicals
which show that R0 + R1 + · · · + Rn+1 may hold for any n. Finally, Gardner’s
question was answered in the negative by Tumurbat, Mendes and Mekei [13]: there
exist radicals R such that R0 + R1 + · · · + Rn + . . . . For such radicals Question
2 has a negative answer.

Concerning Question 1, we have:

PROPOSITION 9. Question 1 has a positive answer for every ring A if and
only if either N1 = N2 or N1 = N1.

Proof. =⇒ follows from Proposition 6. To see ⇐=, notice first of all that the two
conditions of equality are equivalent by Corollary 9, hence it suffices to consider
only one of them. Let N1 = N2, and take any ring A. Since N has the Amitsur

property, we have N(A[x]) = (A ∩ N(A[x]))[x]. Now, A[x]
N(A[x]) = A[x]

(A∩N(A[x]))[x] .

Since A[x] is NI, A[x]
N(A[x]) is reduced, and N(A) ⊆ A ∩N(A[x]) ⊆ N(A). Therefore

N(A)[x] = N(A[x]) ∈ N, that is, N(A) ∈ N1, so N(A[x1, . . . , xn]) ∈ N. Hence
N(A) is absolute nil, and by Proposition 5 A is polynomial NI. �

COROLLARY 10. Question 1 has a positive answer for every ring A if and only
if, for every ring B, B[x] nil implies B[x, y] nil. �
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THEOREM 11. Let R1 ⊆ R2 be radicals which satisfy the Amitsur property. If
R1 = R2 and a ring A is polynomial R2I, then A is also polynomial R1I.

Proof. Suppose that A is a polynomial R2I ring. Then by Theorem 4, R2(A) is an
absolute R2-ring. Therefore

R2(A) = R2(A) = R1(A) ⊆ R1(A) ⊆ R2(A) .

Thus R2(A) = R1(A), hence R1(A) is an absolute R1-ring. Applying condition
(v) in Theorem 4 to the radical R2, we obtain that A

R2(A) [Xn] is R2-reduced, and

then A
R1(A) [Xn] = A

R2(A) [Xn] is an R1-reduced ring. Again by Theorem 4, A is a

polynomial R1I ring. �

Remark. Without the condition R1 = R2, the statement is not true. For example,
consider the radicals L ⊆ N. By Golod [5], there exists a ring A such that 0 6=
A ∈ N and L(A) = 0. Hence L 6= N, and the ring A is polynomial NI but not
polynomial LI, not even LI.

COROLLARY 12. If A is a polynomial JI ring then it is a polynomial NI ring.
�

Remark. The converse is not true. For example, Q is polynomial NI but not even
JI. Moreover, Q is not GI.

PROPOSITION 13. For a ring A, the following conditions are equivalent:

(i) A is polynomial JI.

(ii) J(A) is absolute nil and, for every n, A
J(A) [Xn] has no non-zero subring S

such that S ∈ J.

(iii) J(A) is absolute nil and, for every n, every non-zero subring of A
J(A) [Xn] has

a non-zero primitive homomorphic image.

Proof. (i) and (ii) are equivalent by Theorem 4, conditions (i) and (v).

(ii)⇐⇒ (iii): The Jacobson radical satisfies the Amitsur property, hence J(A[Xn]) =
(A∩J(A[Xn]))[Xn]. Since J(A) is absolute nil, J(A)[Xn] is also, therefore J(A)[Xn] ⊆
J(A[Xn]). Now, for any radical R and any ring B we have R(B) ⊇ B ∩R(B[x]),
repeating this we get R(B[x]) ⊇ B[x] ∩R(B[x, y]), hence R(B) ⊇ B ∩R(B[x]) ⊇
B ∩ B[x] ∩ R(B[x, y]) = B ∩ R(B[x, y]), and similarly R(B) ⊇ B ∩ R(B[Xn]).
Thus in our case we have J(A) ⊇ A ∩ J(A[Xn]), whence J(A)[Xn] = J(A[Xn]).
Consequently,

A[Xn]

J(A[Xn])
=

A[Xn]

J(A)[Xn]
∼=

A

J(A)
[Xn].

The required equivalence follows now from a well-known property of the Jacobson
radical: a ring belongs to J if and only if it has no non-zero primitive homomorphic
image. �
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