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The problem we are interested in 2

Let &1,...,&, be a sequence of i.i.d. random variables with some
distribution 11 on a measurable space (X, X).

Let a class of functions F consisting of countably many functions
be given on the space (X, X) with the properties [ f(x)u(dx) =0,
supyex |F(x)] < 1and [ f(x)?u(dx) < o2 with some 0 < o <1
for all elements f € F.

Let F be a class of functions with polynomially increasing covering
numbers with exponent L > 1 and parameter D > 1. (I recall the
definition of this notion later.)

Define the normalized sums S,(f) = % Sl () forall f € F,

and give a good estimate on the tail distribution
P <sup Sn(f) > v> for all numbers v > 0
feF

of the supremum of these sums. This estimate may depend on o,
L and D.



An additional remark: By an important result, called the
concentration inequality, the distribution of this supremum is
concentrated in a small neighbourhood of a concentration point.
As a consequence, the tail distribution we are investigating is small
only if v is larger than this concentration point. In our estimation
we want to find a good level above which this tail distribution
begins to decrease radically. This is a hard and important part of
our problem.

| recall the definition of classes of functions with polynomially
incerasing covering numbers together with the exponent L and
parameter D of these classes. | do it in two steps.

This notion is a useful version of the Vapnik—Cervonenkis classes,
when we are working with classes of functions instead of classes of
sets.



Definition of a class of functions with
polynomially increasing covering numbers .

First step of the definition.

Definition of uniform covering numbers with respect to
Li;-norm. Let a measurable space (X, X’) be given together with a
class of measurable, real valued functions F on this space. The
uniform covering number of this class of functions at level ¢, € > 0,
with respect to the Ly-norm is sup, (e, F, L1(v)), where the
supremum is taken for all probability measures v on the space
(X,X), and N(g, F,L1(v)) is the smallest integer m for which
there exist some functions ﬂ € F, 1< < m, such that
minlgjgmf |f — fj-| dv <eforall f € F.



Second step of the definition.

Definition of a class of functions with polynomially increasing
covering numbers. We say that a class of functions F has
polynomially increasing covering numbers with parameter D and
exponent L if the inequality

supN(e, F, L1 (v)) < Dt

holds for all 0 < ¢ < 1 with the number sup, NV'(e, F, L1 (v))
introduced in the previous definition.

First | discuss an example which indicates what kind of results we
can expect in our problem. We are mainly interested in the case
when the exponent L and the parameter D are bounded (by a
number not depending on ¢2), and o2 may be very small.



A useful example 6

Example. Take a sequence of independent, uniformly distributed

random variables {1, ..., &, on the unit interval [0,1], fix a number

0 < 0% < 1, and define a class of functions F, and F, as set of

functlons defined on the unit interval [0, 1] in the following way.
={h,....H}, and F = {h,.... f} with k = k(o) = [ 5],

Where [] denotes mteger part, and fi(x) = fi(x|o) = L if

x € [~ 1)0,jo?), £(x) = Fi(xlo) = 0 if x ¢ [ — 1)2, jo?)

1<j<k and fi(x) = fi(x|o) = f;(x) — 0%, 1 <j<n.

Give a good estimate on P,(v) = P(sup; S,(f;) > v).

F satisfies our conditions. It is a class of functions with
polynomially increasing covering numbers with exponent L and
parameter D which do not depend on o2, and the parameter o
introduced in the model is an upper bound for all [ #;(x)?/( dx).



Our first question: For which numbers is Pp(v) much smaller
than 17 Answer to this question:

An estimate on the function P,(v) in the models of the above
example. A number C > 0 can be chosen in such a way that for all
d > 0 there is an index ng(d) such that for all sample sizes

n > ng(0) and numbers 0 < o <1 the inequality

P.(a(o)) =P ( sup |Sp(f)| > 0(0)> >1-9,

feFs
holds with
1) o(o) = % if o

2)) (o) = \f_lol('% if 7400 < &

3) (o ):cmogl/?g if'%ga <1

2 < =400

This result says that we cannot get a good estimate on the
probability we are interested for v < (o). First | explain this
result, then | discuss what we can say if v > (o).



In case 3.) of this example o2 is relatively large. In this case the
Sa(f) behaves similarly to the Gaussian case, (like a functional of a
Brownian bridge), and similar estimates hold for the tail distribution
of supsc 7 Sn(f) as in the corresponding Gaussian model. But to
get such a good estimate we need this condition. K. S. Alexander
also observed this fact in his research.

In case 2.) Sp(f) does not have a good Gaussian, but has a good
Poissonian approximation. This provides a slightly weaker estimate
than in case 1.), since the Poissonian tail distribution tends to zero
slower at co than the Gaussian one. Here we explained what we get
in this case.

In case 1.) we considered the case when o is very small. Here we
exploited the trivial fact that if we take an arbitrary partition of the
probability space a sample point gets into one of the elements of the
partition. In this case this observation provides the right estimate.



The next Theorem (the main result of this paper) states that in the
general case we get an estimate suggested by the above example.
Actually the situation is somewhat more complex, since we also
consider the case when the parameters L and D may be large.

We can get a good estimate on P(supsc 7 [S,(f)| > v) only if
v > (o). We also want to find the tail distribution in this case.
Bernstein’s and Bennett's inequality suggest the upper bound
e~ CVnlog(v/v/no® i\, > const. \/no? and e~ Cv*/7" if

v < const. \/no?. (See my lecture note On the estimation of
multiple random integrals an U-statistics).

In cases 1.) and 2.) o(c) > const.\/no?, and the Theorem gives
the estimate we expect. Case 3.) is more complex. In the Theorem
we give the estimate we expect if v > const. /no?. (The situation
is somewhat more difficult, because we also deal with the case
when the parameters L and D are large.) In Case 3.) it is possible
that &I(0) < v < const. \/no®. We prove the (Gaussian) estimate
we expect in this case in an Extension of the Theorem.



Theorem. Let a sequence of i.i.d. random variables &1, ..., &,,

n > 2, with values in (X, X) with some distribution 1 and a
countable class of functions F on the same space (X, X) with
polynomially increasing covering numbers with exponent L > 1 and
parameter D > 1 be given. Let the functions f € F satisfy the
relations supxex If(x)] <1, [f(x)u(dx) =0, and

[ 2(x)p(dx) < o2 with some number 0 < o> < 1 for all f € F.
The norma/lzed sums Sp(f), f € F, satisfy the inequality

P <sup 1S ()] > v) < Cre~CVnviog(v/Vno? for all v > u(o)
feF

with some universal constants C; > 0, 1 < j <5, if one of the
following conditions is satisfied.

1.) o2 < ﬁ, and U(U) = %(L—i_ Iogn)

2) < <02 < 1 and u(o) = T‘; (L En _ + log D>

log (227
3) 5 < 0® <1, and u(0) = (no® + Llog n + log D).




Next we consider the case o> > '%% and \/no? > v > (o) with
some (o) which has the same order of magnitude as (o).
Actually this result was proved earlier.

Extension of the Theorem. Let us consider, similarly to the
Theorem, a sequence of i.i.d. random variables &1, ...,&,, n > 2,
with values in a space (X, X) with some distribution . which
satisfies the conditions of the Theorem. In the case %g,T" <o?<1
the supremum of the normalized sums S,(f), f € F, satisfies the
inequality

P (sup S0(F)] = ) < Ce /e

feF

with appropriate (universal) constants o >0, C > 0 and Cg > 0 if
V/no? > v > (o), where (o) is defined as
(o) = Cso(L3*log"? 2 + (log D)'/2).



The idea of the proof 12

We choose an appropriate number § > 0, and choose by exploiting
that F is a class of functions with polynomially increasing covering
numbers m = D§~L functions f; € F, 1 <j < m, and set of
functions Dj C F in such a way that [ |g — fi|dpu <9, if g € D}
and Ujrll Dj = F.

We can write

P (sup IS ()] > v> (1)
feF
v o v
< P| sup |S,(f)>=]+ P sup |S,(f —Ff)>=].
<1§j£m‘ (J)‘ 2) Jz; (fezgj‘ ( J)| 2)



We choose § > 0 in an appropriate way. Then we can give a good
estimate on the second term of the sum at the right-hand side of
(1) by means of my paper Sharp estimate on the supremum of a
class of sums of small i.i.d. random variables.

The first term can be estimated by means of the inequality

v “ v
P Sa(f)| == <> P(IS.(F)] > =
(1;ugmr (’)"2>‘,§-_1: (I+(5) > 7)

and Bennett's inequality. The theorem can be proved in such a
way.

The Extension of the Theorem can be proved similarly. Only in this
case the first term at the right-hand side of (1) must be estimated
in a different way. We exploit the properties of the class of

functions G = {f;, ..., 7y}, and give a good estimate with the help

of the chaining argument. (Observe that G is a class of functions
with polynomially increasing covering numbers).



Some remarks on the problem 14

In a previous paper | gave a good estimate on the probability
P(supscr Sn(f) > v) if Fis a class of functions with polynomially
increasing covering numbers consisting of functions bounded by 1,
and [ |f(x)|u(dx) < p with a sufficiently small p. More precisely,
p < n~% with an appropriate « > 1. Here y denotes the
distribution of the random variables we are working with.

This result played a crucial role in our investigation. It enabled us
to reduce the problem to the case where we take the supremum for
an appropriate finite subset of F, because it made possible to
control the small contribution of the disregarded terms to the
supremum we are investigating.

This approach is similar to the truncation technique applied in the
proof of limit theorems, by which the small but irregular effect of
the large terms is disregarded. Here a similar method is applied.



The chaining argument or a more refined version of it worked out
by Talagrand enables us to handle the regular effects in similar
problems. But the control of the small irregularities demands a
different method. In earlier works the irregularities were controlled
by means of a method called the symmetrization argument. In the
present paper | could find a more powerful method that works
under more general conditions.

The control of the irregular effects is a more general, open problem.
Here we exploited that the class of functions we are working with
has polynomially increasing covering numbers. Other models have
other good properties, and we have to find the method to exploit
them.

On the other hand, | consider a method to control the irregularities
good only if | see models where it it gives new results. | met some
generalizations of the symmetrization argument which demanded
new complicated notions and arguments. But as | saw no real
application of them | do not know whether they are useful.



