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The problem we are interested in 2

Let ξ
1

, . . . , ξ
n

be a sequen
e of i.i.d. random variables with some

distribution µ on a measurable spa
e (X ,X ).
Let a 
lass of fun
tions F 
onsisting of 
ountably many fun
tions

be given on the spa
e (X ,X ) with the properties

∫

f (x)µ( dx) = 0,

sup

x∈X |f (x)| ≤ 1 and

∫

f (x)2µ( dx) ≤ σ2

with some 0 < σ ≤ 1

for all elements f ∈ F .

Let F be a 
lass of fun
tions with polynomially in
reasing 
overing

numbers with exponent L ≥ 1 and parameter D ≥ 1. (I re
all the

de�nition of this notion later.)

De�ne the normalized sums S

n

(f ) = 1√
n

∑

n

j=1

f (ξ
j

) for all f ∈ F ,

and give a good estimate on the tail distribution

P

(

sup

f∈F
S

n

(f ) > v

)

for all numbers v > 0

of the supremum of these sums. This estimate may depend on σ,
L and D.



An additional remark: By an important result, 
alled the


on
entration inequality, the distribution of this supremum is


on
entrated in a small neighbourhood of a 
on
entration point.

As a 
onsequen
e, the tail distribution we are investigating is small

only if v is larger than this 
on
entration point. In our estimation

we want to �nd a good level above whi
h this tail distribution

begins to de
rease radi
ally. This is a hard and important part of

our problem.

I re
all the de�nition of 
lasses of fun
tions with polynomially

in
erasing 
overing numbers together with the exponent L and

parameter D of these 
lasses. I do it in two steps.

This notion is a useful version of the Vapnik��ervonenkis 
lasses,

when we are working with 
lasses of fun
tions instead of 
lasses of

sets.



De�nition of a 
lass of fun
tions with

polynomially in
reasing 
overing numbers 4

First step of the de�nition.

De�nition of uniform 
overing numbers with respe
t to

L

1

-norm. Let a measurable spa
e (X ,X ) be given together with a


lass of measurable, real valued fun
tions F on this spa
e. The

uniform 
overing number of this 
lass of fun
tions at level ε, ε > 0,

with respe
t to the L

1

-norm is supν N (ε,F , L
1

(ν)), where the

supremum is taken for all probability measures ν on the spa
e

(X ,X ), and N (ε,F , L
1

(ν)) is the smallest integer m for whi
h

there exist some fun
tions f

j

∈ F , 1 ≤ j ≤ m, su
h that

min

1≤j≤m
∫

|f − f

j

| dν ≤ ε for all f ∈ F .



Se
ond step of the de�nition.

De�nition of a 
lass of fun
tions with polynomially in
reasing


overing numbers. We say that a 
lass of fun
tions F has

polynomially in
reasing 
overing numbers with parameter D and

exponent L if the inequality

sup

ν
N (ε,F , L

1

(ν)) ≤ Dε−L

holds for all 0 < ε ≤ 1 with the number supν N (ε,F , L
1

(ν))
introdu
ed in the previous de�nition.

First I dis
uss an example whi
h indi
ates what kind of results we


an expe
t in our problem. We are mainly interested in the 
ase

when the exponent L and the parameter D are bounded (by a

number not depending on σ2

), and σ2

may be very small.



A useful example 6

Example. Take a sequen
e of independent, uniformly distributed

random variables ξ
1

, . . . , ξ
n

on the unit interval [0, 1], �x a number

0 ≤ σ2 ≤ 1, and de�ne a 
lass of fun
tions Fσ and F̄σ as set of

fun
tions de�ned on the unit interval [0, 1] in the following way.

Fσ = {f
1

, . . . , f
k

}, and F̄ = {f̄
1

, . . . , f̄
k

} with k = k(σ) = [ 1

σ2
],

where [·] denotes integer part, and f̄

j

(x) = f̄

j

(x |σ) = 1 if

x ∈ [(j − 1)σ2, jσ2), f̄
j

(x) = f̄

j

(x |σ) = 0 if x /∈ [(j − 1)σ2, jσ2),
1 ≤ j ≤ k , and f

j

(x) = f

j

(x |σ) = f̄

j

(x)− σ2

, 1 ≤ j ≤ n.

Give a good estimate on P

n

(v) = P(sup
j

S

n

(f
j

) > v).

F satis�es our 
onditions. It is a 
lass of fun
tions with

polynomially in
reasing 
overing numbers with exponent L and

parameter D whi
h do not depend on σ2

, and the parameter σ2

introdu
ed in the model is an upper bound for all

∫

f

j

(x)2µ( dx).



Our �rst question: For whi
h numbers is P

n

(v) mu
h smaller

than 1? Answer to this question:

An estimate on the fun
tion P

n

(v) in the models of the above

example. A number C̄ > 0 
an be 
hosen in su
h a way that for all

δ > 0 there is an index n

0

(δ) su
h that for all sample sizes

n ≥ n

0

(δ) and numbers 0 ≤ σ ≤ 1 the inequality

P

n

(û(σ)) = P

(

sup

f ∈Fσ

|S
n

(f )| ≥ û(σ)

)

≥ 1− δ,

holds with

1.) û(σ) = C̄√
n

if σ2 ≤ n

−400

,

2.) û(σ) = C̄√
n

log n

log( log n

nσ
2

)
if n

−400 < σ2 ≤ log n

8n

, and

3.) û(σ) = C̄σ log

1/2
2

σ if

log n

8n

≤ σ2 ≤ 1.

This result says that we 
annot get a good estimate on the

probability we are interested for v ≤ û(σ). First I explain this

result, then I dis
uss what we 
an say if v > û(σ).



In 
ase 3.) of this example σ2

is relatively large. In this 
ase the

S

n

(f ) behaves similarly to the Gaussian 
ase, (like a fun
tional of a

Brownian bridge), and similar estimates hold for the tail distribution

of sup

f∈F S

n

(f ) as in the 
orresponding Gaussian model. But to

get su
h a good estimate we need this 
ondition. K. S. Alexander

also observed this fa
t in his resear
h.

In 
ase 2.) S

n

(f ) does not have a good Gaussian, but has a good

Poissonian approximation. This provides a slightly weaker estimate

than in 
ase 1.), sin
e the Poissonian tail distribution tends to zero

slower at ∞ than the Gaussian one. Here we explained what we get

in this 
ase.

In 
ase 1.) we 
onsidered the 
ase when σ2

is very small. Here we

exploited the trivial fa
t that if we take an arbitrary partition of the

probability spa
e a sample point gets into one of the elements of the

partition. In this 
ase this observation provides the right estimate.



The next Theorem (the main result of this paper) states that in the

general 
ase we get an estimate suggested by the above example.

A
tually the situation is somewhat more 
omplex, sin
e we also


onsider the 
ase when the parameters L and D may be large.

We 
an get a good estimate on P(sup
f ∈F |S

n

(f )| > v) only if

v > û(σ). We also want to �nd the tail distribution in this 
ase.

Bernstein's and Bennett's inequality suggest the upper bound

e

−C
√
n log(v/

√
nσ2

if v ≥ 
onst.

√
nσ2

and e

−Cv2/σ2
if

v ≤ 
onst.

√
nσ2

. (See my le
ture note On the estimation of

multiple random integrals an U-statisti
s).

In 
ases 1.) and 2.) û(σ) ≥ 
onst.

√
nσ2

, and the Theorem gives

the estimate we expe
t. Case 3.) is more 
omplex. In the Theorem

we give the estimate we expe
t if v ≥ 
onst.

√
nσ2

. (The situation

is somewhat more di�
ult, be
ause we also deal with the 
ase

when the parameters L and D are large.) In Case 3.) it is possible

that û(σ) < v ≤ 
onst.

√
nσ2

. We prove the (Gaussian) estimate

we expe
t in this 
ase in an Extension of the Theorem.



Theorem. Let a sequen
e of i.i.d. random variables ξ
1

, . . . , ξ
n

,

n ≥ 2, with values in (X ,X ) with some distribution µ and a


ountable 
lass of fun
tions F on the same spa
e (X ,X ) with

polynomially in
reasing 
overing numbers with exponent L ≥ 1 and

parameter D ≥ 1 be given. Let the fun
tions f ∈ F satisfy the

relations sup

x∈X |f (x)| ≤ 1,

∫

f (x)µ( dx) = 0, and

∫

f

2(x)µ( dx) ≤ σ2

with some number 0 ≤ σ2 ≤ 1 for all f ∈ F .

The normalized sums S

n

(f ), f ∈ F , satisfy the inequality

P

(

sup

f∈F
|S
n

(f )| ≥ v

)

≤ C

1

e

−C
2

√
nv log(v/

√
nσ2

for all v ≥ u(σ)

with some universal 
onstants C

j

> 0, 1 ≤ j ≤ 5, if one of the

following 
onditions is satis�ed.

1.) σ2 ≤ 1

n

400

, and u(σ) = C

3√
n

(L+ logD

log n

),

2.)

1

n

400

< σ2 ≤ log n

8n

, and u(σ) = C

4√
n

(

L

log n

log( log n

nσ
2

)
+ logD

)

,

3.)

log n

8n

< σ2 ≤ 1, and u(σ) = C

5√
n

(nσ2 + L log n + logD).



Next we 
onsider the 
ase σ2 ≥ log n

8n

and

√
nσ2 ≥ v ≥ ū(σ) with

some ū(σ) whi
h has the same order of magnitude as û(σ).
A
tually this result was proved earlier.

Extension of the Theorem. Let us 
onsider, similarly to the

Theorem, a sequen
e of i.i.d. random variables ξ
1

, . . . , ξ
n

, n ≥ 2,

with values in a spa
e (X ,X ) with some distribution µ whi
h

satis�es the 
onditions of the Theorem. In the 
ase

log n

8n

< σ2 ≤ 1

the supremum of the normalized sums S

n

(f ), f ∈ F , satis�es the

inequality

P

(

sup

f ∈F
|S
n

(f )| ≥ v

)

≤ Ce

−αv2/σ2

with appropriate (universal) 
onstants α > 0, C > 0 and C

6

> 0 if√
nσ2 ≥ v ≥ ū(σ), where ū(σ) is de�ned as

ū(σ) = C

6

σ(L3/4 log1/2 2

σ + (logD)1/2).



The idea of the proof 12

We 
hoose an appropriate number δ > 0, and 
hoose by exploiting

that F is a 
lass of fun
tions with polynomially in
reasing 
overing

numbers m = Dδ−L fun
tions f

j

∈ F , 1 ≤ j ≤ m, and set of

fun
tions D
j

⊂ F in su
h a way that

∫

|g − f

j

| dµ ≤ δ, if g ∈ D
j

and

⋃

m

j=1

D
j

= F .

We 
an write

P

(

sup

f ∈F
|S
n

(f )| ≥ v

)

(1)

≤ P

(

sup

1≤j≤m
|S
n

(f
j

)| ≥ v

2

)

+

m

∑

j=1

P

(

sup

f ∈D
j

|S
n

(f − f

j

)| ≥ v

2

)

.



We 
hoose δ > 0 in an appropriate way. Then we 
an give a good

estimate on the se
ond term of the sum at the right-hand side of

(1) by means of my paper Sharp estimate on the supremum of a


lass of sums of small i.i.d. random variables.

The �rst term 
an be estimated by means of the inequality

P

(

sup

1≤j≤m
|S
n

(f
j

)| ≥ v

2

)

≤
m

∑

j=1

P

(

|S
n

(f
j

)| ≥ v

2

)

and Bennett's inequality. The theorem 
an be proved in su
h a

way.

The Extension of the Theorem 
an be proved similarly. Only in this


ase the �rst term at the right-hand side of (1) must be estimated

in a di�erent way. We exploit the properties of the 
lass of

fun
tions G = {f
1

, . . . , f
m

}, and give a good estimate with the help

of the 
haining argument. (Observe that G is a 
lass of fun
tions

with polynomially in
reasing 
overing numbers).



Some remarks on the problem 14

In a previous paper I gave a good estimate on the probability

P(sup
f ∈F S

n

(f ) > v) if F is a 
lass of fun
tions with polynomially

in
reasing 
overing numbers 
onsisting of fun
tions bounded by 1,

and

∫

|f (x)|µ( dx) ≤ ρ with a su�
iently small ρ. More pre
isely,

ρ ≤ n

−α
with an appropriate α > 1. Here µ denotes the

distribution of the random variables we are working with.

This result played a 
ru
ial role in our investigation. It enabled us

to redu
e the problem to the 
ase where we take the supremum for

an appropriate �nite subset of F , be
ause it made possible to


ontrol the small 
ontribution of the disregarded terms to the

supremum we are investigating.

This approa
h is similar to the trun
ation te
hnique applied in the

proof of limit theorems, by whi
h the small but irregular e�e
t of

the large terms is disregarded. Here a similar method is applied.



The 
haining argument or a more re�ned version of it worked out

by Talagrand enables us to handle the regular e�e
ts in similar

problems. But the 
ontrol of the small irregularities demands a

di�erent method. In earlier works the irregularities were 
ontrolled

by means of a method 
alled the symmetrization argument. In the

present paper I 
ould �nd a more powerful method that works

under more general 
onditions.

The 
ontrol of the irregular e�e
ts is a more general, open problem.

Here we exploited that the 
lass of fun
tions we are working with

has polynomially in
reasing 
overing numbers. Other models have

other good properties, and we have to �nd the method to exploit

them.

On the other hand, I 
onsider a method to 
ontrol the irregularities

good only if I see models where it it gives new results. I met some

generalizations of the symmetrization argument whi
h demanded

new 
ompli
ated notions and arguments. But as I saw no real

appli
ation of them I do not know whether they are useful.


