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Formulation of the problem, motivation, and

methods to solve it 2

The problem:

Let ξ
1

, . . . , ξ
n

be a sequen
e of i.i.d. random variables with some

distribution µ on a measurable spa
e (X ,X ).
Let a 
lass of fun
tions F be given on the spa
e (X ,X ) with some

ni
e properties, su
h that

∫

f (x)µ( dx) = 0 and sup

x∈X |f (x)| ≤ 1

for all elements f ∈ F .

De�ne the normalized sums S

n

(f ) = 1√
n

∑

n

j=1

f (ξ
j

) for all f ∈ F ,

and give a good estimate on the tail distribution

P

(

sup

f ∈F
S

n

(f ) > x

)

for all numbers x > 0

of the supremum of these sums.



An important remark: By an important result, 
alled the


on
entration inequality, the distribution of this supremum is


on
entrated in a small neighbourhood of a 
on
entration point.

As a 
onsequen
e, the above probability is small only if x is larger

than this 
on
entration point. An important and hard part of the

problem is to �nd a good level above whi
h this probability begins

to de
rease radi
ally. This means a good estimate on value of the


on
entration point. This is the hardest part of the problem.

(We want to give an estimate on the 
on
entration point with the

a

ura
y of a universal multiplying 
onstant.)



Our motivations to study this problem 4

Motivation 1.: Dudley's theory of uniform 
entral limit theorem.

Given a ni
e 
lass of fun
tions F and a sequen
e of i.i.d. random

variables ξ
1

, . . . , ξ
n

prove that the 
lass of normalized sums

S

n

(f ) = 1√
n

∑

n

j=1

f (ξ
j

), f ∈ F , satisfy some sort of fun
tional limit

theorem.

Cru
ial point of the proof: Show that sup

f ,f ′∈F ′ S
n

(f − f

′) is small

if F ′ ⊂ F , and F ′
has the property that E [f (ξ

1

)− f

′(ξ
1

)]2 < δ

with a small δ > 0 for all f , f ′ ∈ F ′
. We have formulated a natural

generalization of this problem, where we may 
onsider δ
n

→ 0 as

n → ∞ instead of a �xed δ > 0.



Motivation 2.: To get good limit theorems for so-
alled

non-parametri
 maximum likelihood estimates it is useful to prove

sharp estimates on the tail distribution of the supremum of multiple

integrals with respe
t to normalized empiri
al distibution fun
tions,

i.e. of expressions of the form:

sup

f ∈F

∫

· · ·
∫

f (x
1

, . . . , x
k

)

√
n(dF

n

(x
1

)− dF (x
1

)) . . .
√
n(dF

n

(x
k

)− dF (x
k

)),

where F is a distribution fun
tion F

n

is the empiri
al distribution

fun
tion of an F distributed sample, and F is a ni
e 
lass of

fun
tions of k variables. (See my le
ture note On the estimation of

multiple random integrals and U-statisti
s.) Here we investigate

this problem for k = 1.



The Gaussian version of the problem 6

The sums S

n

(f ) = 1√
n

n

∑

j=1

f (ξ
j

) satisfy the 
entral limit theorem.

Hen
e it is natural to 
onsider a Gaussian version of our problem.

We want to understand what kind of results and methods suggests

the result of this Gaussian version.

The Gaussian problem: Let η
t

, Eη
t

= 0, t ∈ T , be a 
ountable set

of random variables with (jointly) Gaussian distribution. Put

d

2

(s, t) =
[

E (η
s

− η
t

)2
]

1/2
, s, t ∈ T . Then d

2

(s, t) is a metri
 on

the parameter set T . Give a good estimate on the probability

P (sup
t∈T η

t

> x) for all numbers x > 0 with the help of the

fun
tion d

2

(s, t).



The result about the Gaussian problem 7

There is a simple and natural method, 
alled the 
haining argument

to study this problem. It yields the following result.

Theorem. Let η
t

, t ∈ T, be a set of Gaussian random variables

indexed by a 
ountable set T . Assume that Eη
t

= 0, Eη2
t

≤ σ2

with some 0 ≤ σ ≤ 1 for all t ∈ T, and the metri


d

2

(s, t) =
[

E (η
s

− η
t

)2
]

1/2
, s, t ∈ T, has the following property.

There exist some 
onstants L ≥ 1 and D ≥ 1 su
h that for all

0 ≤ ε ≤ 1 a subset {t
1

, . . . , t
P

} ⊂ T 
an be found with 
ardinality

P ≤ Dε−L for whi
h min

1≤j≤P d2(t, tj) ≤ ε for all t ∈ T. Then the

inequality

P

(

sup

T∈T
|η
t

| ≥ u

)

≤ C (D + 1) exp

{

− 1

256

(

u

σ

)

2

}

if u ≥ ML

1/2σ log

1/2 2

σ

holds with some universal 
onstants C > 0 and M > 0.



A 
omparison of our problem with the

above result 8

In our problem F plays the role of the parameter set T , and

d

2

(f , g)2 = E (S
n

(f − g)2) =
∫

[f (x)− g(x)]2µ( dx), f , g ∈ F .

The previous theorem also holds if the random variables η
t

, t ∈ T ,

are non-Gaussian, but they satisfy the Gaussian type inequality

P(|η
t

− η
s

| > u) ≤ C

1

e

−C
2

u

2/d
2

(s,t)2
for all s, t ∈ T and u > 0

with some 
onstants C

1

> 0 and C

2

> 0.

What is the 
ase in our problem?

Some 
lassi
al results (e.g. Bernstein's inequality) provide the

above inequality under some restri
tion, (e.g. if

u ≤ 
onst.

√
nd

2

2

(s, t)), but it may not hold without su
h a

restri
tion. (See my le
ture note On the estimation of multiple

random integrals and U-statisti
s, Chapter 3.)



To get results similar to the Gaussian 
ase for sums of bounded i.i.d.

random variables some additional restri
tion has to be imposed,

and the proof requires new ideas. I know of two approa
hes.

Approa
h 1. Due to Talagrand. De�ne the metri


d∞(f , g) = sup

x∈X |f (x) − g)x)|, f , g ∈ F , and introdu
e the

additional 
ondition that there exist some 
onstants D ≥ 1 and

L ≥ 1 su
h that for all 0 ≤ ε ≤ 1 P ≤ D(n−1/2ε)−L fun
tions

f

j

∈ F , 1 ≤ j ≤ P , 
an be found for whi
h min

1≤j≤P d∞(f , f
j

) ≤ ε

for all f ∈ F . This 
ondition together with the 
ondition on the

metri
 d

2

(·, ·) in the theorem about the Gaussian version imply a

similar estimate. Talagrand proved a stronger result formulated

with a di�erent terminology in his book The generi
 
haining.

The proof is based on an appropriate version of the 
haining

argument. In the proof we exploit that if the terms of a sum of

independent random variables have a very small bound in the

supremum norm, then the tail distribution of the sum has a good

Gaussian upper bound even at high levels.



Talagrand found interesting appli
ations of his result, but there are

important models where it does not work.

Example where Talagrand's result 
annot be applied. Let (X ,X ) be
the unit interval [0, 1] with the Borel σ-algebra, let ξ

1

, . . . , ξ
n

be

i.i.d. random variables on [0, 1] with uniform distribution. Put

F = {f
a,b(x)}, where 0 ≤ a < b ≤ a + σ2 with a small number

σ2 > 0, a, b are rational numbers, and f

a,b(x) = I

a,b(x) − (b − a),
where I

a,b(·) is the indi
ator fun
tion of the interval (a, b).

This example satis�es the 
onditions we imposed for our models,

and the 
ondition imposed on the metri
 d

2

(·, ·) with parameters L

and D whi
h have an upper bound not depending on σ2, but the

d∞(·, ·) metri
 behaves badly. But all fun
tions f

a,b are far from

ea
h other in the supremum norm.

To handle su
h models we introdu
e a di�erent method.



Approa
h 2. (Based on a Vapnik��ervonenkis type argument.) We

formulate an additional 
ondition on F with the help of a notion


alled the 
lass of fun
tions with polynomially in
reasing 
overing

numbers instead of the 
ondition about the behaviour of the d∞
metri
. We prove results with its help.

We give the de�nition of a 
lass of fun
tions with polynomially

in
reasing 
overing numbers in two steps.

First step of the de�nition.

De�nition of uniform 
overing numbers with respe
t to

L

1

-norm. Let a measurable spa
e (X ,X ) be given together with a


lass of measurable, real valued fun
tions F on this spa
e. The

uniform 
overing number of this 
lass of fun
tions at level ε, ε > 0,

with respe
t to the L

1

-norm is supν N (ε,F , L
1

(ν)), where the

supremum is taken for all probability measures ν on the spa
e

(X ,X ), and N (ε,F , L
1

(ν)) is the smallest integer m for whi
h

there exist some fun
tions f

j

∈ F , 1 ≤ j ≤ m, su
h that

min

1≤j≤m
∫

|f − f

j

| dν ≤ ε for all f ∈ F .



Se
ond step of the de�nition.

De�nition of a 
lass of fun
tions with polynomially in
reasing


overing numbers. We say that a 
lass of fun
tions F has

polynomially in
reasing 
overing numbers with parameter D and

exponent L if the inequality

sup

ν
N (ε,F , L

1

(ν)) ≤ Dε−L

holds for all 0 < ε ≤ 1 with the number supν N (ε,F , L
1

(ν))
introdu
ed in the previous de�nition.

There is a good estimate for the probability of

P(sup
f ∈F |S

n

(f ) > x) if the 
lass of fun
tions F has polynomially

in
reasing 
overing numbers with some parameter D ≥ 1 and

L ≥ 1. See On the estimation of multiple random integrals and

U-statisti
s, Theorem 4.1. This result des
ribes fairly well when we


an get su
h a good estimate in our problem as in its Gaussian


ounterpart.



The proof is based on some ideas of K. S. Alexander, and applies

the so-
alled symmetrization argument. It says that under some not

too restri
tive 
onditions sup

f∈F
∑

n

j=1

f (ξ
j

) has a similar tail

distibution as its randomized version sup

f∈F
∑

n

j=1

ε
j

f (ξ
j

), where
ε
1

, . . . , ε
n

are i.i.d. random variables, independent also of the

random variables ξ
j

, and P(ε
1

= 1) = P(ε
1

= −1) = 1

2

.

The symmetrized version sup

f∈F
∑

n

j=1

ε
j

f (ξ
j

) 
an be better

handled than the original expression, and this is exploited in the

symmetrization argument..

Nevertheless, this te
hnique gives a weak estimate if Ef (ξ
1

)2 ≤ σ2

for all f ∈ F with a very small σ2. In this 
ase the above

mentioned Theorem 4.1 in my le
ture note does not give a sharp

estimate. Our goal is to give a sharp estimate in all 
ases. It turned

out that the next result, the main result of the paper under

dis
ussion, plays a 
ru
ial role in a
hieving this goal.

Here is this result.



Main theorem. Let F be a �nite or 
ountable 
lass of fun
tions

on a measurable spa
e (X ,X ) whi
h has polynomially in
reasing


overing numbers with some parameter D ≥ 1 and exponent L ≥ 1,

and sup

x∈X |f (x)| ≤ 1 for all f ∈ F . Let ξ
1

, . . . , ξ
n

, n ≥ 2, be a

sequen
e of i.i.d. random variables with values in the spa
e (X ,X )
with a distribution µ, and assume that the inequality

∫

|f (x)|µ( dx) ≤ ρ holds for all f ∈ F with a number

0 < ρ ≤ n

−200

. Put S̄

n

(f ) = S̄

n

(f )(ξ
1

, . . . , ξ
n

) =
∑

n

j=1

f (ξ
j

) for all
f ∈ F . The inequality

P

(

sup

f ∈F
|S̄
n

(f )| ≥ u

)

≤ DρCu for all u > 41L

holds with some universal 
onstant 1 > C > 0. We 
an 
hoose

e.g. C = 1

50

.

(The 
ondition

∫

f (x)µ( dx) = 0 for all f ∈ F is not needed in this

result.)



An example that may help to understand

the 
ontent of the Main theorem 15

Let (X ,X ) be a �nite set with N elements, µ the uniform

distribution on it, (µ(A) = 1

N

· the number of elements in A.) Fix

a number d ≥ 1 and let F be the set of indi
ator fun
tions of the

subsets of X 
ontaining at most d elements. Let ξ
1

, . . . , ξ
n

be i.i.d.

random variables, and de�ne S̄

n

(f ) =
∑

1≤j≤n f (ξj) with their help.

Question: What 
an we say about P(sup
f∈F S̄

n

(f ) > u)?

We are interested in the 
ase when

n

N

is small. It is 
lear that

P(sup
f ∈F S̄

n

(f ) ≥ u) = 1 if u ≤ d . If u > d , then this probability

is a fast de
reasing fun
tion of u. (See Se
tion 1 of the paper for

details.) On the other hand the indi
ator fun
tions {x : f (x) = 1},
f ∈ F , 
onstitute a (
lassi
al) example of Vapnik��ervonenkis


lasses.



The notion of 
lass of fun
tions with polynomially in
reasing


overing numbers 
an be 
onsidered as a version of

Vapnik��ervonenkis 
lasses for 
lasses of fun
tions, and these two

notions behave similarly. In parti
ular, by some results the 
lass of

fun
tions in the above example has polynomially in
reasing 
overing

numbers with exponenent L = (1+ ε)d for all ε > 0 and

appropriate D = D(ε).
Some 
onsiderations show that the main theorem 
an be

interpreted in the following way:

For a 
lass of fun
tions F with polynomially in
reasing 
overing

numbers and the property that sup

f ∈F
∫

|f (x)|µ( dx) is very small

the tail distribution of | sup
f ∈F S̄

n

(f )| satis�es su
h an inequality

that the above (simple) example suggests.



The real role of the Main theorem 17

We are interested in the Main theorem not for itself. It is

interesting for us, be
ause it yields a better appli
ation of the

Vapnik��ervonenkis argument than the symmetrization method.

The 
ondition

∫

|f (x)|µ( dx) ≤ ρ for all f ∈ F with 0 < ρ ≤ n

−200

is not very restri
tive. This (together with the existen
e of

polynomially in
reasing 
overing numbers in our models) enables us

to split up the 
lass of fun
tions F into the union of relatively few

subsets F
j

, 1 ≤ j ≤ M, (M ≤ n

K

with some K > 0) in su
h a way

that �xing some f

j

∈ F
j

the tail distribution of sup

f∈F
j

|S̄
n

(f − f

j

)|

an be well bounded by means of the Main theorem.

Sin
e we have to work only with polynomially many subsets F
j

⊂ F
we 
an give a better, more 
omplete solution of our problem. This

is the topi
 of my paper Sharp tail distribution estimates for the

supremum of a 
lass of sums of i.i.d. random variables.



The main ideas of the proof 18

Let X be a �nite set with 2

k

elements with a large integer k , µ be

the uniform distribution on X . Consider a model satisfying the


onditions of the Main theorem with su
h an X and µ, and prove

the estimate of the Main theorem for P(sup
f ∈F S̄

n

(f )| ≥ n). We

may assume that f (x) ≥ 0 for all x ∈ X and f ∈ F .

We prove �rst this spe
ial result in Theorem 1A and then the Main

theorem with its help. We prove Theorem 1A with the help of an

indu
tion pro
edure for k with a large starting number k

0

. The

starting step of the indu
tion is done in Lemma 3.1.

To 
arry out our indu
tion pro
edure we need a result formulated in

Lemma 3.2. This states that if a 
lass of fun
tions F with

polynomially in
reasing 
overing numbers on a set X of 
ardinality

2

k

with a large number k has the property

∫

f (x)µ( dx) ≤ ρ for all

f ∈ F with the uniform distribution µ on X , then this property is

preserved for most subsets of X with 
ardinality 2

k−1

if ρ is

repla
ed by a slightly larger ρ̄.



To prove Theorem 1A observe that sup

f∈F S̄

n

(f ) ≥ n if and only if

there is some f ∈ F for whi
h f (ξ
j

) = 1 for all 1 ≤ j ≤ n. Hen
e

to prove Theorem 1A we have to give a good estimate on the

number of sequen
es (x
l

1

, . . . , x
l

n

) ∈ X

n

su
h that

x

l

j

∈ B

f

= {x : f (x) = 1} for all 1 ≤ j ≤ n, and some f ∈ F . We

prove su
h an estimate by means of indu
tion with respe
t to k

with the help of Lemma 3.2.

We assume that an appropriate estimate holds on the number of

su
h sequen
es for 
lasses of fun
tions F with polynomially

in
reasing 
overing numbers with exponent L ≥ 1 and parameter

D ≥ 1 on a set X of 
ardinality 2

k−1

if also the 
ondition

∫

|f (x)|µ( dx) ≤ ρ
k−1

holds for all f ∈ F with an appropriately


hosen ρ
k−1

. Then we prove the analogous result for parameter k

with an appropriately 
hosen ρ
k

by means of Lemma 3.2.

We de�ne for all fun
tions f ∈ F and sets B ⊂ X of 
ardinality

2

k−1

the fun
tion f

B

as the restri
tion of f to B , and put

F
B

= {f
B

: f ∈ F}.



Then by applying the indu
tional hypothesis for k − 1 for the sets

B ⊂ X of 
ardinality 2

k−1

with the 
lasses of fun
tions F
B

and

taking an average for all sets B of 
ardinality 2

k−1

we get an

estimate on the number of sequen
es (x
l

1

, . . . , x
l

n

) ∈ X

n

with the

requested properties. In this 
al
ulation we apply Lemma 3.2 and


hoose the 
onstants ρ
k

in an appropriate way. If we do this


arefully, then we 
an 
arry out the indu
tion pro
edure, and by

letting k → ∞ we get the proof of Theorem 1A.

The 
ru
ial part of the problem is the proof of Lemma 3.2. Its main

step is to show that

∫

(f
B

− f

X\B) dµ is small with probability

almost 1 for any f ∈ F , if we 
hoose the set B randomly among

the sets B ⊂ X of 
ardinality 2

k−1

, and f

B

denotes the restri
tion

of f to the set B . This implies that

∫

f

B

dµ
B

≤ ρ̄ with a number

slightly larger than ρ with probability almost 1, where µ
B

is the

uniform distribution on B . With an appropriate 
hoi
e of ρ̄ we 
an

a
hieve that even sup

f∈F
∫

f

B

dµ
B

≤ ρ̄ with probability almost 1.

Here we exploit that F has polynomially in
reasing 
overing

numbers. The last inequality implies Lemma 3.2.



We 
an estimate the tail distribution of

∫

(f
B

− f

X\B) dµ = 2

−k(
∑

x∈B f (x) −∑

x /∈B f (x)), where B is a

randomly 
hosen subset of X with 
ardinality 2

k−1

by means of a

method that appeared also in the proof of Lemma 3 of the paper

Komlós�Major�Tusnády: An approximation of partial sums of

independent rv's and the sample DF.

The method: Take a pairing (x
l

1

, x
l

2

),. . . (x
l

2

k

−1

, x
l

2

k

) of the set X ,

and de�ne a random set B with 2

k−1

elements by putting in ea
h

pair one randomly 
hosen element into the set B and the other one

into the 
omplementary set. We 
an well estimate the tail

distribution of 2

−k(
∑

x∈B f (x) −∑

x /∈B f (x)) if we 
hoose only

sets B obtained in su
h a way e.g. with the help of Hoe�ding's

inequality. Then averaging for all possible pairings of X we 
an get

the estimate we need to 
omplete the proof of Lemma 2.2.

Finally I brie�y explain how to prove the Main theorem with the

help of Theorem 1A.



First I give a good estimate on P(sup
f∈F S̄

n

(f ) > u) for all u > 0

under the 
onditions of Theorem 1A in Lemma 4.1. To prove this

estimate I show that the event sup

f ∈F S̄

n

(f ) > u may hold only if

for some index j there is a relatively long sequen
e

{l
1

, . . . , l
s

} ⊂ {1, . . . , n} su
h that f (ξ
l

1

) ≥ 2

−j
,. . . , f (ξ

l

s

) ≥ 2

−j

for some f ∈ F . The probability of su
h an event 
an be well

estimated with the help of Theorem 1A. Then a 
areful 
al
ulation

provides the proof of Lemma 4.1.

The Main theorem is proved by means of Lemma 4.1. We 
an

redu
e the proof to the 
ase when F is a �nite set. If its 
ardinality

is R , then we 
an approximate F = {f
1

, . . . , f
R

} with a 
lass of

fun
tions G = {g
1

, . . . , g
R

} whose elements take only �nitely many

values, the µ-distribution of all events

{g
1

(x) = u

1

, . . . , g
R

(x) = u

R

} is an integer multiplied by 2

−k
with

some number k , and the fun
tions g

j

are so 
lose to the fun
tions

f

j

that it is enough to prove the Main Theorem for G instead of F .

On the other hand, this 
an be done with the help of Lemma 4.1.


