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Summary: In the second part of this work we deal with the question
when the normalized partial sums of independent random variables,
or more generally the sums of the random variables in the same row
of a triangular array converge in distribution. We present a result
which gives a necessary and sufficient condition for the existence of a
limit distribution if the sequence of random variables or the triangular
array satisfies the uniform smallness condition, and also describe the
limit distribution. It turns out that the limit is always an infinitely
divisible distribution. The hard part of the problem is to show that
the sufficient condition given for the existence of a limit distribution
is at the same time a necessary condition. We discuss the content of
this condition in more detail and also show how the most important
classical limit theorems can be obtained as special cases of the result
discussed in this work.

We also try to explain the main ideas of the proof. An important
step in it is the introduction of the so-called associated distributions
of the distribution functions of the summands and to show that the
convergence of independent random variables with these associated
distributions is closely related to the original limit problem. The
associate distributions are infinitely divisible. So to understand limit
theorems for sums of independent random variables it is useful to
study the special problem when the sums of independent random
variables with infinitely divisible distributions have a limit.

1. Formulation of the basic results.

We present the proof of a result which gives a necessary and sufficient condition for
the existence of a limit distribution for the (normalized) sums of the random variables
in the same row of a triangular array if they satisfy the uniform smallness condition.
Furthermore, the limit distribution will be also described. It turns out that it is always
an infinitely divisible distribution. This means that if the uniform smallness condition
holds, then the limit distribution of the normalized sums of independent random vari-
ables is infinitely divisible in the most general case. Let us emphasize that we did not
assume that the summands are identically distributed.

To study the limit problem we are interested in it is useful to associate to all terms
in the triangular array we are working with an infinitely divisible random variable in
an appropriate way, We associate infinitely divisible and independent random variables
to the random variables in the same row. It can be achieved that the sums of these
associated random variables from a row of the triangular array converge in distribution
if and only if the original sums we are investigating converge. Moreover, the original
sums and the sums made from the associated random variables have the same limit
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distribution. Since the sum of independent and infinitely divisible random variables is
again infinitely divisible, the introduction of these associated random variables leads to
the problem when a sequence of infinitely divisible distributions have a limit.

Naturally, the results proved for general triangular arrays also hold in the special
case when the elements in a row are not only independent but also identically dis-
tributed random variables. This particular case deserves special attention, because in
this case the following heuristically “obvious” statement holds which nevertheless de-
mands a special proof: If the sums of the random variables from distinct rows have a
limit distribution and the random variables in a row of this triangular array are not
only independent but also identically distributed, then the triangular array satisfies the
uniform smallness condition. This result will be exploited in the proof of the Lévy–
Hinchin formula i.e. in the proof of the result that the construction in Part I describes
all possible infinitely divisible distributions, and it describes them in a unique way.

Before formulating the results we are interested in let us recall some important
notions and let us introduce some notations. Let ξk,j , k = 1, 2, . . . , j = 1, . . . , nk, be a
triangular array of random variables, i.e. let us assume that for a fixed number k the
random variables ξk,j , 1 ≤ j ≤ nk, are independent. This triangular array satisfies the
condition of uniform smallness if for all numbers ε > 0 lim

k→∞
sup

1≤j≤nk

P (|ξk,j | > ε) = 0.

Let us also recall the notion of canonical measures introduced in Part I. A measure M
on the real line is called a canonical measure if for all finite intervals [a, b] ⊂ R1 the
measure M{[a, b]} is finite, and for an arbitrary number a > 0

∫ ∞

a

1

x2
M( dx) <∞, and

∫ −a

−∞

1

x2
M( dx) <∞.

Let ξk,j , k = 1, 2, . . . , j = 1, . . . , nk, be a triangular array satisfying the uniform
smallness condition, and let Fk,j denote the distribution of the random variable ξk,j .
Let us introduce the σ-finite measures

Mk( dx) =

nk
∑

j=1

x2Fk,j( dx) (1.1)

and the functions

M+
k (x) =

nk
∑

j=1

(1 − Fk,j(x)) =

∫

u≥x

1

u2
Mk( du),

M−
k (x) =

nk
∑

j=1

Fk,j(−x) =

∫

u<−x

1

u2
Mk( du),

k = 1, 2, . . . , x > 0 (1.2)

on the real line for all k = 1, 2, . . . . Let us introduce the random sums Sk =
nk
∑

j=1

ξk,j . The

theorem formulated below gives a necessary and sufficient condition for the convergence
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in distribution of the normalized sums Sk − bk with appropriate norming constants
bk. This condition is expressed by means of the above introduced measures Mk and
functions M±

k .

Theorem 1. Let ξk,j, k = 1, 2, . . . , j = 1, . . . , nk, be a triangular array satisfying the
uniform smallness condition. Let Fk,j, k = 1, 2, . . . , 1 ≤ j ≤ nk, denote the distribution

function of the random variable ξk,j and set Sk =
nk
∑

j=1

ξk,j. Let us assume that the

normalized sums Sk − b̄k with some appropriate constants b̄k converge in distribution
as k → ∞. Then there exists a canonical measure M on the real line such that the
functions M±

k (x) defined in formula (1.2) together with the functions

M+(x) =

∫

u≥x

1

u2
M( du), M−(x) =

∫

u<−x

1

u2
M( du) (1.2′)

defined by means of the canonical measure M in an analogous way satisfy the relation

lim
k→∞

M+
k (x) = M+(x) and lim

k→∞
M−
k (x) = M−(x) (1.3)

in all such points x > 0 where the functions M+(·) or M−(·) are continuous. Besides,
the relation (1.6) formulated below also holds. To formulate this relation let us first
introduce some notations.

Let us fix a number a > 0, and define the function

τ(x) = τa(x) =











x if |x| ≤ a

a if x ≥ a

−a if x ≤ −a

(1.4)

and numbers

βk,j = βk,j(a) = Eτ(ξk,j), bk = bk(a) =

nk
∑

j=1

βk,j , Bk = Bk(a) =

nk
∑

j=1

β2
k,j ,

k = 1, 2, . . . , j = 1, . . . , nk. (1.5)

If the normalized sums Sk− b̄k converge in distribution with some appropriate constants
b̄k, then the normalized sums Sk−bk with the above introduced numbers bk also converge
in distribution, and the canonical measures Mk introduced in formula (1.1) satisfy the
relation

Mk([−s, s]) −Bk →M([−s, s]), if k → ∞ (1.6)

in all points s > 0 which are points of continuity of M+ and M−. Here we worked with
the previously introduced canonical measure M and functions M±(·).

Conversely, if the relations (1.3) and (1.6) hold with an appropriate canonical
measure M and the numbers Bk defined in formula (1.5), then the appropriate nor-
malizations of the sums Sk converge in distribution. More explicitly, in this case the
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normalized sums Sk − bk, k = 1, 2, . . . , with the constants bk defined in formula (1.5)
have a limit distribution which we can describe. The characteristic function ϕ(t) of this
limit distribution has a logarithm which can be given by the formula

logϕ(t) =

∫ ∞

−∞

eitu − 1 − itτ(u)

u2
M( du) (1.7)

with the canonical measure M determined by formulas (1.3), (1.2′) and (1.6) and the
function τ defined in formula (1.4). (Formula (1.6) is needed to define the measure
M({0}) of the origin.)

To satisfy the above limit theorem it is sufficient to demand a weakened version of
condition (1.6), namely to demand that it hold in a point of (joint) continuity of the
functions M±. (See Remark 1 formulated below.)

To give a complete formulation of Theorem 1 or more explicitly of formula (1.7) in
it we still have to define the value of the integrand in (1.7) also in the point u = 0. By
continuity arguments this is defined by the relation

eitu − 1 − itτ(u)

u2

∣

∣

∣

∣

u=0

= lim
u→0

eitu − 1 − itτ(u)

u2
= −

t2

2

here and in subsequent formulas.

Let us consider a triangular array ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, satisfying the
uniform smallness condition. Theorem 1 gives a necessary and sufficient condition for

the existence of an appropriate normalizations Sk − bk of the sums Sk =
nk
∑

j=1

ξk,j for

which these normalized sums converge in distribution. Besides, this result also gives
a possible normalization and describes the limit distribution belonging to it. This
limit distribution is described in formula (1.7) if the norming constants bk are defined
in (1.5). A comparison of this formula with the results of Part I of this work yields
that this limit is an infinitely divisible distribution whose Poissonian component is the
(regularized) sum of the values of a Poisson process with counting measure u−2M(du)
and which has a Gaussian component with expectation zero and variance M({0}). The
measure M appearing here is the limit of the measures Mk introduced in formula (1.1).
The limit procedure leading to this measure M is described through formulas (1.3),
(1.5) and (1.6). Let us emphasize that the limit in Theorem 1 is always an infinitely
divisible distribution, although we did not assume that the terms in the sums we have
considered are identically distributed. (In the first part of this work we only gave a
heuristic argument why the limit of the sums of independent and identically distributed
random variables have always an infinitely divisible distribution.) A result presented in
the later formulated Theorem 2′ also implies that the limit distribution determines the
measure M in formula (1.7).

To understand Theorem 1 better we make some comments. Let us first observe
that if the sequence of the random variables Sk − bk converges in distribution, then
the sequence Sk − b̄k with another sequence of constants b̄k converges in distribution if
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and only if the finite limit C = lim
k→∞

(b̄k − bk) exists. Indeed, if the above finite limit

exists, and the sequence Sk − bk converges to a distribution F (x), then the sequence
Sk − b̄k converges to the distribution F (x + C). Conversely, if the sequence b̄k − bk
is non-convergent, then either this sequence is non-bounded and it has a subsequence
b̄kj

−bkj
which tends to plus or minus infinity and the measures of all compact sets tends

to zero with respect to the distributions of the subsequences Skj
− b̄kj

in this case, or
this sequence has two subsequences with indices kj and k̄j such that the subsequences
b̄kj

− bkj
and b̄k̄j

− bk̄j
have two different finite limits. In the latter case the sequence

Sk − b̄k has two subsequences with different limits.

The above observation tells us how many freedom we have in the choice of the
norming constant bk in Theorem 1. In its formulation we fixed a parameter a > 0 and
the constants bk depended on this number a through the function τ(·) = τa(·). If a and
a′ are two different positive constants, then

bk(a) − bk(a
′) =

∫

(τa(u) − τa′(u))

u2
Mk( du),

and the finite limit C = lim
k→∞

(bk(a) − bk(a
′)) =

∫ (τa(u)−τa′ (u))
u2 M( du) exists by formula

(1.3). Besides, the normalizations bk(a) and bk(a
′) supply two different limit distribu-

tions which are the shift of each other with the above constant C. Indeed, if we consider
the logarithms of the characteristic functions of these limit distributions, then their dif-

ference equals it
∫ (τa(u)−τa′ (u))

u2 M( du) = itC. On the other hand, if the characteristic
function of a random variable ξ equals ϕ(t), then the characteristic function of the
random variable ξ + C equals eitCϕ(t).

Besides, we shall show that the limit of the measures Mk in Theorem 1 does not
depend on the choice of the parameter a. We have to settle the following problem.
We have defined the functions M±, hence also the restriction of the measure M to the
half lines (0,∞) and (−∞, 0) in formula (1.3). We still have to define the measure
M({0}). This can be done with the help of formula (1.6) and the identity M({0}) =
lim
s→0

M([−s, s]). The expression in formula (1.6) depends on the constant Bk = Bk(a)

defined in formula (1.5). We have to show that nevertheless the number M({0}) does
not depend on the parameter a, and M({0}) ≥ 0. Besides, we want to explain the
probabilistic content of this quantity. This will be done in Remarks 2 and 3. Before
these Remarks we show in Remark 1 that if formula (1.6) holds in such a point s > 0
which is a point of continuity of the functions M+(·) and M−(·), then this relation also
holds in all points of continuity s′ of these functions.

Remark 1. If formula (1.6) holds in a point of continuity s of the M±(·) functions, then
relation (1.3) implies that it holds in all points of continuity s′ > 0 of these functions.
Indeed,

Mk([−s
′, s′]) −Mk([−s, s]) =

∫ s′

s

u2M+
k ( du) +

∫ s′

s

u2M−
k ( du)
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→

∫ s′

s

M( du) +

∫ −s

−s′
M( du) = M([−s′, s′]) −M([−s, s]).

This means that condition (1.6) can be replaced by its weakened version which only
states that it holds in one point of continuity of the functions M±.

Remark 2. Although the function τ(·) = τa(·), and as a consequence the constants
βk = βk(a), the norming constants bk = bk(a) and the constants Bk = Bk(a) appearing
in formula (1.6) depend on the parameter a > 0, it can be shown that lim

k→∞
(Bk(a

′) −

Bk(a)) = 0 for two different constants a > 0 and a′ > 0. This means that formula (1.6)
is meaningful, its content does not depend on the choice of the parameter > 0. To prove
this statement let us first observe that because of the condition of uniform smallness

lim
k→∞

sup
1≤j≤nk

|βk,j(a
′)−βk,j(a)| = 0, and by relation (1.3) sup

k

nk
∑

j=1

|βk,j(a
′)−βk,j(a)| <∞.

The last relation holds, since for all pairs a′ > a > 0

nk
∑

j=1

|βk,j(a
′) − βk,j(a)| ≤

∫ a′

a

u(M+
k ( du) +M−

k (du)) + (a′ − a)[M+
k (a′) +M−

k (a′)],

and the right-hand side of the last expression can be bounded because of formula (1.3)
independently of k.

Some difficulty arises in the proof, because the sequence B∗
k =

nk
∑

j=1

|βk,j | may

be unbounded. To overcome this difficulty we can show that because of the uni-
form smallness condition lim

k→∞
sup

1≤j≤nk

|βk,j(a)| = 0. Indeed, for all numbers ε > 0

|βk,j(a)| ≤ ε + aP (|ξk,j > ε) ≤ 2ε if k ≥ k0(ε, a) and 1 ≤ j ≤ nk. This relation holds,
since aP (|ξk,j | > ε) ≤ ε if k ≥ k0(ε, a). Hence |Bk(a

′) −Bk(a)| ≤ Ik + 2IIk, where

Ik =

nk
∑

j=1

|βk,j(a
′) − βk,j(a)|

2 ≤ sup
1≤j≤nk

|βk,j(a
′) − βk,j(a)|

nk
∑

j=1

|βk,j(a
′) − βk,j(a)| → 0,

if k → ∞, and

IIk =

nk
∑

j=1

|(βk,j(a
′) − βk,j(a))βk,j(a)| ≤ sup

1≤j≤nk

|(βk,j(a)|

nk
∑

j=1

|βk,j(a
′) − (βk,j(a)| → 0

if k → ∞. This implies the statement of Remark 2.

Remark 3. Let us define, similarly to formula (1.4), the function τ ′(x) = τ ′a(x) as
τ ′(x) = x if |x| ≤ a, and τ ′(x) = 0 if |x| > a. Set β′

k,j = β′
k,j(a) = Eτ ′(ξk,j),

B′
k = B′

k,j(a) =
nk
∑

j=1

β′
k,j

2
. With a natural modification of the argument in Remark 2 we

get that lim
k→∞

(Bk − B′
k) = 0, and here we can write B′

k(a
′) with an arbitrary number
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a′ > 0 instead of the number B′
k(a). By exploiting this fact and carrying out a limiting

procedure ε→ 0 through such numbers ε which are points of continuity of both functions
M+ and M− we get that

M({0}) = lim
ε→0

M([−ε, ε]) = lim
ε→0

lim
k→∞

(Mk([−ε, ε]) −B′
k(ε))

= lim
ε→0

lim
k→∞





nk
∑

j=1

(

Eτ ′ε(ξk,j)
2 − (Eτ ′ε(ξk,j))

2
)



 = lim
ε→0

lim
k→∞

nk
∑

j=1

Var τ ′ε(ξk,j).

(1.8)
Formula (1.8) means in particular that M({0}) ≥ 0. The following heuristic content
can be given to formula (1.8). The variance of the normal component of the limit
distribution, the number M({0}) can be obtained in the following way: We truncate
the random variables in a fixed row of the triangular array at a level ε > 0, we sum up
these random variables, and calculate the variance of the sum. Then take their limit as
the index of the row k tends to infinity and then the level of the truncation ε tends to
zero. In an informal way this means that the normal component of the limit distribution
is the “contribution of the inside part” of the summands. The former argument also
shows that the expression defining the measure M([−s, s]) in formula (1.6) is necessarily
non-negative.

Formula (1.6) is equivalent to the relation (1.6′)

M({0}) = lim
ε→0

lim
k→∞

(Mk([−ε, ε]) −B′
k(ε)) , (1.6′)

where such numbers ε > 0 are taken in the limit which are points of continuity of the
measure M . We have already seen that relation (1.6) implies relation (1.6′). To see the
converse statement let us first fix some small number ε′ > 0 write up the identity

Mk([−s, s]) −Bk −M([−s, s]) = Mk([−s, s]) −Mk([−ε
′, ε′])

− (M([−s, s]) −M([−ε′, ε′])) + (B′
k(ε

′) −Bk) + (Mk([−ε
′, ε′])

−B′
k(ε

′) −M({0}) − (M([−ε′, ε′]) −M{0}),

and estimate the right hand side of this identity if relation (1.6′) holds. Observe that

lim
k→∞

(Mk([−s, s]) −Mk([−ε
′, ε′]) − (M([−s, s]) −M([−ε′, ε′])) = 0

and lim
k→∞

(B′
k(ε

′) − Bk) = 0. In the proof of these two relations we only need formula

(1.3) and do not apply formula (1.6). If we fix a number ε > 0 and choose the number
ε′ = ε′(ε) > 0 sufficiently small then we also can write M([−ε′, ε′]) −M{0}| ≤ ε and
because of relation (1.6′)

lim sup
k→∞

|Mk([−ε
′, ε′]) −Mk({0}) −B′

k(ε
′)| ≤ ε.

These relations together imply that if relation (1.6′) holds, then

lim sup
k→∞

|Mk([−s, s]) −Bk −M([−s, s])| ≤ 2ε.
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Since the last inequality holds for all ε→ 0, relation (1.6′) implies relation (1.6).

Formula (1.6) can be better applied in the subsequent proofs, and probably it is
simpler to check it. On the other hand the heuristic content of formula (1.6′) is more
understandable.

An important step in the proof of Theorem 1 is the investigation of the ques-
tion when a sequence of infinitely divisible distributions described by means of the
Lévy–Hinchin formula converges in distribution and what the limit distribution is. To
formulate a result in this direction let us first introduce the notion of (weak) conver-
gence of canonical measure. This notion is a natural modification of the convergence of
distribution functions.

Definition of convergence of canonical measures. Let Mn, n = 1, 2, . . . , and M
be canonical measures on the real line. We say that the canonical measures Mn converge
(weakly) to the canonical measure M if

lim
n→∞

M+
n (x) = lim

n→∞

∫ ∞

x

1

u2
Mn( du) = M+(x) =

∫ ∞

x

1

u2
M( du),

lim
n→∞

M−
n (x) = lim

n→∞

∫ −x

−∞

1

u2
Mn( du) = M−(x) =

∫ −x

−∞

1

u2
M( du),

for all such numbers x > 0 where the function M+(·) or M−(·) is continuous, and

lim
n→∞

Mn([a, b]) = M([a, b])

for all such numbers −∞ < a < b < ∞ where the measure M is continuous. (This
continuity of the measure means that M({a}) = M({b}) = 0.)

Remark 4. Similarly to the convergence of distribution functions the convergence of
canonical measures can be expressed by means of convergence of integrals of an appro-
priate class of continuous functions. A sequence of canonical measures Mn converges
(weakly) to a canonical measure M if and only if

∫

f(u)Mn(du) →
∫

f(u)M(du) for

all such continuous functions f for which sup
u

|f(u)|
1+u2 < ∞. Actually this statement can

be deduced from the analogous statement about distribution functions if we observe
that in the case when the limit measure is not identically zero a sequence of canonical
measures Mn converges weakly to a canonical measure M if and only if the correspond-

ing probability measures Fn = Fn(Mn) defined as Fn( dx) = Mn( dx)
Cn(1+x2) , Cn =

∫ Mn( dx)
1+x2

converge (weakly) to the probability measure F ( dx) = M( dx)
C(1+x2) , C =

∫ M( dx)
1+x2 . Since

we do no need this result we omit the details.

Now we formulate the result about the convergence of infinitely distributions we
shall need in the sequel.

Theorem 2. Let a sequence of infinitely divisible distributions be given with charac-
teristic functions ϕn(t), t ∈ R. Let the (existing) logarithms of these characteristic
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functions be of the form

logϕn(t) =

∫ ∞

−∞

eitu − 1 − itτ(u)

u2
Mn( du) + iBnt, n = 1, 2, . . . , (1.9)

where Mn, n = 1, 2, . . . , is a sequence of canonical measures, and the function τ(u) =
τa(u) is defined in formula (1.4). These infinitely divisible distributions converge in
distribution if and only if there exists a canonical measure M such that the canonical
measures Mn converge (weakly) to the canonical measure M , and also the limit B =
lim
n→∞

Bn exists. If the limit exists, then its characteristic function has a logarithm which

can be given in the form

logϕ(t) =

∫ ∞

−∞

eitu − 1 − itτ(u)

u2
M( du) + iBt.

By means of a simplified version of the proof of Theorem 2 the following Theorem 2′

can also be proved.

Theorem 2′. Let the logarithm of the characteristic function of an infinitely divisible
distribution be of the form

logϕ(t) =

∫ ∞

−∞

eitu − 1 − itτ(u)

u2
M( du) + iBt

with a canonical measure M and real number B. Then the distribution function or what
is equivalent to it the logarithm of its characteristic function logϕ(t) determines the
canonical measure M and constant B.

Remark. In the formulation of Theorems 2 and 2′ we did not exploit that the char-
acteristic function of all infinitely divisible distributions can be given in the form of
formula (1.7). This result will be proved later with the help of an argument which
implicitly exploits these results.

Finally, we prove the following statement which is useful in the proof of the Lévy–
Hinchin formula.

Theorem 3. Let ξk,j, k = 1, 2, . . . , 1 ≤ j ≤ nk, be such a triangular array whose
rows contain such random variables which are not only independent but also identi-
cally distributed. (But we do not assume that the triangular array satisfies the uniform
smallness condition.) Furthermore, let us assume that nk → ∞ if k → ∞, and the sums

Sk =
nk
∑

j=1

ξk,j converge in distribution. Then this triangular array satisfies the uniform

smallness condition.

The main result of this part of the work, Theorem 1, gave a necessary and sufficient
condition for the existence of a limit distribution for the normalized sums of the elements
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ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, of the rows in a triangular array satisfying the uniform
smallness condition. With the help of a result contained in Lemma 2 to be formulated
later the general problem considered in Theorem 1 can be reduced to the special case
when all elements of the triangular array satisfy the condition Eτ(ξk,j) = 0, k = 1, 2, . . . ,
1 ≤ j ≤ nk. Let us restrict our attention in the following consideration to this special
case. Then the relations Eβk,j = 0, bk = 0, Bk = 0 hold for all indices k = 1, 2, . . .
and 1 ≤ j ≤ nk in formula (1.5) and the necessary and sufficient condition for the
existence of the limit distribution is that the canonical measures Mk defined in formula
(1.1) converge weakly to a canonical measure M . Besides, we can state that the limit
distribution is that infinitely divisible distribution whose Poissonian part is determined
by a Poisson process with counting measure u−2M(du).

It is worthwhile to compare the result of Theorem 1 and Theorem 2. Given a
triangular array ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, Eτ(ξk,j) = 0 with distribution func-
tions Fk,j define a new triangular array whose elements are infinitely divisible random
variables ηk,j and are determined as the (regularized) sums of the elements of Poisson
processes with counting measures Fk,j . We also demand that the random variables ηk,j
be independent for fixed k. The random variables ηk,j are called the associated random

variables to the random variables ξk,j . Let us compare the random sums Sk =
nk
∑

j=1

ξk,j

and Tk =
nk
∑

j=1

ηk,j . Theorems 1 and 2 say that these random sums have a limit distri-

bution at the same time, and their limit agree. This agreement of the limit distribution
in these two cases is not a random coincidence. It has a deeper reason.

In Part III we shall give another proof of the sufficiency part of Theorem 1. In
that part of the work we shall prove the equiconvergence in distribution of the above
defined random sums Sk and Tk in a direct probabilistic way by means of an appropriate
coupling. Let us give a short informal explanation for this equiconvergence. Let us
split both the random variables ξk,j and the random variables ηk,j to their inner and
outer part as ξk,j = ξk,jI(|ξk,j | ≤ εk) + ξk,jI(|ξk,j | > εk) and ηk,j = ηk,jI(|ηk,j | ≤
εk)+ηk,jI(|ηk,j | > εk) with some appropriate constants εk which tend to zero sufficiently
slowly. Then some calculation shows that the sum of the inner parts of the random
variables ξk,j and ηk,j satisfy the central limit theorem with the same variance. The
sum of the outer part of the random variables ξk,j and ηk,j behave similarly because
of a different reason. In this case the Poisson process which determines the random
variable ηk,j contains no points whose absolute value is larger than εk with probability
almost one because of the uniform smallness condition. The probability of the event
that for a fixed index k one of the Poisson processes determing the random variables
ηk,j , 1 ≤ j ≤ nk, contains a point with absolute value larger than εk is not negligible,
but the probability of the event that one of these Poisson processes contains at least
two such points is negligibly small. This property enables us to couple the outer part
of the random variables ξk,j and ηk,j so that they are so close to each other that even
their sums are close.

The details of this rather sketchy argument will be worked out in Part III of this
work. Such a study may help to understand better the above results. Besides, the

10
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coupling method worked out in Part III enables us to make a useful generalization. We
shall prove with the help of this method a functional limit theorem version of Theorem 1.

2. Some interesting consequences of the above results.

Most classical limit theorems of probability which are related to the behaviour of the
distribution of sums of independent random variables can be deduced from the above
results. We present some interesting applications.

A.) The Lévy–Hinchin formula.

The Lévy–Hinchin formula: A distribution function is infinitely divisible if and only
if its characteristic function ϕ(t), t ∈ R(1), has a logarithm which be written in the form

logϕ(t) =

∫ ∞

−∞

eitu − 1 − itτ(u)

u2
M( du) + iBt (2.1)

where M is a canonical measure on the real line, B is a real number and the function τ(·)
agrees with the function defined in formula (1.4) (with some fixed number a > 0). In the
representation (2.1) of the characteristic function of an infinitely divisible distribution
the canonical measure M and number B is uniquely determined.

The proof of the Lévy–Hinchin formula: In Part I. of this work we have already
seen that formula (2.1) really defines the logarithm of a characteristic function. Then it
is not difficult to see that it is the logarithm of the characteristic function of an infinitely
divisible distribution. Indeed, if the logarithm of the characteristic function logϕ(t) of a
random variable ξ is given by formula (2.1), then for arbitrary integer k its distribution
equals the distribution of the sum of k independent and identically distributed random

variables whose characteristic functions have a logarithm of the form logϕ(t)
k , i.e. it is

given by formula (2.1) so that the measure M(·) is replaced by M(·)
k and the constant

B by B
k .

Conversely, if ξ is an infinitely distributed random variable, i.e. for all integers k
there exists k independent and identically distributed random variables ξk,1, . . . , ξk,k
such that the distribution of the sum Sk = ξk,1 + · · ·+ ξk,k agrees with the distribution
of the random variable ξ, then by Theorem 3 the triangular array ξk,j , k = 1, 2, . . . , 1 ≤
j ≤ k, satisfies the uniform smallness condition. Then we can apply Theorem 1 which

says that there exists such a sequence of constant bk that the sequence Sk− bk
∆
= ξ− bk,

where
∆
= denotes equality in distribution, has a limit which can be given by formula

(1.7) by means of an appropriate canonical measure M . (We introduced the norming
constants bk in this argument, because with their help we can achieve that the limit is
given in formula (1.7). The difference between formulas (1.7) and (2.1) is that the first
formula does not contain an additive term iBt.) Since both sequences Sk and Sk − bk
converge in distribution, the limit lim

k→∞
bk = B exists, and formula (1.7) implies relation

(2.1).

11
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B.) The central limit theorem.

We show that the results formulated in the first Section imply the most important
results about the central limit theorem. The most general, and probably most known
version of the central limit theorem states the following result: Let ξk,j , Eξk,j = 0,

Eξ2k,j = σ2
k,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, be a triangular array such that lim

k→∞

nk
∑

j=1

σ2
k,j = 1,

and the following so-called Lindeberg condition is satisfied: For all numbers ε > 0

lim
k→∞

nk
∑

j=1

Eξ2k,jI(|ξk,j | > ε) = 0, where I(A) denotes the indicator function of the set A.

Then the sums Sk =
nk
∑

j=1

ξk,j converge in distribution to the standard normal distribution

as k → ∞.

Also the following reversed statement formulated first by Feller holds. Let ξk,j ,
Eξk,j = 0, Eξ2k,j = σ2

k,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, be a triangular array such that

lim
k→∞

nk
∑

j=1

σ2
k,j = 1. Let us also demand the validity of the following condition which

is slightly stronger than the uniform smallness condition: lim
k→∞

sup
1≤j≤nk

σ2
k,j = 0. If the

random sums Sk =
nk
∑

j=1

ξk,j converge in distribution to the standard normal distribution,

then this triangular array also satisfies the Lindeberg condition. Moreover, this state-
ment also holds if instead of the convergence of the random sums we only assume that
the normalized sums Sk−bk converge in distribution to the standard normal distribution
with some appropriate numbers bk.

We prove the above results by means of the results formulated Section 1. Actually,
we shall prove a slightly stronger result. We prove that for the validity of the Lindeberg
condition for a triangular array which satisfies the central limit theorem it is enough to
assume the uniform smallness condition instead of the relation lim

k→∞
sup

1≤j≤nk

σ2
k,j = 0.

First we show that the Lindeberg condition follows from the above conditions. As
we assumed the validity of the uniform smallness condition we may apply Theorem 1.
This result together with the statement about the unique representation of infinitely
divisible distributions formulated in Theorem 2′ imply that if the central limit theorem
holds, then the canonical measures Mk defined by means of formula (1.1) from the
distribution functions Fk,j of the random variables ξk,j satisfy formulas (1.3) and (1.6)
with the constants Bk defined in formula (1.5) and the canonical measure M such that
M({0}) = 1, M(R1 \{0}) = 0. As Bk ≥ 0, hence by formula (1.6) for all numbers ε > 0
lim
k→0

Mk([−ε, ε]) − Bk = 1 with some number Bk ≥ 0. This means that for all numbers

ε > 0 lim inf
j→∞

nk
∑

j=1

Eξ2k,jI(|ξk,j | ≤ ε) ≥ 1. On the other hand, lim
j→∞

nk
∑

j=1

Eξ2k,j = 1. Hence

lim
j→∞

nk
∑

j=1

Eξ2k,jI(|ξk,j | > ε) = 0, and this is the Lindeberg condition.

Conversely, we show that under the Lindeberg condition the central limit theorem

12
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holds. In this case sup
1≤j≤nk

P (|ξk,j | ≥ ε) ≤ 1
ε2

nk
∑

j=1

Eξ2k,jI(|ξk,j | > ε) → 0 if k → ∞.

Hence the uniform smallness condition holds, and we can apply Theorem 1. We have
to show that the canonical measures Mk constructed with the help of the distribution
functions Fk,j of the random variables ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, satisfy the
conditions (1.3) and (1.6) with the measure M defined by the relation M{0}) = 1,
M(R1 \ {0}) = 0, and lim

k→∞
bk = 0. The Lindeberg condition implies formula (1.3)

with the above canonical measure M , because for all numbers a > 0 M+
k (a) =

nk
∑

j=1

(1 −

Fk,j(a)) ≤
1
a2

nk
∑

j=1

Eξ2k,jI(|ξk,j | > a) → 0 if k → ∞, and similarly lim
k→∞

M−
k (a) = 0.

By the Lindeberg condition and the relation lim
k→∞

nk
∑

j=1

Eξ2k,j = 1 lim
k→∞

Mk([−s, s]) =

1 for all ε > 0. Hence to prove formula (1.6) it is enough to show that lim
k→∞

Bk = 0.

This relation holds since by the condition Eξk,j = 0

Bk =

nk
∑

j=1

(E(τ(ξk,j) − ξk,j))
2
≤

nk
∑

j=1

(E|ξk,j |I(|ξk,j | > a))
2
≤

nk
∑

j=1

Eξ2k,jP
2(|ξk,j | > a),

and this implies that lim
k→∞

Bk = 0, since lim
k→∞

nk
∑

j=1

Eξ2k,j = 1, and lim
k→∞

sup
1≤j≤nk

P (|ξk,j >

a) = 0. Similarly,

|bk| =

∣

∣

∣

∣

∣

∣

nk
∑

j=1

E (τ(ξk,j) − ξk,j)

∣

∣

∣

∣

∣

∣

≤

nk
∑

j=1

E|ξk,j |I(|ξk,j | > a) ≤
1

a

nk
∑

j=1

Eξ2k,jI(|ξk,j | > a),

hence lim
k→∞

bk = 0 by the Lindeberg condition. This means that by Theorem 1 the sums

Sk =
nk
∑

j=1

ξk,j converge in distribution to a distribution function whose characteristic

function has the logarithm of the form logϕ(t) = − t2

2 . Hence the central limit theorem
holds under the above conditions.

C.) The weak law of large numbers.

Let ξ1, ξ2, . . . , be a sequence of independent, identically distributed random vari-

ables, and consider the partial sums Sn =
n
∑

k=1

ξk, n = 1, 2, . . . , made from these random

variables. A classical result of the probability deals with the problem when these par-
tial sums satisfy the weak law of large numbers, i.e. under what conditions imposed
for the distribution function F (x) of the random variables ξk does the relation Sn

n ⇒ a
hold with some real number a as n→ ∞, where ⇒ denotes stochastic convergence. As
stochastic convergence of random variables to a number is equivalent to the convergence
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of these random variables in distribution to the probability measure concentrated in the
point corresponding to this number the results formulated in the first Section help us
to answer this question. The following result can be proved.

The weak law of large numbers. Let ξ1, ξ2, . . . , be a sequence of independent and
identically distributed random variables with distribution function F (x). The averages

Sn

n = 1
n

n
∑

k=1

ξk converge stochastically to a real number a if the following two conditions

are satisfied:

i.) lim
x→∞

x[1 − F (x)] = 0, and lim
x→∞

xF (−x) = 0

ii.) lim
x→∞

∫ x

−x
uF ( du) = a.

Proof of the weak law of large numbers. Let us consider the triangular array ξk,j =
ξj

k ,
k = 1, 2, . . . , j = 1, . . . , k. It satisfies the condition of uniform smallness. The weak
law of large numbers means that the sums of the random variables from a row of this
triangular array converge to the probability measure concentrated in the point a. By
Theorem 1 this relation holds if and only if the measures Mk( dx) = kx2F (k dx), the
functions M+

k (x) = k(1 − F (kx)) an M−
k (x) = kF (−kx) together with the numbers

bk = k

(∫ a

−a

uF (k du) + a(1 − F (ak) − F (−ak))

)

=

∫ ka

−ka

uF ( du) + ak (1 − F (ak) − F (−ak)) ,

and Bk =
b2k
k satisfy the conditions (1.3) and (1.6) with a limit measure M , M(R1) = 0,

and lim
k→∞

bk = a.

Some calculation shows that condition (1.3) in this case is equivalent to Condi-
tion i.). If Condition i.) is satisfied, then Condition ii.) is equivalent to the relation
lim
k→∞

bk = a. Finally, under conditions i.) and ii.) also the relation (1.6) holds, since in

this case lim
k→∞

Bk = 0, and lim
k→∞

Mk([−s, s]) = 0. Indeed, partial integration yields that

Mk([−s, s]) =
∫ ks

−ks
u2

k F ( du) = s2k [(1 − F (ks) + F (−ks)] −
∫ ks

0
1−F (u)+F (−u)]

k du, and
this implies that

Mk([−s, s]) ≤ s2k [(1 − F (ks) + F (−ks)] → 0 if k → ∞.

D.) A limit theorem with Poissonian limit distribution.

In Part I we have formulated and in its Appendix we have also proved a limit theorem
where the limit distribution was Poissonian. Now we show that this result is a simple
consequence of Theorem 1 formulated in Section 1. The result is the following statement.

Limit theorem with Poissonian limit distribution. Let ξk,j, k = 1, 2, . . . , 1 ≤
j ≤ nk be a triangular array which satisfies the following conditions:

14
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1.) The random variables ξk,j take non-negative integer values.

2.) P (ξk,j = 1) = λk,j, lim
k→∞

nk
∑

j=1

λk,j = λ > 0.

3.) sup
1≤j≤nk

λk,j → 0 if k → ∞, and
nk
∑

j=1

P (ξk,j ≥ 2) → 0 if k → ∞.

Then the random sums Sk =
nk
∑

j=1

ξk,j converge in distribution to a Poisson distri-

bution with parameter λ if k → ∞.

Proof of the limit theorem with Poissonian distribution function. The triangular ar-
ray ξk,j satisfies the uniform smallness condition, hence Theorem 1 can be applied
for instance with the choice a = 1

2 in the definition of the function τa(·). Then
the conditions of Theorem 1 hold with the limit canonical measure M of the form
M({1}) = λ, M(R1 \ {1}) = 0 and lim

k→∞
bk = 1

2 . Hence the random sums Sk − bk

converge to a limit distribution whose characteristic function has a logarithm of the
form logϕ(t) = λ

(

eit − 1 − i t2
)

. This implies that the random sums Sk converge to the
Poisson distribution with parameter λ.

Let us mention still another important and interesting application of the results
in Section 1. Let ξ1, ξ2, . . . be a sequence of independent and identically distributed

random variables with some distribution function F (x), put Sn =
nk
∑

k=1

ξk, n = 1, 2, . . . ,

and consider the normalized sums Sn−Bn

An
with some appropriate norming constants An

and Bn. The following problems arise in a natural way. For which distribution func-
tions F can the norming constants An and Bn be chosen in such a way that the above
normalized sums converge in distribution? How should we choose these norming con-
stants? What kind of limit distributions can appear? These questions can be answered
completely, and the answers lead to the notion of stable distributions. The solution of
these problems is also based on the results formulated in the first Section. The reason
we do not go into the details is that a complete solution also requires some knowledge
about the so-called slowly varying functions, a subject we do not discuss here.

3. The proof of the results.

To prove the results formulated in Section 1 first we prove two technical lemmas. In
the first lemma we reformulate the condition of uniform smallness in the language
of characteristic functions. The second lemma makes possible to reduce the proof of
Theorem 1 to the special case when the relation Eτ(ξk,j) = 0 holds for all sufficiently
large indices k and all numbers 1 ≤ j ≤ nk. After this we turn to the proof of the
results.

A.) The proof of two useful lemmas.

Lemma 1. Let ξk,j, k = 1, 2, . . . , 1 ≤ j ≤ nk, be a triangular array. Let Fk,j
denote the distribution and ϕk,j(t) = Eeitξk,j the characteristic function of the random

15
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variable ξk,j, k = 1, 2, . . . , 1 ≤ j ≤ nk. The above triangular array satisfies the uniform
smallness condition if and only if for all numbers K > 0

sup
1≤j≤nk

sup
|t|<K

|1 − ϕk,j(t)| < ε for k ≥ k0(ε,K).

The proof of Lemma 1. a.) Let us assume that the uniform smallness condition is
satisfied. Then with the choice ε′ = ε

2K

|1 − ϕk,j(t)| ≤

∫

|1 − eitx|Fk,j( dx) =

∫

|x|≤ε′
+

∫

|x|>ε′

≤

∫ ε′

−ε′
|tx|Fk,j( dx) + 2P (|ξk,j | > ε′) ≤ Kε′ + 2P (|ξk,j | > ε′) ≤ ε,

for |t| ≤ K if k ≥ k0(ε,K).

b.) If the condition imposed for the characteristic functions ϕk,j holds then for all
numbers ε′ > 0 and K > 0

ε′ ≥
1

2K

∫ K

−K

Re [1 − ϕk,j(t)] dt =
1

2K

∫ K

−K

∫ ∞

−∞

(1 − cos tx)Fk,j( dx) dt

=
1

2K

∫ ∞

−∞

2K

[

1 −
sinKx

Kx

]

Fk,j( dx) ≥

∫

{|x|> 2

K
}

≥
1

2
P

(

|ξk,j | >
2

K

)

in the case k ≥ k0(ε
′,K) and 1 ≤ j ≤ nk. This relation with the choice ε′ = ε

2 and
K = 2

ε implies the uniform smallness condition of the triangular array.

Lemma 2. Let ξk,j, k = 1, 2, . . . , 1 ≤ j ≤ nk, be a triangular array satisfying the
uniform smallness condition and let us fix a number a > 0 which appears in the definition
of the function τ(·) given in formula (1.4). Then there exist such numbers ϑk,j =
ϑk,j(a), k = 1, 2, . . . , 1 ≤ j ≤ nk, for which lim

k→∞
sup

1≤j≤nk

|ϑk,j | = 0, and the triangular

array ξ′k,j = ξk,j − ϑk,j satisfies the condition Eτ(ξ′k,j) = Eτa(ξ
′
k,j) = 0 for all indices

k ≥ k0 = k0(a), 1 ≤ j ≤ nk, with an appropriate threshold index k0(a), and the function
τ(·) = τa(·) defined in formula (1.4). Let F ′

k,j(x) = Fk,j(x+ϑk,j) denote the distribution
function of the random variable ξ′k,j, and let us define the canonical measures M ′

k and

functions M ′±
k (x) similarly to the measures Mk and functions M±

k by means of formulas
(1.1) and (1.2) with the difference that we replace the distribution functions Fk,j with
the distribution functions F ′

k,j in these formulas.

The measures Mk and functions M±
k satisfy the relations (1.3) and (1.6) if and

only if the measures M ′
k and M ′±

k satisfy them (with the same canonical measure M ,
but with the difference that Bk = 0 has to be written in formula (1.6) if the measure Mk

is replaced by the measure M ′
k.) If these relations hold, then the numbers bk =

nk
∑

j=1

βk,j

and b′k =
nk
∑

j=1

ϑk,j satisfy the relation lim
k→∞

(bk − b′k) = 0.
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The last statement of Lemma 2 by which lim
k→∞

(bk − b′k) = 0 implies that the ran-

dom sums S′
k =

nk
∑

j=1

ξ′k,j defined with the help of the random variables ξ′k,j introduced in

Lemma 2 and the normalized sums Sk − bk with Sk =
nk
∑

j=1

ξk,j considered in Theorem 1

converge simultaneously in distribution. Moreover, the limit distributions of these ex-
pressions agree. Let us also remark that the necessary and sufficient condition of the
convergence for the new triangular array ξ′k,j formulated in Theorem 1 means that the
canonical measures M ′

k weakly converge to the canonical measure M . Let us observe
that because of the relation lim

k→∞
sup

1≤j≤nk

|ϑk,j | = 0 the uniform smallness condition for

the triangular array ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, implies that this condition also holds
for the triangular array ξ′k,j , k = 1, 2, . . . , 1 ≤ j ≤ nk.

The proof of Lemma 2. Define the functions fk,j(ϑ) = Eτ(ξk,j − ϑ). The uniform
smallness property of the triangular array implies that for an arbitrary small number
ε > 0 fk,j(ε) < 0 and fk,j(−ε) > 0 if k > k0(ε) with some threshold k0(ε). Indeed,
we may assume that a > 2ε. For all sufficiently large indices k the random variable
τ(ξk,j − ε) is less than −ε/2, with probability almost one, and it is less than a with
probability one. This implies that Eτ(ξk,j − ε) < 0 if k ≥ k0(ε). The inequality
Eτ(ξk,j+ε) > 0 can be proved similarly. Because of these inequalities and the continuity
of the functions fk,j(·) there exist numbers ϑk,j such that Eτ(ξk,j −ϑk,j) = 0 if k ≥ k0,
and lim

k→∞
sup

1≤j≤nk

|ϑk,j | = 0.

As |ϑk,j | < ε holds for all sufficiently large indices k and all numbers 1 ≤ j ≤ nk, the

inequalities M+
k (x−ε) < M ′+

k (x) < M+
k (x+ε) and M−

k (x−ε) < M ′−
k (x) < M−

k (x+ε)
hold if k > k0(ε). This implies that in all points x of continuity of the function M±(·)
the functions M±

k (x) and M ′±
k (x) simultaneously converge or do not converge to the

function M±(x). This means that the functions M± satisfy the relation (1.3) if and
only if the function M ′± satisfies it.

The identity τ(ξ′k,j) + ϑk,j − τ(ξk,j) = ξ′k,j + ϑk,j − ξk,j = 0 holds on the set
{ω: |ξk,j(ω)| ≤ a−ε} if k ≥ k0(ε). Besides, the inequality |τ(ξ′k,j)+ϑk,j−τ(ξk,j)| ≤ 2ϑk,j
always holds, since τ(·) is a Lipschitz 1 function. Applying these results and summing
up for all indices j we get that

nk
∑

j=1

|ϑk,j − βk,j | =

nk
∑

j=1

|Eτ(ξ′k,j) + ϑk,j − Eτ(ξk,j)|

=

nk
∑

j=1

|E
(

τ(ξ′k,j) + ϑk,j − τ(ξk,j)
)

I(|ξk,j | > a− ε)|

≤ 2 sup
1≤j≤nk

|ϑk,j |(M
+
k (a− ε) +M−

k (a− ε)),

if k ≥ k0(ε). Then we get, by taking the limit k → ∞ we get that lim
k→∞

nk
∑

j=1

|ϑk,j−βk,j | =
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0, and this is a stronger statement then the relation bk − b′k → 0 as k → ∞ formulated
in Lemma 2.

To complete the proof of Lemma 2 it is enough to show that if relation (1.3) holds,
then for all points of continuity s > 0 of the functions M±(·)

lim
k→∞

(Mk([−s, s]) −M ′
k([−s, s]) −Bk) = 0

Indeed, this means that the measures Mk and M ′
k simultaneously satisfy relation (1.6)

in these points s. (Observe that in formula (1.6) the number B′
k = 0 has to be taken

from the measure M ′
k. This is so, because B′

k = 0 for large k since β′
k,j = Eτ(ξ′k,j) = 0

for all indices k ≥ k0 and 1 ≤ j ≤ nk.)

To prove this relation first we show that for all points of continuity s of the functions
M±(·)

lim
k→∞

nk
∑

j=1

(

P (|ξk,j | > s) − P (|ξ′k,j | > s)
)

= 0, (3.1)

and

lim
k→∞

nk
∑

j=1

(Eτ(ξk,j)
2 − Eτ(ξ′k,j)

2) −Bk = 0. (3.2)

As we consider a point of continuity s of the functionsM±, hence we get by applying
formula (1.3) to the functions M±

k and M ′±
k that

lim
k→∞

nk
∑

j=1

(P (|ξk,j | > s) − P (|ξ′k,j | > s))

= lim
k→∞

(

(M+
k (s) −M ′+

k (s)) + (M−
k (s) −M ′−

k (s))
)

= 0,

hence relation (3.1) holds. On the other hand, for all sufficiently large indices k and all
numbers 1 ≤ j ≤ nk τ(ξk,j)

2 − τ(ξ′k,j)
2 + ϑ2

k,j − 2ϑk,jτ(ξk,j) = ξ2k,j − (ξ′k,j)
2 + ϑ2

k,j −
2ϑk,jξk,j = 0 on the set {ω: |ξk,j(ω)| < a − ε}, and this expression is always smaller
than const. |ϑk,j |. Hence by taking the absolute values of the appropriate expressions
and summing them up in the variable j we get that

∣

∣

∣

∣

∣

∣

nk
∑

j=1

E
(

τ(ξk,j)
2 − Eτ(ξ′k,j)

2 + ϑ2
k,j − 2ϑk,jβk,j

)

∣

∣

∣

∣

∣

∣

≤ const.
(

2M+
k (a− ε) + 2M−

k (a− ε)
)

sup
1≤j≤nk

|ϑk,j |,

and exploiting this inequality we get that
∣

∣

∣

∣

∣

∣

nk
∑

j=1

E
(

τ(ξk,j)
2 − Eτ(ξ′k,j)

2)
)

−Bk

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

nk
∑

j=1

E
(

τ(ξk,j)
2 − Eτ(ξ′k,j)

2 − β2
k,j

)

∣

∣

∣

∣

∣

∣

≤ const.
(

2M+
k (a− ε) + 2M−

k (a− ε)
)

sup
1≤j≤nk

|ϑk,j | +

nk
∑

j=1

(ϑk,j − βk,j)
2.
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As the sequences M±
k (a − ε), k = 1, 2, . . . , are bounded, and as we have proved

lim
k→∞

nk
∑

j=1

|ϑk,j − βk,j)| = 0, the right-hand side of the above expression tends to zero

as k → ∞, hence relation (3.2) holds.

Let us denote by τs(·) the version of the function τ(·) = τa(·) defined in formula (1.4)
if the parameter a in formula (1.4) is replaced by the number s. Then we can write the
identity

Mk([−s, s]) −M ′
k([−s, s]) −Bk =

nk
∑

j=1

(

Eτs(ξk,j)
2 − Eτs(ξ

′
k,j)

2
)

−Bk

− s2
nk
∑

j=1

(P (|ξk,j | > s) − P (|ξ′k,j | > s))

=

nk
∑

j=1

(

Eτs(ξk,j)
2 − Eτ(ξk,j)

2
)

−

nk
∑

j=1

(

Eτs(ξ
′
k,j)

2 − Eτ(ξ′k,j)
2
)

+

nk
∑

j=1

E
(

τ(ξk,j)
2 − Eτ(ξ′k,j)

2
)

−Bk − s2
nk
∑

j=1

(P (|ξk,j | > s) − P (|ξ′k,j | > s)).

To complete the proof of Theorem 2 it is enough to show that the expression at the
right-hand side of this identity tends to zero as k → ∞. That part of this expression
which is contained in the second line tends to zero by formulas (3.1) and (3.2). We
still have to understand the contribution of the terms obtained as the function τa was
replaced by τs. Then the desired statement follows from the following estimations.

nk
∑

j=1

(

Eτs(ξk,j)
2 − Eτ(ξk,j)

2)
)

=

∫

τs(u)
2 − τ(u)2

u2
Mk(du)

=

∫ ∞

min(a,s)

(

τs(u)
2 − τ(u)2

)

(M+
k ( du) +M−

k ( du))

→

∫ ∞

min(a,s)

(

τs(u)
2 − τ(u)2

)

(M+( du) +M−( du)).

The expression
nk
∑

j=1

(

Eτs(ξ
′
k,j)

2 − Eτ(ξ′k,j)
2)
)

has the same limit. Thus we hove shown

that Mk([−s, s])−M
′
k([−s, s])−Bk → 0 if k → ∞ and completed the proof of Lemma 2.

The proof of the sufficiency part of Theorem 1, the proof of the statement that the
limit distribution exists if the conditions of Theorem 1 hold is relatively simple, and it
can be directly done. The proof of the necessity part of Theorem 1 is harder and to
carry it out we shall need the result of Theorem 2. So we shall prove it. In the proof of
Theorem 2 we also prove a result formulated in Lemma 3. This Lemma 3 will be useful
also in later considerations. In the next part we prove the above results together with
Theorem 2′.
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B.) The proof of Theorems 2 and 2′ and of the sufficiency part of Theo-
rem 1.

First we prove the sufficiency part of Theorem 1 i.e. the statement that if conditions
(1.3) and (1.6) hold then the normalized sums Sk − bk converge in distribution to that
distribution function whose characteristic function has a logarithm of the form (1.7).

The proof of the sufficiency part of Theorem 1. We have to show that the logarithms of
the characteristic functions of the normalized random sums Sk−bk satisfies the relation

logEeit(Sk−bk) =

nk
∑

j=1

logϕk,j(t) − itβk,j → logϕ(t), if k → ∞

for all t ∈ R1 where the function logϕ(t) is defined in formula (1.7). Let us observe
that because of the uniform smallness condition assumed for the triangular array ξk,j ,
k = 1, 2, . . . , 1 ≤ j ≤ nk, |1 − ϕk,j(t)| ≤ ε for all ε > 0 if k ≥ k0(ε, t). Hence the
logarithm of the function ϕk,j(t) is meaningful if k ≥ k(t).

Let us first restrict our attention to the case when βk,j = Eτ(ξk,j) = 0 for all
sufficiently large k and 1 ≤ j ≤ nk. We shall prove that in this case

lim sup
k→∞

nk
∑

j=1

|1 − ϕk,j(t)| <∞

lim
k→∞

nk
∑

j=1

(1 − ϕk,j(t)) = − logϕ(t).

This two relations imply the limit theorem in the present case, because | log z+(1−z)| <
2|z|2 < 2ε|z| if |1−z| < ε and 1

2 > ε > 0, and the first relation together with the uniform
smallness condition imply that

lim
k→∞

nk
∑

j=1

|logϕk,j(t) + (1 − ϕk,j(t))| = 0.

We get with the help of the relation Eτ(ξk,j) = 0 that

nk
∑

j=1

|1 − ϕk,j(t)| =

nk
∑

j=1

|1 − ϕk,j(t) + itEτ(ξk,j)| ≤

nk
∑

j=1

∫

|1 − eitx + itτ(x)|Fk,j(dx)

≤

nk
∑

j=1

(

∫ a

−a

1

2
t2x2Fk,j(dx) +

∫

{|x|>a}

(2 + a|t|)Fk,j( dx)

)

=
1

2
t2Mk{[−a, a]} + (2 + a|t|)(M+

k (a) +M−
k (a)) < const. ,
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and this is the first statement we wanted to prove. The second statement can be proved
similarly, because

nk
∑

j=1

(1 − ϕk,j(t)) =

nk
∑

j=1

(1 − ϕk,j(t) + itEτ(ξk,j)) =

nk
∑

j=1

∫

(1 − eitx + itτ(x))Fk,j(dx)

=

∫ ∞

−∞

1 − eitx + itτ(x)

x2
Mk( dx) =

∫ K

−K

+

∫

|x|>K

for arbitrary number K > 0. Let us fix some number ε > 0. If K = K(ε) is sufficiently
large, and the points ±K are points of continuity of the measure M , then because of
relation (1.3) and the boundedness of the function 1 − eitx + itτ(x)

∣

∣

∣

∣

∣

∫

{|x|>K}

1 − eitx + itτ(x)

x2
Mk( dx)

∣

∣

∣

∣

∣

< ε

if k > k0, and
∣

∣

∣

∫

{|x|>K}
1−eitx+itτ(x)

x2 M( dx)
∣

∣

∣ < ε if we replace the measures Mk by

the limit measure M . On the other hand, because of the convergence of the canonical
measures Mk to the canonical measure M and the continuity of the function 1

x2 (1 −
eitx + itτ(x))

∫ K

−K

1 − eitx + itτ(x)

x2
Mk( dx) →

∫ K

−K

1 − eitx + itτ(x)

x2
M( dx), if k → ∞.

The above results imply the sufficiency in the special case considered above. The general
case when Eτ(ξk,j) 6= 0 is also possible can be deduced from the already proven case
with the help of Lemma 2.

Indeed, we can apply the already proven part of Theorem 1 for the triangular array
ξ′k,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, defined in Lemma 2. With the help of this lemma we
get that the random sums Sk − b′k and Sk − bk, where the numbers b′k were defined also
in Lemma 2 have a limit distribution if the condition of Theorem 1 holds. Besides, the
logarithm of the characteristic function of the limit distribution is given by formula (1.7).

The proof of Theorem 2. First we prove the simpler sufficiency part, i.e. the statement
that the weak convergence of the canonical measures Mn to the canonical measure
M together with the convergence of the numbers Bn → B imply that the sequence of
infinitely divisible distribution defined in Theorem 2 with the help of the canonical mea-
sures Mn and constants Bn converge to the infinitely divisible distribution determined
by the canonical measure M and constant B. As the convergence of the characteristic
functions of distribution functions to the characteristic function of a distribution func-
tion imply the convergence of these distribution functions to the distribution function
with the limit characteristic function it is enough to show that for all real numbers t

logϕn(t) =

∫ ∞

−∞

eitu − 1 − itτ(u)

u2
Mn( du) + iBnt

→ logϕ(t) =

∫ ∞

−∞

eitu − 1 − itτ(u)

u2
M( du) + iBt,
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if n→ ∞.

As Mn → M , and the integrand in the integrals we have considered satisfy the

inequality
∣

∣

∣

eitu−1−itτ(u)
u2

∣

∣

∣ < const.
1+u2 for all ε > 0 there exist such numbers K = K(ε) > 0

for which ±K are points of continuity of the measure M ,
∣

∣

∣

∣

∣

∫

{|u|>K}

eitu − 1 − itτ(u)

u2
Mn( du)

∣

∣

∣

∣

∣

≤ ε if n ≥ n0(ε),

and a similar inequality holds if we replace the measuresMn by the measureM . Besides,
the convergence of the canonical measures Mn to the canonical measure M and the
continuity of the integrand also implies that

∫

{|u|<K}

eitu − 1 − itτ(u)

u2
Mn( du) →

∫

{|u|<K}

eitu − 1 − itτ(u)

u2
M( du)

if n → ∞. These estimates and the relation Bn → B yield the sufficiency part of
Theorem 2 with a limiting procedure ε→ 0.

To prove the necessity part of Theorem 1 let us first observe that if (the (logarithms
of) the characteristic functions of distribution functions converge to a continuous func-
tion then the limit function is (the logarithm of) the characteristic function of a distri-
bution function which is the limit of these distribution functions. The main problem
of the proof will be to decide when the functions logϕn defined in the formulation of
Theorem 2 converge to a continuous function and to describe the limit function.

To describe the limit of the sequence of functions logϕn(t) let us define the following
“smoothed version” of these functions. Fix some number h > 0 and put

ψn(t) = ψhn(t) = logϕn(t) −
1

2h

∫ h

−h

logϕn(t+ s) ds.

Then

ψn(t) =

∫ ∞

−∞

(

eitu − 1 − itτ(u)

u2
−

1

2h

∫ t+h

t−h

eisu − 1 − isτ(u)

u2
ds

)

Mn( du)

=

∫ ∞

−∞

(

eitu

u2
−

1

2h

∫ t+h

t−h

eisu

u2
ds

)

Mn( du) =

∫ ∞

−∞

eituK(u)Mn( du),

(3.3)

where

K(u) = Kh(u) =
1

u2

(

1 −
sinhu

hu

)

. (3.3′)

We shall prove with the help of Lemma 3 formulated below that if the infinitely di-
visible distribution functions considered in Theorem 2 have a limit, then there exists a
continuous function ϕ̄(t) such that

lim
n→∞

ψn(t) → ψ(t) = ϕ̄(t) −
1

2h

∫ h

−h

ϕ̄(t+ u) du. (3.4)
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Indeed, by Lemma 3 if the functions logϕn(t) are characteristic functions of convergent
distribution functions, then they converge uniformly in all finite intervals to a continuous
function. Then we get formula (3.4) by taking a limit n → ∞ in the formula defining
the function ψn(·) because of Lebesgue’s dominated convergence theorem and Lemma 3.

We have formulated Lemma 3 in such a way that we could also apply it in the proof
of Theorem 1. Before its formulation we make the following remark.

Let logϕn(t), n = 1, 2, . . . , be a sequence of functions defined in formula (1.9). By
the results of Part I we know that they are the logarithms of the characteristic functions
of infinitely divisible distribution functions. If these distribution functions converge in
distribution then the functions logϕn(t) converge uniformly to a continuous function
ϕ̄(t) in a small neighbourhood of the origin. But we can state this uniform convergence
— at least before a deeper investigation — only in a small neighbourhood of the origin.
The above remark implies in particular that if the logarithms of the characteristic func-
tions defined in formula (1.9) belong to convergent distribution functions, then these
distribution functions satisfy the conditions of Lemma 3 formulated below.

Lemma 3. Let logϕn(t) be a sequence of functions defined by formula (1.9) with some
canonical measures Mn and real numbers Bn. Let us assume that these functions ϕn(t)
converge uniformly to a continuous function in a small neighbourhood of the origin.
(But we do not demand that the distribution functions related to the functions logϕn(t)
should converge in distribution.) Then the functions Mn taking part in the definition of
the functions logϕn(t) satisfy the inequality

sup
1≤n<∞

∫ ∞

−∞

1

1 + u2
Mn( du) <∞. (3.5)

In this case also the inequality

sup
1≤n<∞

sup
|t|<K

| logϕn(t)| <∞ (3.6)

holds for all K > 0.

If the functions logϕn(t) are the logarithms of the characteristic function of a con-
vergent sequence of distribution functions, then not only the characteristic functions of
these distribution functions but also their logarithms, the functions logϕn(t), converge
uniformly to a continuous function in all finite intervals.

The proof of Lemma 3. As the functions logϕn(t) are the logarithms of characteristic
functions of distribution functions, ϕn(0) = 1, and under the conditions of Lemma 3
there exists an appropriate h > 0 such that the limit lim

n→∞
logϕn(t) = ϕ̄(t) exists in the

interval |t| ≤ h, the limit is a continuous function, and the convergence is uniform in
this interval. For the sake of simpler notations we fix such a number h and we work
with this number h in the proof of Lemma 3 and Theorem 2 (thus for instance in the
definition of the already introduced function ψn(·) = ψhn(·)).
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The uniform convergence of the functions logϕn(t) in the interval [−h, h] together
with their representation imply that there exists an appropriate number K > 0 such
that

∞ > K ≥ 2 sup
n<∞

sup
|t|≤h

| logϕn(t)| ≥ sup
n<∞

∣

∣

∣

∣

∣

logϕn(0) −
1

2h

∫ h

−h

logϕn(t) dt

∣

∣

∣

∣

∣

= sup
n<∞

∣

∣

∣

∣

∫ ∞

−∞

1

u2

(

1 −
sinhu

hu

)

Mn( du)

∣

∣

∣

∣

≥ C(h) sup
n<∞

∣

∣

∣

∣

∫ ∞

−∞

1

1 + u2
Mn( du)

∣

∣

∣

∣

,

because

1

u2

(

1 −
sinhu

hu

)

= h2 1

(hu)2

(

1 −
sinhu

hu

)

≥ const.
h2

1 + h2u2
≥ const. ′

1

1 + u2

with some appropriate const. and const. ′ depending on h. Thus we have proved for-
mula (3.5). On the other hand, as

∣

∣

∣

∣

eitu − 1 − iτ(u)t

u2

∣

∣

∣

∣

≤

{

t2

2 , if |u| < a
2+aK
u2 , if |u| ≥ a, and |t| ≤ K

formula (3.5) implies that the integral in the definition of the function logϕn(t) is
uniformly bounded for a fixed finite interval |t| < K and all numbers n = 1, 2, . . . .
The sequence Bn has to be finite, since otherwise the sequence logϕn(h) would be not
bounded, thus it would not convergence. The above argument implies relation (3.6).
Finally the uniform boundedness of the functions logϕn(t) in finite intervals imply that
the functions ϕn(t) and their limit, the function ϕ(t) is separated both from zero and
infinity in all finite intervals. Hence if the distributions determined by the functions
logϕn(t) converge in distribution, then not only the characteristic functions but the
logarithms of the characteristic functions of these distributions converge uniformly in
all finite intervals. Lemma 3 is proved.

Let us turn back to the proof of Theorem 2. Let us introduce the measures
µn( du) = K(u)Mn( du), n = 1, 2, . . . , with the help of the function K(·) ≥ 0 de-
fined in formula (3.3′). By rewriting the expression given for the function a ψn(t) in
formula (3.3) by means of formula (3.4) we get that the Fourier transforms of the mea-
sures µn, the functions ψn(t) =

∫∞

∞
eituµn( du), converge to a continuous function ψ(t).

Furthermore, the inequality

C1

1 + u2
≤ K(u) =

1

u2

(

1 −
sinhu

hu

)

≤
C2

1 + u2

holds with some appropriate constants C2 = C2(h) > C1 = C1(h) > 0. We claim
that the following two possibilities can appear. Either lim

n→∞
ψn(0) = 0, and in this

case the canonical measures Mn weakly converge to the measure M ≡ 0, i.e. in this
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case M(R1) = 0 or lim
n→∞

ψn(0) = ψ(0) > 0, and in this case the probability measures

µ̄n = 1
ψn(0)µn converge weakly to a probability measure µ.

Indeed, if lim
n→∞

ψn(0) = 0, then by the lower estimate given for the function K(u)

we get that lim
n→∞

∫

1
1+u2Mn( du) = 0, i.e. the measures Mn converge weakly to the

zero measure. If limψn(0) > 0 (as ψn(0) ≥ 0, only the above two cases are possible),
then the above defined measures µ̄n are probability measures and their characteristic

functions converge to the continuous function ψ(t)
ψ(0) . Hence in this case the measures µ̄n

converge weakly to a probability measure µ. Let us finally remark that because of the

lower bound given for the function K(u) the continuity of the function K(u)
1+u2 and the

relation lim
n→∞

µ̄n = µ the canonical measure Mn(du) = K−1(u)µn(du) converge weakly

to the canonical measure M(du) = K−1(u)ψ(0)µ(du).

Let us finally remark that, as we have already seen in the first part of the proof, the
convergence of the canonical measures Mn to the canonical measure M implies that the
integral parts of the formulas expressing the functions logϕn(t) converge to the integral
part of the formula expressing the function logϕ(t). As the weak convergence of the
distributions considered in Theorem 2 implies that the functions logϕn(t) converge to
the function logϕ(t), hence the constants Bn in these formulas should converge to the
constant B. Theorem 2 is proved.

Theorem 2′ can be proved similarly to the necessity part of Theorem 2.

The proof of Theorem 2′. Let us define, similarly to the argument in Theorem 2, the
function

ψ(t) = ψh(t) = logϕ(t) −
1

2h

∫ h

−h

logϕ(t+ u) du.

Then

ψ(t) =

∫ ∞

−∞

eituK(u)M(du)

with K(u) = 1
u2

(

1 − sinhu
hu

)

. The function ϕ(t) determines also the function ψ(t).
If ψ(0) = 0, then the measure M is identically zero. If ψ(0) > 0, then µ̄( du) =
K(u)M( du)

ψ(0) is the uniquely determined probability measure whose characteristic function

is ψ(t)
ψ(0) . Then the formulaM( du) = ψ(0)

K(u) µ̄( du) also determines the measure M . Finally,

the function ϕ(t) and the measure M also determine the constant B in the formula
expressing the function ϕ(t).

C.) The proof of the necessity part of Theorem 1.

Let us first briefly explain the idea of the proof. Lemma 2 enables us to reduce the
problem to the case when the summands ξk,j , k ≥ k0, 1 ≤ j ≤ nk, satisfy the identity
Eτ(ξk,j) = 0 with some threshold index k0. If the sums of the random variables ξk,j

converge in distribution, then their characteristic functions, the products
nk
∏

j=1

ϕk,j(t),
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Péter Major

converge to a characteristic function ψ(t). It is natural to take logarithm in this relation.
Then, since ϕk,j(t) ∼ 1 because of the uniform smallness condition one expects that
the approximation logϕk,j(t) ∼ ϕk,j(t) − 1 causes a small error. These considerations

suggest that lim
k→∞

nk
∑

j=1

(ϕk,j(t)− 1− itEτ(ξk,j)) = lim
k→∞

nk
∑

j=1

(ϕk,j(t)− 1) = logψ(t). Then

if we write ϕk,j(t)− 1− itEτ(ξk,j) =
∫ eitx−1−itτ(x)

x2 x2Fk,j( dx), sum up these identities
for the argument j, then the last relation together with the necessity part of Theorem 2
enable us to prove the desired result.

Nevertheless, all steps of the above argument demand a more detailed justification.
This is done in the proof below where we first consider a simpler special case. Then we
reduce the general case to it by means of a technique called the symmetrization in the
literature.

Proof of the necessity part of Theorem 1. Let us first consider the special case when
all random variables have symmetric distribution, i.e. when the distribution functions
of the random variables ξk,j and −ξk,j agree, and the sequence of random sums Sk,
k = 1, 2, . . . , has a limit distribution.

If the sequence of random sums Sk converges in distribution, then the characteristic
functions ϕk,j(t) of the random variables ξk,j satisfy the relation

lim
k→∞

ψk(t) = lim
k→∞

nk
∏

j=1

ϕk,j(t) = ψ(t) (3.7)

with a continuous function ψ(t) which is the characteristic function of the limit distri-
bution. This relation implies that

lim
k→∞

logψk(t) = lim
k→∞

nk
∑

j=1

logϕk,j(t) = logψ(t). (3.8)

in an appropriate interval |t| ≤ h. For the time being we cannot prove this statement
for all t ∈ R1, since we do not know that the function ψ(·) in no points takes the value
zero.

Because of the symmetry of the distribution functions of the random variables
ξk,j ϕk,j(t) = E cos(tξk,j) is a real number, and −1 ≤ ϕk,j(t) ≤ 1 for all numbers
t ∈ R1. Hence 1−ϕk,j(t) = |1−ϕk,j(t)|. By Lemma 1 the uniform smallness condition
imposed on the triangular array ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, implies that for all
numbers K > 0 we have lim

k→∞
sup
|t|<K

sup
1≤j≤nk

|1−ϕk,j(t)| = 0. Hence for all numbers ε > 0

| logϕk,j(t) + (1 − ϕk,j(t))| ≤ ε|1 − ϕk,j(t)| if k ≥ k0(ε), and we can write

lim
k→∞

log ψ̄k(t) = lim
k→∞

nk
∑

j=1

(ϕk,j(t) − 1) = logψ(t), (3.8′)
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instead of the relation (3.8) with the function ψ̄k(t) =
nk
∏

j=1

eϕk,j(t)−1 if |t| ≤ h. Further-

more,

log ψ̄k(t) =

nk
∑

j=1

(ϕk,j(t) − 1) =

nk
∑

j=1

∫

(eitx − 1 − itτ(x))Fk,j( dx)

=

∫

eitx − 1 − itτ(x)

x2
Mk( dx),

(3.9)

because of the symmetric distribution of the random variables ξk,j , where the function
τ(x) and the measure Mk are the quantities defined in Theorem 1. This relation and
formula (3.8′) imply that Lemma 3 can be applied for the functions ψ̄k(t). Hence those
versions of formulas (3.5) and (3.6) hold where the measures Mn are replaced by the
measures Mk and log ψ̄k(t) is written instead of logϕn(t). This version of formula (3.6)
implies that

sup
1≤k<∞

sup
|t|≤K

nk
∑

j=1

(1 − ϕk,j(t)) = sup
1≤k<∞

sup
|t|≤K

nk
∑

j=1

|1 − ϕk,j(t)| <∞,

for all numbers K > 0, and 0 ≤ sup
1≤k<∞

sup
|t|≤K

−
nk
∑

j=1

logϕk,j(t) <∞ because | logϕk,j(t)+

(1−ϕk,j(t))| < (1−ϕk,j(t)) if |t| ≤ K and k ≥ k0(K). Hence we can take logarithm in
formula (3.7) for all numbers t ∈ R1, and relations (3.8) and (3.8′) hold for all t ∈ F1.
This means that the functions ψ̄k(t) are the characteristic functions of such (infinitely
divisible) distributions which converge in distribution. Hence Theorem 2 can be applied
for these functions, and it yields together with formula (3.9) that relations (1.3) and
(1.6) hold (the latter one with Bk = 0 for all indices k) in the above considered case.

In the next step we prove the necessity part of Theorem 1 in the case when
Eτ(ξk,j) = 0 for all k ≥ k0 and 1 ≤ j ≤ nk with an appropriate threshold index k0, and
the normalized sums of the random variables from fixed rows of the triangular array we
consider, the random variables Sk − b̄k, converge in distribution with an appropriate
norming sequence b̄k. We prove that in this case the canonical measures Mk constructed
by means of the triangular array ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, satisfy relations (1.3)
and (1.6).

In the proof of this statement we apply symmetrization of the random variables
we are working with, a technique useful in several investigations of probability theory.
That is, we consider a new triangular array ξ̄k,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, independent
of the original triangular array ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, and such that the random
variables ξk,j and ξ̄k,j have the same distribution. Then we define the random sums

S̄k =
nk
∑

j=1

ξ̄k,j similarly to the random sums Sk and consider the differences Sk− S̄k. The

convergence of the random sums Sk− b̄k in distribution implies the same convergence for
the expressions Sk− S̄k, and the latter random variables can be obtained as the sums of
the random variables of the triangular array ηk,j = ξk,j − ξ̄k,j , k = 1, 2, . . . , 1 ≤ j ≤ nk,
in fixed rows. Observe that the random variables ηk,j are symmetrically distributed,
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hence we have already proved the necessity part of Theorem 1 for the triangular array
consisting of these random variables.

We shall prove with the help of the above symmetrization that

sup
1≤k<∞

M±
k (s) <∞ for all numbers s > 0, lim

K→∞
sup

1≤k<∞
M±
k (K) = 0,

and
sup

1≤k<∞
Mk([−a, a]) <∞.

Indeed, let us define the measures M0
k and functions M0±

k similarly to the measures
Mk and functions M±

k introduced to the formulation of Theorem 1 with the difference
that now we replace the distribution functions Fk,j of the random variables ξk,j by the
distribution function F̄k,j = Fk,j ∗ F

−
k,j of the random variables ηk,j = ξk,j − ξ̄k,j in the

definition of these quantities, where ∗ denotes convolution, and F−
k,j(x) = 1 − Fk,j(−x)

is the distribution function of the random variable −ξk,j . Then relations (1.3) and
(1.6) hold (with constant Bk = 0) with an appropriate canonical measure M0 if we

replace the quantities M±
k and Mk by the quantities M0±

k and M0. Besides, for all
ε > 0 there exists a threshold index k0 = k0(ε) such that 1 − F̄k,j(x − ε) = P (ξk,j −
ξ̄k,j > x − ε) > P (ξk,j > x)P (ξ̄k,j > −ε) > (1 − ε)(1 − Fk,j(x)) for x > 2ε and
k > k0(ε) because of the uniform smallness condition. A similar inequality holds for
the quantity F̄k,j(−x). Summing up these estimates for all j = 1, . . . , nk we obtain

that M±
k (x) ≤ 1

1−εM
0±
k (x − ε) if x ≥ 2ε and k ≥ k0(ε). As sup

k<∞
M0±

k (x) < ∞ for all

numbers x > 0, and lim
K→∞

sup
k<∞

M0±
k (K) = 0, the above inequalities imply the validity

of the relations formulated to the functions M±
k .

We prove an inequality useful for our purposes to estimate the quantityMk([−a, a]).
In its proof we exploit that Eτ(ξk,j) = Eτ(ξ̄k,j) = 0, and the random variables ξk,j ,
and ξ̄k,j are independent. Besides, the functions

v(x) = va(x) =











a ha x > a

0 ha − a ≤ x ≤ a

−a ha x < −a

satisfy the following relations: τ(x)− v(x) = x if |x| ≤ a, and τ(x)− v(x) = 0 if |x| > a.
Furthermore, τ(x)v(x) = v2(x). Hence

∫ 2a

−2a

x2F̄k,j(dx) =

∫ ∫

{(x,y): |x+y|≤2a}

(x+ y)2Fk,j( dx)F
−
k,j( dy)

≥

∫ ∫

{(x,y): |x|≤a, |y|≤a}

(x+ y)2Fk,j( dx)F
−
k,j( dy)

=

∫ ∫

{(x,y): |x|≤a, |y|≤a}

(x− y)2Fk,j( dx)Fk,j( dy)
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= E
(

τ(ξk,j) − v(ξk,j) − (τ(ξ̄k,j) − v(ξ̄k,j))
)2

= 2Eτ(ξk,j)
2 + 2Ev(ξk,j)

2 − 2(Ev(ξk,j))
2 − 4Eτ(ξk,j)v(ξk,j)

≥ 2

∫ a

−a

x2Fk,j(dx) − 4a2(1 − Fk,j(a) + Fk,j(−a)),

since

(Ev(ξk,j))
2

= a2(1 − Fk,j(a) + Fk,j(−a))
2 ≤ a2(1 − Fk,j(a) + Fk,j(−a)),

and
Ev(ξk,j)

2 = Eτ(ξk,j)v(ξk,j) = a2(1 − Fk,j(a) + Fk,j(−a)).

By summing up these inequalities for j = 1, . . . , nk we get that

M0
k ([−2a, 2a]) ≥ 2Mk([a, a]) − 4a2(M+

k (a) +M−
k (a)).

We know that sup
1≤k<∞

M0
k ([−2a, 2a]) <∞, (the measures M0

k satisfy relation (1.6) with

the choice Bk = 0), and have also seen that sup
1≤k<∞

M±
k (a) <∞, These relations imply

that the inequality sup
1≤k<∞

Mk([−a, a]) <∞ holds.

With the help of the estimates obtained for the quantities Mk and M±
k we prove

that for all numbers T > 0

sup
1≤k<∞

nk
∑

j=1

|1 − ϕk,j(t)| ≤ C(T ) if |t| ≤ T (3.10)

with an appropriate constant C(T ) <∞. Indeed, for all numbers |t| ≤ T

|1 − ϕk,j(t)| =

∣

∣

∣

∣

∫ ∞

−∞

(1 − eitx + itτ(x))Fk,j( dx)

∣

∣

∣

∣

≤

∫ a

−a

|1 − eitx + itx|Fk,j( dx)

+

∫

|x|>a

|1 − eitx + ita|Fk,j( dx)

≤
t2

2

∫ a

−a

x2Fk,j( dx) + (2 + |t|a) (Fk,j(−a) + [1 − Fk,j(a)]) .

By summing up these formulas for all 1 ≤ j ≤ nk and by exploiting the inequality
|t| ≤ T we get that

nk
∑

j=1

|1 − ϕk,j(t)| ≤
T 2

2
Mk([−a, a]) + (2 + Ta)(M+

k (a) +M−
k (a)).

This estimate together with the existence of a finite bound for the numbers M±
k (a) and

Mk([−a, a]) independent of the index k imply relation (3.10).
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The uniform smallness condition, imposed for the triangular array ξk,j , k = 1, 2, . . . ,
1 ≤ j ≤ nk, and Lemma 1 imply that lim

k→∞
sup
|t|≤T

sup
1≤j≤nk

|1− ϕk,j(t)| = 0 for all numbers

t ∈ R1. As a consequence, the relation lim
x→0

log(1−x)+x
x = 0 with the choice x = 1−ϕk,j(t)

implies that

lim
k→∞

sup
|t|≤T

sup
1≤j≤nk

|logϕk,j(t) + (1 − ϕk,j(t))|

|1 − ϕk,j(t)|
= 0

By this formula and relation (3.10)

lim
k→∞

sup
|t|≤T

nk
∑

j=1

|logϕk,j(t) + (1 − ϕk,j(t))| → 0 (3.11)

for all numbers T > 0.

The convergence of the sequence of random variables Sk− b̄k in distribution implies
that

lim
k→∞

nk
∏

j=1

(

e−itb̄k/nkϕk,j(t)
)

= ψ(t), (3.12)

where ψ(t) is the characteristic function of the limit distribution. Furthermore, the
convergence is uniform in all finite intervals. We claim that we can take logarithm in
the above relation, that is

lim
k→∞

nk
∑

j=1

(

logϕk,j(t) −
itb̄k
nk

)

= logψ(t). (3.13)

To prove this formula let us observe that by relations (3.10) and (3.11)

sup
t: |t|≤T

sup
k

nk
∑

j=1

log |ϕk,j(t)| ≤ C(T ) if k ≥ k0 (3.14)

with some appropriate constant C(T ) <∞ and threshold index k0.

Because of relation (3.14) for all numbers T > 0 there exist such constants 0 < C1 <

C2 < ∞ and threshold index k0 which satisfy the relation C1 ≤
nk
∏

j=1

|ϕk,j(t)| ≤ C2 for

all numbers −T ≤ t ≤ T . Hence relation (3.12) implies the following weakened version
of formula (3.13): For all numbers ε > 0, −T ≤ t ≤ T and indices k ≥ k0(ε, T ) where
k0 = k0(ε, T ) is an appropriate threshold index there exists an integer m = m(k, t) such

that

∣

∣

∣

∣

∣

nk
∑

j=1

(

logϕk,j(t) −
itbk

nk

)

− logψ(t) − i2πm(k, t)

∣

∣

∣

∣

∣

< ε. (In this argument we must be

a little careful, because the logarithm is not a one-valued function on the complex plane.
This is the reason for the appearance of the integers m(k, t) in the last relation.) But
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because both functions logψ(t) and
nk
∑

j=1

(

logϕk,j(t) −
itbk

nk

)

are continuous, logψ(0) = 0,

nk
∑

j=1

logϕk,j(0) = 0, which implies that m(k, 0) = 0, hence m(k, t) = 0 for all numbers

−T ≤ t ≤ T and indices k ≥ k0. This means that relation (3.12) implies formula (3.13)
also in its original form.

By relation (3.11) we can replace the functions logϕk,j(t) by the functions ϕk,j(t)−1
in formula (3.13) In such a way we get that

lim
k→∞

nk
∑

j=1

(ϕk,j(t) − 1) − itb̄k = logψ(t).

This formula can be rewritten because of the identity Eτ(ξk,j) = 0 as

lim
k→∞

∫

eitx − 1 − itτ(x)

x2
Mk(dx) − itb̄k = logψ(t)

with the canonical measure Mk introduced in the formulation of Theorem 1. Then
Theorem 2 can be applied, and it yields that the sequence of canonical measures Mk

(weakly) converges to a canonical measure M . This means that relations (1.3) and (1.6)
hold (with the choice Bk = 0), and this is the statement we wanted to prove. (Besides,
the relation lim

k→∞
bk = b also holds, and this implies that the normalization b̄k = 0 is

also applicable, i.e. the non-normalized random sums Sk also have a limit distribution.)

Thus we have proved the necessity part of Theorem 1 in the case when Eτ(ξk,j) = 0
for all sufficiently large k and 1 ≤ j ≤ nk. The result in the general situation can be
deduced from this case by means of Lemma 2. Indeed, by Lemma 2 one can find a
number ϑj,k for all k ≥ k0 and 1 ≤ j ≤ nk with an appropriate threshold index k0

such that the random variables ξ′k,j = ξk,j − ϑk,j satisfy the identity Eτ(ξ′k,j) = 0, and
lim
k→∞

sup
1≤j≤nk

|ϑk,j | = 0. Then the necessity part of Theorem 1 holds for the triangular

array ξ′k,j , k = 1, 2, . . . , 1 ≤ j ≤ nk. (Put ξ′k,j = ξk,j for k < k0 for the sake of
definitiveness.) Besides, Lemma 2 also states that this result also implies that the
original triangular array ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, satisfies relations (1.3) and
(1.6), and the normalized random sums Sk − bk have a limit distribution, i.e. we can
apply the norming constant in the way described in Theorem 1.

In such a way we have proved Theorem 1. We finish Part II of this work with the
proof of Theorem 3.

D.) The proof of Theorem 3.

The proof of Theorem 3. It seems to be more appropriate first to translate this problem
to the language of characteristic functions and to study it that way. By Lemma 1 the
result we want to prove can be expressed in the language of characteristic functions in
the following way: If a sequence of characteristic functions ωk(t), t ∈ R1, k = 1, 2, . . . ,

31
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is given together with a characteristic function ϕ(t) and a sequence of positive integers
nk, lim

k→∞
nk → ∞, in such a way that lim

k→∞
ωnk

k (t) → ϕ(t) for all real numbers t, then

lim
k→∞

sup
|t|≤K

|1 − ωk(t)| = 0 for all numbers K > 0.

We shall prove this result with the help of the symmetrization technique. Let us
consider beside a sequence of independent, identically distributed random variables ξk,j ,
1 ≤ j ≤ nk, with characteristic function ωk(t) a new sequence of independent random
variables ξ̄k,j , 1 ≤ j ≤ nk, which have the same distribution as the random variables
ξk,j , and let the sequences of the random variables ξk,j and ξ̄k,j be independent. Put
ηk,j = ξk,j−ξ̄k,j . Then the random variables ηk,j have characteristic function |ω(t)|2, the

sums
nk
∑

j=1

ηk,j tend in distribution to a distribution function with characteristic function

|ϕ(t)|2. Hence lim
k→∞

|ωk(t)|
2nk → |ϕ(t)|2.

First we prove the following auxiliary statement: For all finite intervals [−K,K]
there exists a number C = C(K) > 0 such that lim sup

k→∞
sup
|t|≤K

nk(1 − |ωk(t)|
2) ≤ C if

|t| ≤ K.

For sufficiently small K > 0 this auxiliary statement holds. Indeed, because of the
continuity of the function ϕ(t) and the relation ϕ(0) = 1 for all ε > 0 there exists a
number K = K(ε) such that |1−ϕ(t)| ≤ ε if |t| ≤ K. Then the uniform convergence of
the characteristic functions implies that 1 ≥ lim inf

k→∞
inf

|t|≤K
|ωk(t)|

2nk ≥ 1 − 2ε = C1 > 0,

hence 1 − C2

nk
≤ |ωk(t)|

2 ≤ 1, and nk(1 − |ωk(t)|
2) ≤ C3 < ∞ for all numbers |t| ≤ K

with appropriate constants C1 > 0, C2 > 0 and C3 > 0.

As the auxiliary statement we want to prove holds in a small neighbourhood of the
origin it is enough to show that if it holds in an interval [−K,K], then it also holds in
the interval a [−2K, 2K]. We prove this with the help of the following estimation where
Gk denotes that (symmetrical) distribution whose characteristic function is |ωk(t)|

2. If
|t| ≤ K, then

nk(1 − |ωk(2t)|
2) = nk

∫

(1 − cos 2tx)Gk( dx) = 2nk

∫

(

1 − cos2 tx
)

Gk( dx)

≤ 4nk

∫

(1 − cos tx)Gk( dx) = 4nk(1 − |ωk(t)|
2) ≤ 4C,

and this implies that if the auxiliary statement holds in the interval [−K,K] with an
upper bound C, then it also holds statement in the interval [−2K, 2K]) with a new
constant C ′ = 4C.

The auxiliary statement together with the condition lim
k→∞

nk = ∞ imply that

lim
k→∞

(1 − |ωk(t)|) = 0, and the convergence is uniform in all finite intervals. Besides,

it also implies that lim inf
k→∞

inf
|t|≤K

|ωk(t)|
nk > 0, and as a consequence inf

|t|≤K
|ϕ(t)| > 0 for

all numbers K > 0. Indeed, the relation 0 ≤ nk(1 − |ωk(t)|) < C < ∞ holds, and
it implies that |ωk(t)|

nk > C ′ > 0 with an appropriate constant C ′ = C ′(C) for all
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sufficiently large k. Let us write the characteristic functions ωk(t) for k ≥ k0 with a
sufficiently large threshold index k0 = k0(K) and the characteristic function ϕ(t) in the
polar form ωk(t) = |ωk(t)|e

iuk(t) and ϕ(t) = |ϕ(t)|eiv(t) in an interval [−K,K]. Such
a representation is possible, because if k0 is sufficiently large then all these character-
istic functions are separated from zero in the interval [−K,K]. We may also assume
that uk(0) = v(0) = 0, and the functions uk(t) and v(t) are continuous in the interval
[−K,K]. (The last assumption means that we define the exponent in the polar rep-
resentation of the characteristic functions in the natural way. We do not deteriorate
the nice behaviour of the exponents by adding some unnecessary number i2πr with
some integer r to the functions uk(·) or v(·) in some points t.) We complete the proof
of Theorem 3 if we show that lim

k→∞
sup
|t≤K

|uk(t)| = 0 for all numbers K > 0. Indeed,

this relation implies that lim
k→∞

sup
|t≤K

|ωk(t) − |ωk(t)|| = 0 which fact together with the

auxiliary statement imply the relation lim
k→∞

sup
|t|≤K

|1 − ωk(t)| = 0 we wanted to prove.

Let us fix an interval [−K,K]. We know that with above the notations uk(0) =
v(0) = 0, and the functions uk(t) and v(t) are continuous. Besides, the convergence of
the characteristic functions we consider and their separation from zero in finite intervals
imply that lim

k→∞
nkuk(t) = v(t) in the interval [K,K], and the convergence is uniform

since the convergence of characteristic functions to a limit characteristic function is
uniform in all finite intervals. Hence the value of the function v(t) determines the value
nkvk(t) with a good accuracy for large indices k. Nevertheless, some problems arise at
this step in the proof, because the number nkuk(t) determines the number uk(t) only
modulo 2π

nk
. It depends also on the behaviour of the function uk(·) in the interval [0, t)

how we have to define the number uk(t).

This difficulty can be overcome if we exploit the uniform continuity of the function
v(·) and the uniform convergence of the functions nkuk(·) to the function v(·) in the
interval [−K,K]. These properties imply that there exists some number δ = δ(K) > 0
such that sup

|t|≤K,|t−s|≤δ

|v(t) − v(s)| ≤ π
3 , and sup

|t|≤K,|t−s|≤δ

nk|uk(t) − uk(s)| ≤
π
2 for all

sufficiently large indices k. We claim that these facts together with the continuity of
the functions uk(t) imply that |uk(t) − uk(s)| ≤

π
nk

for all sufficiently large indices k if

|t− s| ≤ δ, |s| ≤ K and |t| ≤ K.

Indeed, let us consider an interval [s, t] ⊂ [−K,K] whose length is not greater
than δ. By the above facts the map Tk(x) = nkuk(x) defined for x ∈ [−K,K] maps
such an interval [s, t] to some interval J shorter than π. Hence the set {uk(x): x ∈ [s, t]}
is a subset of the union of the intervals J

nk
+ l 2πnk

, l = 1, 2, . . . , and these intervals are
disjoint because of their short lengths. Hence the continuity of the function uk implies
that the set {uk(x): x ∈ [s, t]} is contained in one of the intervals J

nk
+ l 2πnk

, hence the

inequality |uk(t) − uk(s)| ≤
π
nk

holds under the above conditions.

Hence sup
|t|≤K

|uk(t)| ≤
Kπ
δnk

for all sufficiently large indices k, and since nk → ∞ as

k → ∞ lim
k→∞

sup
|t|≤K

|uk(t)| = 0. Theorem 3 is proved.
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