
Sharp tail distribution estimates for the supremum

of a lass of sums of i.i.d. random variables.

Péter Major

2015. október 22.



The problem we are interested in 2

Let ξ
1

, . . . , ξ
n

be a sequene of i.i.d. random variables with some

distribution µ on a measurable spae (X ,X ).
Let a lass of funtions F onsisting of ountably many funtions

be given on the spae (X ,X ) with the properties

∫

f (x)µ( dx) = 0,

sup

x∈X |f (x)| ≤ 1 and

∫

f (x)2µ( dx) ≤ σ2

with some 0 < σ ≤ 1

for all elements f ∈ F .

Let F be a lass of funtions with polynomially inreasing overing

numbers with exponent L ≥ 1 and parameter D ≥ 1. (I reall the

de�nition of this notion later.)

De�ne the normalized sums S

n

(f ) = 1√
n

∑

n

j=1

f (ξ
j

) for all f ∈ F ,

and give a good estimate on the tail distribution

P

(

sup

f∈F
S

n

(f ) > v

)

for all numbers v > 0

of the supremum of these sums. This estimate may depend on σ,
L and D.



An additional remark: By an important result, alled the

onentration inequality, the distribution of this supremum is

onentrated in a small neighbourhood of a onentration point.

As a onsequene, the tail distribution we are investigating is small

only if v is larger than this onentration point. In our estimation

we want to �nd a good level above whih this tail distribution

begins to derease radially. This is a hard and important part of

our problem.

I reall the de�nition of lasses of funtions with polynomially

inerasing overing numbers together with the exponent L and

parameter D of these lasses. I do it in two steps.

This notion is a useful version of the Vapnik��ervonenkis lasses,

when we are working with lasses of funtions instead of lasses of

sets.



De�nition of a lass of funtions with

polynomially inreasing overing numbers 4

First step of the de�nition.

De�nition of uniform overing numbers with respet to

L

1

-norm. Let a measurable spae (X ,X ) be given together with a

lass of measurable, real valued funtions F on this spae. The

uniform overing number of this lass of funtions at level ε, ε > 0,

with respet to the L

1

-norm is supν N (ε,F , L
1

(ν)), where the

supremum is taken for all probability measures ν on the spae

(X ,X ), and N (ε,F , L
1

(ν)) is the smallest integer m for whih

there exist some funtions f

j

∈ F , 1 ≤ j ≤ m, suh that

min

1≤j≤m
∫

|f − f

j

| dν ≤ ε for all f ∈ F .



Seond step of the de�nition.

De�nition of a lass of funtions with polynomially inreasing

overing numbers. We say that a lass of funtions F has

polynomially inreasing overing numbers with parameter D and

exponent L if the inequality

sup

ν
N (ε,F , L

1

(ν)) ≤ Dε−L

holds for all 0 < ε ≤ 1 with the number supν N (ε,F , L
1

(ν))
introdued in the previous de�nition.

First I disuss an example whih indiates what kind of results we

an expet in our problem. We are mainly interested in the ase

when the exponent L and the parameter D are bounded (by a

number not depending on σ2

), and σ2

may be very small.



A useful example 6

Example. Take a sequene of independent, uniformly distributed

random variables ξ
1

, . . . , ξ
n

on the unit interval [0, 1], �x a number

0 ≤ σ2 ≤ 1, and de�ne a lass of funtions Fσ and F̄σ as set of

funtions de�ned on the unit interval [0, 1] in the following way.

Fσ = {f
1

, . . . , f
k

}, and F̄ = {f̄
1

, . . . , f̄
k

} with k = k(σ) = [ 1

σ2
],

where [·] denotes integer part, and f̄

j

(x) = f̄

j

(x |σ) = 1 if

x ∈ [(j − 1)σ2, jσ2), f̄
j

(x) = f̄

j

(x |σ) = 0 if x /∈ [(j − 1)σ2, jσ2),
1 ≤ j ≤ k , and f

j

(x) = f

j

(x |σ) = f̄

j

(x)− σ2

, 1 ≤ j ≤ n.

Give a good estimate on P

n

(v) = P(sup
j

S

n

(f
j

) > v).

F satis�es our onditions. It is a lass of funtions with

polynomially inreasing overing numbers with exponent L and

parameter D whih do not depend on σ2

, and the parameter σ2

introdued in the model is an upper bound for all

∫

f

j

(x)2µ( dx).



Our �rst question: For whih numbers is P

n

(v) muh smaller

than 1? Answer to this question:

An estimate on the funtion P

n

(v) in the models of the above

example. A number C̄ > 0 an be hosen in suh a way that for all

δ > 0 there is an index n

0

(δ) suh that for all sample sizes

n ≥ n

0

(δ) and numbers 0 ≤ σ ≤ 1 the inequality

P

n

(û(σ)) = P

(

sup

f ∈Fσ

|S
n

(f )| ≥ û(σ)

)

≥ 1− δ,

holds with

1.) û(σ) = C̄√
n

if σ2 ≤ n

−400

,

2.) û(σ) = C̄√
n

log n

log( log n

nσ
2

)
if n

−400 < σ2 ≤ log n

8n

, and

3.) û(σ) = C̄σ log

1/2
2

σ if

log n

8n

≤ σ2 ≤ 1.

This result says that we annot get a good estimate on the

probability we are interested for v ≤ û(σ). First I explain this

result, then I disuss what we an say if v > û(σ).



In ase 3.) of this example σ2

is relatively large. In this ase the

S

n

(f ) behaves similarly to the Gaussian ase, (like a funtional of a

Brownian bridge), and similar estimates hold for the tail distribution

of sup

f∈F S

n

(f ) as in the orresponding Gaussian model. But to

get suh a good estimate we need this ondition. K. S. Alexander

also observed this fat in his researh.

In ase 2.) S

n

(f ) does not have a good Gaussian, but has a good

Poissonian approximation. This provides a slightly weaker estimate

than in ase 1.), sine the Poissonian tail distribution tends to zero

slower at ∞ than the Gaussian one. Here we explained what we get

in this ase.

In ase 1.) we onsidered the ase when σ2

is very small. Here we

exploited the trivial fat that if we take an arbitrary partition of the

probability spae a sample point gets into one of the elements of the

partition. In this ase this observation provides the right estimate.



The next Theorem (the main result of this paper) states that in the

general ase we get an estimate suggested by the above example.

Atually the situation is somewhat more omplex, sine we also

onsider the ase when the parameters L and D may be large.

We an get a good estimate on P(sup
f ∈F |S

n

(f )| > v) only if

v > û(σ). We also want to �nd the tail distribution in this ase.

Bernstein's and Bennett's inequality suggest the upper bound

e

−C
√
n log(v/

√
nσ2

if v ≥ onst.

√
nσ2

and e

−Cv2/σ2
if

v ≤ onst.

√
nσ2

. (See my leture note On the estimation of

multiple random integrals an U-statistis).

In ases 1.) and 2.) û(σ) ≥ onst.

√
nσ2

, and the Theorem gives

the estimate we expet. Case 3.) is more omplex. In the Theorem

we give the estimate we expet if v ≥ onst.

√
nσ2

. (The situation

is somewhat more di�ult, beause we also deal with the ase

when the parameters L and D are large.) In Case 3.) it is possible

that û(σ) < v ≤ onst.

√
nσ2

. We prove the (Gaussian) estimate

we expet in this ase in an Extension of the Theorem.



Theorem. Let a sequene of i.i.d. random variables ξ
1

, . . . , ξ
n

,

n ≥ 2, with values in (X ,X ) with some distribution µ and a

ountable lass of funtions F on the same spae (X ,X ) with

polynomially inreasing overing numbers with exponent L ≥ 1 and

parameter D ≥ 1 be given. Let the funtions f ∈ F satisfy the

relations sup

x∈X |f (x)| ≤ 1,

∫

f (x)µ( dx) = 0, and

∫

f

2(x)µ( dx) ≤ σ2

with some number 0 ≤ σ2 ≤ 1 for all f ∈ F .

The normalized sums S

n

(f ), f ∈ F , satisfy the inequality

P

(

sup

f∈F
|S
n

(f )| ≥ v

)

≤ C

1

e

−C
2

√
nv log(v/

√
nσ2

for all v ≥ u(σ)

with some universal onstants C

j

> 0, 1 ≤ j ≤ 5, if one of the

following onditions is satis�ed.

1.) σ2 ≤ 1

n

400

, and u(σ) = C

3√
n

(L+ logD

log n

),

2.)

1

n

400

< σ2 ≤ log n

8n

, and u(σ) = C

4√
n

(

L

log n

log( log n

nσ
2

)
+ logD

)

,

3.)

log n

8n

< σ2 ≤ 1, and u(σ) = C

5√
n

(nσ2 + L log n + logD).



Next we onsider the ase σ2 ≥ log n

8n

and

√
nσ2 ≥ v ≥ ū(σ) with

some ū(σ) whih has the same order of magnitude as û(σ).
Atually this result was proved earlier.

Extension of the Theorem. Let us onsider, similarly to the

Theorem, a sequene of i.i.d. random variables ξ
1

, . . . , ξ
n

, n ≥ 2,

with values in a spae (X ,X ) with some distribution µ whih

satis�es the onditions of the Theorem. In the ase

log n

8n

< σ2 ≤ 1

the supremum of the normalized sums S

n

(f ), f ∈ F , satis�es the

inequality

P

(

sup

f ∈F
|S
n

(f )| ≥ v

)

≤ Ce

−αv2/σ2

with appropriate (universal) onstants α > 0, C > 0 and C

6

> 0 if√
nσ2 ≥ v ≥ ū(σ), where ū(σ) is de�ned as

ū(σ) = C

6

σ(L3/4 log1/2 2

σ + (logD)1/2).



The idea of the proof 12

We hoose an appropriate number δ > 0, and hoose by exploiting

that F is a lass of funtions with polynomially inreasing overing

numbers m = Dδ−L funtions f

j

∈ F , 1 ≤ j ≤ m, and set of

funtions D
j

⊂ F in suh a way that

∫

|g − f

j

| dµ ≤ δ, if g ∈ D
j

and

⋃

m

j=1

D
j

= F .

We an write

P

(

sup

f ∈F
|S
n

(f )| ≥ v

)

(1)

≤ P

(

sup

1≤j≤m
|S
n

(f
j

)| ≥ v

2

)

+

m

∑

j=1

P

(

sup

f ∈D
j

|S
n

(f − f

j

)| ≥ v

2

)

.



We hoose δ > 0 in an appropriate way. Then we an give a good

estimate on the seond term of the sum at the right-hand side of

(1) by means of my paper Sharp estimate on the supremum of a

lass of sums of small i.i.d. random variables.

The �rst term an be estimated by means of the inequality

P

(

sup

1≤j≤m
|S
n

(f
j

)| ≥ v

2

)

≤
m

∑

j=1

P

(

|S
n

(f
j

)| ≥ v

2

)

and Bennett's inequality. The theorem an be proved in suh a

way.

The Extension of the Theorem an be proved similarly. Only in this

ase the �rst term at the right-hand side of (1) must be estimated

in a di�erent way. We exploit the properties of the lass of

funtions G = {f
1

, . . . , f
m

}, and give a good estimate with the help

of the haining argument. (Observe that G is a lass of funtions

with polynomially inreasing overing numbers).



Some remarks on the problem 14

In a previous paper I gave a good estimate on the probability

P(sup
f ∈F S

n

(f ) > v) if F is a lass of funtions with polynomially

inreasing overing numbers onsisting of funtions bounded by 1,

and

∫

|f (x)|µ( dx) ≤ ρ with a su�iently small ρ. More preisely,

ρ ≤ n

−α
with an appropriate α > 1. Here µ denotes the

distribution of the random variables we are working with.

This result played a ruial role in our investigation. It enabled us

to redue the problem to the ase where we take the supremum for

an appropriate �nite subset of F , beause it made possible to

ontrol the small ontribution of the disregarded terms to the

supremum we are investigating.

This approah is similar to the trunation tehnique applied in the

proof of limit theorems, by whih the small but irregular e�et of

the large terms is disregarded. Here a similar method is applied.



The haining argument or a more re�ned version of it worked out

by Talagrand enables us to handle the regular e�ets in similar

problems. But the ontrol of the small irregularities demands a

di�erent method. In earlier works the irregularities were ontrolled

by means of a method alled the symmetrization argument. In the

present paper I ould �nd a more powerful method that works

under more general onditions.

The ontrol of the irregular e�ets is a more general, open problem.

Here we exploited that the lass of funtions we are working with

has polynomially inreasing overing numbers. Other models have

other good properties, and we have to �nd the method to exploit

them.

On the other hand, I onsider a method to ontrol the irregularities

good only if I see models where it it gives new results. I met some

generalizations of the symmetrization argument whih demanded

new ompliated notions and arguments. But as I saw no real

appliation of them I do not know whether they are useful.


