In several papers a result called Segal’s lemma appears. This result is Lemma 1.4
in I. E. Segal’s paper Construction of nonlinear local quantum processes I. in Annals
of Math. 92 (1970) 462-481. Here I describe a slightly modified and more detailed
formulation and proof of this result. I present a slighly different version of Segal’s
proof. I finish this note with the original formulation and proof of Segal’s result.

Segal’s lemma. Let (M;,u;) (i = 1,...,n) be separable measure spaces, and let T;
be an integral operator on L, (M;, p1;) with positive kernel Kj, i.e. let

(Tif)(xi) = /M Ki(zs,y:) f (ya) pa (dys), x; € My, y; € M;, i=1,...,n,

where f(-) is a function in L,(M;, ;). Let T,; be a contraction from L,(M;, p;) to
Ly(M;, p;), for certain given 1 < p < oo and 1 < g < oo for each i. Then the algebraic

tensor product Ty x --- x T, is a contraction from L,(M; X -+ x My, pt1 X -+ X py,) to
Ly(My X -+ X My, g X -+ X f1y,) le.

(/Mlx-..an (Ty % - % Tnf)(xl,...,xnmqm(dxl)mﬂn(d%))l/q

1/p
< (/ If(yl,---,yn)\pul(dyl)---un(dyn))
My XXM,

for all f(y1,...,yn) € Lp(M1 X -+ X My, 11 X -+ X pty,), where
(Tl X X Tnf)(.CCl,...,.’L‘n)

=/ Ky (21, 01) - Koo (s ) F s y)in (dgn) - - i ).
My x M,

Proof. 1t is enough to prove the estimate of the Lemma for n = 2, because then the
lemma follows for general n by simple induction. It suffices to prove this inequality only
for functions f with the additional property f(y1,y2) > 0 for all (y1,y2) € My x M.
Because of this additional condition we can omit the absolute value in the subsequent
calculations, since we are working with non-negative functions.

Let us fix a function f(y1,y2) € Lp(M; x Ma, 1 X po) with y; € My and yo € Mo
such that f(y1,y2) > 0 for all (y1,y2) € My x My. Then the function f(y1,y2) with a
fixed point y; € M; is a function in L, (Ma, pt2) for almost all y; € M;. Hence we can
define for all y; € M, the L,(Ma, o) valued measurable function F(y;) on M; by the
formula (F(y1))(y2) = f(y1,y2) for all y; € M; and yo € M, and F(y;) has the norm

1/p
1E (y1)llp = (fM2 (Y1, y2) ug(dy2)> . The function ||F'(y1)||p, y1 € My, is in the Ba-

nach space Ly, (M, p1), since [ [|F(yi)[Bui(dyr) = [oy, ag, W1 y2)Ppa(dyn)pe(dys) <
0o. We also define the L,(Ma, p12) valued function G(z1) for all 2y € M; by the formula

(G(21))(y2) = fMl Ki(x1,y1)f(y1,y2)p1(dy1). Then

(Ge)ws) = | K(xn, ) (E ) (o) (duyn) = ( K1<x1,y1>F<y1>m<dy1>> (42,
M, My

1



ie. G(r) = f Ky (z1,y1)F(y1)pu1 (dyr) for all x1 € M.

1/
An upper bound will be given on ||G(z1)]|, = (fM2 y2)]Pu2(dy2)> P for

a fixed point 7 € M;. In this estimate the following result Wlll be applied. If (M, )
is a separable measure space, X is a Banach space, H(y1), y1 € M, is a measurable
non-negative function on M, U(y;), y1 € M, is an X valued measurable function on M,
then || [, H(y)U(y)u(dy))|| < [y Hu) |(U(y))llu(dyy)-

With the choice (M, p) = (M1, p1), X = Ly(Ma, p2), H(y1) = Ki(z1,v1), U(yr) =
F(yp) for all y; € M; this result yields that

|G (z1)]p = Ki(w1,y1)F(y1) 1 (dyr)

H Ml P

= Ky (zn, y)|F (Y1) llpra (dyr) = (To([F]]p))) (21)-

This inequality together with the contraction property of T; yields the following
estimate on the L, (M, p1)-norm of the function ||G(z1)||, with arguments x; € M; by
the L,(Mj, p1)-norm of the function ||F(y;1)||, with arguments y; € M.

GOl < ITLUEOI, < HECLI, -

1/p
Let us also observe that since ||F(y1)], = <fM2 | f(y1, yz)\PMQ(dy2)> for almost
all g, € M,

EOl, = ([ ([ 1Pt ) (am) v

1/p
([ Pmaean) = )
M1 X Mo

Define the function u(x1,ys) = fMl Ki(x1,y1) f(y1,y2)p1(dyr) which equals
(G(x1))(y2) for all 21 € M; and y2 € M, and let us estimate the number

The application of the contraction property of Ts for f(z2) = u(x1,z2) with a fixed
x1 € M, yields the estimate

I

q

1/q
Ml(diﬁl)ﬂz(d@)) :

< My KQ(@’y2)U($1,yz)uz(dy2))

alde) < /| |u<x1,x2>|pu2<dxz>)q/p

< . Kz(xg,yz)u(xl,yQ)MQ(dy2)>

= [(G(z1))(z2) [P pa( d) " = |G(z1)]|2.
(. )
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Hence

1/q
S(u(+)) < (/M ||G($1)||Zﬂl(d:v1)> = [[1GOlplle < TIEOIplIp = 1 Y1, y2llp-

On the other hand,

1/q
u1<dx1>u2<dx2>) — (T Ta) (51, 2)

)

( / Kz(azg,yg)K1(x1,y1)f(y1,yz)ul(dyl)m(dyz))
M1 x Mo

and the statement of the lemma holds.

Here I write down Segal’s result in its original form. I present both its formulation and
its proof.

LEMMA 1.4. Let M; (i = 1,...,n) be separable measure spaces, and let T; be
an integral operator on L,(M;)) with positive kernel K;, which is a contraction from
L,(M;) to Ly(M;), for certain given p and ¢ for each i. Then the algebraic tensor
product Ty x --- x T,, is a contraction from L,(M; x --- x M,) to Ly(My x ... 1M,).

PROOF. 1t suffices by associativity to treat the case n = 2. Now if B is any separable Ba-
nach space, and if L, (M, B) denotes the space of all strongly measurable B-valued func-

tions F on M; which are p-th power integrable, with the norm ||F|| = ([ ||F(z)||? dx) 1/p,
then the operator T): F' — G, where G(z) = [ K1(z,y)F(y) dy, exists and is a contrac-
tion from L,(M;,B) to Ly(M;,B). For the mapping y — Ki(x,y)F(y) is easily seen
to be strongly measurable from M; to B, for each x; and

1G(@)]| < / K1 (2, 9)|[F(y)|| dy,

e, [GOI < TH(IFO)I), so that [IGOIsl, < IT:(IFODsll, < IIFC sl This
shows the absolute integrability of the integral defining G(x) almost everywhere, and
gives the estimate || T} < 1.

In addition, the operation T4 from Ly(M;,B) to Ly(M2,B’), where B’ is another
separable Banach space and T is a contraction from B to B’, defined by the equation
(TYF)(z) = ToF (), F € Ly(M;,B), is easily seen to be a contraction. Now taking B
as L,(Mz) and B’ as L,(M>), and making the natural identifications of L,(M;,B) with
L,(M; x M) and of Ly(M;,B’) with L,(M; x Ms) which are justified by the Fubini
theorem, it follows that the contraction T4 T extends the algebraic tensor product
T, x Ts; the latter is therefore a contraction, as stated.



