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Formulation of the problem, motivation, and

methods to solve it 2
The problem:
Let &1,...,&, be a sequence of i.i.d. random variables with some

distribution 11 on a measurable space (X, X).

Let a class of functions F be given on the space (X, X’) with some
nice properties, such that [ f(x)u( dx) = 0 and sup,cx [f(x)| <1

for all elements f € F.

Define the normalized sums S,(f) = % er',:l f(&) forall f € F,

and give a good estimate on the tail distribution

P (sup Sn(f) > x> for all numbers x > 0
feF

of the supremum of these sums.



An important remark: By an important result, called the
concentration inequality, the distribution of this supremum is
concentrated in a small neighbourhood of a concentration point.
As a consequence, the above probability is small only if x is larger
than this concentration point. An important and hard part of the
problem is to find a good level above which this probability begins
to decrease radically. This means a good estimate on value of the
concentration point. This is the hardest part of the problem.

(We want to give an estimate on the concentration point with the
accuracy of a universal multiplying constant.)



Our motivations to study this problem !

Motivation 1.: Dudley's theory of uniform central limit theorem.
Given a nice class of functions F and a sequence of i.i.d. random
variables &1, ..., &, prove that the class of normalized sums

Sa(f) = % >l (&), f € F, satisfy some sort of functional limit
theorem.

Crucial point of the proof: Show that sups ¢z S(f — f) is small
if 7/  F, and F' has the property that E[f (&) — f/(£1)]? < 6
with a small § > 0 for all f,f" € F'. We have formulated a natural
generalization of this problem, where we may consider ¢, — 0 as

n — oo instead of a fixed § > 0.



Motivation 2.: To get good limit theorems for so-called
non-parametric maximum likelihood estimates it is useful to prove
sharp estimates on the tail distribution of the supremum of multiple
integrals with respect to normalized empirical distibution functions,
i.e. of expressions of the form:

sup/ /f TyevesXk)
feF

x1) = dF(x1)) ... v/n(dFp(xc) — dF (xc)),

where F is a distribution function F, is the empirical distribution
function of an F distributed sample, and F is a nice class of
functions of k variables. (See my lecture note On the estimation of
multiple random integrals and U-statistics.) Here we investigate
this problem for k = 1.



The Gaussian version of the problem 6

n
The sums S,(f) = % > f(&) satisfy the central limit theorem.
j=1

Hence it is natural to consider a Gaussian version of our problem.
We want to understand what kind of results and methods suggests
the result of this Gaussian version.

The Gaussian problem: Let n;, En; =0, t € T, be a countable set
of random variables with (jointly) Gaussian distribution. Put

da(s, t) = [E(ns — nt)z]l/z, s,t € T. Then dx(s,t) is a metric on
the parameter set 7. Give a good estimate on the probability

P (sup;c7 e > x) for all numbers x > 0 with the help of the
function da(s, t).



The result about the Gaussian problem 7

There is a simple and natural method, called the chaining argument
to study this problem. It yields the following result.

Theorem. Let n, t € T, be a set of Gaussian random variables
indexed by a countable set T. Assume that En; =0, En? < o?
with some 0 < o <1 for all t € T, and the metric

da(s, t) = [E('r]s — nt)z]l/z, s,t € T, has the following property.
There exist some constants L > 1 and D > 1 such that for all

0 <e<1asubset{ty,...,tp} C T can be found with cardinality
P < De~! for which mini<j<p da(t, tj) < e for all t € T. Then the
inequality

1 /su\2
> <
P(?ép;_]??ﬁ_u) C(D+1)exp{ 256( ) }
2
if u> ML 2o log!/? =
g

holds with some universal constants C > 0 and M > 0.



A comparison of our problem with the
above result

In our problem F plays the role of the parameter set T, and
da(f,g)? = E(Sn(f — g) )—f[f x) — g(x)]?u(dx), f,g € F.
The previous theorem also holds if the random variables n;, t € T,
are non-Gaussian, but they satisfy the Gaussian type inequality

P(|n: —ns| > u) < Cre~ @ /%0 foralls;t € T and u> 0

with some constants C; > 0 and C, > 0.

What is the case in our problem?

Some classical results (e.g. Bernstein's inequality) provide the
above inequality under some restriction, (e.g. if

u < const.n/nd3(s, t)), but it may not hold without such a
restriction. (See my lecture note On the estimation of multiple
random integrals and U-statistics, Chapter 3.)



To get results similar to the Gaussian case for sums of bounded i.i.d.
random variables some additional restriction has to be imposed,
and the proof requires new ideas. | know of two approaches.
Approach 1. Due to Talagrand. Define the metric

do(f,g) = supyex |f(x) —g)x)|, f,g € F, and introduce the
additional condition that there exist some constants D > 1 and
L>1suchthatforall0<e<1P< D(n*1/25)*L functions

fie F, 1 <j <P, can be found for which mini<j<p do(f, ) < ¢
for all f € F. This condition together with the condition on the
metric da(-,-) in the theorem about the Gaussian version imply a
similar estimate. Talagrand proved a stronger result formulated
with a different terminology in his book The generic chaining.

The proof is based on an appropriate version of the chaining
argument. In the proof we exploit that if the terms of a sum of
independent random variables have a very small bound in the
supremum norm, then the tail distribution of the sum has a good
Gaussian upper bound even at high levels.



Talagrand found interesting applications of his result, but there are
important models where it does not work.

Example where Talagrand’s result cannot be applied. Let (X, X’) be
the unit interval [0, 1] with the Borel o-algebra, let &1, ..., &, be
i.i.d. random variables on [0, 1] with uniform distribution. Put

F = {f5(x)}, where 0 < a < b < a+ o2 with a small number

02 >0, a, b are rational numbers, and £, 5(x) = I, 5(x) — (b — a),
where /I, p(-) is the indicator function of the interval (a, b).

This example satisfies the conditions we imposed for our models,
and the condition imposed on the metric dx(-,-) with parameters L
and D which have an upper bound not depending on o2, but the
dso (-, -) metric behaves badly. But all functions £, 5, are far from
each other in the supremum norm.

To handle such models we introduce a different method.



Approach 2. (Based on a Vapnik—Cervonenkis type argument.) We
formulate an additional condition on F with the help of a notion
called the class of functions with polynomially increasing covering
numbers instead of the condition about the behaviour of the d.,
metric. We prove results with its help.

We give the definition of a class of functions with polynomially
increasing covering numbers in two steps.
First step of the definition.

Definition of uniform covering numbers with respect to
Li-norm. Let a measurable space (X, X’) be given together with a
class of measurable, real valued functions F on this space. The
uniform covering number of this class of functions at level €, € > 0,
with respect to the Ly-norm is sup, N(s, F, L1(v)), where the
supremum is taken for all probability measures v on the space
(X,X), and N(e, F, L1(v)) is the smallest integer m for which
there exist some functions f; € 7, 1 < j < m, such that
mini<j<m [ |f — fi| dv < e for all f € F.



Second step of the definition.

Definition of a class of functions with polynomially increasing
covering numbers. We say that a class of functions F has
polynomially increasing covering numbers with parameter D and
exponent L if the inequality

supN(e, F,Li(v)) < De b

holds for all 0 < & <1 with the number sup, N (e, F, L1(v))
introduced in the previous definition.

There is a good estimate for the probability of

P(supscr|Sa(f) > x) if the class of functions F has polynomially
increasing covering numbers with some parameter D > 1 and

L > 1. See On the estimation of multiple random integrals and
U-statistics, Theorem 4.1. This result describes fairly well when we
can get such a good estimate in our problem as in its Gaussian
counterpart.



The proof is based on some ideas of K. S. Alexander, and applies
the so-called symmetrization argument. It says that under some not
too restrictive conditions sups. » 27:1 f(&;) has a similar tail
distibution as its randomized version sups. Zf:l gif (&), where

€1,...,€p are i.i.d. random variables, independent also of the
random variables &j, and P(c1 = 1) = P(e; = —1) = 3.

The symmetrized version sups. 7 7, £;f({;) can be better
handled than the original expression, and this is exploited in the
symmetrization argument..

Nevertheless, this technique gives a weak estimate if Ef(£1)? < o
for all f € F with a very small o2. In this case the above
mentioned Theorem 4.1 in my lecture note does not give a sharp
estimate. Our goal is to give a sharp estimate in all cases. It turned
out that the next result, the main result of the paper under
discussion, plays a crucial role in achieving this goal.

Here is this result.



Main theorem. Let F be a finite or countable class of functions
on a measurable space (X, X) which has polynomially increasing
covering numbers with some parameter D > 1 and exponent L > 1,
and sup,x |f(x)| <1 forallf € F. Let&y,...,&n, n> 2, be a
sequence of i.i.d. random variables with values in the space (X, X)
with a distribution 1, and assume that the inequality
J1f(x)|u(dx) < p holds for all f € F with a number

0<p<n 200 Put 5,(f) = S,(F) (&1, ..., &) = Z (&) for all
feF. The lnequa//ty

P <sup |1Sn(£)] > u> < Dp Y for all u> 41L
feF

holds with some universal constant 1 > C > 0. We can choose

eg. C= 51—0.

(The condition [ f(x)u(dx) =0 for all f € F is not needed in this

result.)



An example that may help to understand
the content of the Main theorem "

Let (X, X) be a finite set with NV elements, p the uniform
distribution on it, (4(A) = 4 - the number of elements in A.) Fix
a number d > 1 and let F be the set of indicator functions of the
subsets of X containing at most d elements. Let &1,...,&, be i.i.d.
random variables, and define S,(f) = > 1<j<p (&) with their help.

Question: What can we say about P(sups.r S,(f) > u)?

We are interested in the case when f; is small. It is clear that

P(supser Sa(f) > u) = Lif u < d. If u> d, then this probability
is a fast decreasing function of u. (See Section 1 of the paper for
details.) On the other hand the indicator functions {x: f(x) =1},
f € F, constitute a (classical) example of Vapnik—Cervonenkis
classes.



The notion of class of functions with polynomially increasing
covering numbers can be considered as a version of
Vapnik—éervonenkis classes for classes of functions, and these two
notions behave similarly. In particular, by some results the class of
functions in the above example has polynomially increasing covering
numbers with exponenent L = (1 + ¢)d for all € > 0 and
appropriate D = D(¢).

Some considerations show that the main theorem can be
interpreted in the following way:

For a class of functions F with polynomially increasing covering
numbers and the property that supscr [ |f(x)|n( dx) is very small
the tail distribution of |sups.» S,(f)| satisfies such an inequality
that the above (simple) example suggests.



The real role of the Main theorem o

We are interested in the Main theorem not for itself. It is
interesting for us, because it yields a better application of the
Vapnik—Cervonenkis argument than the symmetrization method.

The condition [ |f(x)[u(dx) < pforall f € F with 0 < p < n~

is not very restrictive. This (together with the existence of
polynomially increasing covering numbers in our models) enables us
to split up the class of functions F into the union of relatively few
subsets 7, 1 < j < M, (M < n¥ with some K > 0) in such a way
that fixing some f; € F; the tail distribution of supc - 1Sa(f — 1)
can be well bounded by means of the Main theorem.

Since we have to work only with polynomially many subsets 7; C F
we can give a better, more complete solution of our problem. This
is the topic of my paper Sharp tail distribution estimates for the
supremum of a class of sums of i.i.d. random variables.



The main ideas of the proof 18

Let X be a finite set with 2X elements with a large integer k, ;i be
the uniform distribution on X. Consider a model satisfying the
conditions of the Main theorem with such an X and p, and prove
the estimate of the Main theorem for P(supsc» S,(f)| > n). We
may assume that 7(x) > 0 for all x € X and f € F.

We prove first this special result in Theorem 1A and then the Main
theorem with its help. We prove Theorem 1A with the help of an
induction procedure for k with a large starting number ky. The
starting step of the induction is done in Lemma 3.1.

To carry out our induction procedure we need a result formulated in
Lemma 3.2. This states that if a class of functions F with
polynomially increasing covering numbers on a set X of cardinality
2% with a large number k has the property J F(x)p(dx) < p for all
f € F with the uniform distribution ;2 on X, then this property is
preserved for most subsets of X with cardinality 25~ 1 if p is
replaced by a slightly larger p.



To prove Theorem 1A observe that sups. » S,(f) > n if and only if
there is some f € F for which (&) =1 for all 1 <j < n. Hence
to prove Theorem 1A we have to give a good estimate on the
number of sequences (x; ,...,x;,) € X" such that

x; € Bf = {x: f(x) =1} forall1 </ < n, and some f € 7. We
prove such an estimate by means of induction with respect to k
with the help of Lemma 3.2.

We assume that an appropriate estimate holds on the number of
such sequences for classes of functions F with polynomially
increasing covering numbers with exponent L > 1 and parameter
D > 1 on a set X of cardinality 21 if also the condition
J1f(x)|p( dx) < pk_q holds for all f € F with an appropriately
chosen pi_1. Then we prove the analogous result for parameter k
with an appropriately chosen p, by means of Lemma 3.2.

We define for all functions f € F and sets B C X of cardinality
2k=1 the function fz as the restriction of f to B, and put
Fg={fg: f € F}.



Then by applying the inductional hypothesis for k — 1 for the sets
B C X of cardinality 2k~1 with the classes of functions Fg and
taking an average for all sets B of cardinality 21 we get an
estimate on the number of sequences (xy, ..., x,) € X" with the
requested properties. In this calculation we apply Lemma 3.2 and
choose the constants pj in an appropriate way. If we do this
carefully, then we can carry out the induction procedure, and by
letting k — oo we get the proof of Theorem 1A.

The crucial part of the problem is the proof of Lemma 3.2. Its main
step is to show that [(fg — fx\5) dyu is small with probability
almost 1 for any f € F, if we choose the set B randomly among
the sets B C X of cardinality 2k=1 and fg denotes the restriction
of f to the set B. This implies that [ fg dug < p with a number
slightly larger than p with probability almost 1, where g is the
uniform distribution on B. With an appropriate choice of 5 we can
achieve that even sup;.r [ fg djug < p with probability almost 1.
Here we exploit that F has polynomially increasing covering
numbers. The last inequality implies Lemma 3.2.



We can estimate the tail distribution of

[(fs — fx\g) dpn =253 cn F(x) — >_x¢g f(x)), where Bis a
randomly chosen subset of X with cardinality 2~ by means of a
method that appeared also in the proof of Lemma 3 of the paper
Komlés—Major—Tusnady: An approximation of partial sums of
independent rv's and the sample DF.

The method: Take a pairing (xy,.,xy,),. .. (Xlzk_l’xlzk) of the set X,
and define a random set B with 2k~1 elements by putting in each
pair one randomly chosen element into the set B and the other one
into the complementary set. We can well estimate the tail
distribution of 27%(}", g f(x) — >_xzp f(x)) if we choose only
sets B obtained in such a way e.g. with the help of Hoeffding's
inequality. Then averaging for all possible pairings of X we can get
the estimate we need to complete the proof of Lemma 2.2.

Finally I briefly explain how to prove the Main theorem with the
help of Theorem 1A.



First | give a good estimate on P(supsc Sy(f) > u) for all u > 0
under the conditions of Theorem 1A in Lemma 4.1. To prove this
estimate | show that the event supsc» S,(f) > u may hold only if
for some index j there is a relatively long sequence

{h,...,Is} € {1,...,n} such that £(&,) >27/,..., f(&,)>27
for some f € F. The probability of such an event can be well
estimated with the help of Theorem 1A. Then a careful calculation
provides the proof of Lemma 4.1.

The Main theorem is proved by means of Lemma 4.1. We can
reduce the proof to the case when F is a finite set. If its cardinality
is R, then we can approximate F = {f1,...,fgr} with a class of
functions G = {g1,...,8r} whose elements take only finitely many
values, the u-distribution of all events

{g1(x) = u1,...,8r(x) = ug} is an integer multiplied by 27 with
some number k, and the functions gj are so close to the functions
f; that it is enough to prove the Main Theorem for G instead of F.
On the other hand, this can be done with the help of Lemma 4.1.



