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Abstract. We define firm semigroups and firm acts as non-additive analogues

of firm rings and firm modules. Using the categories of firm acts we develop
Morita theory for firm semigroups. We show that equivalence functors between

categories of firm acts over two firm semigroups have to be tensor multiplica-

tion functors. Our main result states that the categories of firm right acts over
two firm semigroups are equivalent if and only if these semigroups are strongly

Morita equivalent, which means that they are contained in a unitary Morita

context with bijective mappings.
We also investigate other categories of acts which have been used earlier to

develop Morita equivalence. The main tool in our work is adjoint functors. We

prove that over firm semigroups all the considered categories are equivalent to
the category of firm acts.

All this suggests that firm semigroups and firm acts are the natural envi-

ronment to study Morita equivalence of semigroups.

1. Introduction

A theory of Morita equivalence was carried over from unital rings to monoids
independently by Banaschewski [6] and Knauer [21] in the early seventies but their
results have not really been taken up. In the eighties, Morita equivalence was ex-
tended to much wider classes of rings [1], [5], [17], no longer requiring the existence
of an identity element. To construct a useful theory of Morita equivalence in the
non-unital case, one had to restrict both the class of rings and the class of modules
to be considered. Based on the development in [5], Talwar found a viable approach
to Morita equivalence for semigroups without identity but with certain idempo-
tents called local units [35], showing also the relevance of Morita equivalence in
the structure theory of semigroups. He also extended some results to factorisable
semigroups (those in which every element decomposes as a product) [36], [37]. Sub-
sequently, Chen and Shum [9] as well as Neklyudova [29], [30] contributed to the
theory. These authors started from different approaches to Morita equivalence of
rings without identity: Talwar’s development follows that of Ánh and Márki [5],
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Chen and Shum use techniques similar to those of Garćıa and Simón [17], whereas
Neklyudova goes back to the more restrictive development of Abrams [1].

A decisive step was made by Lawson [27] in 2011. He considered the class of
semigroups with local units, defined in the same way as by Talwar [35]. However,
instead of Talwar’s fixed acts he considered closed acts – these are easier to get
around with than fixed acts, and Lawson proved that these two kinds of acts coincide
over semigroups with local units. He also filled in two gaps in Talwar’s treatment.
From our point of view, the main result in Lawson’s work is the fact that, for
semigroups with local units, every Morita equivalence is strong in the sense that
it comes from a unitary Morita context with surjective mappings. Lawson [27]
as well as Laan and Márki [23] give various structural characterisations of Morita
equivalence for semigroups with local units. By all this one can say that we have a
satisfactory theory of Morita equivalence for semigroups with local units. Based on
these works, structural aspects of Morita equivalence (including Morita invariant
properties) have been considered in [3], [4], [14], [24], [33], [34].

Attempts have been made also to extend the theory beyond semigroups with
local units. At first, Laan [22] noticed that strong Morita equivalence can occur only
between factorisable semigroups – thus expressing in precise terms what Lawson
formulated roughly at the same time in [27] as ‘current thinking is that factorisable
semigroups form the largest class of semigroups for which a useful Morita theory
can be developed’. The main questions were whether it is true in more general
classes than semigroups with local units that every Morita equivalence is strong; if
not, whether equivalence of appropriate categories of right acts implies equivalence
of the corresponding categories of left acts. In particular, whether these are true
for factorisable semigroups in general.

Work in this direction has been inspired by papers on Morita equivalence on non-
unital rings by the Spanish school, mainly by Maŕın and his coauthors, continuing
the development started by Garćıa and Simón [17]. Laan and Márki [25] considered
so-called fair semigroups – this class corresponds to the class of xst-rings considered
by Garćıa and Maŕın [15], based on previous work by Xu, Shum, and Turner-Smith
[39] (whence the name of these rings). Among many other results, it is shown in
[25] that every finite monogenic semigroup is Morita equivalent to its group part,
thus we have examples of non-factorisable semigroups which are Morita equivalent
to groups, and strong Morita equivalence is impossible between them.

In the main line of the present paper we consider the same class of acts as was
done in [27], [23] and [25]. There they were called ‘closed acts’ – however, here we
call them ‘firm acts’. Namely, these acts are exactly the non-additive analogues of
modules called ‘firm modules’ by Quillen [31], used later also in many papers by
Maŕın. (Notice the strange coincidence with the fact that Lawson kept Talwar’s
notation FAct for the category of these acts, referring to the French word ‘fermé’
for ‘closed’.) We call a semigroup ‘firm’ if it is a firm act over itself. The main
result of our paper is that two firm semigroups are strongly Morita equivalent if
and only if the categories of firm right acts over these semigroups are equivalent.
We also consider other categories of acts used for building Morita theory by other
authors, as well as categories of acts which correspond to categories of modules used
by Garćıa and Maŕın [16], with the aim of clarifying the relations between these
categories. Our main tool is the usage of adjunctions between various categories of
acts. In our eyes, the results in the present paper are convincing enough to claim
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that firm semigroups and firm acts are the natural environment to study Morita
equivalence of acts.

In Section 2 we introduce firm acts and semigroups and list some basic facts about
them. In Section 3 we study in detail the adjunctions that appear between different
act categories. We show that fixed and firm acts are the same over firm semigroups
and that three natural choices for act categories used in Morita theory are all
equivalent for firm semigroups, so from the point of view of Morita theory it makes
no difference which of them one uses. Section 4 is devoted to giving a description of
equivalence functors between categories of firm acts over firm semigroups. It turns
out that even in this general situation such functors have to be tensor multiplication
functors. Section 5 contains an overview of some results in the Morita theory of
semigroups and the proof of our main result.

Acknowledgement. Thanks are due to Peter Vámos for providing a copy of
notes taken at D. Quillen’s lecture at the University of Exeter on February 8, 1996.

2. Firm acts and semigroups

We start by recalling some definitions. A semigroup S is called factorisable
if every element of S is a product of two elements. We say that an element s of
a semigroup has a weak right local unit u (weak left local unit v) if su = s
(vs = s). A semigroup has weak local units if each of its elements has both a
weak right and a weak left local unit, and local units if the elements u, v above
can always be chosen to be idempotent.

We say that a semigroup S has common weak right local units if for every
s, t ∈ S there exists u ∈ S such that s = su and t = tu. Semigroups with common
weak left local units are defined dually. A semigroup has common weak local
units if it has common weak right local units and common weak left local units.

Let S and T be semigroups. We use the notation ActS (SAct, SActT ) for the
category of all right S-acts (left S-acts, (S, T )-biacts) where morphisms are right
S-act homomorphisms (left S-act homomorphisms, (S, T )-biact homomorphisms).
A right S-act AS is called unitary if AS = A. We denote the category of all
unitary right S-acts by UActS . A semigroup S is said to be fair if every subact of
a unitary right S-act and every subact of a unitary left S-act is unitary, see [25].

Definition 2.1. We say that a right S-act AS is firm if the mapping

µA : A⊗ S → A, a⊗ s 7→ as

is bijective. A semigroup S is called firm if it is firm as a right (or, equivalently,
left) S-act.

The category of all firm right S-acts is denoted by FActS .
Obviously, AS is unitary if and only if the mapping µA is surjective. Hence,

for any semigroup S, FActS is a subcategory of UActS . Also, a semigroup S is
factorisable if and only if µS is surjective.

Remark 2.2. Modules MR over a ring R for which the mapping M ⊗R R →
M given by m ⊗ r 7→ mr is bijective are often called firm (see [31] for the first
appearance of the term; earlier, J. L. Taylor [38] had called these modules regular,
after which several authors used the name Taylor regular for them; since the term
‘regular’ has too many meanings even in ring theory, calling these modules ‘firm’
seems to be more practical). Firm acts have been used to develop Morita theory
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of semigroups in [27] and subsequent papers under the name ‘closed acts’. Because
of the obvious parallel between the module and the act case we prefer using the
term ‘firm act’. Note that this is also nicely consistent with the notation FActS
(where, originally, the letter F stood for ‘fixed’, defined by Talwar [35] in a more
complicated way).

It turns out that there are many firm semigroups. From the surjectivity of µS it
follows that firm semigroups have to be factorisable. On the other hand, not every
factorisable semigroup is firm.

Example 2.3. Consider the semigroup defined by the multiplication table

0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 0 b
c 0 a 0 c

.

Clearly, this semigroup is factorisable. It is easy to see, however, that the equiva-
lence class b⊗a consists of only one pair, (b, a), but there are other elements in the
tensor product that map to 0 under µ, hence the semigroup cannot be firm.

Proposition 2.4. A semigroup S is firm in any of the following three cases.

(1) S has weak local units.
(2) S has common weak right local units.
(3) S has common weak left local units.

Proof. (1) This has been shown implicitly in [9, Lemma 4].
(2) Suppose that S has common weak right local units. Then S is factorisable

and hence µS : S ⊗ S → S is surjective. Let now st = s′t′, where s, t, s′, t′ ∈ S.
By assumption, there exists v ∈ S such that tv = t and t′v = t′. Hence we can
calculate

s⊗ t = s⊗ tv = st⊗ v = s′t′ ⊗ v = s′ ⊗ t′v = s′ ⊗ t′

in S ⊗ S, which means that µS is also injective.
(3) is dual to (2). �

Note that the conditions that appear in Proposition 2.4 are independent of each
other.

Example 2.5. Let S = {0, a, e} have the multiplication table

0 a e
0 0 0 0
a 0 0 a
e 0 0 e

.

Here e is a right identity of the semigroup S, so S has common weak right local
units. On the other hand, S is neither a semigroup with weak local units nor a
semigroup with common weak left local units.

Let now T = {e, f, 0} be a semilattice with ef = 0. Then T has local units, but
the elements e and f do not have a common weak right local unit.

Remark 2.6. The class of firm semigroups is rather big. Our computer calculations
show that up to isomorphism there are 14448 factorisable semigroups of order 6 or
less. Among those, 13344 are firm, while only 6853 have local units.
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Let us also point out the following relationship between firm semigroups and
some other classes of semigroups.

Proposition 2.7. For a semigroup S the following assertions are equivalent:

(1) S is firm and fair,
(2) S is factorisable and fair,
(3) S has weak local units.

Proof. The equivalence of (2) and (3) was shown in [25]. The implication (1) ⇒
(2) is obvious. The implication (3) ⇒ (1) is valid by Proposition 2.4. �

A right S-act AS is called nonsingular if a = a′ (a, a′ ∈ A) whenever as = a′s
for all s ∈ S. Denote the category of unitary nonsingular right S-acts by NActS .
This category is used for developing Morita theory in [9]. (Notice that Chen and
Shum [9] use the notation US-FAct for our NActS .) We point out that many results
in Section 6 of [9] are obtained under the assumption that

∐
i∈I S ∈ S-FxAct for

any index set I (see [9] for the definition of S-FxAct). This assumption is fulfilled
for firm semigroups. Actually, this is almost proved in Lemma 4 of [9].

The act SS is nonsingular if and only if, for every s, t ∈ S, sz = tz for all z ∈ S
implies s = t. Semigroups with this property are called right reductive.

The following two examples show that for a semigroup S, the categories FActS
and NActS are in general incomparable.

Example 2.8. Consider again the semigroup S = {0, a, e} from Example 2.5. By
Proposition 2.4, S is a firm semigroup, and hence both SS and SS are firm S-acts.
Nevertheless, the left S-act SS is not nonsingular, because s0 = sa for each s ∈ S,
but 0 6= a. This means that there exist firm left acts which are not nonsingular.
Considering the dual of S we can say a similar thing for right S-acts.

Example 2.9. Consider the semigroup S defined by the multiplication table

0 a b c d
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 0 0 b
c 0 0 a 0 0
d 0 a 0 c d

.

From this table it is easily seen that this semigroup is factorisable and right reduc-
tive, so the right act SS is unitary and nonsingular. Now bc = 00, but b⊗ c 6= 0⊗ 0
in S ⊗ S, hence the act SS is not firm.

What we know is that FActS = NActS if S is a semigroup with common weak
local units (this follows from Proposition 4 and Lemma 4 of [25]). However, even
for semigroups with local units, these categories need not coincide.

Example 2.10. Let S be a right zero semigroup with two or more elements. Then
SS is firm, but it does not belong to NActS . On the other hand, the one-element
right S-act belongs to NActS but it is not firm.

In Proposition 3.13 we will see that these categories of acts are equivalent if S
is a firm semigroup.

Finally, we give a small table which compares some notations used in different
sources.
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this paper Chen and Shum module case
(Garćıa and Maŕın)

UActS US-Act [9] —
FActS — DMod-R [16]
NActS US-FAct [9] Mod-R [16]
CActS — CMod-R [16]

3. Some adjunctions between act categories

In this section we study adjunctions between certain categories of acts. These
results show that the different settings in which Morita equivalence of semigroups
is considered in earlier papers amount to the same equivalence for firm semigroups.
Some results obtained here for the category of firm acts will play a key role in later
sections of the paper. The presentation of many results in this section is made
uniform by using the notion of idempotent (co)pointed endofunctor.

If SPT ∈ SActT and BT ∈ ActT then the hom-set ActT (P,B) can be equipped
with the canonical right S-action

(3.1) (f · s)(p) := f(s · p),

f ∈ ActT (P,B), s ∈ S, p ∈ P . This allows us to consider functors

ActT
ActT (P,−) //oo
−⊗P

ActS .

We have the usual adjunction between these two functors, with the expected
unit and counit, given in the next lemma.

Lemma 3.1. Let S and T be semigroups, AS ∈ ActS, BT ∈ ActT and SPT ∈
SActT . The mappings

ηA : A // ActT (P,A⊗ P ) , a 7→ (p 7→ a⊗ p)

and

εB : ActT (P,B)⊗ P //B , f ⊗ p 7→ f(p)

are homomorphisms of right S-acts and T -acts, respectively, natural in A and B.

Proof. To check that ηA is a homomorphism of right S-acts, we calculate

ηA(as)(p) = as⊗ p = a⊗ sp = ηA(a)(sp) = (ηA(a) · s)(p) .

Let f : AS // A′S be a morphism of right S-acts. We see that ηA is natural in A
by calculating

(ActT (P, f ⊗ P )ηA)(a)(p) = (f ⊗ 1P )(ηA(a)(p)) = (f ⊗ 1P )(a⊗ p)
= f(a)⊗ p = ηA′(f(a))(p) = (ηA′f)(a)(p) .

To check that εB is a homomorphism of right T -acts, we calculate

εB((f ⊗ p)t) = εB(f ⊗ pt) = f(pt) = f(p)t = εB(f ⊗ p)t .
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The naturality of εB for a morphism g : BT // B′T of right T -acts is checked by
calculating

(gεB)(f ⊗ p) = g(f(p)) = εB′(gf ⊗ p) = εB′((ActT (P, g)⊗ 1P )(f ⊗ p))
= (εB′(ActT (P, g)⊗ P ))(f ⊗ p) .

�

Proposition 3.2. Let S and T be semigroups and let SPT ∈ SActT . Then the
functor −⊗P : ActS //ActT is left adjoint to the functor ActT (P,−) : ActT //ActS.

Proof. It is easy to check that the homomorphisms ηA and εB , defined in Lemma 3.1,
satisfy the triangle identities of the unit and counit of the adjunction in ques-
tion. �

Lemma 3.3. Let S and T be semigroups. Let AS ∈ ActS and SPT ∈ SActT . If P
is firm as a right T -act then A⊗ P is also firm as a right T -act.

Proof. Let PT be firm. Clearly, the diagram

(A⊗ P )⊗ T A⊗ P
µA⊗P //(A⊗ P )⊗ T

A⊗ (P ⊗ T )
α %%LL
LLL

L

A⊗ (P ⊗ T )

A⊗ P

1⊗µP

99rrrrrrr
,

where α : (a ⊗ p) ⊗ t 7→ a ⊗ (p ⊗ t), commutes. The statement follows because α
and 1⊗ µP are isomorphisms. �

Corollary 3.4. Let S be a firm semigroup. Then A ⊗ S is a firm right S-act for
any right S-act AS and −⊗ S is a functor ActS → FActS.

It is easy to check that µ : −⊗ S → 1ActS is a natural transformation.

Corollary 3.5. Let S be a firm semigroup. Then we have

µA ⊗ 1S = µA⊗S : (A⊗ S)⊗ S //A⊗ S,
and this yields a natural isomorphism (−⊗ S)⊗ S // −⊗S : ActS // ActS.

Proof. Take P = SSS in Lemma 3.3 and notice that µA ⊗ 1S = µA⊗S . �

The last result tells us that the functor −⊗S is idempotent in some sense when
S is firm. For a firm semigroup S the natural isomorphism µ makes the functor
− ⊗ S into an idempotent copointed functor. Let us recall the definition of this
notion, which enables us to prove several related results in a uniform way.

Definition 3.6. An endofunctor F on a category C along with a natural trans-
formation ξ : 1C // F such that ξF (A) = F (ξA) : F (A) // F (F (A)) is invertible
for every A ∈ C is called an idempotent pointed endofunctor on C. The dual
notion (involving a natural transformation ζ : F → 1C) is called an idempotent
copointed endofunctor.

The proof of the next lemma about (co)reflective subcategories can be found in
Section 5.1 of [11]. First recall that a full replete subcategory A of a category B
is said to be coreflective if the canonical inclusion functor admits a right adjoint.
By the dual of Definition 3.5.6 in [7], a coreflective subcategory A of a category
B is called an essential colocalization of B if the coreflection B → A admits a
right adjoint. If κ is a natural transformation between functors with domain C, we
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say that an object A of C is fixed by κ when κA is invertible. Let Fix(C, κ) denote
the full subcategory of C induced by the objects fixed by κ. Clearly, it is a replete
subcategory of C.

Lemma 3.7 ([11]). If (F, ξ) is an idempotent (co)pointed endofunctor on C, then
Fix(C, ξ) is a (co)reflective subcategory of C with (co)reflection given by the core-
striction of F to Fix(C, ξ). The adjunction unit in the copointed case is given by
ξ−1
A : A // F (A).

The abovementioned corestriction will be denoted by F |Fix(C,ξ). If the functor
F : C // C is a part of an adjunction, we can say more:

Lemma 3.8. Let (F, ξ) be an idempotent copointed endofunctor on a category C
and let G : C // C be right adjoint to F with adjunction unit η and counit ε. Then

(1) the natural transformation ζ : 1 // G corresponding to ξ : F // 1 under
the adjunction, defined componentwise as ζA = G(ξA)ηA, makes G into an
idempotent pointed endofunctor on C;

(2) we have

Fix(C, ξ) = Fix(C, ε)
and it is an essential colocalization of C with coreflection F |Fix(C,ξ);

(3) we have

Fix(C, ζ) = Fix(C, η)

and it is an essential localization of C with reflection G|Fix(C,ζ);
(4) the adjunction between F and G restricts to an adjoint equivalence

Fix(C, ξ)
F //oo
G

Fix(C, ζ).

Proof. (1) Recall (beginning of Section 1 of [10]) that if L a R and L′ a R′ are two
adjunctions on a category D, then there is a bijection between natural transfor-
mations u : L // L′ and natural transformations v : R′ // R compatible with the
vertical and horizontal composition of natural transformations. Since ζ corresponds
to ξ and 1F to 1G, by compatibility Fξ = ξF being isomorphisms implies ζG = Gζ
being isomorphisms.

(2) By Lemma 3.7 we have a coreflective subcategory Fix(C, ξ) with coreflection
functor F |Fix(C,ξ). Clearly G|Fix(C,ξ) is right adjoint to the coreflection, making
Fix(C, ξ) an essential colocalization of C, which means that G|Fix(C,ξ) is full and
faithful according to Proposition 3.4.2 of [7]. Therefore εA is invertible for objects
A from Fix(C, ξ) (Proposition 3.4.1 of [7]). This gives us Fix(C, ξ) ⊆ Fix(C, ε). To
get the reverse inclusion, consider A ∈ Fix(C, ε) and calculate

ξAG(εA) = εAξF (G(A))

using the naturality of ξ. Since the morphisms other than ξA involved here are
invertible, ξA must also be invertible, hence A ∈ Fix(C, ξ).

(3) Analogous to (2).
(4) Note that any adjunction restricts to an adjoint equivalence between Fix(C, η)

and Fix(C, ε) due to the triangle identities (Section 0.4 of [26]). �

Note that in applying this result to the functor − ⊗ S : ActS // ActS , which
has ActS(S,−) : ActS // ActS as a right adjoint (see Proposition 3.2), we want to
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know what is the idempotent pointed endofunctor corresponding to the idempo-
tent copointed endofunctor (− ⊗ S, µ). Let us denote it by (ActS(S,−), λ). Then
the natural map λA : A // ActS(S,A) corresponds to µA : A ⊗ S // A under the
adjunction −⊗ S a ActS(S,−). We can calculate the action of λA to be

λA(a) = ActS(S, µA)(ηA(a)) = ActS(S, µA)(s 7→ a⊗ s) = (s 7→ as).

Thus
λA(a)(s) = as

for each a ∈ A and s ∈ S. We will sometimes write λa instead of λA(a) for a ∈ A.

In the case of modules, a category denoted by CMod-R (see, for example, [16]) has
been used in investigations of Morita equivalence mainly in the works of Maŕın. Its
act counterpart would be the full subcategory of ActS given by the acts AS for which
λA is invertible. We will denote this category by CActS . Thus we have CActS =
Fix(ActS , λ) and FActS = Fix(ActS , µ). The following proposition summarises the
result of applying Lemma 3.8 to −⊗ S : ActS // ActS .

Proposition 3.9. Let S be a firm semigroup. Then

(1) FActS is an essential colocalization of ActS with coreflection −⊗ S;
(2) CActS is an essential localization of ActS with reflection ActS(S,−);
(3) there is an equivalence of categories

FActS
ActT (S,−) //oo
−⊗S

CActS ;

(4) a right S-act AS is firm if and only if εA is invertible;
(5) a right S-act AS belongs to CActS if and only if ηA is invertible.

Next we turn our attention to adjunctions related to UActS . If S is a factorisable
semigroup and AS is a right S-act, then AS = {as | a ∈ A, s ∈ S} is the largest
unitary subact of AS . This construction is functorial as follows. If f : A //B is a
morphism of right S-acts, then fS is the restriction of f to AS and corestriction to
BS. The corestriction exists, since the image of a unitary act being unitary means
that fS must map AS into BS.

We have the inclusion map mA : AS //A, which is obviously natural in A and
is easily seen to equip the functor −S with an idempotent copointed endofunctor
structure. Clearly, a right S-act AS is in UActS if and only if mA is invertible.
Therefore by Lemma 3.7 we have:

Proposition 3.10. Let S be a factorisable semigroup. Then the inclusion functor
I : UActS //ActS is left adjoint to the functor −S : ActS //UActS, with adjunction
unit given by m−1

A : A //AS.

The functor −S does not in general have a right adjoint, even when S is firm.

Example 3.11. Let S be a non-singleton right zero semigroup. Let AS = SS
and let ∇ = A×A be the largest congruence on AS . The congruence ∇ is also an
S-act, and ∇S is the equality relation ∆. Obviously, A/∇ = {∗} and (AS)/(∇S) =
A/∆ = A are nonisomorphic.

Colimits in ActS are calculated on the level of sets exactly as in Set and the
structure maps on colimits are induced in the natural way. Therefore what we have
shown is that the functor −S : ActS // ActS does not preserve the coequalizer of
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the two projections ∇ // A of the congruence ∇ and therefore it cannot have a
right adjoint.

If S is firm, then the functor −⊗ S : UActS //UActS does have a right adjoint,
which turns out to be ActS(S,−)S : UActS // UActS . To see that, compose the
adjunctions −⊗S a ActS(S,−) : ActS //ActS and I a −S : ActS //UActS to get
the adjunction

ActT > UActS

ActT (P,−)S

−⊗ P

and observe that we can restrict the left category to UActS , since −⊗ S is unitary
for firm S. Denote the unit and counit of this adjunction by η′ and ε′. We can
use the adjunction I a −S : ActS // UActS with unit m−1 : 1 // − S and counit
mA : AS //A to calculate

η′A = (ηAS)m−1
A and ε′A = εA(mActS(S,A) ⊗ 1S) .

Now µ : − ⊗S // 1 makes − ⊗ S into an idempotent copointed endofunctor
on UActS posessing a right adjoint. Applying Lemma 3.8 to it, we once again ask
what is the idempotent pointed endofunctor on Act(S,−)S corresponding under
the adjunction to µA : A⊗ S //A. Denote the map A // ActS(S,A)S by λ′A and
compute

λ′A = ActS(S, µA)S ◦ η′A = ActS(S, µA)S ◦ ηAS ◦m−1
A

= (ActS(S, µA)ηA)S ◦m−1
A = (λAS)m−1

A .

This shows that λ′ is essentially the corestriction of λA to ActS(S,A)S, which exists
if AS is unitary. We now need to identify the essential localization of UActS that
Lemma 3.8 gives us.

Proposition 3.12. Let S be a semigroup and AS ∈ UActS. Then the mapping

λ′A : A // ActS(S,A)S, a 7→ λa

is surjective and AS is in NActS if and only if λ′A is bijective.

Proof. Notice that f · s = λf(s), since

(f · s)(z) = f(sz) = f(s)z = λf(s)(z) .

This implies that λ′A is surjective for any unitary AS . By definition, a unitary right
S-act AS is in NActS if and only if the mapping λA : A → ActS(S,A) is injective.
Clearly, λA is injective if and only if λ′A is injective. Thus the result follows. �

We can now summarise the result of applying Lemma 3.8 to the idempotent
copointed endofunctor (−⊗ S, µ) on UActS .

Proposition 3.13. Let S be firm semigroup. Then

(1) FActS is an essential colocalization of UActS with coreflection −⊗ S;
(2) NActS is an essential localization of UActS with reflection ActS(S,−)S;
(3) there is an equivalence of categories

FActS
ActT (S,−)S //oo
−⊗S

NActS ;
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(4) a unitary right S-act AS is firm if and only if ε′A is invertible;
(5) a unitary right S-act AS belongs to NActS if and only if η′A is invertible.

Remark 3.14. Notice that for claim (2) it suffices to require only that S is fac-
torisable. Namely, in that case A ⊗ S is unitary for AS ∈ NActS , hence we
may consider the functor − ⊗ S : NActS // UActS , and this functor admits
ActS(S,−)S : UActS // NActS as its right adjoint.

There is a remarkably strong result in [28] (Proposition 2.7), which says that,
for an idempotent ring (the counterpart of a factorisable semigroup in ring theory),
the category of firm modules (DMod-R) is equivalent to the category Mod-R whose
objects are modules MR such that MR = M and, for all m ∈ M , if mR = 0
then m = 0 (the counterpart of NActS), and also to the category CMod-R. In the
semigroup case we have as an immediate consequence of Propositions 3.9 and 3.12:

Theorem 3.15. For a firm semigroup S, the categories FActS, NActS and CActS
are equivalent.

In contrast to the ring case, we are not able to prove that Theorem 3.15 holds
for every factorisable semigroup S.

The following diagram summarizes adjunctions and equivalences between act
categories for a firm semigroup S. Here I stands for (different) inclusion functors.

ActS

CActS

ActS(S,−)

��
CActS

ActS

−⊗S

;;

CActS

ActS

I

cc ActS

FActS

−⊗S

��
FActS

ActS

I

;;

FActS

ActS

ActS(S,−)

cc UActS

NActS

ActS(S,−)S

��
NActS

UActS

−⊗S

;;

NActS

UActS

I

cc

CActS FActS
−⊗S ++

CActS FActSkk
ActS(S,−)

FActS NActS
Act(S,−)S ++

FActS NActSkk
−⊗S

ActS UActS
−S ++

ActS UActSkk
I

=

≈ ≈

>

a a a a a a

The equivalence between CActS and NActS can be established directly by the
functors

CActS
−S //oo

ActS(S,−)
NActS .

We can combine the information about firm acts to obtain the following result.

Theorem 3.16. Let S be a firm semigroup and AS a unitary right S-act. Then
the following assertions are equivalent.

(1) AS is firm.
(2) There exists an isomorphism A⊗ S → A of right S-acts.
(3) εA is invertible.
(4) ε′A is invertible.
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Proof. (1) ⇒ (2). This is obvious.
(2) ⇒ (1). Since A ⊗ S is firm, the existence of an isomorphism A ⊗ S // A

means that AS is also firm.
(1) ⇔ (3) by Proposition 3.9.
(1) ⇔ (4) by Proposition 3.13. �

In [27, Proposition 2.3], Lawson showed that, for a semigroup S with local units,
the category SFAct coincides with the category consisting of left S-acts SA for
which the canonical mapping S⊗SAct(S,A)→ A is bijective. Acts fixed by ε over
semigroups with local units were introduced by Talwar in [35]. In a subsequent
paper [36], he used acts fixed by

ΓA : ActS(S,A)S ⊗ S → A, f ⊗ s 7→ f(s)

(written in left-right dual) to develop Morita theory for factorisable semigroups.
The homomorphism Γ is the same as ε′ from Proposition 3.13 because

ε′A(f ⊗ s) = (εA(mActS(S,A) ⊗ 1S))(f ⊗ s) = εA(f ⊗ s) = f(s).

Theorem 3.16 yields immediately the following generalisation of Lawson’s result to
firm semigroups.

Corollary 3.17. Over a firm semigroup, firm acts are the same as fixed acts in
the sense of Talwar [35] and [36].

Theorem 3.16 has also another interesting corollary. For this, observe that a
semigroup operation can be defined on ActS(S, S)⊗ S by putting

(f ⊗ s)(f ′ ⊗ s′) := f ⊗ sf ′(s′).
It is straightforward to check that this multiplication is associative.

Corollary 3.18. If S is a firm semigroup then

S ∼= ActS(S, S)⊗ S
both as (S, S)-biacts and as semigroups.

Proof. By Theorem 3.16, the mapping εS : ActS(S, S)⊗ S → S, f ⊗ s 7→ f(s) (see
Lemma 3.1) is an isomorphism of right S-acts. The left S-action on ActS(S, S) is
defined by

(s · f)(z) := sf(z),

s, z ∈ S, f ∈ ActS(S, S). Now εS is a homomorphism of left S-acts because

εS(z(f ⊗ s)) = εS((z · f)⊗ s) = (z · f)(s) = zf(s) = zεS(f ⊗ s)
for every z, s ∈ S and f ∈ ActS(S, S). This proves that εS is an (S, S)-biact
isomorphism. It is also a semigroup homomorphism because

εS((f ⊗ s)(f ′ ⊗ s′)) = εS(f ⊗ sf ′(s′)) = f(sf ′(s′)) = f(s)f ′(s′)

= εS(f ⊗ s)εS(f ′ ⊗ s′).
�

As in [9], for a right S-act AS we consider the congruence

ζA = {(a1, a2) ∈ A2 | a1s = a2s for all s ∈ S}.
Since ζA is the kernel of λA, and of λ′A if AS is unitary, we have the following:
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Proposition 3.19. Let S be a semigroup and AS be a unitary right S-act. Then
the right S-acts Act(S,A)S and A/ζA are isomorphic.

Proof. From the proof of Proposition 3.12 we see that the map λ′A: A //ActS(S,A)S
is surjective. Since ζA = ker(λ′A), the Homomorphism Theorem yields an isomor-
phism as required. �

Corollary 3.20. If S is a firm semigroup then

(1) S/ζS is a generator in NActS;
(2) SS is a generator in FActS;
(3) ActS(S, S) is a generator in CActS.

Proof. (1) This is Lemma 2(iv) in [9].
(2) Applying the equivalence functor − ⊗ S : NActS → FActS to the generator

S/ζS we obtain a generator S/ζS ⊗ S in FActS . By Proposition 3.19, this is iso-
morphic to Act(S, S)S⊗S, which by part (4) of Theorem 3.16 is isomorphic to SS .
Therefore SS is also a generator in FActS .

(3) We apply the equivalence functor ActS(S,−) : FActS → CActS to the gener-
ator SS . �

4. Equivalence functors between categories of firm acts

The goal of this section is to prove an analogue of the Eilenberg-Watts theorem,
stating that equivalence functors between categories of firm acts over firm semi-
groups are naturally isomorphic to tensor multiplication functors. The proof will
be based on Theorem 3.16.

We begin with the following

Proposition 4.1. Let S and T be firm semigroups and SPT be a biact such that
PT is firm. Then the functor −⊗ P : FActS // FActT is left adjoint to the functor
ActT (P,−)⊗ S : FActT // FActS.

Proof. If we compose the adjunction in Proposition 3.2 with the adjunction between
the inclusion and coreflection of the category FActS (see Proposition 3.9), we get
the adjunction

ActT > FActS .

ActT (P,−)⊗ S

−⊗ P

Since firmness of PT implies that the image of −⊗P lies in FActT (see Lemma 3.3),
we obtain the required result. �

Composing this adjunction with the adjunction in Proposition 3.10 we get two
right adjoints − ⊗ S and −S ⊗ S to the inclusion functor FActS // ActS , which
means that the right adjoints must be isomorphic.

Whenever F : FActS → FActT and G : FActS → FActT are mutually inverse
equivalence functors, we can turn P := F (S)T and Q := G(T )S into a left S-act
and a left T -act, respectively, by putting

s · p := F (ls)(p),

t · q := G(lt)(q),
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where p ∈ P , q ∈ Q, and

ls : SS → SS , u 7→ su,

lt : TT → TT , v 7→ tv.

Therefore we will have biacts SPT and TQS .

Proposition 4.2. Suppose that S and T are firm semigroups and F : FActS →
FActT and G : FActS → FActT are mutually inverse equivalence functors. Then

F ∼= ActS(G(T ),−)⊗ T and G ∼= ActT (F (S),−)⊗ S.

Proof. Because F and G are equivalence functors, we have an isomorphism

ωA : ActT (T, F (A))→ ActS(G(T ), A)

in Set which is natural in AS ∈ FActS . We will show that actually this is also an
isomorphism in ActT . Using (3.1) we see that ActS(G(T ), A) is a right T -act with
the action

f · t = f ◦G(lt)

and ActT (T, F (A)) is a right T -act with the action

h · t = h ◦ lt.

For every t ∈ T , the diagram

ActT (T, F (A)) ActS(G(T ), A)
ωA

//

ActT (T, F (A))

ActT (T, F (A))

−◦lt

��

ActT (T, F (A)) ActS(G(T ), A)
ωA // ActS(G(T ), A)

ActS(G(T ), A)

−◦G(lt)

��

commutes because of the naturality of ω. Thus

ωA(h · t) = ωA(h ◦ lt) = ωA(h) ◦G(lt) = ωA(h) · t,

and ωA is a right T -homomorphism.
Since F (A)T is firm, it is also fixed by Theorem 3.16, and hence

F (A) ∼= ActT (T, F (A))⊗ T ∼= ActS(G(T ), A)⊗ T,

where the isomorphisms are natural in AS ∈ FActS . Hence F ∼= ActS(G(T ),−)⊗T .
The other isomorphism can be proved similarly. �

Theorem 4.3. Let S and T be firm semigroups and let F : FActS // FActT and
G : FActS // FActT be mutually inverse equivalence functors. Then

F ∼= −⊗ F (S),

G ∼= −⊗G(T ).

Moreover, the left acts SF (S) and TG(T ) are firm.

Proof. By Proposition 4.2, G is naturally isomorphic to ActT (F (S),−) ⊗ S. By
Proposition 4.1, this functor has − ⊗ F (S) as its left adjoint. Since F , being the
inverse equivalence functor ofG, is also a left adjoint ofG, we get that F ∼= −⊗F (S).
A similar argument for G gives G ∼= −⊗G(T ).
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Let ν : F → −⊗ F (S) be a natural isomorphism. Then νS : F (S) → S ⊗ F (S)
is an isomorphism of right T -acts, therefore it is bijective. Take s ∈ S and p ∈ P ,
and let νS(p) = s′ ⊗ p′. Then, by naturality of ν, the diagram

F (S) S ⊗ F (S)
νS

//

F (S)

F (S)

F (ls)

��

F (S) S ⊗ F (S)
νS // S ⊗ F (S)

S ⊗ F (S)

ls⊗1F (S)

��

commutes and we can calculate:

νS(s · p) = νS(F (ls)(p)) = (ls ⊗ 1F (S))(νS(p)) = (ls ⊗ 1F (S))(s
′ ⊗ p′)

= ss′ ⊗ p′ = s(s′ ⊗ p′) = sνS(p).

This means that νS is a homomorphism of left S-acts. By the analogue of Theo-
rem 3.16 for left acts, this implies that the left act SF (S) is firm. For the same
reason, the left act TG(T ) is firm. �

5. Morita equivalence and strong Morita equivalence coincide for
firm semigroups

In this section we will prove that right Morita equivalence and strong Morita
equivalence coincide on the class of firm semigroups. Let us recall some definitions.

Definition 5.1 ([36]). A Morita context is a six-tuple (S, T, SPT , TQS , θ, φ),
where S and T are semigroups, SPT ∈ SActT and TQS ∈ TActS are biacts, and

θ : S(P ⊗Q)S → SSS , φ : T (Q⊗ P )T → TTT

are biact morphisms such that, for every p, p′ ∈ P and q, q′ ∈ Q,

θ(p⊗ q)p′ = pφ(q ⊗ p′), qθ(p⊗ q′) = φ(q ⊗ p)q′.

We say that a Morita context (S, T, SPT , TQS , θ, φ) is

• unitary, if SPT and TQS are unitary biacts,
• surjective, if θ and φ are surjective,
• bijective, if θ and φ are bijective.

Definition 5.2 ([36]). Semigroups S and T are called strongly Morita equiva-
lent if they are contained in a unitary surjective Morita context.

Definition 5.3. We say that semigroups S and T are right Morita equivalent
if the categories FActS and FActT are equivalent.

First of all, let us mention that the relations of right Morita equivalence on the
class of all semigroups and the relation of strong Morita equivalence on the class
of factorisable semigroups are equivalence relations (factorisability is necessary for
the reflexivity of strong Morita equivalence). One of the central questions in Morita
theory is: when these two relations coincide. If they coincide, then instead of using
functors and natural transformations one can use Morita contexts for studying
various problems (for example studying Morita invariants).

While it is clear what is meant by strong Morita equivalence, it is not so obvious
what right Morita equivalence should mean. In different articles, various categories
have been used to define Morita equivalence. In the present text we have shown
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that, at least for firm semigroups, it does not make any difference which of these
categories one uses. For us, the category of firm acts seems to be the most natural
choice.

For semigroups with local units we know the following.

Theorem 5.4 ([27, Theorem 1.1]). Right Morita equivalence and strong Morita
equivalence coincide on the class of semigroups with local units.

The proof relies heavily on the fact that the acts eS, where e is an idempotent,
are indecomposable projectives in FActS . But an arbitrary semigroup may have
no idempotents at all. So if one wants to extend this result to larger classes of
semigroups, it is necessary to take a different approach. One possibility is to use
generators instead of indecomposable projectives, as is done, for example, in [9].
In that article, Chen and Shum consider the category of unitary nonsingular acts
in place of our category of firm acts. What they obtain is that equivalence of the
categories of these acts is equivalent to the existence of a surjective Morita context
which, instead of S and T , involves quotients of S and T by the congruences ζS
and ζT .

Theorem 5.5 ([9, Theorem 3]). Let S and T be factorisable semigroups. The
categories NActS and NActT are equivalent if and only if the semigroups S/ζS and
T/ζT are strongly Morita equivalent.

Remark 5.6. In view of Proposition 3.13(3), this implies that two firm semigroups
S and T are (strongly) Morita equivalent if and only if S/ζS and T/ζS are strongly
Morita equivalent. Here the adjective ‘strongly’ cannot be omitted, in other words,
we cannot write that FActS and FActT are equivalent if and only if FActS/ζ and
FActT/ζT are equivalent because it may happen that a semigroup S is firm but S/ζS
is not. Indeed, take

S =

0 a b c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 0
b 0 0 0 0 0 b
c 0 0 0 0 a c
d 0 0 0 b 0 0
e 0 0 b 0 d e

S/ζS =

0 b c d e
0 0 0 0 0 0

b 0 0 0 0 b
c 0 0 0 a c

d 0 0 b 0 0

e 0 b 0 d e

where
ζS = {(0, 0), (a, a), (b, b), (c, c), (d, d), (e, e), (0, a), (a, 0)}.

Another possible direction is to study fair semigroups, which need not even
be factorisable. For fair semigroups one gets a Morita context in which S and
T are replaced by certain ideals of S and T . Put U(S) = {s ∈ S | s = us =
sv for some u, v ∈ S}, which is an ideal of S.

Theorem 5.7 ([25, Proposition 3.12]). Let S and T be fair semigroups such that
U(S) and U(T ) have common weak local units. Then S and T are right Morita
equivalent if and only if U(S) and U(T ) are strongly Morita equivalent.

The question arises: how far can we go from semigroups with local units without
replacing S and T in the Morita context by something else? We will show in this
section that we can go at least to the class of firm semigroups.
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One of the canonical examples of bicategories is rings with identity, bimodules,
and bimodule homomorphisms (see [7], Example 7.7.4). In the same way, monoids,
biacts and act homomorphisms form a bicategory, and so do firm semigroups, firm
biacts and acts homomorphisms. The objects of the latter bicategory are firm
semigroups, the 1-cells are firm biacts and are composed using the tensor product,
the 2-cells are act homomorphisms. The fact that these data form a bicategory
follows essentially in the same way as it does for rings. The only difference to note
is that we do need the semigroups and biacts in this construction to be firm, since
only then will our bicategory have the SSS as unit 1-cells, since the requirement of
a right S-act being firm is essentially the same as saying that SSS is a right unit
for the composition in that bicategory.

The following lemma is a standard 2-categorical fact, see, for example, Proposi-
tion 1.1 in [13]; we formulate it in our special case.

Lemma 5.8. Let S and T be firm semigroups, let SPT and TQS be firm biacts and
suppose that there are isomorphisms θ : P ⊗Q // S in SActS and φ : Q⊗ P // T
in TActT . Then there there exists an isomorphism φ′ : Q⊗ P // T in TActT such
that 〈S, T, SPT , TQS , θ, φ′〉 is a Morita context.

Now we are ready to prove our main result. It is the non-additive counterpart of
a theorem announced by Quillen [32] in 1996 stating that any Morita equivalence
between firm rings is given by a unique Morita context. Quillen presented the
theorem in a lecture at the University of Exeter but has not published it. The
result was rediscovered by Garćıa and Maŕın in 1999 and appeared as Proposition
18 in [16], without using the terms ’firm ring’ and ’firm module’.

Theorem 5.9. Let S and T be firm semigroups. The following assertions are
equivalent.

(1) The categories FActS and FActT are equivalent.
(2) The categories SFAct and TFAct are equivalent.
(3) There exists a unitary bijective Morita context containing S and T .
(4) There exists a unitary surjective Morita context containing S and T .
(5) There exists a surjective Morita context containing S and T .

Proof. (1) ⇒ (3). Let F : FActS → FActT and G : FActT → FActS be mutually
inverse equivalence functors. As before, we may consider the biacts SPT = F (S)
and TQS = G(T ). Since PT and QS are firm, PT and QS are unitary right acts.
According to Theorem 4.3, SP and TQ are firm (and hence unitary) left acts. By
the same result, F ∼= −⊗ P and G ∼= −⊗Q. Thus also

FActS
−⊗P //oo
−⊗Q

FActT

are mutually inverse equivalence functors. This means that there are isomorphisms

αA : (A⊗ P )⊗Q //A in ActS ,

βB : (B ⊗Q)⊗ P //B in ActT ,
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natural in AS ∈ FActS and BT ∈ FActT , respectively. Let us show that the mapping
αS : (S ⊗ P )⊗Q // S is a homomorphism of left S-acts. Since the square

(S ⊗ P )⊗Q S
αS

//

(S ⊗ P )⊗Q

(S ⊗ P )⊗Q

(ls⊗1P )⊗1Q

��

(S ⊗ P )⊗Q S
αS // S

S

ls

��

commutes, we have

sαS((s′ ⊗ p)⊗ q) = (lsαS)((s′ ⊗ p)⊗ q) = (αS((ls ⊗ 1P )⊗ 1Q))((s′ ⊗ p)⊗ q)
= αS((ss′ ⊗ p)⊗ q) = αS(s((s′ ⊗ p)⊗ q))

for every s, s′ ∈ S, p ∈ P and q ∈ Q. Thus αS is an isomorphism in SActS .
Since SP is firm, the mapping

νP : S ⊗ P → P, s⊗ p 7→ s · p

is an isomorphism in SAct. Clearly, it is also an isomorphism in SActT . Applying
the functor −⊗Q : SActT → SActS to the isomorphism ν−1

P : P → S⊗P in SActT
gives an isomorphism ν−1

P ⊗ 1Q : P ⊗ Q → (S ⊗ P ) ⊗ Q in SActS . Denoting the
composite

P ⊗Q
ν−1
P ⊗1Q // (S ⊗ P )⊗Q αS // S

by θ we see that θ : P ⊗ Q → S is an isomorphism in SActS . Similarly we obtain
an isomorphism φ : Q⊗ P → T in TActT . An application of Lemma 5.8 gives us a
unitary bijective Morita context.

(3) ⇒ (4). This is obvious.

(4) ⇒ (1). Assume that S and T are strongly Morita equivalent via a unitary
surjective Morita context (S, T, SPT , TQS , θ, φ). We know that the firm acts and the
acts fixed by Γ are the same (see Theorem 3.16). Hence, by the dual of Theorem 3
in [36], we can say that the funcors

ActS(Q,−)T ⊗ T : FActS → FActT ,

ActT (P,−)S ⊗ S : FActT → FActS

are mutually inverse equivalence functors.

(4) ⇔ (5) This holds by Proposition 14 in [23].

(1) ⇔ (2) This follows from the left-right symmetry of condition (3). �

Remark 5.10. To prove Theorem 5.9 we did not use generators (not to speak
about indecomposable projectives) at all. This is a remarkable difference from all
proofs of similar results that we are aware of.

Still, generators are implicitly present. By Corollary 3.20, SS is a generator
in FActS and TT is a generator in FActT , thus PT = F (S) and QS = G(T ) are
generators, too.
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