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Summary: In this note I study the central limit theorem for martin-
gales, more precisely a slightly more general result when triangular
arrays of martingale difference sequences and not only martingales are
taken. Moreover, I shall present a slight generalization of this result
when we take triangular arrays of almost (but not necessarily exact)
martingale difference sequences. I present the basic notions which are
needed to understand these results at the beginning of this paper. My
goal is to present the most general known results in this field, and
also to explain the main ideas behind their proofs. I shall present
a modified version of the proof of B. M. Brown’s paper Martingale
Central Limit Theorems in the journal The Annals of Mathematical
Statistics (1971) volume 42 No. 1 59–66, and briefly discuss the proof
of Aryeh Dvoretzky in the paper Asymptotic normality for sums of
dependent random variables in the II. volume of the Sixth Berkeley
Symposium pp. 513–535. The two results are similar, but they are
proved by essentially different methods. I make a short comparison
between these methods. I also try to explain that a most essential
ingredient of both proofs is that to get a sharp version of the central
limit theorem for triangular arrays of martingale difference sequences
we have to work not with the variances of the terms in these arrays
but with their conditional variances with respect to the past. This
can be interpreted so that the conditional variances produce an ‘inner
time’ of the model which provides the natural time scaling in the in-
vestigation. I shall briefly discuss the functional central limit theorem
version of the central limit theorem type result investigated in this
paper, but I shall not work out all details of the proof. At this point
‘the inner time’ of the model appears again. It appears not only in
the proof but even in the formulation of the result. At the end of this
work I discuss Lévy’s characterization of Wiener processes by means
of martingale type properties. This is a result closely related to the
central limit theorem for martingales.
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1. Introduction. Formulation of the main results.

In this note I discuss the generalization of the central limit theorem for normalized sums
of independent random variables to the case when we consider martingales instead of
sums of independent random variables. To understand this result better first I recall
the most general form of the central limit theorem for triangular arrays of independent
random variables.

Central limit theorem for triangular arrays of independent random variables.

Let a triangular array Xk,j, of independent random variables, i.e. a set of random
variables Xk,j, k = 1, 2, . . . , 1 ≤ j ≤ kn, indexed by a pair of positive integers be given
which satisfies the following property (a).

(a) The random variables in the k-th row, i.e. the random variables Xk,1, . . . , Xk,nk

are independent of each other for all k = 1, 2, . . . , and also the identity EXk,j = 0
holds for all indices k = 1, 2, . . . and 1 ≤ j ≤ nk.

Let this triangular array satisfy also the conditions

(b) The sum of the variances of the random variables in the k-th row of the triangular
array tends to 1 as k → ∞, i.e.,

lim
k→∞

nk
∑

j=1

EX2
k,j = 1

(c) The triangular array satisfies the so-called Lindeberg condition, i.e.

lim
k→∞

nk
∑

j=1

EX2
k,jI(|Xk,j | > ε) = 0 for all numbers ε > 0. (1.1)

(Here, and also in the subsequent formulas I(A) denotes the indicator function of
a set A.)

Then the random sums Sk =
nk
∑

j=1

Xk,j converge in distribution to the standard

normal distribution as k → ∞.

In this note I discuss a central theorem for triangular series of not necessarily
independent random variables which satisfy similar but weaker conditions than the
conditions imposed in the above result. We do not demand that the random variables
in a row of the triangular array should be independent, we only assume that they
constitute a martingale difference sequence. This is a weakened version of condition (a)
of the previous theorem. We replace condition (b) of this result by the assumption that
the sum of the conditional variances of the elements of the random variables in the k-th
row of the triangular array with respect to the past tend to 1 as k → ∞. Finally, we

2



need a weakened version of the Lindeberg condition formulated in condition (c). The
precise result is formulated in the following theorem.

Central limit theorem for triangular arrays of martingale difference sequ-

ences. Let a sequence of random variables Xk,1, . . . , Xk,nk
be given for all integers

k = 1, 2, . . . together with an increasing sequence of σ-algebras Fk,0 ⊂ Fk,1 ⊂ · · · ⊂
Fk,nk

⊂ A in a probability space (Ω,A, P ) which satisfies the following conditions:

(a) For each number k = 1, 2, . . . , the random variables Xk,j, 1 ≤ j ≤ nk, together
with the σ-algebras Fk,j, 0 ≤ j ≤ nk, constitute a martingale difference sequence,
i.e. the random variable Xk,j is measurable with respect to the σ-algebra Fk,j, and
E(Xk,j |Fk,j−1) = 0 with probability 1 for all indices 1 ≤ j ≤ nk.

(b) EX2
k,j < ∞ for all indices k = 1, 2, . . . and 1 ≤ j ≤ nk, and the conditional

variances defined as σ2
k,j = E(X2

k,j |Fk,j−1), k = 1, 2, . . . , 1 ≤ j ≤ nk, satisfy the
relation

nk
∑

j=1

σ2
k,j ⇒ 1 if k → ∞. (1.2)

(Here and in the subsequent part of the paper ⇒ denotes stochastic convergence.)

(c) The following Lindeberg type condition holds:

nk
∑

j=1

E(X2
k,jI(|Xk,j | > ε)|Fk,j−1) ⇒ 0, if k → ∞ (1.3)

for all numbers ε > 0.

Under these conditions the random sums Sk =
nk
∑

j=1

Xk,j, k = 1, 2, . . . , tend in

distribution to the standard normal distribution as k → ∞.

The following generalization of this result where we consider triangular arrays of
‘almost martingale difference sequences’ also holds.

Central limit theorem for triangular arrays of almost martingale difference

sequences. For each number k = 1, 2, . . . let a sequence of random variables Xk,1, . . . ,
Xk,nk

be given together with a sequence of increasing σ-algebras Fk,0 ⊂ Fk,1 ⊂ · · · ⊂
Fk,nk

, such that the random variable Xk,j is measurable with respect to the σ-algebra
Fk,j for all indices k = 1, 2, . . . and 1 ≤ j ≤ nk, and the conditional expectations
µk,j = E(Xk,j |Fk,j−1) are small in the following sense:

nk
∑

j=1

µk,j ⇒ 0 if k → ∞. (1.4)

If the random variables Xk,j, k = 1, 2, . . . , 1 ≤ j ≤ nk, and σ-algebras Fk,j, k = 1, 2, . . . ,
0 ≤ j ≤ nk, satisfy conditions (1.2), (1.3) and (1.4) with the modification that in the
present case we define the conditional variance σ2

k,j in formula (1.2) as

σ2
k,j = E

(

(Xk,j − µk,j)
2|Fk,j−1

)

= E(X2
k,j |Fk,j−1)− µ2

k,j , (1.5)
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then the random sums Sk =
nk
∑

j=1

Xk,j, k = 1, 2, . . . , converge in distribution to the

standard normal distribution as k → ∞.

The above results are the strongest known versions of the central limit theorem
for martingale difference or almost martingale difference sequences. It may be worth
mentioning that in condition (1.2) we only demanded that the sum of the conditional
second moments σ2

k,j (summing up for the indices j with a fixed number k) should tend
to 1 as k → ∞, but we did not impose such a condition which would imply that the
conditional second moments σ2

k,j = E(X2
k,j |Fk,j−1) are close to the second moments

d2k,j = EX2
k,j . The proof of the results under such relatively weak conditions demands

finer arguments. I know of two papers where the central limit theorem was proved under
such conditions. One of them is the work of B. M. Brown Martingale Central Limit
Theorems in the journal The Annals of Mathematical Statistics (1971) volume 42 No. 1
59–66. The other one is the work of Aryeh Dvoretzky Asymptotic normality for sums of
dependent random variables in the II. volume of the Sixth Berkeley Symposium at pages
513–535. In these two works the difficulties arising during the proof are overcome by
means of different methods. Brown’s method is simpler, and it seems more appropriate
in the investigation of more general limit theorem problems. Hence I describe here a
slightly modified version of this proof. Although Brown’s paper deals only with the
central limit theorem for martingales, i.e. it does not investigate limit theorem for
triangular arrays of martingale difference sequences, the application of his method in
this more general case causes no problem. In the third section of this note I briefly
compare Brown’s and Dvoretzky’s methods. I shall also discuss a result that can be
considered as the functional central limit theorem version of the central limit theorem for
triangular arrays of martingale difference sequences. Brown’s paper contains a similar
result when only appropriately normalized martingales are considered. The functional
central limit theorem for triangular arrays of martingale difference sequences deserves
special attention, because in the formulation of this result such new phenomena have
to be taken into consideration which could be disregarded in the problem studied by
Brown. I shall formulate this result, but omit the proof. I do not discuss the technical
problems, I shall only explain some important ideas of the proof.

I shall finish this work with an Appendix where I present a result of Paul Lévy’s
characterization of Wiener processes. This is an important result which is closely related
to the central limit theorem for martingales.

At the end of this introduction I make a short remark about the Lindeberg type
condition (1.3) of the central limit theorem for triangular arrays of martingale dif-
ference sequences. Formula (1.3) follows from the Lindeberg condition presented in
formula (1.1), because

nk
∑

j=1

EX2
k,jI(|Xk,j | > ε) = E





nk
∑

j=1

E(X2
k,jI(|Xk,j | > ε)|Fk,j−1)



 .

Hence formula (1.1) implies that the left-hand side expression in (1.3) tends to zero even
in L1-norm. The statement in the opposite direction does not hold. Such triangular
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arrays of martingale difference sequences can be constructed which satisfy relation (1.3)
but do not satisfy relation (1.1). On the other hand, in the first step of the proof of the
central limit theorem for martingale difference sequences we reduce the proof to such
a special case where we may assume that the triangular array of martingale difference
sequences has some additional nice properties. In particular condition (1.3) implies
condition (1.1) for such triangular arrays.

2. The proof of the results.

Proof of the central limit theorem for triangular arrays of martingale difference se-
quences. First I show that the proof of this theorem can be reduced to the special case
when the elements of the triangular arrays satisfy beside the conditions of the theorem
also the relation

nk
∑

j=1

σ2
k,j ≤ 2 with probability 1 for all k = 1, 2, . . . . (2.1)

(Actually we could write in the inequality of formula (2.1) an arbitrary constant C > 1
instead of 2.)

To prove this statement let us introduce for each k = 1, 2, . . . the stopping time

τk = min

(

nk, max

{

j:

j
∑

l=1

σ2
k,l ≤ 2

})

(τk = 0 if σ2
k,1 > 2.) (2.2)

and the random variables

X̄k,j =

{

Xk,j , if j ≤ τk,

0, if j > τk,
1 ≤ j ≤ nk,

The above defined random variable τk is really a stopping time with respect to the system
of σ-algebras Fk,j , 0 ≤ j ≤ nk, since the random variable σ2

k,j+1 is Fk,j measurable.
Thus we can decide at time j which of the events {τk ≤ j} or {τk ≥ j+1} really occurred.
(Let us observe that σ2

k,j+1 is an Fk,j and not only an Fk,j+1 measurable random

variable.) Let us also introduce the random variables σ̄2
k,j = E(X̄2

k,j |Fk,j−1), k =

1, 2, . . . , 1 ≤ j ≤ nk. For a fixed number k the sequence of random variables X̄k,j , 1 ≤
j ≤ nk, together with the σ-algebras Fk,j , 0 ≤ j ≤ nk, constitute a martingale difference
sequence. Furthermore, σ̄2

k,j(ω) = σ2
k,j(ω) if τk(ω) ≥ j, and σ̄2

k,j(ω) = 0 if τk(ω) < j.

Indeed, E(X̄k,j |Fk,j−1) = E(Xk,jI(τk ≥ j)|Fk,j−1) = I(τk ≥ j)E(Xk,j |Fk,j−1) = 0,
and σ̄2

j,k = E(X2
k,jI(τk ≥ j)|Fk,j−1) = I(τk ≥ j)E(X2

k,j |Fk,j−1) = I(τk ≥ j)σ2
k,j .

Besides, relation (1.3) remains valid if we replace the random variables Xk,j by the
random variables X̄k,j in it, since |X̄k,j | ≤ |Xk,j |. Further lim

k→∞
P (τk = nk) = 1 because

of relation (1.2).

The above considerations show that relation (1.2) remains valid if we replace the
random variables σ2

k,j by σ̄2
k,j , and also relation (2.1) holds in this case. Finally, the
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random sums S̄k =
nk
∑

j=1

X̄k,j , k = 1, 2, . . . , satisfy the relation S̄k − Sk ⇒ 0 if k → ∞,

since S̄k = Sk if τk = nk. Because of these relations it is enough to prove the central
limit theorem for triangular arrays of martingale difference sequences for the triangular
array X̄k,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, instead of the triangular array Xk,j , and the
random variables σ̄2

k,j take the role of the random variables σ2
k,j in the formulation of

the condition of the theorem in this case. We shall work with these random variables in
the subsequent part of the paper, only we shall omit the sign bar in our notation. In such
a way we are working with a triangular array of martingale difference sequences which
satisfies the conditions of the theorem we want to prove together with relation (2.1).

Relations (1.3) and (1.2) imply the Lindeberg condition (1.1) for the triangular
array Xk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, since by Lebesgue’s dominated convergence
theorem and the inequality

nk
∑

j=1

E(X2
k,jI(|Xk,j | > ε)|Fk,j−1) ≤

nk
∑

j=1

σ2
k,j ≤ 2

also the relation

nk
∑

j=1

EX2
k,jI(|Xk,j | > ε) = E





nk
∑

j=1

E(X2
k,jI(|Xk,j | > ε)|Fk,j−1)



→ 0 if k → ∞

holds for all ε > 0. It can be shown similarly that if relation (2.1) holds, then we can
write in (1.2) L1-convergence instead of stochastic convergence, and

lim
k→∞

nk
∑

j=1

Eσ2
k,j = lim

k→∞

nk
∑

j=1

EX2
k,j = 1. (2.3)

The central limit theorem we want to prove is equivalent to the relation

lim
k→∞

EeitSk = e−t2/2 for all real numbers t. (2.4)

We show with the help of formula (2.1) that relation (2.4) follows from the statement

lim
k→∞

EeitSk+t2Uk/2 = 1 for all real numbers t, (2.5)

where Uk =
nk
∑

j=1

σ2
k,j , k = 1, 2, . . . . (A direct proof of formula (2.5) is simpler.)

Indeed, by formula (1.2) Uk ⇒ 1 if k → ∞, and 0 ≤ Uk ≤ 2 for all numbers

k = 1, 2, . . . because of formula (2.1). Hence eitSk+t2Uk/2 − eitSk+t2/2 ⇒ 0 for all real

numbers t if k → ∞, and |eitSk+t2Uk/2 − eitSk+t2/2| ≤ 2 · 21+t2 . Hence by Lebesgue’s
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dominated convergence theorem lim
k→∞

E(eitSk+t2Uk/2 − eitSk+t2/2) = 0. Formula (2.4)

follows from this statement and relation (2.5).

To prove relation (2.5) first we show that there exists a number K(t) > 0 depending
only on the parameter t for which the inequality

|EeitSk+t2Uk/2 − 1| ≤ K(t)

nk
∑

j=1

E
∣

∣

∣et
2σ2

k,j/2E
(

eitXk,j |Fk,j−1

)

− 1
∣

∣

∣ . (2.6)

holds. Indeed, let us introduce the random variables

Sk,j =

j
∑

l=1

Xk,l, Uk,j =

j
∑

l=1

σ2
k,l, 1 ≤ j ≤ nk

and Sk,0 = 0, Uk,0 = 0 for all indices k = 1, 2, . . . . Then we have Sk,nk
= Sk, Uk,nk

= Uk,
and

EeitSk+t2Uk/2 − 1 =

nk
∑

j=1

E
(

eitSk,j+t2Uk,j/2 − eitSk,j−1+t2Uk,j−1/2
)

=

nk
∑

j=1

EeitSk,j−1+t2Uk,j−1/2E
(

eitXk,j+t2σ2
k,j/2 − 1

∣

∣

∣Fk,j−1

)

.

Since the random variable eitSk,j−1+t2Uk,j−1/2 is bounded, it is smaller than some number
K(t) depending only on the parameter t, it follows from the above identity that

|EeitSk+t2Uk/2 − 1| ≤ K(t)

nk
∑

j=1

E
∣

∣

∣
E
(

eitXk,j+t2σ2
k,j/2 − 1|Fk,j−1

)∣

∣

∣
,

and as E
(

eitXk,j+t2σ2
k,j/2 − 1|Fk,j−1

)

= et
2σ2

k,j/2E(eitXk,j |Fk,j−1)− 1, this implies the

estimate (2.6).

To prove formula (2.5) with the help of inequality (2.6) we have to give a good

estimate on the expressions E
∣

∣

∣
et

2σ2
k,j/2E

(

eitXk,j |Fk,j−1

)

− 1
∣

∣

∣
. The following heuristic

argument is behind the estimation we shall apply in the study of these expressions. The

Taylor expansion of the function et
2σ2

k,j/2 is of the form 1+
t2σ2

k,j

2 + · · · , while the Taylor
expansion of the function E(eitXk,j |Fk,j−1) (because of the relation E(Xk,j |Fk,j−1) = 0)
is of the form

E(eitXk,j |Fk,j−1) = 1 + E(itXk,j |Fk,j−1)−
E(t2X2

k,j |Fk,j−1)

2
+ · · · = 1−

t2σ2
k,j

2
+ · · · .

Hence the constant, the first and second terms in the Taylor expansion of the function

et
2σ2

k,j/2E
(

eitXk,j |Fk,j−1

)

− 1 disappears, which indicates that this function is small.
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We expect that because of this facts we can give a good bound on the right-hand side
of formula (2.6). In the estimation of this expression we shall exploit that the random
variables σ2

k,j are small because of formulas (2.1) and (1.1).

The expression et
2σ2

k,j/2 can be written in the form et
2σ2

k,j/2 = 1+
t2σ2

k,j

2 +η
(1)
k,j with

an appropriate random variable η
(1)
k,j which satisfies the inequality |η(1)k,j | ≤ K1(t)σ

4
k,j

with some number K1(t) depending only on the parameter t, because σ2
k,j ≤ 2 by

formula (2.1). We can estimate the expression

η
(2)
k,j = E

(

eitXk,j − 1 +
t2X2

k,j

2

∣

∣

∣

∣

∣

Fk,j−1

)

in a similar way. To do this let us fix a small number ε > 0, and show that the inequality

∣

∣

∣

∣

∣

eitXk,j − 1− itXk,j +
t2X2

k,j

2

∣

∣

∣

∣

∣

≤ α(Xk,j) = αε,t(Xk,j)

holds with α(x) = t2x2I(|x| > ε) + ε
6 |t|3x2I(|x| ≤ ε). Indeed, we get this estimate by

bounding the expression
∣

∣

∣
eitx − 1− itx+ t2x2

2

∣

∣

∣
by t2x2 if |x| > ε and by |t|3|x|3

6 ≤ ε
|t|3x2

6

if |x| ≤ ε. By exploiting the relation E(Xk,j |Fk,j−1) = 0 and taking the conditional
expectation of the random variables in the last inequality with respect to the σ-algebra
Fk,j−1 we get the following inequality:

|η(2)k,j | =
∣

∣

∣

∣

∣

E

(

eitXk,j − 1− itXk,j +
t2X2

k,j

2

∣

∣

∣

∣

∣

Fk,j−1

)∣

∣

∣

∣

∣

≤ E

(∣

∣

∣

∣

∣

eitXk,j − 1− itXk,j +
t2X2

k,j

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fk,j−1

)

≤ E(α(Xk,j)|Fk,j−1) ≤ t2E(X2
k,jI(|Xk,j | > ε)|Fk,j−1) +

ε

6
|t|3σ2

k,j .

Since σ2
k,j ≤ 2 by formula (2.1), both η

(1)
k,j and η

(2)
k,j are bounded random variables

(with a bound depending only on the parameter t), and the above estimates imply that

∣

∣

∣et
2σ2

k,j/2E
(

eitXk,j |Fk,j−1

)

− 1
∣

∣

∣ =

∣

∣

∣

∣

∣

(

1 +
t2σ2

k,j

2
+ η

(1)
k,j

)(

1−
t2σ2

k,j

2
+ η

(2)
k,j

)

− 1

∣

∣

∣

∣

∣

≤ t4σ4
k,j +K3(t)

(

|η(1)k,j |+ |η(2)k,j |
)

≤ K4(t)(σ
4
k,j + E(X2

k,jI(|Xk,j | > ε)|Fk,j−1) + εσ2
k,j).

Let us take the expectation of the left-hand side and right-hand side expression in the
last inequality and sum up for all indices 1 ≤ j ≤ nk. The inequality obtained in such
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a way together with formula (2.6) imply that

|EeitSk+t2Uk/2 − 1| ≤ K5(t)





nk
∑

j=1

Eσ4
k,j +

nk
∑

j=1

EX2
k,jI(|Xk,j | > ε) + ε

nk
∑

j=1

Eσ2
k,j



 .

(2.7)
To estimate the first sum at the right-hand side of (2.7) let us make the following
estimate:

Eσ4
k,j = E

(

(EX2
k,jI(|Xk,j | > ε)|Fk,j−1) + (EX2

k,jI(|Xk,j | ≤ ε)|Fk,j−1)
)2

≤ 2
(

E(EX2
k,jI(|Xk,j | > ε)|Fk,j−1)

2 + E(EX2
k,jI(|Xk,j | ≤ ε)|Fk,j−1)

2
)

≤ 2Eσ2
k,jE(X2

k,jI(|Xk,j | > ε)|Fk,j−1) + 2ε2E(EX2
k,jI(|Xk,j | ≤ ε)|Fk,j−1)

≤ 4EX2
k,jI(|Xk,j | > ε) + 2ε2Eσ2

k,j .

(Let us choose in this estimate the same number ε > 0 as in formula (2.7).) With the
help of this estimate we can formulate the following consequence of relation (2.7).

|EeitSk+t2Uk/2 − 1| ≤ K6(t)





nk
∑

j=1

EX2
k,jI(|Xk,j | > ε) + ε

nk
∑

j=1

Eσ2
k,j



 . (2.8)

As formula (2.8) holds for all numbers ε > 0, hence relations (1.1), (2.3) an (2.8) imply
formula (2.5). Thus we have proved the central limit theorem for triangular arrays of
martingale difference sequences.

I turn to the proof of the central limit theorem for triangular arrays of almost
martingale difference sequences. A natural idea would be to reduce the proof to the
already proved the central limit theorem for triangular arrays of martingale difference
sequences by means of the introduction of the random variables X̄k,j = Xk,j − µk,j .
The main problem in the application of such an argument would be the control of the
Lindeberg condition (c) of this theorem. To overcome this difficulty it is worth refining
this argument, and to combine it with an appropriate version of the truncation argument
applied at the beginning of the previous proof.

Proof of the central limit theorem for triangular arrays of almost martingale difference
sequences. Let us introduce a slightly modified version of the stopping times introduced
in formula (2.2). In this modified definition of the stopping time we work with the
random variables σ2

k,j defined in formula (1.5). Let us also introduce the random vari-

ables X̄k,j = Xk,jI(τk ≥ j), µ̄k,j = E(X̄k,j |Fk,j−1) and σ̄2
k,j = E(X̄2

k,j |Fk,j−1) − µ̄2
k,j

k = 1, 2, . . . , 1 ≤ j ≤ nk. Then lim
k→∞

P (τk = nk) = 1, hence the probability of the

events that X̄k,j = Xk,j , µ̄k,j = µk,j and σ̄2
k,j = σ2

k,j for all indices 1 ≤ j ≤ nk tends

to 1 as k → ∞, and |X̄k,j | ≤ |Xk,j | for all pairs of indices (j, k). Hence we can, similarly
to the argument in the proof of the previous result, reduce the proof to that special
case, when beside the conditions of the theorem also relation (2.1) holds.
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Let us omit the sign bar from the notation of the random variables X̄k,j , σ̄2
k,j

and µ̄k,j defined below, and let us define with their help the random variables X̃k,j =
Xk,j − µk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk. We want to show that the triangular array of

martingale difference sequences consisting of the random variables X̃k,j , and σ-algebras
Fk,j , k = 1, 2, . . . , 0 ≤ j ≤ nk, satisfies the conditions of the central limit theorem for
martingale difference series. This system clearly satisfies conditions (a) and (b) of this
theorem, but the validity of condition (c), i.e. of the Lindeberg condition demands some
explanation. Since we know that the triangular array Xk,n satisfies the original version
of the Lindeberg condition formulated in (1.1), to complete the proof of our theorem it
is enough to prove the following statement. If a triangular array (Xk,j ,Fk,j) satisfies
relation (1.1), and µk,j = EXk,j , then

lim
k→∞

nk
∑

j=1

E(Xk,j − µk,j)
2I(|Xk,j − µk,j | > ε) = 0 for all numbers ε > 0.

This relation is a direct consequence of the following lemma which agrees with
Lemma 3.3 of Dvoretzky’s article mentioned in the Introduction. (There is a small
difference between the two results. At the left-hand side of this estimate I wrote a
multiplying constant 8 instead of the multiplying constant 4 in Dvoretzky’s lemma,
because this made the proof simpler. But the value of this multiplying constant has no
importance in our investigation.)

Lemma. Let X be a random variable with finite second moment, F ⊂ A a σ-algebra
and µ = E(X|F) in a probability space (Ω,A, P ). Then

8EX2I(|X| > ε) ≥ E(X − µ)2I(|X − µ| > 2ε) for all numbers ε > 0. (2.9)

Remark: We know that E(X−E(X|F))2 ≤ EX2 for all random variables X with finite
second moment. If we replace the random variable X by a truncation of it, then this
inequality may loose its validity. But an appropriate weakened version of it which may
suffice for our goal remains valid. This can be considered as ‘the message’ of this lemma.

The proof of the Lemma. By taking the conditional distribution of the random vari-
able X with respect to the σ-algebra F , and by denoting with E the expected value
with respect to this (random) conditional measure formula (2.9) can be reduced to the
following inequality:

8EX2I(|X| > ε) ≥ E(X − EX)2I(|X − EX| > 2ε) for all numbers ε > 0,

or we can rewrite this in an equivalent form with the help of the transformation Y =
X − EX as

8E(Y + c)2I(|Y + c| > ε) ≥ EY 2I(|Y | > 2ε) (2.10)

10



for all real numbers c and ε > 0 if EY = 0 and EY 2 < ∞.

Inequality (2.10) can be reduced to a simpler statement. It is enough to consider
the special case when the distribution of Y is of the form P (Y = Aq) = p and P (Y =
−Ap) = q with some numbers A > 0 and 0 ≤ p, q ≤ 1, p + q = 1. To see this observe
first that this relation implies formula also in the case when the random variable Y

has the following form. The set Ω has such a partition Ω = Ω1 + Ω2 + Ω3 for which
Y = a on the set Ω1, Y = −b on the set Ω2 with some numbers a > 0 and b > 0,
aP (Ω1) − bP (Ω2) = 0, and Y = 0 on the set Ω3. Moreover, indequality (2.10) holds
for all such random variables Y which take only finitely many values, and EY = 0,
because such random variable can be presented as the sum of such random variables
with the previously listed properties, whose support art disjoint. After this we get
inequality (2.10) in the general case if we approximate a random variable Y , EY = 0
in an appropriate way by random variables Yn, EYn = 0 which take only finitely many
values.

We may further reduce the proof of formula (2.10) (with the help of a possible
modification of the parameters c and ε by considering only such random variables Y for
which A = 1, and q ≥ 1

2 ≥ p ≥ 0. In this special case inequality (2.10) clearly holds if
ε ≥ q

2 , because the right-hand side of the inequality equals zero in this case. If 0 ≤ ε < q
2 ,

then the right-hand side of formula (2.10) is less than or equal to EY 2 = pq2+p2q = pq,
and it is enough to show that 8E(Y + c)2I(|Y + c| > ε) ≥ pq for all real numbers c if
0 ≤ ε < q

2 .

If c ≥ − q
2 , and 0 ≤ ε < q

2 , then q + c ≥ q
2 > ε, and 8E(Y + c)2I(|Y + c| > ε) ≥

8P (Y = q)(q+c)2 = 8p(q+c)2 ≥ 2pq2 ≥ pq. If c < − q
2 , and 0 ≤ ε < q

2 , then |−p+c| >
q
2 ≥ ε, and 8E(Y + c)2I(|Y + c| > ε) ≥ 8P (Y = −p)(p+ |c|)2 = 8q(p+ |c|)2 ≥ 2q3 ≥ pq.
The Lemma is proved.

3. Some additional remarks. The functional central limit theorem.

I start the comparison of the various proofs of the central limit theorem for martingales
and similar objects with a short discussion of the traditional proof of such results.

Let us consider a triangular array of martingale difference sequences Xk,j , k =
1, 2, . . . , 1 ≤ j ≤ nk, together with a set of increasing (for a fixed number k) sequence of
σ-algebras Fk,j , k = 1, 2, . . . , 0 ≤ j ≤ nk, such that the sequence of pairs (Xk,j ,Fk,j),
1 ≤ j ≤ nk, constitute a martingale difference sequence. Let us define the random

sums Sk =
nk
∑

j=1

Xk,j , k = 1, 2, . . . . We want to show that under appropriate conditions

the sequence of random sums Sk, k = 1, 2, . . . , converge in distribution to the standard
normal distribution, or in an equivalent formulation lim

k→∞
EeitSk = e−t2/2 for all real

number t.

The classical, traditional proof is based on the following argument. Let us introduce
for all indices 1 ≤ j ≤ nk such independent random variables Yk,1, . . . , Yk,nk

which

are independent also of the σ-algebra Fk,nk
, define the random sum Tk =

nk
∑

j=1

dk,jYj

11



with d2k,j = EX2
k,j , and let us show that lim

k→∞
E(eitSk − eiTk) = 0 under appropriate

conditions. We try to prove this statement in such a way that first we replace in the
sum Sk the term Xk,nk

by dk,nk
Yk,nk

, then the term Xk,nk−1 by dk,nk−1Yk,nk−1, and
we follow this procedure till we get to the sum Tk. During this procedure we give a
good estimate about how much the characteristic function of the sum changed during
each replacement. In a more explicit formulation we apply the following procedure. Let

us define the random sums Sk,j =
j
∑

l=1

Xk,l +
nk
∑

l=j+1

dk,lYk,l, for 1 ≤ j ≤ nk − 1, and put

Sk,0 = Tk and Sk,nk
= Sk. Then we have

E(eitSk − eitTk) =

nk
∑

j=1

E(eitSk,j − eitSk,j−1). (3.1)

We try to prove the central limit theorem with the help of this formula and a good
estimate on the expressions |E(eitSk,j − eiSk,j−1)|. It is not difficult to prove that

∣

∣E(eitSk,j − eiSk,j−1)
∣

∣ ≤ E
∣

∣E(eitXk,j |Fk,j−1)− Eeitdk,jYk,j
∣

∣

= E
∣

∣

∣
E(eitXk,j |Fk,j−1)− e−t2d2

k,j/2
∣

∣

∣
.

(3.2)

Let us observe that the system of formulas (3.1) and (3.2) is similar to the inequal-
ity (2.6). The expression at the right-hand side of formula (3.2) can be well estimated

if we take the Taylor series expansion of the function E(eitXk,j |Fk,j−1)− e−t2d2
k,j/2 with

respect to the variable t. Let us observe the second order term of this Taylor expansion

equals t2

2 (d
2
k,j − σ2

k,j), where σ2
k,j = E(X2

k,j |Fk,j−1). As we take the expectation of the
absolute value of the random variable at the right-hand side of (3.2) we can prove the

central limit theorem with the help of the above estimation the sum
nk
∑

j=1

|σ2
k,j − d2k,j | is

small for large indices k. In such a way we can prove a result that is useful in several
cases. Nevertheless, it holds only under more restrictive conditions than the central
limit theorem for triangular arrays of martingale differences formulated in the Introduc-

tion. We demanded there in the typical ‘non-degenerate’ cases when lim
k→∞

nk
∑

j=1

d2k,j = 1

only the condition
nk
∑

j=1

(

σ2
k,j − d2k,j

)

⇒ 0 if k → ∞,

which is an equivalent reformulation of formula (1.2), i.e. we did not have to take the
absolute value of the terms in the sum we considered.

The main merit of the proof of Brown and Dvoretzky is that the authors of these
proofs could prove the central limit theorem for martingale difference sequences under
weaker condition. To do this they had to work out a non-trivial refinement of the above
sketched method.
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Dvoretzky’s proved the central limit theorem for triangular arrays of martingale
difference sequences similarly to the method explained at the start of this section. But
he replaced the terms dk,lYk,l by terms of the form σk,lYk,l in the definition of the
random sums Tk and Sk,j . To prove the central limit theorem after such a modification
of the definition of Tk and Sk,j we need such a version of formula (3.2) where we replace

the term Eeitdk,jYk,j by E(eitσk,jYk,j |Fk,j−1) = e−t2σ2
k,j/2 in the middle and right-hand

side expressions of this relation. Such an estimate enables us to prove the stronger
version of the central limit theorem formulated in the Introduction, since the coefficient
of the second order term in the corresponding Taylor expansion equals zero.

Dvoretzky could prove the central limit theorem in such a way, but only under the
additional condition that

nk
∑

j=1

σ2
k,j = 1 with probability 1 for all indices k. (3.3)

He needed this condition to guarantee the independence of those random variables and
σ-algebras with which he worked in the proof of the modified version of formula (3.2). I
omit the precise formulation of this result. It is contained in Lemma 3.2 of Dvoretzky’s

paper. (I would mention that if relation (3.3) holds, then Tk =
nk
∑

j=1

σk,jYj is a standard

normal distributed random variable, since in this case the conditional distribution of
Tk with respect to the σ-algebra Fk,nk

is the normal distribution with expectation zero

and second moment
nk
∑

j=1

σ2
k,j = 1.)

After proving the central limit the theorem under the additional condition (3.3)
Dvoretzky proved with the help of a stopping time similar to the stopping time defined
in formula (2.2) that the proof of the central limit theorem in the general case can be
reduced to this special case.

The idea of Brown’s proof, explained in this note, is very similar to that of Dvoret-
zky. In this proof we estimate (with the notations introduced in Section 2) the expres-

sion EeitSk+t2Uk/2 instead of the characteristic function EeitSk . To do this we have
to guarantee that the expected value of the random variables we are working with is
finite, hence in the first step of the proof we apply such a modification of the original
triangular array of martingale difference sequences that makes this possible. With the
introduction of the stopping times τk in formula (2.2) we apply some sort of truncation
which enables us to carry out our calculation. We know that the limit distribution of the
original and modified random sums agree. Besides, the expected value EeitSk+t2Uk/2

defined with the help of the modified random variables Sk and Uk is finite, and even
the random variables σ2

k,j and their partial sums are finite.

I remark that the modified triangular array of martingale difference sequences
defined with the help of the stopping time (2.2) also satisfies the original version
of the Lindeberg condition (1.1), hence the triangular array defined by the formula
X̃k,j = Xk,jI(|Xk,j | ≤ ε) − E(Xk,jI(|Xk,j | ≤ ε)|Fk,j−1), k = 1, 2, . . . , 1 ≤ j ≤ nk, is
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such a small perturbation of the original triangular array that satisfies the conditions
of the central limit theorem for triangular arrays of martingale difference series, and
it contains bounded random variables. (Let us observe that the sums of the random
variables Xk,j − X̃k,j = Xk,jI(|Xk,j | > ε) − E(Xk,jI(|Xk,j | > ε)|Fk,j−1) can be well
bounded. Furthermore the Lindeberg condition (1.1) implies that the replacement of
the random variables Xk,j by the random variables X̃k,j causes a negligible small error.
This observation has no importance in the proof of the central limit theorem, but it
may be useful in the proof of the functional central limit theorem, since it enables us to
work with exponential moments.

We can understand the similarity of the method of Dvoretzky and Brown with the
help of the following observation. We can write, applying the notation introduced at
the beginning of this section, that

E
(

eitσk,jYk,j+t2σ2
k,j/2|Fk,j−1

)

= E(eituYk,j+t2u2/2)
∣

∣

∣

u=σ2
k,j

= 1 (3.4)

for all indices k = 1, 2, . . . , 1 ≤ j ≤ nk. Let us introduce the following counterparts
S̄k,j , S̄k and T̄k of the previously defined random variables Sk,j , Sk and Tk. Put S̄k,j =

S̄k,j(t) =
j
∑

l=1

(itXk,l+
t2

2 σ
2
k,l)+

nk
∑

l=j+1

(itσk,lYk,l+
t2

2 σ
2
k,l), 1 ≤ j ≤ nk−1, S̄k,0 = S̄k,0(t) =

T̄k =
nk
∑

l=1

(itσk,jYk,j +
t2

2 σ
2
k,j), and S̄k,nk

= S̄k,nk
(t) = S̄k =

nk
∑

l=1

(itXk,j +
t2

2 σ
2
k,j). If we

want to estimate the expression EeitSk+t2Uk/2 = eS̄k instead of EeitSk , then it is useful
to write up the identity

EeS̄k − 1 = E
(

eS̄k − eT̄k

)

=

nk
∑

j=1

E
(

eS̄k,j − eS̄k,j−1

)

and to estimate its right-hand side. Let us observe that because of relation (3.4) in the
formula (2.5) of the previous section and in the subsequent calculations we carried out
such a program.

We can understand better the picture behind the central limit theorem for mar-
tingale difference sequences and Brown’s proof for this theorem if we also discuss the
functional central limit theorem version of this result. In an informal way the functional
central limit theorem states that the random broken lines constructed with the help of
the partial sums of the random variables from the k-th row of a triangular array of
martingale difference sequences behave similarly to a Wiener process for large indices k.
The following statement expresses an important property of the Wiener process. If
W (u), u ≥ 0, is a Wiener process, then the stochastic process Zt(u) = etW (u)−t2u/2,
u ≥ 0, is a martingale. Hence EeZt(τ) = 1 for all nice stopping time τ . This statement
hold not only for real but also for complex numbers t. It is natural to expect that if we
replace the Wiener process W (u) with a stochastic process V (u) which is similar to it

(in an appropriate sense), then the relation EetV (τ)−t2τ ∼ 1 holds. In the proof of the
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central limit theorem, in particular in the formulation of formula (2.5) we applied such
an argument with a purely imaginary number t.

To formulate the functional central limit theorem for triangular arrays of martingale
difference sequences I introduce some notations.

For all numbers k = 1, 2, . . . let us consider such a sequence of random variables
Xk,1, . . . , Xk,nk

together with a sequence of increasing σ-algebras Fk,0 ⊂ Fk,1 ⊂ · · · ⊂
Fk,nk

which satisfy the conditions of the central limit theorem for triangular arrays of
martingale difference sequences. Let us define the partial sums

Sk,j =

j
∑

l=1

Xk,j 1 ≤ j ≤ nk, Sk,0 = 0, (3.5)

the variances d2k,j = EX2
k,j and conditional variances σ2

k,j = E(X2
k,j |Fk,j−1), 1 ≤ j ≤

nk. Let us introduce with their help the following deterministic set of points zk,j and
random set of points ζk,j

zk,0 = 0, zk,j =

j
∑

l=1

d2k,j , ζk,0 = 0, ζk,j =

j
∑

l=1

σ2
k,j , 1 ≤ j ≤ nk, (3.6)

on the positive half-line. With the help of these points we shall define the following
random broken line process Tk(t) on the interval [0, z0,k] and random broken line process
Vk(t) on the interval [0, ζ0,k]:

T (zk,j) = Sk,j , and Tk(t) =
zk,j+1 − t

zk,j+1 − zk,j
Sk,j +

t− zk,j

zk,j+1 − zk,j
Sk,j+1,

if zk,j ≤ t ≤ zk,j+1, 0 ≤ j < nk,

(3.7)

and

V (ζk,j) = Sk,j , and Vk(t) =
ζk,j+1 − t

ζk,j+1 − ζk,j
Sk,j +

t− ζk,j

ζk,j+1 − ζk,j
Sk,j+1,

if ζk,j ≤ t ≤ ζk,j+1, 0 ≤ j < nk.

(3.8)

We also define the following rescaled versions of the random broken line processes Tk(·)
Vk(·) in the interval [0, 1].

T̃k(t) = Tk(tzk,nk
), Ṽk(t) = Vk(tζk,nk

), 0 ≤ t ≤ 1 (3.9)

Next I formulate the functional central limit theorem for triangular arrays of martingale
difference sequences.

Functional central limit theorem for triangular arrays of martingale differ-

ence sequences. For all numbers k = 1, 2, . . . let a sequence of random variables
Xk,1, . . . , Xk,nk

be given together with a sequence of increasing σ-algebras Fk,0 ⊂ Fk,1 ⊂
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· · · ⊂ Fk,nk
that satisfies the conditions of the central limit theorem for martingale differ-

ence sequences. Let us consider the sequence of broken line processes Ṽk(t), k = 1, 2, . . . ,
defined in formulas (3.5), (3.6), (3.8) and (3.9). The random broken line processes
Ṽk(t), k = 1, 2, . . . , can be considered as random variables taking their values in the
Banach space C([0, 1]) of continuous functions in the interval [0, 1], and this random
variables converge weakly to the Wiener measure in the space C([0, 1]) as k → ∞.

I omit the detailed proof the central limit theorem, I only make some remarks about
how this can be done with the help of some classical results. First we have to show that
the finite dimensional distributions of the random processes Ṽk(t) converge. This can be
done with the help of the central limit theorem for martingale difference sequences by
introducing some appropriate stopping times. We also have to prove a statement called
the tightness property in the literature. In the present case this means the proof of some
maximum type inequality. We can prove such inequalities by exploiting that with the
help of some truncation procedure we can reduce the problem to that special case when
the random variables Xk,j are bounded, moreover we may assume that this bound is
very small. The sequences (Sk,j ,Fk,j), 1 ≤ j ≤ nk, are martingales. This implies that
the sequences (etSk,j ,Fk,j) are submartingales, and we can apply for them the classical
inequalities valid for submartingales. Besides, we can estimate the exponential moments
Eet(Sk,j′−Sk,j), 1 ≤ j ≤ j′ ≤ nk, by means of the methods applied in Section 2, and in
such a way we can prove the inequalities needed to show the tightness property needed
in this proof.

The tightness property can also be proved in a different way. Brown made it by
means of Lemma 4 of his paper which follows from different properties of martingales.
An essential difference between the formulation of our functional central limit theorem
and the corresponding result of Brown is that we formulated a result about the behaviour
of the random broken line process Ṽk(t) defined with the help of the set of (random)
points ζk,j , while Brown’s result is about the behaviour of the random broken line T̃k(t)
defined with the help of the set of (non-random) points zk,j . The following fact is
behind this differences. Brown considered only such a special case when the triangular
arrays of martingale difference sequences are defined with help of the normalization of
a sequence of martingale differences. In this case also the following stronger version of

formula (1.2) holds: lim
k→∞

ζk,[kt]

zk,[kt]
⇒ 1 for all numbers 0 < t ≤ 1, where [x] denotes the

integer part of the number x. This has the consequence that the (deterministic) points
zk,j are very close to the (random) points ζk,j , and the random broken lines Ṽk(t) and

T̃k(t) are close to each other for large indices k. But in the general case this statement
does not hold any longer.

The above formulated functional central limit theorem deals not with the random
broken line process Tk(t), defined in a natural way in formula (3.7) from the partial sums
of the martingale difference sequence Xk,j with the help of the variances d2k,j = EX2

k,j

of the individual terms. It deals with its ‘randomly rescaled version’ Vk(t), which we get
be replacing the time points zk,j by the time points ζk,j . It states about the processes
Vk(t) that it behaves for large indices k similarly to a Wiener process. The analogous
statement about Tk(t) may not hold in some cases. We can say that the natural time
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scale of the process we are interested in is presented not by the partial sums of the
variances zk,j , but by the partial sums of the conditional variances ζk,j . We can find

a similar phenomenon in the behavior of stochastic processes X(t) =
∫ t

0
f(s)W ( ds)

defined as the Itô integral of a predictable stochastic process f(·). Such a stochastic
process can be rescaled to a Wiener process by means of a (random) ‘inner time’ of
the process. (see the book of H. P. McKean Stochastic integrals, Section 2.5.) In more

detail, if X(t) =
∫ t

0
f(s, ω)W ( ds) is an Itô integral, and we introduce the ‘inner time of

the process’ τ(t) =
∫ t

0
f2(s, ω) ds, then Y (t) = X(τ−1(t)) is a Wiener process (possibly

stopped at a random time point).

4. Appendix: An application. Lévy’s characterization of Wiener processes.

We show, as an application of the central limit theorem for triangular arrays of martin-
gale differences the proof of Lévy’s characterization of Wiener processes. Let us recall,
that a Wiener process in the interval [0, T ], 0 < T < ∞, is such a Gaussian stochastic
process W (t), 0 ≤ t ≤ T , for which EW (t) = 0, EW (s)W (t) = min(s, t) for all param-
eters 0 ≤ s, t ≤ T , and its trajectories W (·, ω) are continuous functions in the interval
[0, T ] with probability 1. We shall deal with continuous time martingales. Let us recall
also their definition.

We say that a stochastic process X(t), 0 ≤ t ≤ T , together with a class of increasing
σ-algebras Ft, 0 ≤ t ≤ T , (we say that a class of σ-algebras Ft is increasing if Fs ⊂ Ft

for s ≤ t) is a martingale if X(t) is Ft measurable, E|X(t)| < ∞, and E(Xt|Fs) = Xs

with probability 1 if 0 ≤ s ≤ t ≤ T . We say that a stochastic process X(t), 0 ≤ t ≤ T , is
a martingale (without attaching a class of σ-algebras to it) if it is a martingale together
with the class of σ-algebras Ft, 0 ≤ t ≤ T , defined as Ft = σ(X(s), 0 ≤ s ≤ t),
0 ≤ t ≤ T . We shall prove the following result.

Lévy’s characterization of Wiener processes. A stochastic process X(t), 0 ≤
t ≤ T , is a Wiener process in the interval [0, T ] if and only if it satisfies the following
properties (a), (b) and (c).

(a) X(0) ≡ 0, and the process X(t), 0 ≤ t ≤ T , is a martingale.

(b) The process Y (t) = X2(t) − t, 0 ≤ t ≤ T , together with the σ-algebras Ft =
σ(X(s), 0 ≤ s ≤ t), 0 ≤ t ≤ T , is a martingale.

(c) Almost all trajectories X(·, ω) are continuous functions in the interval [0, T ].

Remark. It is clear that a Wiener process satisfies conditions (a), (b) and (c). The
following example shows that condition (c) cannot be omitted from the conditions of
the above result. Let Z(t), 0 ≤ t ≤ T , be a Poisson process. Then Z(t)− t, 0 ≤ t ≤ T ,
satisfies conditions (a) and (b). Indeed, Z(t)−t is a stochastic process with independent
increments, and it is not difficult to check that it satisfies both properties (a) and (b).
But this stochastic process, which is clearly not a Wiener process, does not satisfy
property (c). As we shall see in the proof of Lévy’s characterization of Wiener processes
condition (c) is closely related to the Lindeberg condition in the central limit theorem.

17



We shall prove this result with the help of a lemma formulated during the proof,
and then we shall prove also this lemma.

The proof of Lévy’s characterization of Wiener processes with the help of a lemma. It
is clear that a Wiener process satisfies conditions (a), (b) and (c). The hard part of
the proof is to show that these conditions imply that X(t) is a Wiener process. It
is relatively simple to show with the help of properties (a) and (b) that the process
X(t) has expectation EX(t) = 0 and covariance EX(s)X(t) = min(s, t), and we also
assumed in condition (c) that it has continuous trajectories. The hard part of the proof
is to show that it is Gaussian, i.e. the finite dimensional distributions of the process
X(t) are Gaussian. We shall use the central limit theorem for martingales to show this.
We shall prove the following statement:

If conditions (a), (b) and (c) hold, then for arbitrary positive integer k, real numbers

u1, . . . , uk and 0 ≤ t1 < t2 < · · · < tk ≤ T the random variable
k
∑

j=1

uj(X(tj)−X(tj−1))

is normally distributed with expectation zero and variance
k
∑

j=1

u2
j (tj − tj−1). (Here we

use the notation t0 = 0.)

By applying the above statement with fixed numbers 0 ≤ t1 < t2 < · · · < tk ≤ T for
all real numbers u1, . . . , uk we get that the random variables X(tj)−X(tj−1), 1 ≤ j ≤ k,
are independent Gaussian random variables with expectation zero and variance tj−tj−1.
We can state this for all sequences 0 ≤ t1 < t2 < · · · < tk ≤ T . This is equivalent to
the statement that X(t) is a Gaussian process with expectation zero and covariance
EX(s)X(t) = min(s, t). Hence it is enough to prove the above statement to complete
the proof of the result.

For the sake of simpler notations we shall prove this statement only in the special
case k = 1, t1 = t and u1 = 1. But it causes no problem to extend this proof to the
general case.

A natural idea would be to apply the following method. Let us define for all

k = 1, 2, . . . the set of random variablesXk,j =
1√
t
[X( jtk )−X( (j−1)t

k )] and the σ-algebras

Fk,j = σ(Xk,1, . . . , Xk,j), 1 ≤ j ≤ k, and let Fk,0 be the trivial σ-algebra Fk,0 = {∅,Ω}.
In such a way we defined a triangular array of martingale difference sequences (with
nk = k) that satisfies conditions (a) and (b) of the central limit theorem for triangular
arrays of martingale differences. We still should show that it also satisfies condition (c).
We would like to exploit that almost all trajectories of the process X(t) are continuous,
hence uniformly continuous in the interval [0, T ]. This implies that for almost all ω ∈ Ω
there is a threshold index k0 = k0(ω, ε) such that |Xk,j(ω)| < ε for all 1 ≤ j ≤ k if

k ≥ k0. Hence lim
k→∞

nk
∑

j=1

X2
k,jI(|Xk,j | > ε) = 0 with probability 1. One would like to

take expectation in this formula, which would lead to the Lindeberg formula (1.1). But
at this point some difficulty arises that we can overcome only by refining this argument
with the help of a lemma. In this argument we work not directly with the random
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variable X(t), but we approximate it with a sequence of random variables Xn(t) for
which we can apply the central limit theorem. To carry out this program we shall need
the following lemma.

Lemma. Let X(t), 0 ≤ t ≤ T , be a stochastic process with continuous trajectories on
the interval [0, T ]. Let us fix two positive numbers ε and α, and define with their help
the random variable τ as

τ = τ(ε, α, T ) (4.1)

= max{t: t ≤ T, |X(u)−X(v)| < ε if 0 ≤ u ≤ v ≤ t, and |u− v| ≤ α}.

This random variable τ = τ(ε, α, T ) is a stopping time for all such class of increasing
σ-algebras Ft, 0 ≤ t ≤ T , for which B(Xs, 0 ≤ s ≤ t} ⊂ Ft. This stopping time property
means that {ω: τ(ω) ≤ t} ∈ Ft for all numbers 0 ≤ t ≤ T .

Let g(x, u) be a continuous function on the set [0, T ]×[0,∞] for which the inequality
E|g(X(t), t)| < ∞ holds for all 0 ≤ t ≤ T , and the stochastic process g(X(t), t), 0 ≤
t ≤ T , together with some class of increasing class of σ-algebras Ft, 0 ≤ t ≤ T , is a
martingale. Define, with the help of the previously defined stopping time τ the random
variables τt = min{t, τ}, 0 ≤ t ≤ T . Then the random variables g(X(τt), τt), 0 ≤ t ≤ T

satisfy the identity g(X(τt), τt) = E(g(X(T ), T )|Fτt) with probability 1 for all 0 ≤ t ≤ T .
Here Fτt consists of those sets B for which B ∩ {τ ≤ u} ∈ Fu for all 0 ≤ u ≤ T .

We shall need the following corollary of the lemma.

Corollary. If X(s), 0 ≤ s ≤ T , is a stochastic process with continuous trajectories
such that EX2(s) < ∞ for all 0 ≤ s ≤ T , and the stochastic processes X(s) and
Y (s) = X2(s)− s, 0 ≤ s ≤ T , are martingales together with some increasing class of σ-
algebras Fs, 0 ≤ s ≤ T , then also the random processes X(τs) and Y (τs) = X2(τs)− τs
(with the stopping times τs defined in (4.1), only with the notation of parameter t

instead of parameter s) are martingales together with the σ-algebras Fτs in the interval
0 ≤ s ≤ T .

To prove Lévy’s characterization of Wiener processes with the help of the corollary
of the lemma let us consider the stochastic process X(t), 0 ≤ t ≤ s, and introduce the
stopping times τk = τ(εk, αk, t) defined in formula (4.1) with the choice εk = 1

k , T = t

and such an αk > 0 for which

P

(

sup
0≤s,t≤1, |t−s|≤αk

|X(t, ω)−X(s, ω)| ≥
√
tεk

)

≤ 1

k2
.

Such an αk exists because of the continuity of the trajectories of the stochastic process
X(s), 0 ≤ s ≤ t. With such a choice P (τk = t) ≥ 1 − 1

k2 . Hence the random variables
Xk(t) = 1√

t
X(τkt ) with τks = min(s, τk) for all 0 ≤ s ≤ t converge to 1√

t
X(t) with

probability 1, and to show that X(t) is normally distributed with expectation zero and
variance t it is enough to prove that the random variables Xk(t) converge in distribution
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to the standard normal distribution. We shall prove this with the help of the central
limit theorem for triangular arrays of martingale difference sequences.

Let us choose for all k = 1, 2, . . . some integer nk ≥ t
αk

, and define the random

variables Xk,j = 1√
t
[X(τkjt

nk

) − X(τk(j−1)t
nk

)], j = 1, 2, . . . , nk. Then we have Xk(t) =

nk
∑

j=1

Xk,j , and I claim that the central limit theorem for triangular arrays of martingale

differences can be applied for the triangular array Xk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, and
as a consequence the above representation of Xk(t) implies that the random variables
Xk(t) converge in distribution to the central limit theorem.

Indeed, the random variables Xk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, constitute a triangular
array of martingale difference sequences with the σ-algebras Fj,k = Fτk

jt
nk

, and this was

property (a) of this limit theorem. This corollary also implies that

E(X2
k,j |Fk,j−1) =

1

t
E

(

(

X

(

τkjt
nk

)

−X

(

τk(j−1)t
nk

))2
∣

∣

∣

∣

∣

Fk,j−1

)

=
1

t

[

E

(

X

(

τkjt
nk

)2

− τkjt
nk

∣

∣

∣

∣

∣

Fk,j−1

)

+ E

(

τkjt
nk

∣

∣

∣

∣

Fk,j−1

)

− 2X

(

τk(j−1)t
nk

)

E

(

X

(

τkjt
nk

)∣

∣

∣

∣

Fk,j−1

)

+X

(

τk(j−1)t
nk

)2]

=
1

t

[

X

(

τk(j−1)t
nk

)2

− τk(j−1)t
nk

+ E

(

τkjt
nk

∣

∣

∣

∣

Fk,j−1

)

− 2X

(

τk(j−1)t
nk

)2

+X

(

τk(j−1)t
nk

)2]

=
1

t

[

E

(

τkjt
nk

∣

∣

∣

∣

Fk,j−1

)

− τk(j−1)t
nk

]

=
1

t
E

(

τkjt
nk

− τk(j−1)t
nk

∣

∣

∣

∣

Fk,j−1

)

.

Observe that 1
t

(

τkjt
nk

− τk(j−1)t
nk

)

= 1
t

[

min
(

jt
nk

, τk
)

−min
(

(j−1)t
nk

, τk
)]

≤ 1
nk

, and

1

t

nk
∑

j=1

(

τkjt
nk

− τk(j−1)t
nk

)

=
τk

t
.

We also know that P (τk = t) → 1 as k → ∞. This implies that the sequence

1
t

nk
∑

j=1

(

τkjt
nk

− τk(j−1)t
nk

)

converges to 1 in L1-norm as k → ∞, and the same relation

holds for the sequence
nk
∑

j=1

σ2
j,k = 1

t

nk
∑

j=1

E

(

τkjt
nk

− τk(j−1)t
nk

∣

∣

∣

∣

Fk,j−1

)

. Hence property (b)

also holds.
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Finally, by our construction
nk
∑

j=1

X2
k,jI(|Xk,j | ≥ ε) ≡ 0 if k ≥ k0(ε), hence rela-

tion (1.1) and thus condition (c) also holds. To complete the proof it is enough to prove
the lemma and its corollary.

Proof of the Lemma. Given a number 0 ≤ t < T , let Qt denote the set of rational
numbers in the interval [0, t]. Then {τ ≤ T} = Ω ∈ FT , and

{ω: τ(ω) ≤ t} =
∞
⋂

m=1

⋃

(u,v): u∈Qt, v∈Qt, |u−v|≤α

{

ω: |X(u, ω)−X(v, ω)| ≥ ε− 1

m

}

∈ Ft,

for all t < T . This implies that τ(ω) is a stopping time. The identity in this relation
holds, since τ(ω) ≤ t if and only if there exist two such numbers 0 ≤ ū, v̄ ≤ t for which
|ū − v̄| ≤ α, and |X(ū, ω) − X(v̄, ω)| ≥ ε. On the other hand, this relation holds if
and only if for all m = 1, 2, . . . there are two numbers u ∈ Qt and v ∈ Qt such that
|u − v| ≤ α, and X(u, ω) −X(v, ω)| ≥ ε − 1

m . Indeed, if this relation hold, then there
is a pair 0 ≤ ū ≤ v̄ ≤ t such that |ū − v̄| ≤ α, and |X(ū, ω) −X(v̄, ω)| ≥ ε. Then we
get by choosing a sequence of pairs un ∈ Qt and vn ∈ Qt such that un → ū and vn → v̄

as n → ∞, that because of the continuity of the trajectories |X(un, ω) − X(vn, ω)| ≥
ε − 1

m for large indices n. On the other hand, if the other statement holds, then we
can choose a sequence of pairs un ∈ Qt and vn ∈ Qt such that |un − vn| ≤ α, and
|X(un, ω) −X(vn, ω)| ≥ ε − 1

n for large indices n. By taking a subsequence (unk
, vnk

)
of these pairs such that both sequences unk

and vnk
are convergent we get in the limit

a pair (ū, v̄) in the limit for which |ū − v̄| ≤ α, and |X(ū, ω) −X(v̄, ω)| ≥ ε. Thus we
proved that τ is a stopping time.

We shall prove the second statement of the lemma with the help of an appropriate
discrete time approximation of the stochastic process Zu = g(X(u), u), 0 ≤ u ≤ T .
We take for all positive integers m = 1, 2, . . . and real numbers 0 ≤ t ≤ T the random

variables Z jT

m

= g
(

X( jTm ), jT
m

)

, the σ-algebras G jT

m

= F jT

m

1 ≤ j ≤ m together with the

discretized stopping time τt(m) , which is defined by the formula τ
(m)
t = l

m if l−1
m < τt ≤

l
m , 1 ≤ l ≤ m. (I would remark that it follows from the continuity of the trajectories of
the stochastic process X(t) and the definition of the stopping time τ that τ(ω) > 0 for
almost all ω.)

If (g(X(u), u),Fu), 0 ≤ u ≤ T , is a martingale, then
(

Z jT

m

,G jT

m

)

, 1 ≤ j ≤ m, is

also a martingale, and τ
(m)
t is a stopping time for it. Hence it follows from a classical

result for martingales that Z
τ
(m)
t

= E(ZT |Fτ
t(m)

) with probability 1 for all integers

m = 1, 2, . . . . On the other hand, Zτt = lim
m→∞

Zτ
t(m)

with probability 1 because of the

continuity of the stochastic process g((X(u, ω), u). Hence to prove the identity we are
working with it is enough to show that the random variables Z

τ
(m)
t

= E(ZT |Fτ
t(m)

)

converge to the random variable E(ZT |Fτt) with probability 1 if m → ∞.

Moreover, to prove this statement it is enough to check that the random variables
Z
τ
(m)
t

= E(ZT |Fτ
t(m)

), m = 1, 2, . . . , are uniformly integrable. Indeed, we have to
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show that
∫

A
ZT (ω) dP =

∫

A
Zτt(ω) dP for all sets A ∈ Fτt . On the other hand, we

know that
∫

A
ZT (ω) dP =

∫

A
Z
τ
(m)
t

dP for all such sets A, and Zτt = lim
m→∞

Zτ
t(m)

with probability 1. Hence the uniform integrability of the random variables Z
τ
(m)
t

,

m = 1, 2, . . . , enables us to carry out a limiting procedure leading to the desired identity.

To prove the uniform integrability, (i.e. the inequality
∫

|Z
τ(m) |>K

|Zτ (m) | dP ≤ ε

for all numbers m = 1, 2, . . . if K ≥ K(ε) with a sufficiently large number K(ε)) it is
enough to show the following two inequalities: (1.) For all numbers ε > 0 there exists
a number δ = δ(ε) > 0 such that

∫

B
|Zτ (m) | dP ≤ ε if P (B) ≤ δ and B ∈ Fτ

t(m)
,

and (2.) P (|Zτ (m) | > K) ≤ δ for all numbers m = 1, 2, . . . if K ≤ K(δ) with an
appropriate number K(δ). The first statement holds, because under our conditions
∫

B
|Zτ (m) | dP ≤

∫

B
|ZT | dP , and

∫

B
|ZT | dP < ε, if P (B) < δ. The second inequality

holds, because E|Zτ (m) | = E|E(ZT |Fτ
t(m)

)|) ≤ E|ZT |, and this implies that P (|Zτ (m) | >
K) ≤ E|Z

τ(m) |
K ≤ E|ZT |

K ≤ δ it K ≥ K(δ). Thus we proved the lemma.

Proof of the corollary of the lemma. To prove the corollary of the lemma let us ob-
serve that under its conditions X(τs, ω) = E(X(T, ω)|Fτs), and X2(τs, ω) − τs(ω) =
E(X2(T, ω)− T |Fτs). Hence, if 0 ≤ s ≤ t ≤ T , then Fτs ⊂ Fτt , and

E(X(τt, ω)|Fτs) = E(E(X(T, ω)|Fτt)|Fτs) = E(X(T, ω)|Fτs) = X(τs, ω).

This is the first statement of the corollary. The second statement can be proved in the
same way.
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