
The relation between the closeness of random variables
and their distributions

by Péter Major
Mathematical Institute of the Hungarian Academy of Sciences

Abstract: If two random variables are close to each other, then the same rela-
tion holds for their distributions. This statement cannot be reversed. Never-
theless, some non-trivial results can be proved in this in the opposite direction
if the question is formulated in the right way. Given two probability measures
on a general metric space let us try to construct two random variables with
these distributions which are close to each other. In this problem the distri-
bution of the random variables are prescribed, but we have the freedom to
“couple them”, to define their joint distribution at our taste.

We show that the questions how close two probability measures are to each
other and how close random variables can be constructed with such distribu-
tions are closely related. Such problems will be discussed here. In particular,
we introduce the notion of the Prochorov metric, the quantile transform and
discuss their most important properties. It is worth mentioning that these re-
sults are strongly related to a classical result in combinatorics, the König–Hall
theorem.

Introduction

If two random variables are close to each other, then the same relation holds for their
distributions. The converse statement does naturally not hold. For instance these two
random variables can be independent. But an interesting and non-trivial answer can
be given to the following question. Let two (close) probability measures µ and ν be
given on the Borel σ-algebra of a metric space (X, ρ). Is it possible to construct a
probability space (Ω,A, P ) and two random variables ξ and η on it in such a way that
the distribution of ξ is µ, the distribution of η is ν, and the random variables ξ and η
are close to each other? Naturally, in a detailed discussion we must tell explicitly what
we mean by closeness of probability measures and random variables.

In the study of this problem the following approach is natural: Put (Ω,A, P ) =
(X × X,A × A, P ), where × denotes direct product, A is the σ-algebra induced by
the metric ρ, or more precisely by the topology generated by it, and P is an appropri-
ate probability measure on the space (X,A). Furthermore, let us define the random
variables ξ(x1, x2) = x1 and η(x1, x2) = x2, (x1, x2) ∈ X × X, on this space. After
the introduction of these objects the problem of constructing random variables with
prescribed distributions close to each other can be reformulated in the following way:
Let us construct a probability measure P on the space (X ×X,A×A) whose marginal
distributions are the measures µ and ν, and which is essentially concentrated close to
the diagonal {(x, x), x ∈ X}. In the investigation of this problem a classical combina-
torial result, the König–Hall theorem (sometimes called the marriage problem), or more
precisely a continuous version of this result is very useful. We formulate these results,
and also write down their proofs in an Appendix.
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König–Hall theorem, (marriage problem). Let us consider n boys and n girls such
that some boys and girls know each other. (All acquaintances are mutual.) We want to
put these boys and girls into pairs (make married couples) in such a way that all persons
put into a pair know each other. This is possible if and only if an arbitrary group of the
girls knows at least as many boys as the number of this group.

In a more formal way: Let us consider a bipartitated graph consisting of two sets
Y = {y1, . . . , yn} and Z = {z1, . . . , zn} and a map Y × Z → {0, 1}. We can interpret
the relation d(y, z) = 1, y ∈ Y , z ∈ Z so that the points y and z are connected, while
d(y, z) = 0 means that they are not connected. For all sets A ⊂ Y let us define the set
B(A) ⊂ Z which contains the points which are connected to one of the points of A, i.e.
let

B(A) = {z : z ∈ Z, and there exists such an y ∈ A, for which d(y, z) = 1}.

There exists a factorization of this bipartitated graph, i.e. we can divide the points of
the sets Y and Z into pairs (yj , zπ(j)), yj ∈ Y , zπ(j) ∈ Z, j = 1, 2, . . . , n, in such a way
that d(yj , zπ(j)) = 1 for all j = 1, 2, . . . , n, and π(j), j = 1, . . . , n, is an appropriate
permutation of the set {1, . . . , n} if and only if |B(A)| ≥ |A| for all sets |A| ⊂ Y , where
|C| denotes the cardinality of a set C.

The continuous version of the König–Hall theorem. Let r depots with stocks

u1, u2, . . . , ur and s plants with claims v1 . . . , vs be given such that
r
∑

j=1

uj =
s
∑

k=1

vk. Let

certain depots and plants be connected by a route. We can satisfy all claims of the plants
by transporting the stocks of the depots on these routes if and only if the joint demand
of an arbitrary group of plants is not greater than the joint stock of the depots which are
connected by a route with one of these plants.

In a more formal way: Let us consider a bipartitated graph consisting of two sets
Y = {y1, . . . , yr} and sets Z = {z1, . . . , zs} and a map d : Y × Z → {0, 1}. We connect
two points y and z, y ∈ Y , z ∈ Z, if d(y, z) = 1, and we do not connect them if
d(y, z) = 0. Furthermore, let two weight function u(y), u(y) ≥ 0, y ∈ Y and v(z),
v(z) ≥ 0, z ∈ Z be given such that

∑

y∈Y

u(y) =
∑

z∈Z

v(z). For all sets A ⊂ Y let us define

the set B(A) ⊂ Z by the formula

B(A) = {z : z ∈ Z, and there exists such an y ∈ A, for which d(y, z) = 1}.

There exists a “transport function” w(y, z) ≥ 0 with the properties

i.)
∑

z : d(y,z)=1

w(y, z) = u(y) for all y ∈ Y ,

and
∑

y : d(y,z)=1

w(y, z) = v(z) for all z ∈ Z.

ii.) The inequality w(y, z) > 0 holds only if d(y, z) = 1,

if and only if the relation
∑

z∈B(A)

v(z) ≥
∑

y∈A

u(y) holds for all sets A ⊂ Y .
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Problems

0.) Let us show that the conditions in the König–Hall theorem and in its continuous
version are symmetric for the sets Y and Z, i.e. these conditions remain valid, if
we replace in them (and in the definition of the set B(A)) the sets Y and Z.

1.) Let two probability measures µ and ν be given on the σ-algebra determined by the
topology generated by the metric of a separable metric space (X, ρ). Let Bα =
{x : ρ(x,B) < α} denote the open neighborhood of the set B ⊂ X of radius α. Let
us assume that the measures µ and ν satisfy the condition µ(B) ≤ ν(Bα) + β for
all closed sets B ⊂ X with some numbers α > 0 and β > 0. Then for all ε > 0 a
probability space (Ω,A, P ) can be constructed, together with two random variables
ξ and η on this probability space with values in the space (X, ρ) whose distributions
are µ and ν respectively, and which satisfy the relation

P (ρ(ξ, η) > α + ε) ≤ β + ε (a)

Conversely, if two random variables ξ and η with distributions µ and ν respectively
satisfy relation (a), then µ(B) ≤ ν(Bα+ε) + β + ε for all closed sets B.

If X is not only a separable, but also a complete separable metric space, then
under the above conditions relation (a) also holds with ε = 0. (In the proof of
this statement we may apply the result by which a uniformly compact sequence
of probability measures on a complete metric space has a subsequence which is
convergent with respect to the weak convergence of probability measures.)

2.) Let a separable metric space (X, ρ) be given together with the Borel σ-algebra A
induced by the natural topology of this space. Let M denote the space of probabil-
ity measures on the space (X,A), and let us introduce the following function d(·, ·)
on the pairs of probability measures on the space (X, ρ): If µ ∈ M and ν ∈ M,
then

d(µ, ν) = inf{α : µ(B) ≤ ν(Bα) + α for all closed sets B ⊂ X},

where Bα has the same meaning as in the previous problem. Let us show that
d(·, ·) is a metric on the space M which metrizes the weak convergence in this
space, i.e. the relation µn ⇒ µ, as n → ∞, holds for a sequence of measures
µn ∈ M, n = 1, 2, . . . , and µ ∈ M, where ⇒ denotes weak convergence, if and only
if d(µn, µ) → 0. The space (M, d) is a separable metric space, and if (X, ρ) is a
complete separable metric space, then the same property holds for (M, d).

Remark: The property whether a metric generating a topology is complete or non-
complete is not topologically invariant, i.e. it is possible that a complete and a
non-complete metric generate the same topology on a space. There is a classical
result by which the space of probability measures on a complete metric space can
be endowed with a metric which induces weak convergence, and with which the
space of probability measures is a complete metric space. By the above remark this
result does not imply automatically that also the metric introduced in problem 2
has this property.
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We shall also prove the following Statement A:

Statement A: Let us apply the notations of problem 2. If µn ∈ M, n = 1, 2, . . . , is a
sequence of probability measures on a metric space (X, ρ), and this sequence of measures
together with a probability measure µ ∈ M satisfy the relation µn ⇒ µ, then there
exists a probability space (Ω,A, P ) and a sequence of random variables ξn, n = 1, 2, . . . ,
together with a random variable ξ on this space in such a way that the distribution of
ξn is µn, n = 1, 2, . . . , the distribution of ξ is µ, and ξn → ξ with probability one.

The proof of Statement A is based on the observation that in an appropriate con-
struction it can be achieved that the sets depending on the index n where the distance
between the random variables ξn and ξ is relatively large almost overlap each other.
This can be achieved if the joint distribution of the random variables ξn is appropri-
ately chosen. As a consequence, the almost sure convergence in Statement A is less
useful than it may seem at first sight. The deep results of the probability theory con-
taining ”with probability one . . . ” statements depend on the joint distribution of the
random variables. On the other hand, Statement A allows the changement of the joint
distribution of the random variables.

The proof of Statement A is simpler in complete separable spaces, and in this case
the probability space where the convergent sequence of random variables is constructed
can be chosen in a very special way. To prove Statement A in this special case it is
useful first to solve the following problem.

3.) Let (X, ρ) be a complete metric space, µ a probability measure on the Borel σ-
algebra of this space. Let us consider the special probability space (Ω,A, P ) for
which Ω = [0, 1], A is the Borel σ-algebra on the interval [0, 1], and P is the
Lebesgue measure on the Borel σ-algebra of the interval [0, 1]. On this probability
space a random variable can be constructed with values on the space (X, ρ) whose
distribution is µ.

4.) Let us prove Statement A in the case when (X, ρ) is a complete separable metric
space. Show that in this case the probability space (Ω,A, P ) where the convergent
sequence of random variables is constructed can be chosen in the following special
way: Ω = [0, 1], A is the Borel σ-algebra on the interval [0, 1], and P is the Lebesgue
measure on the Borel σ-algebra of the interval [0, 1].

5.) Statement A also holds for convergent sequence of probability measures on an arbi-
trary separable (not necessarily complete) metric space. (In this space the sequence
of convergent random variables has to be constructed on an appropriate (generally
very large) probability space (Ω,A, P ).)

6.) Let ξn, n = 1, 2, . . . , and ξ be (X, ρ) valued random variables, where (X, ρ) is a
separable metric space. Let us assume that ξn ⇒ ξ, where ⇒ denotes stochastic
convergence. The distributions µn of the random variables ξn and the distribution
µ of the random variable ξ satisfy the relation µn ⇒ µ, where ⇒ denotes weak
convergence of probability measures.

We have investigated the question that given two probability measures µ and ν on

4



Coupling methods in Probability Theory

a metric space (X, ρ) how a pair of µ distributed ξ and ν distributed η random variables
can be constructed which are close to each other. We have seen that informally saying
this question leads to the to the following “transport problem”: How can a system
of points with mass distribution µ be transported with relatively few movements to a
system of points with mass distribution ν? If the metric space (X, ρ) where we are
working is the real line with the usual metric, then because of the simple structure of
this space the “transport problem” we have to handle becomes considerably simpler.
In this case if some “natural evaluation of the transport cost” is considered (see the
subsequent problem 9, where such a problem is formulated in an explicit form) it is
useful to exclude the following possibility: There exist such pairs of numbers x1 < x2

and x3 < x4 for which the point x1 is transported to the point x4 and the x2 to the
point x3. In this case the transports x1 → x3 and x2 → x4 are more economic. The
following construction, called the quantile transform, excludes the possibility of such
non-economic transports.

To define the quantile transform we recall the following fact often used also in
mathematical statistics. If ξ is a random variable with distribution F on the real line,
then under some slight restrictions the random variable η = F (ξ) is a random variable
with uniform distribution on the interval [0, 1]. Conversely, if η is a random variable
with uniform distribution on the interval [0, 1], then ξ = F−1(η), where F−1(x) is the
inverse of the distribution function F (x) is an F distributed random variable. In the
next problem we formulate the above result in a more precise and slightly more general
form.

7.) Let ξ be a random variable with distribution function F (x) = P (ξ < x) and η
a random variable uniformly distributed in the interval [0, 1]. Let us define the
generalized inverse of the (not necessarily strictly) monotone increasing function
F (x) by the formula F−1(x) = sup{u : F (u) < x}. Then ξ̄ = F−1(η) is an F
distributed random variable. Conversely, let ε be a random variable with uniform
distribution in the interval [0, 1] which is independent of the random variable ξ.
Then η̄ = F̃ (ξ, ε) = F (ξ) + ε[F (ξ + 0)−F (ξ)], where F (x + 0) = lim

h>0,h→0
F (x + h),

is uniformly distributed in the interval [0, 1].

8.) Let F and G be two distribution functions. If ζ is a random variable with uniform
distribution on the interval [0, 1], then the random variables ξ̄ = F−1(ζ) and η̄ =
G−1(ζ), where the inverse functions F−1 are G−1 are defined in the same way as

in the previous problems, have distributions F and G. If ¯̄ξ is a random variable
with distribution F , and ε is an on the interval [0, 1] uniformly distributed random

variable independent of the random variable ¯̄ξ, then the random variable ¯̄η =
G−1(F̃ (¯̄ξ, ε)) has distribution G. The distributions of the random vectors (ξ̄, η̄)

and (¯̄ξ, ¯̄η) agree.

In the problems of probability theory we sometimes have to construct two random
variables ξ and η who have prescribed distributions µ and ν. Actually in the problems
of probability theory generally it is enough to give the joint distribution of the random
vector (ξ, η). Two constructions which determine random vectors with the same distri-
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bution can be considered equivalent. Hence the construction of both random vectors
(ξ̄, η̄) and (¯̄ξ, ¯̄η) given in the previous problem are called the quantile transform in the
literature. In the next problem we formulate an optimality property of the quantile
transform.

9.) Let ξ and η be two random variables on the real line with distribution functions
F (x) and G(x), which satisfy the conditions E|ξ| < ∞, E|η| < ∞. Beside this, let
us consider a convex function Φ(x) on the real line. Then

EΦ(ξ − η) ≥

∫ 1

0

Φ
(

F−1(x) − G−1(x)
)

dx > −∞,

where F−1(x) and G−1(x) are the inverse functions defined in problem 7. If the
random vector is defined by means of the quantile transform, then the two sides of
the above inequality are equal.

9a.) Let ξ and η be two random variables on the real line with distribution functions
F (x) and G(x), which satisfy the conditions E|ξ| < ∞, E|η| < ∞. Then E|ξ−η| ≥
∫∞

−∞ |F (x) − G(x)| dx, and the inequality can be replaced by identity if the pair
(ξ, η) is constructed by means of quantile transform.

Finally we formulate some problems different of the previous ones which may be
useful in some investigations. Their proofs apply some non-trivial facts from measure
theory like the existence of conditional distribution, the Banach decomposition theorem
or the Radon–Nikodym theorem which implies the latter result.

10.) Let three complete separable metric spaces (Xi, ρi), i = 1, 2, 3 be given, and let
Ai, i = 1, 2, 3, denote the σ-algebra induced by the topology of these spaces. Let
µ be a probability measure on the space (X1 × X2,A1 × A2) and ν a probability
measure on the space (X2 × X3,A2 × A3). Let us assume that the projections of
the measures µ and ν to the space X2 agree. Then there exists such a probability
measure P on the space (X1 × X2 × X3,A1 × A2 × A3) whose projection to the
space X1 × X2 is µ, and to the space X2 × X3 is ν.

Let us remark that if (X, ρ) is a complete separable space, then the direct product
of infinitely many copies of this space X ×X ×· · · can also be considered as a complete
metric space with an appropriate metric ρ̄. Indeed, we may assume that the metric in
the space (X, ρ) is such that ρ(x, x̄) ≤ 1 for all points x ∈ X and x̄ ∈ X, by introducing
for instance the new metric ρ′(x, x̄) = min(ρ(x, x̄), 1) if it is necessary. Then the metric

ρ̄ ((x1, x2, . . . ), (x̄1, x̄2, . . . )) =

∞
∑

k=1

1

2k
ρ(xk, x̄k)

can be defined on the product space X × X × · · · . The space (X × X × · · · , ρ̄) is a
separable complete metric space with this metric.

It follows from the results of problem 10 that if µ and ν are two probability mea-
sures on a complete separable metric space (X, ρ) and we want to construct two random
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variables ξ and η with distributions µ and ν respectively which are close to each other
then we can apply the following approach. We introduce some auxiliary random vari-
ables ζ and ζ̄ with values in the space (X, ρ) in such a way that the members of the pairs
(ξ, ζ) and

(

η, ζ̄
)

are close to each other, ξ is a µ, η is a ν distributed random variable,
and the distributions of ζ and ζ̄ agree. Furthermore, by the remark made after prob-
lem 10 this approach can be applied also in the case if we want to approximate a series
of random variables ξ1, ξ2, . . . with a prescribed distribution with another sequence of
random variables η1, η2, . . . of possibly different distribution.

The statement of the previous paragraph can be slightly strengthened. Let us have
a µ distributed random variable ξ on a sufficiently rich probability space (Ω,A, P ) and
a probability measure ν on a product space X×X, where (X, ρ) is a complete separable
metric space. Let us further assume that the projection of the probability measure ν
to the first coordinate of the product space X × X is the distribution µ of the random
variable ξ. Then a random variable η can be constructed on the probability space
(Ω,A, P ) for which the random vector (ξ, η) is ν distributed. This means that if we
want to construct a coupled pair (ξ, η) with prescribed joint distribution on a sufficiently
rich probability space, then we may demand that the random variable ξ (with the right
distribution) be fixed at the start. An analogous statement also holds if we consider two
sequences of random variables ξ1, ξ2, . . . and η1, η2, . . . instead of the random variables
ξ and η.

We shall prove the above statement in the next problem 11. We remark that a
probability space is “sufficiently rich” in the sense we need it if there exists an in the
interval [0, 1] uniformly distributed random variable in this space which is independent
of the random variable ξ or the random sequence ξ1, ξ2, . . . which we want to couple
with an appropriate random variable or random sequence.

11.) let ν be a probability measure on a product space X×X, where (X, ρ) is a complete
separable metric space. Let µ be the projection of the measure ν to the first
coordinate of the space X × X. Let ξ be a µ distributed random variable on a
probability space (Ω,A, P ), and let us assume that there exists a random variable
χ on this probability space (Ω,A, P ) with uniform distribution on the interval [0, 1]
which is independent of ξ. Then such a random variable η can be constructed for
which the distribution of the random pair (ξ, η) is ν.

12.) If ξ and η are two random variables taking their values on a measurable space
(X,A), the distribution of ξ is µ and the distribution of η is ν, then P (ξ 6= η) ≥
Var (µ, ν), where Var (µ, ν) = sup

A∈A
|µ(A)−ν(A)|, is the variational distance between

the measures µ and ν. For arbitrary probability measures µ and ν there exist such
µ and ν distributed random variables ξ and η, for which the two sides of the above
inequality are equal.

Finally, we give a concise proof of two statements with the help of the above
results. The first of them is the functional central limit theorem which is also called the
invariance principle in the literature. The second statement enables us to deduce some
useful consequences of the functional central limit theorem. Before its formulation let
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us recall the following form of the central limit theorem.

Central limit theorem. Let ξk,j, k = 1, 2, . . . , 1 ≤ j ≤ nk, with some positive integers
nk, be a triangular array, i.e. assume that the random variables ξk,j , 1 ≤ j ≤ nk,
are independent for a fixed number k. Assume that Eξk,j = 0, Eξ2

k,j = σ2
k,j < ∞,

lim
k→∞

nk
∑

j=1

σ2
k,j = 1. If beside this the triangular array ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk,

satisfies the Lindeberg condition, i.e.

lim
k→∞

Eξ2
k,jI(|ξk,j | > ε) = 0 for all numbers ε > 0,

where I(A) denotes the indicator function of a set A, then the sums Sk =
nk
∑

j=1

ξk,j,

k = 1, 2, . . . , converge in distribution to the standard normal distribution as k → ∞.

The functional central limit theorem, formulated below, says that under the con-
ditions of the central limit theorem also the following sharper statement holds.

Functional central limit theorem. Let ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, be a triangular

array such that Eξk,j = 0, Eξ2
k,j = σ2

k,j < ∞, lim
k→∞

nk
∑

j=1

σ2
k,j = 1. Let us also assume that

the triangular array ξk,j, k = 1, 2, . . . , 1 ≤ j ≤ nk, satisfies the Lindeberg condition. In-

troduce the partial sums Sk,l =
l
∑

j=1

ξk,j, k = 1, 2, . . . , 1 ≤ l ≤ nk, and define the random

broken line Sk(t), 0 ≤ t ≤ 1, k = 1, 2, . . . , in the following way. Put uk,l =
l
∑

j=1

σ2
k,j,

ūk,l =
uk,l

uk,nk

, let Sk(ūk,l) = Sk,l, Sk(0) = 0, k = 1, 2, . . . , 1 ≤ l ≤ nk, and let the func-

tion Sk(t) be linear in the intervals [0, ūk,1] and [ūk,l−1, ūk,l], k = 1, 2, . . . , 2 ≤ l ≤ nk.
Then the random broken lines Sk(t), 0 ≤ t ≤ 1, can be considered as random variables
taking values in the Banach space C([0, 1]) of continuous functions endowed with the
supremum norm. The functional central limit theorem states that the distributions of
the random variables Sk(t) (in the space C([0, 1])) converge in distribution to the so-
called Wiener measure, i.e. to the distribution of a Wiener process W (t), 0 ≤ t ≤ 1, as
k → ∞.

13.) Prove (with the help of the results in this work, the central limit theorem, inequal-
ities for the maximum of sums of independent random variables and some basic
facts about Wiener processes) the functional central limit theorem.

The coupling results of this work can be useful also in the proof of the following
statement which may help for instance to understand why the functional central limit
theorem is a useful result of probability theory.

14.) Let µn, n = 1, 2, . . . , be a sequence of probability measures on a separable (not
necessarily complete) metric space (X, ρ) which converges weakly to a probability
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measure µ0 on this space. Let F be a measurable map from this separable metric
space (X, ρ) to some other separable metric space (Y, ρ1) such that the map F
is continuous with probability one with respect to the limit measure µ0. Let us
consider the probability measures Fµn, defined as Fµn(B) = µ{x : F(x) ⊂ B} if
B ⊂ Y is a Borel-measurable set, n = 0, 1, . . . , on the space (Y, ρ1). Prove with the
help of the result of Problem 5 that the probability measures Fµn converge weakly
the probability measure Fµ0 as → ∞.

Remarks

The result of problem 1 was originally proved by V. Strassen. I learned about it and its
close relation to the “transport problem” and the König–Hall theorem, an important
method of combinatorics, from the works of R. M. Dudley. Let us remark that this
result gives a non-trivial answer to the question how closely two random variables or two
stochastic processes with prescribed distributions can be put to each other. Nevertheless
this result does not give a real help in most coupling problems. The reason for this
deficiency is that generally it is not simpler to check formula (a) for all closed sets than
to construct a coupling in an explicit way.

The result of problem 2 was proven by Yu. V. Prochorov, and the metric introduced
there is called the Prochorov metric in the literature. The result of problem 4 (and the
result of problem 3 which serves as basis for its solution) belongs to A. V. Skorochod.
The construction supplying the solution of problem 5 belongs to R. M. Dudley. The
generalization of problem 4 given in problem 5 is non-trivial. One could try to deduce the
result of problem 5 to problem 4 by embedding a separable metric space to a complete
separable metric space. Such an embedding is always possible, but it may happen that
the embedded space is a non-measurable subset of the larger space. Hence one cannot
get a solution for problem 5 in such a simple way.

The quantile transform is a well-known method in probability theory, and it is
frequently used in certain investigations. It is hard to relate its introduction to a
definite person. It is worth mentioning that the proof of the optimality property of
the quantile transform formulated in problem 9 is based on its reformulation for a
“transport problem”. It is the simple structure of the real line which enables us to
prove such an explicit result in this case.

The results of problems 10, 11 and 12 are more or less well-known for mathemati-
cians working in this subject. However, I had the impression that the answer to the
question how big freedom we have to construct random variables or random sequences
with prescribed distribution is not sufficiently well understood. Hence I thought it may
be useful to discuss some results which may help to study such questions.

The functional central limit theorem is a classical result of probability theory. Its
usual proof is based on the investigation of the convergence of probability measures.
The functional central limit theorem together with the result formulated in problem 14
explain why all “natural” functions of partial sums of independent random variables
have a limit distribution which is independent of the distribution of the summands and
can be expressed as the distribution of a functional of a Wiener process.
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Solutions

0.) Let us define for all sets B ⊂ Z the set

A(B) = {y : y ∈ Y, d(y, z) = 1 for some z ∈ B}.

We have to show that if the conditions of the König–Hall theorems are satisfied, then
|A(B)| ≥ |B|. This statement is equivalent to the relation |Y \ A(B)| ≤ |Z \ B|.
It follows from the conditions of the problem that |B(Y \ A(B))| ≥ |Y \ A(B)|.
Hence, it is enough to show that B(Y \ A(B)) ⊂ Z \ B. This relation holds, since
if y ∈ B(Y \A(B)), i.e. there exists an z /∈ A(B) such that d(y, z) = 1, then by the
definition of the set A(B) y /∈ B, i.e. B(Y \ A(B)) ⊂ Z \ B.

The analogous statement in the case of the continuous version of the König–Hall
theorem can be proved similarly. In this case the statement we have to prove
is equivalent to the inequality

∑

y∈Y \A(B)

u(y) ≤
∑

z∈Z\B

v(z) because of the identity

∑

y∈Y

u(y) =
∑

z∈Z

v(z). This inequality follows from the relation B(Y \A(B)) ⊂ Z\B.

1.) Let us define the probability space (Ω,A, P ) with the following choice: Ω = X×X,
A is the σ algebra generated by the topology of the space X × X, and P is an
appropriate probability measure on the measure space (Ω,A) we still have to define.
Put ξ(x1, x2) = x1 and η(x1, x2) = x2. We solve the problem if we can construct a
probability measure P on the space (Ω,A) which satisfies the following relations:

a.) P (A × X) = µ(A), P (X × A) = ν(A) for all measurable sets A ⊂ X.

b.) P ({(x1, x2) : ρ(x1, x2) > α + ε}) ≤ β + ε.

We shall construct such a probability measure P with the help of the continuous
version of the König–Hall theorem.

First we define a bipartitated graph with an appropriate weight function. To do this
we introduce some notations. Let G(x, α) denote the ball with center x and radius
α in the metric space (X, ρ). Let x1, x2, . . . , be an everywhere dense sequence on

the space X, and let us fix a number ε > 0. As
∞
⋃

n=1
G
(

x, ε
5

)

= X, there exists such

a number N = N(ε) for which the set WN =
N(ε)
⋃

n=1
G
(

x, ε
5

)

satisfies the relations

µ(WN ) > 1 − ε
2 and ν(WN ) > 1 − ε

2 . Let us define the sets Vk = G
(

xk, ε
5

)

\
k−1
⋃

j=1

G
(

xj ,
ε
5

)

, k = 1, . . . , N and VN+1 = X \ WN . Then Vk, k = 1, . . . , N + 1 is a

partition of the space X, d(Vk) ≤ ε
5 , if 1 ≤ k ≤ N , where d(A) denotes the diameter

of set A ⊂ X. Further, µ(VN+1) < ε
2 and ν(VN+1) < ε

2 . We shall call the point xk

the center of the set Vk, 1 ≤ k ≤ N .

We define the following bipartitated graph (Y,Z, d(·, ·)): Y = {y1, . . . , yN+1} =
{V1, . . . , VN+1}, Z = {z1, . . . , zN+1} = {V1, . . . , VN+1}, d(yj , zk) = 1, if ρ(xj , xk) ≤

10
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α + ε
2 , 1 ≤ j, k ≤ N , and also d(yN+1, zk) = 1 and d(yj , zN+1) = 1 for all indices

1 ≤ j, k ≤ N + 1. In all other cases we define d(y, z) = 0. (The relation d(y, z) = 1
means that the points y and z are connected.) We also introduce the following
weight functions u(·) and v(·) on the sets Y and Z: u(yj) = µ(Vj), v(zj) = ν(Vj),
j = 1, . . . , N , u(yN+1) = µ(Vn+1) + β, v(zN+1) = ν(Vn+1) + β. We claim that
this bipartitated graph and weight function satisfy the conditions of the continuous
version of the König–Hall theorem.

The desired inequality obviously holds for such sets A ⊂ Y , for which yN+1 ∈ A.
Indeed, in this case B(A) = Z, since yN+1 is connected to all points of the set
Z. If yN+1 /∈ A then put D1 =

⋃

Vj∈A

Vj and D2 =
⋃

Vj∈B(A)

Vj . In this case

∑

y∈A

u(y) = µ(D1), and
∑

z∈B(A)

v(z) = ν(D2)+β, since yN+1 /∈ A and zN+1 ∈ B(A).

Hence, it is enough to show that D̄α
1 ⊂ D2, where D̄1 denotes the closure of

the set D1. But if x ∈ D̄1, then there exists such a set yj = Vj ∈ A whose
center xj satisfies the inequality ρ(x, xj) ≤ ε

5 , thus G(x, α) ⊂ G
(

xj , α + ε
5

)

. We

claim that G(x, α) ⊂ G
(

xj , α + ε
5

)

⊂ D2, with this point x, hence D̄α
1 ⊂ D2

as we claimed. Indeed, if this statement did not hold, then there would exist a
point v ∈ G

(

xj , α + ε
5

)

, such that the element Vk of the partition {V1, . . . , VN+1}
for which v ∈ Vk and its center xk have the following properties: The points
Vk and Vj are not connected in the bipartitated graph we have defined, hence
1 ≤ k ≤ N , and ρ(xj , xk) ≥ α + ε

2 . But this is not possible, since d(Vk) ≤ ε
5 and

thus ρ(xj , xk) ≤ ρ(xj , v) + ε
5 ≤ α + 2ε

5 . We have shown the continuous version of
the König–Hall theorem can be applied to this system.

Let w̄(y, z), y ∈ Y , z ∈ Z be a “transport function” satisfying the continuous ver-
sion of the König–Hall theorem in the above system, and let us define the following
function w1(yj , zk) with its help:

w1(yj , zk) = w̄(yj , zk) if 1 ≤ j, k ≤ N,

and w1(yj , zk) = 0, if j = N + 1 or k = N + 1.

This function w1(y, z) satisfies the following properties:

i.) w1(yj , zk) ≥ 0, and w1(yj , zk) > 0 only if 1 ≤ j, k ≤ N and ρ(xj , xk) < α + ε
2

ii.)
∑

z∈Z

w1(yj , z) ≤ u(yj) = µ(Vj),
∑

y∈Y

w1(y, zk) ≤ v(zk) = ν(Vk).

iii.)
∑

y∈Y,z∈Z

w1(y, z) ≥ 1 − β − ε, because
∑

y∈Y,z∈Z

w1(y, z) ≥
∑

y∈Y,z∈Z

w(y, z) −

u(yN+1) − v(zN+1) ≥ 1 + β − 2(β + ε
2 ).

By the properties of the function w1(y, z) there is a function w2(yj , zk) ≥ 0, 1 ≤
j, k ≤ N + 1, such that the function w(y, z) = w1(y, z) + w2(y, z) satisfies the
properties

∑

z∈Z

w(yj , z) = u(yj) = µ(Vj),
∑

y∈Y

w(y, zk) = v(zk) = ν(Vk)

11
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We shall define a probability measure P which satisfies properties a.) and b.) with
the help of the function w(y, z). Put

P (C × D) =
µ(C)

µ(Wj)

ν(C)

ν(Wk)
w(yj , zk) if C ⊂ Wj , D ⊂ Wk

with some indices 1 ≤ j, k ≤ N + 1. In the general case let us define

P (C × D) =

N+1
∑

j=1

N+1
∑

k=1

P ((C ∩ Vj) × (D ∩ Vk)) .

After this definition the measure P can be extended from the above rectangular
sets to the whole σ algebra A in a unique way. We claim that this measure P
satisfies both properties a.) and b.). Indeed, for all sets A ⊂ Vj , 1 ≤ j ≤ N + 1

P (A × X) =
N+1
∑

k=1

P (A × Vk) =
µ(A)

µ(Vj)

N+1
∑

k=1

w(yj , zk) = µ(A),

and this implies that P (X ×A) = ν(A) for all measurable sets A ⊂ X. The second
part of statement a.) can be proved similarly. On the other hand,

P ((x1, x2) : ρ(x1, x2) ≤ α + ε) ≥
∑

(j,k) : ρ(xj ,xk)≤α+ ε
2

P (Vj × Vk)

=
∑

(j,k) : ρ(xj ,xk)≤α+ ε
2

w(Vj × Vk)

≥
∑

yj∈Y, zk∈Z

w1(Vj × Vk) ≥ 1 − β − ε

by the property iii.), and this statement is equivalent to condition b.)

Conversely, if property (a) holds, then for arbitrary closed set B {ξ ⊂ B, η /∈
Bα+ε} ⊂ {(ξ, η) : ρ(ξ, η) > α + ε}, hence P (ξ ∈ B, η /∈ Bα+ε) ≤ β + ε. As {ξ ∈
B} ⊂ {ξ ∈ B, η /∈ Bα+ε} ∪ {η ∈ Bα+ε}, this implies that µ(B) ≤ β + ε + ν(Bα+ε),
and this is what we have to prove.

To prove the last statement of problem 1 let us make the following observation. If
X is a complete metric space, and Pn, n = 1, 2, . . . , is a sequence of probability
measures on the space X×X whose marginal distributions are two measures µ and
ν which do not depend on the index n, then this sequence of probability measures
has a convergent subsequence if the weak convergence of probability measures are
considered.

To prove this statement let us observe that for all numbers ε > 0 there exists such a
compact set K ⊂ X for which µ(K) ≥ 1− ε

2 , and ν(K) ≥ 1− ε
2 . Hence the compact

set K×K ⊂ X×X and a sequence of probability measures Pn on the space X×X

12
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whose marginal distributions are µ and ν satisfy the inequality Pn(K ×K) ≥ 1− ε
for all indices n. By some classical results in probability theory this implies that the
sequence of the probability measures Pn is tight, hence it has a weakly convergent
subsequence.

Let Pn, n = 1, 2, . . . , be a sequence of probability measures on the space X×X with
marginal distributions µ and ν which satisfy property (a) with numbers εn = 1

n . Let
Pnk

, k = 1, 2, . . . , be a convergent subsequence of this sequence, and let P denote
its limit. The marginal distributions of the measure P are µ and ν. We claim that a
random vector with distribution P satisfies property (a) also with the number ε = 0.
Indeed, the sets of the form {(x1, x2) : (x1, x2) ∈ X×X, ρ(x1, x2) > α+ε} are open.
Hence

β ≥ lim sup
k→∞

Pnk
({(x1, x2) : ρ(x1, x2) > α + ε}) ≥ P ({(x1, x2) : ρ(x1, x2) > α + ε})

for all numbers ε > 0. This implies that

P ({(x1, x2) : ρ(x1, x2) > α}) = lim
ε→0

P ({(x1, x2) : ρ(x1, x2) > α + ε}) ≤ β.

Problem 1 is proved.

2.) Let us first show that the function d(·, ·) is a metric. i.) d(µ, µ) = 0. On the
other hand, we show that in the case d(µ, ν) = 0 µ = ν. Indeed, if d(µ, ν) = 0,
then µ(F ) ≤ ν(F ) for all closed sets F ⊂ X, since F =

⋂

ε→0
F ε, and µ(F ) ≤

lim inf
ε→0

(ν(F ε) + ε) = ν(F ). We show that also the identity µ(F ) = ν(F ) holds

for closed sets F . Indeed, as µ(G) ≥ ν(G) for all open sets G, hence µ(F ) =
lim
ε→0

µ(F ε) ≥ lim
ε→0

ν(F ε) = ν(F ). This implies that µ(A) = ν(A) for all closed or

open sets A. On the other hand, a probability measure is uniquely determined by
its values on the open sets, hence µ = ν. ii.) d(µ, ν) = d(ν, µ). Let d(µ, ν) < α
with some number α > 0. We show that in this case d(ν, µ) ≤ α. Let F ⊂ X
be an arbitrary closed set, and let us define the set F ′ = X \ F α. We claim that
(F ′)α ⊂ X \F . Indeed, if y ∈ (F ′)α then d(y,X \F α) < α, that is there exists such
a point z ∈ X, for which d(z, F ) ≥ α, and d(z, y) < α. This implies that y /∈ F ,
hence (F ′)α ⊂ X\F . With the help of this relation we get that 1−µ(F α) = µ(F ′) ≤
ν((F ′)α)+α ≤ ν(X \F )+α = 1−ν(F )+α, i.e. ν(F ) ≤ µ(F α)+α. Hence d(ν, µ) ≤
α. In such a way we have shown that d(ν, µ) ≤ d(µ, ν). Because of symmetry
reasons d(µ, ν) = d(ν, µ). iii.) d(µ1, µ3) ≤ d(µ1, µ2) + d(µ2, µ3). If d(µ1, µ2) = α,
d(µ2, µ3) = β, then µ1(F ) ≤ µ2(F

α+ε)+α + ε, µ2(F
α+ε) ≤ µ3((F

α+ε)β+ε)+β + ε
for all numbers ε > 0 and closed sets F . As (F α+ε)β+ε) ⊂ Fα+β+2ε this implies
that µ1(F ) ≤ µ3(F

α+β+2ε)+α+β +2ε. Since this relation holds for all closed sets
F and numbers ε > 0 it implies relation iii.).

We show that d(µn, µ) → 0 if and only if µn ⇒ µ. If d(µn, µ) → 0, then
lim sup

n→∞
µn(F ) ≤ µ(F ε)+ε for all closed sets F and numbers ε > 0. As F =

⋂

ε→0
F ε,

lim
ε→0

(µ(F ε) + ε) = µ(F ). This relation implies the inequality lim sup
n→∞

µn(F ) ≤ µ(F )

for all closed sets F , and this is equivalent to the statement µn ⇒ µ.

13
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To prove the other direction of the statement first we show that for all ε > 0 there
exists an integer N = N(ε) > 0 and a partition V1, . . . , VN , VN+1 of the space X
which satisfies the following conditions: µ(∂Vk) = 0, k = 1, . . . , N + 1, d̄(Vk) < ε2,
k = 1, . . . , N , and µ(VN+1) ≤ ε

2 , where ∂A denotes the boundary of the set A
and d̄(A) its diameter. Indeed, let x1, x2, . . . be an everywhere dense set in the
space X. For all xk let us choose a ball G(xk, δk) in the space X of center xk

and radius δk with some δk such that ε2

2 < δk < ε2 for which µ (∂G(xk, δk)) = 0.
The union of these balls covers the whole space X. Let us choose such a number

N = N(ε) for which µ

(

N
⋃

k=1

G(xk, δk)

)

≤ ε
2 . Let VN+1 = X \

(

N
⋃

k=1

G(xk, δk)

)

and

Vk = G(xk, δk) \

(

k=1
⋃

j=1

G(xj , δj)

)

, k = 1, . . . , N . These sets satisfy the conditions

we have imposed.

For all closed sets F ⊂ X let us define the set B(F ) =
⋃

k : Vk∩F 6=∅

Vk. Let us observe

that F ⊂ B(F ) ⊂ F ε ∪ VN+1. Further, lim
n→∞

sup
F closed set

|µn(B(F ) − µ(B(F )| = 0,

because lim
n→∞

µn(Vk) = µ(Vk) for all k = 1, . . . , N + 1, there are finitely many sets

of the form B(F ), and all of them are the union of finitely many sets Vk. Hence
there exists a threshold index n = n(ε) independent of the closed set F such that

µ(F ε) − µn(F ) ≥ µ(B(F )) − µ(VN+1) − µn(B(F )) ≥ −ε

for all closed sets F . This implies that d(µn, µ) ≤ ε, if n ≥ n0(ε). Hence
lim

n→∞
d(µn, µ) = 0 as we claimed.

We show that the metric space (M, d) is separable. Let x1, x2, . . . , be an everywhere
dense set in the space X, let M0 be the set of those discrete probability measures
which are concentrated in the finite subsets of the set {x1, x2, . . . } and the measure
of all points is a rational number. This is a countable set, hence it is enough to
show that M0 is an everywhere dense subset of the set M. This can be seen for
instance by a slight modification of the previous argument. This shows that for an
arbitrary measure µ ∈ M and number ε > 0 we can choose a partition V1, . . . , VN

of the set X and a number η > 0 for which the following statement holds: If
a probability measure ν ∈ M satisfies the condition |µ(Vk) − ν(Vk)| ≤ η for all
numbers k = 1, . . . , N , then the measure ν also satisfies the relation d(µ, ν) < ε.
Since for all µ ∈ M M0 contains such a measure ν, hence M0 is an everywhere
dense subset of the set M.

We show that if X is a complete separable space, then the same property holds for
the space (M, d). It is enough to show that if

lim
n→∞

sup
m : m≥n

d(µn, µm) = 0,

then the series µn, n = 1, 2, . . . is relatively compact, i.e. it has a weakly convergent
subsequence. To prove this statement it is enough to show that for all numbers
ε > 0 there exists a compact set K ⊂ X, for which µn(K) ≥ 1− ε for all indices n.

14
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The statement from which we want to deduce the completeness of the space (M, d)
can be slightly weakened. It is enough to show that for arbitrary ε > 0 there exists
a compact set K = K(ε) whose neighbourhood of radius ε Kε = {x : ρ(x,K) < ε}
satisfies the inequality µn(Kε) ≥ 1 − ε for all indices n = 1, 2, . . . . Indeed, let
us consider such sets K (ε2−m) with ε2−m for all m = 1, 2, . . . , and let us define

the set K =
∞
⋂

m=1
(K(ε2−m)ε2−m

. Then µn(K) ≥ 1 −
∞
∑

m=1
ε2−m = 1 − ε. Hence

it is enough to prove that this set K is relatively compact, (that is, its closure is
compact). To show this let us recall the result by which a subset A of a separable
complete metric space is relatively compact if and only if this set A has a finite
δ-net for all δ > 0, i.e. there exists a finite subset of the space X such that for
arbitrary x ∈ A the distance of x from one of the points of this finite set is less
than δ. This property holds for the above set K, since for all numbers δ > 0 there
exists an integer m such that δ > ε2−m. Further, the set K(ε2−m)ε2−m

has a finite
δ-net for this m, and this is also a finite δ-net for the original set K.

This weakened statement can be proved in the following way: For a fixed number
ε > 0 let us choose an index n0 = n0(ε) such that the relation d(µn0

, µn) ≤ ε
4 holds

for all n ≥ n0, and let K0 ⊂ X be a compact set such that µn0
(K0) ≥ 1− ε

4 . Then

µn(K
ε/4
0 ) ≥ µn0

(K0) −
ε
4 ≥ 1 − ε

2 for all numbers n ≥ n0. Let us choose such a
compact set K1, for which µn(K1) ≥ 1 − ε

2 for all numbers n ≤ n0. Then the set
K = K1∪K0 is compact, and µn(Kε) ≥ 1−ε for all numbers n = 1, 2, . . . . Indeed,

µn(Kε) ≥ µn(K
ε/4
0 ) ≥ 1 − ε, if n ≥ n0, and µn(Kε) ≥ µn(K1) ≥ 1 − ε, if n ≤ n0.

The statements of problem 2 are proved.

3.) Let us observe that the space X has a partition X1 = {A1, A2, . . . } such that
d̄(Aj) ≤ 1, and µ(∂Aj) = 0 for all indices j = 1, 2, . . . . Here d̄(A) denotes the
diameter of the set A and ∂A its boundary. (This statement follows from the
argument presented at the start of problem 2, when it was shown that the relation
µn ⇒ µ implies that d(µ1, µ2) → 0.) By splitting further the elements of this
partition we get a more and more refined sequence of partitions X1 ⊃ X2 ⊃ · · · Xk ⊃
· · · of the space X such that the elements of these partitions satisfy the relations
d̄ (Aj1,...,jk

) ≤ 2−k and µ (∂Aj1,...,jk
) = 0. (Aj1,...,jk

∈ Xk.) Let us define a similar
sequence of more and more refined partitions Y1 ⊃ Y2 ⊃ · · · Yk ⊃ · · · of the
intervals (0, 1] (endowed with the Lebesgue measure) in the following way:

Put Y1 = {B1, . . . , Bk, . . . }, Bk = (bk−1, bk], bk =
k
∑

j=1

µ(Aj), k = 1, 2, . . . , and if

the sets Bj1,...,jk
= (bj1,...,jk−1

, bj1,...,jk
], of the partition Yk are already defined, and

they are defined so that the indentity bj1,...,jk
− bj1,...,jk−1

= µ(Aj1,...,jk
) holds, then

split all intervals Bj1,...,jk
into subsequent non-overlapping intervals

Bj1,...,jk,s = (bj1,...,jk,s−1, bj1,...,jk,s],

of length µ (Aj1,...,jk,s). These smaller intervals will be the elements of the partition
Yk+1 of the interval [0, 1]. After the definition of these partitions let us fix for all
integers k ≥ 1 and elements Aj1,...,jk

of the partition Xk a point xj1,...,jk
∈ Aj1,...,jk

.
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Now for all k = 1, 2, . . . we define a random variable ξk(y) on the probability space
((0, 1],B, λ) with values on the space X by means of the following formula: Put
ξk(y) = xj1,...,jk

if y ∈ Bj1,...,jk
. We claim that the limit ξ(y) = lim

k→∞
ξk(y) exists

for all y ∈ (0, 1], and it is a µ distributed random variable.

The above limit really exists, because for all y ∈ (0, 1] a uniquely determined
sequence of decreasing intervals Bj1,...,jk

, k = 1, 2, . . . , exists in such a way that
y ∈ Bj1,...,jk

. This implies that the sequence of points ξk(y) ∈ Aj1,...,jk
is a Cauchy,

hence also a convergent sequence.

The union of the σ-algebras Xk, k = 1, 2, . . . , generates the Borel σ-algebra in
the space (X, ρ). Hence to prove that the above defined random variable ξ has
distribution µ it is enough to show that P (ξ ∈ Aj1,...,jk

) = µ (Aj1,...,jk
) for all

numbers k = 1, 2, . . . and sets Aj1,...,jk
. It follows from the construction of the

random variable ξ that if y ∈ Bj1,...,jk
then ξ(y) ∈ Āj1,...,jk

, where Ā denotes the
closure of the set A. First we show that it follows from this fact and the relation

P (ξ(y) ∈ ∂Aj1,...,jk
) = 0 for all numbers k = 1, 2, . . . and indices j1, . . . , jk, (∗)

to be proven later that ξ is µ distributed. Indeed, these relations imply that

P (ξ(y) ∈ Aj1,...,jk
) ≥ P

(

ξ(y) ∈ Āj1,...,jk

)

− P (ξ(y) ∈ ∂Aj1,...,jk
)

≥ λ (Bj1,...,jk
) = µ (Aj1,...,jk

) ,

and summing up these inequalities we get that

1 =
∑

j1,...,jk

P (ξ(y) ∈ Aj1,...,jk
) ≥

∑

j1,...,jk

µ (Aj1,...,jk
) = 1.

As a consequence, the above inequalities are actually identities, and the distribution
of ξ is µ.

To prove formula (∗) let us observe that since µ(∂Aj1,...,jk
) = 0 for all numbers

ε > 0 there exists a number δ = δ(ε) > 0 such that the neighbourhood (∂Aj1,...,jk
)δ

of radius δ of the set ∂Aj1,...,jk
satisfies the inequality µ

(

(∂Aj1,...,jk
)δ
)

< ε. Let us
choose an integer s so large that the diameters of the elements of the partition Xk

satisfy the inequality d̄(Aj′

1
,...,j′

s
) < δ

2 for all sets Aj′

1
,...,j′

s
. Since ρ(ξs(y), ξ(y)) ≤

max
j′

1
,...,j′

s

d̄(Aj′

1
,...,j′

s
) ≤ δ

2 , hence in the case ξ(y) ∈ ∂Aj1,...,jk
ρ (ξs(y), ∂Aj1,...,jk

) <

δ
2 . This implies that if ξ(y) ∈ ∂Aj1,...,jk

, then the indices j′1, . . . , j
′
s for which

y ∈ Bj′

1
,...,j′

s
are such that ξs(y) ∈ Aj′

1
,...,j′

s
, ρ
(

Aj′

1
,...,j′

s
, ∂Aj1,...,jk

)

< δ
2 , hence

Aj′

1
,...,j′

s
⊂ (∂Aj1,...,jk

)δ. This implies that

{y : ξ(y) ∈ ∂Aj1,...,jk
}

⊂
{

y : ξs(y) ∈ Aj′

1
,...,j′

s
⊂ (∂Aj1,...,jk

)δ with some indices j′1, . . . , j
′
s

}

,
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and

λ {y : ξ(y) ∈ ∂Aj1,...,jk
} ≤

∑

(j′

1
,...,j′

s) : Aj′
1

,...,j′s
⊂(∂Aj1,...,jk

)δ

λ
(

Bj′

1
,...,j′

s

)

=
∑

(j′

1
,...,j′

s) : Aj′
1

,...,j′s
⊂(∂Aj1,...,jk

)δ

µ
(

Aj′

1
,...,j′

s

)

≤ µ
(

(∂Aj1,...,jk
)δ
)

≤ ε.

Since this statement holds for all ε > 0, this implies relation (∗) and the statement
of problem 3.

4.) We construct the random variables ξn with distribution µn, n = 1, 2, . . . , and the
random variable ξ with distribution µ simultaneously by means of the construction
of problem 3. The only novelty is that we apply the same partitions X1 ⊂ X2 ⊂ · · ·
in the construction of all random variables ξn, n = 1, 2, . . . , and ξ, and demand that
the boundaries of the elements Aj1,...,jk

∈ Xk of the partitions satisfy the relation
µ(∂Aj1,...,jk

) = 0 and µn(∂Aj1,...,jk
) = 0 for all k = 1, 2, . . . , Aj1,...,jk

∈ Xk and
n = 1, 2, . . . . We remark that it causes no extra difficulty to find partitions Xk

with such elements whose boundary have the above property. Indeed, we can for

instance introduce a new probability measure µ̄ =
µ

2
+

∞
∑

n=1
2−n−1µn and construct

a sequence of more and more refined partitions of the space X in the same way as it
was done in the construction of problem 3 with the only difference that we replace
the measure µ by the measure µ̄. Then the boundaries of the partitions satisfy
the desired requirement for all measures µ and µn, n = 1, 2, . . . . We claim that if
µn ⇒ µ, then ξn → ξ with probability one for the random variables constructed in
the above way.

Let us observe that if µn ⇒ µ, then lim
n→∞

µn(Aj1,...,jk
) = µ(Aj1,...,jk

) for all

j1, . . . , jk, since the boundaries of these sets have zero µ measure. This rela-
tion and the structure of our construction imply that bj1,...,jk

(n) → bj1,...,jk
for

all k = 1, 2, . . . and indices j1, . . . , jk as n → ∞, where bj1,...,jk
(n) and bj1,...,jk

de-
note the right-hand side end-points of the intervals Bj1,...,jk

(n) and Bj1,...,jk
which

appear in the partitions Yk(n) and Yk of the intervals (0, 1] introduced during the
definition of the random variables ξn and ξ.

For a fixed small number ε > 0 let us choose a number k = k(ε) for which
2−k < ε. Then the diameter of the elements Aj1,...,jk

of the partition Xk are
less than 2−k < ε. Let us choose a finite set Dk of k-tuples {j1, . . . , jk} for which

∑

(j1,...,jk) : (j1,...,jk)∈Dk

µ(Aj1,...,jk
) > 1 −

ε

2
. There exists an index n0 = n0(ε) such

that the set

B(ε) = B(k, ε, n0) =
⋃

(j1,...,jk)∈Dk

⋃

n≥n0

(Bj1,...,jk
4Bj1,...,jk

(n))

satisfies the inequality λ(B(ε)) <
ε

2
, where A4B = (A \B)∪ (B \A) denotes the

symmetric difference of two sets A and B. The above relations imply that the set

17
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B1(ε) =
⋃

(j1,...,jk)∈Dk

(Bj1,...,jk
\ B(ε)) satisfy the relation λ(B1(ε)) > 1 − ε. Define

the set B2(ε) = B1(ε) ∩ Y0 ∩
∞
⋂

n=1
Y0,n, where Y0,n = (0, 1) \

∞
⋃

k=1

⋃

j1,...,jk

{bj1,...,jk
(n)},

n = 1, 2, . . . , and Y0 = (0, 1) \
∞
⋃

k=1

⋃

j1,...,jk

{bj1,...,jk
(n)}. The inequality λ(B2(ε)) >

1 − ε also holds, since the set B1(ε) \ B2(ε) is countable. Furthermore, if n > n0

and y ∈ B2(ε), then ρ(ξn(y), ξ(y)) ≤ ε, since in this case ξn(y) and ξ(y) are in the
closure of the same set Aj1,...,jk

. This implies that

λ

(

lim sup
n→∞

|ξn − ξ| ≥ ε

)

< ε.

Since this relation holds for all ε > 0, it implies the statement of problem 3.

5.) Put X̄ = X × [0, 1], and let us define the measurable space (Ω,A) as Ω = X̄ ×
X × · · · × X × · · · , and A is the product of the σ-algebras on the coordinate
spaces X̄ and X. In the point ω = (x, u, x1, x2, . . . ) ∈ Ω let us define the random
variables ξ and ξn by the formulas ξ(ω) = x, ξn(ω) = xn, n = 1, 2, . . . . The
measure P will be defined with the help of the measure µ̄ = µ × λ introduced
on the space X̄ and appropriately defined conditional distributions Qn((x, u), A),
n = 1, 2, . . . , where (x, u) ∈ X̄ = X×[0, 1], and A ⊂ X is a measurable subset of the
space X. (The function Qn((x, u), A) is called a conditional distribution function if
Qn((x, u), ·) is a probability measure on the space (X,A) for all points (x, u) ∈ X̄,
and Qn(·, A) is a measurable function for all sets A ∈ A.) The measure P will be
defined in the following way: The distribution of the first coordinate (x, u) ∈ X̄ is
µ̄, the coordinates xn ∈ X, n = 1, 2, . . . , are conditionally independent for fixed
(x, u), and the conditional distribution of the coordinate xn under this condition is
Qn((x, u), ·). In a formal way, put

P (A × A1 × · · · × An) =

∫

(x,u)∈A

Q1((x, u), A1) . . . Qn((x, u), An)) dµ(x) du

for all measurable sets A ⊂ X̄, Aj ⊂ X, j = 1, . . . , n.

(By some non-trivial results of the measure theory the above formula and its ex-
tension really defines a probability measure P . It is worth mentioning that this
fact follows from such a result (the Tulcea–Ionescu theorem), which does not de-
mand some nice topological properties of the space. This is the reason why this
method can be applied in non-complete metric spaces which may not have good
nice topological properties.)

For all numbers k = 1, 2, . . . , let us define such a partition Ak = {A1,k, A2,k, . . . } of

X for which d̄(Aj,k) <
1

k
, and µ (∂Aj,k) = 0, j = 1, 2, . . . , where d̄(A) denotes the

diameter and ∂A the boundary of the set A. Let us define for all k = 1, 2, . . . an

index m(k) such that µ

(

⋃

j≥m(k)

Aj,k

)

≤
1

k2
and µ(Aj,k) > 0 for all 1 ≤ j ≤ m(k).
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(To satisfy this latter conditions we can re-index the sets Aj,k if this is necessary.)
After this let us consider a series of numbers 1 = n1 < n2 < n3 < · · · such that

|µn(Aj,k) − µ(Aj,k)| <
µ(Aj,k)

k2m(k)
, for all numbers 1 ≤ j < m(k)

and nk ≤ n < nk+1.

This is possible, since lim
n→∞

µn(Aj,k) = µ(Aj,k) for all numbers k and j because of

the relation µ(∂Aj,k) = 0.

Let us introduce the numbers

λj,k,n =
min (µ(Aj,k), µn(Aj,k))

µ(Aj,k)
, nk ≤ n < nk+1, j < m(k).

Clearly, 1− 1
k2 ≤ λj,k,n ≤ 1. Let us define the conditional distributions Qn((x, u), ·)

first only to some pairs (x, u) ∈ X̄ and n which satisfy certain conditions. Put

Qn((x, u), C) =
µn(C ∩ Aj,k)

µn(Aj,k)
, if nk ≤ n < nk+1, x ∈ Aj,k, 1 ≤ j < m(k),

and 0 ≤ u ≤ λj,k,n for all sets C ∈ A.

On the domain where we have not defined the conditional distributions Qn(·, ·)
yet we want to do this in such a way which guarantees that the projection of the
measure P to the n-th coordinate is µn. To do this let us introduce the numbers

Pn =



1 −

m(k)−1
∑

j=1

min [µn(Aj,k), µ(Aj,k)]



 , nk ≤ n < nk+1.

(This number is the µ measure of that part of the set X̄ = X × [0, 1] where we have
still not defined the conditional distribution Qn(·, ·)). Then let us also define the
following probability measures µ̄n on the space X:

µ̄n(C) =
1

Pn



µn(C) −

m(k)−1
∑

j=1

min [µn(Aj,k), µ(Aj,k)]
µn(C ∩ Aj,k)

µn(Aj,k)



 , C ∈ A,

and put

Qn((x, u), C) = µ̄n(C), if C ∈ A, nk ≤ n < nk+1,

and x ∈ Aj,k, j ≥ m(k) or x ∈ Aj,k, j < m(k) and λj,k,n < u ≤ 1.

We claim that
∫

Qn((x, u), C)µ( dx) du = µn(C), C ∈ A. (+)
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Indeed, if nk ≤ n < nk+1, then 1 ≤ j < m(k) and in the case C ∈ A

∫

Qn((x, u), C ∩ Aj,k)µ( dx) du = µ(Aj,k)λj,k,n
µn(C ∩ Aj,k)

µn(Aj,k)
+ µn(C ∩ Aj,k)

− min (µ(Aj,k), µ(Aj,k))
µn(C ∩ Aj,k)

µn(Aj,k)
= µn(C ∩ Aj,k).

On the other hand, put Bk = X\

(

m(k)−1
⋃

j=1

Aj,k

)

. Then the system of sets {Aj,k, 1 ≤

j < m(k), Bk} supplies a partition of the space X. In particular, Aj,k ∩Bk = ∅ for
all 1 ≤ j < m(k). Observe that

∫

Qn((x, u), C ∩ Bk)µ( dx) du = µn(C ∩ Bk).

By summing up these identities we get relation (+), which means that the random
variables ξn have the prescribed distribution µn for all numbers n = 1, 2, . . . .

On the other hand,

P

(

sup
nk≤n<nk+1

ρ(ξn, ξ) ≥
1

k

∣

∣

∣

∣

∣

ξ̄ = (x, u)

)

= 0

if (x, u) /∈ X1(k) ⊂ X̄, where ξ̄(x, u, x1, x2, . . . ) = (x, u), and

X1(k) = Bk × [0, 1] ∪

m(k)−1
⋃

j=1

{

(x, u) : x ∈ Aj,k, inf
nk≤n<nk+1

λj,k,n ≤ u ≤ 1

}

.

Hence

P

(

sup
nk≤n<nk

ρ(ξn, ξ) >
1

k

)

≤ µ × λ(X1(k))

=

m(k)
∑

j=1

(

1 − min
nk≤n<nk+1

λj,k,n

)

µ(Aj,k) + µ(Bk) ≤
2

k2
.

Since
∞
∑

k=1

P

(

sup
nk≤n<nk

ρ(ξn, ξ) >
1

k

)

≤
∞
∑

k=1

2

k2
< ∞

it follows from the Borel–Cantelli lemma that ξn → ξ with probability one if n → ∞.

6.) Let F be an arbitrary closed set. As F =
⋂

δ→0

F δ = F , where F δ denotes the open

neighbourhood of radius δ of the set F , hence for all ε > 0 there exists a δ = δ(ε) > 0
such that µ(F δ) < µ(F ) + ε. As ξn ⇒ ξ stochastically, hence for all δ > 0 and
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ε > 0 there exists such an index n0 = n0(ε, δ) for which P (ρ(ξ, ξn) > δ) < ε.
Furthermore, {ω : ξ(ω) /∈ F δ} ⊂ {ω : ξn(ω) /∈ F} ∪ {ω : ρ(ξn(ω), ξ(ω)) > δ}, hence
1 − µ(F δ) ≤ 1 − µn(F ) + ε, and µ(F ) + ε ≥ µ(F δ) ≥ µn(F ) − ε, if n ≥ n0. This
implies that lim sup

n→∞
µn(F ) ≤ µ(F ) + 2ε. Since this inequality holds for all ε > 0,

this implies that lim sup
n→∞

µn(F ) ≤ µ(F ) for all closed sets F , i.e. µn ⇒ µ.

7.) To prove that ξ = F−1(η) is F distributed it is enough to show that

{ω : η(ω) < F (x)} ⊂ {ω : F−1(η)(ω) < x} ⊂ {ω : η(ω) ≤ F (x)}.

The middle term is contained in the right-hand side term. Indeed, if F−1(η)(ω) < x
then there exists such a number h > 0 for which F−1(η)(ω) = sup{u : F (u) <
η(ω)} < x − h. But this implies that η(ω) ≤ F (x). Indeed, if the relation F (x) <
η(ω) held, then the number x would be in the set of numbers u whose supremum
defines the quantity F−1(η), and this contradicts to the inequality F−1(η)(ω) <
x − h.

To prove the left-hand side of this relation observe that if η(ω) < F (x), then
η(ω) = F (x)−h, and F−1(η(ω)) = F−1(F (x)−h)) = sup{v : F (v) < F (x)−h} with
an appropriate number h > 0. On the other hand, sup{v : F (v) < F (x) − h} < x,
because F (x) is a function continuous from the left, and as a consequence F (v) <
F (x)−h implies that there exists such a number δ = δ(h) > 0, for which v < x− δ,
that is F−1(η(ω)) = sup{v : F (v) < F (x)−h} ≤ x−δ < x. Hence also the left-hand
side part of the above relation holds.

To prove that F̃ (ξ, ε) is uniformly distributed in the interval [0, 1], let us define
the quantity z(x) = sup{y : F (y) < x} for all real numbers x. As the distribution
function F (x) is continuous from the left, hence F (z) ≥ x. Let us consider the
cases F (z) = x and F (z) < x separately.

If F (z) = x, then F (u + 0) < x for all numbers u < z, and {ω : F̃ (ξ(ω), ε(ω)) <
x} = {ω : ξ(ω) < z}. Hence P (F̃ (ξ, ε) < x) = P (ξ < z) = F (z) = x.

If F (z) < x, then F (z + 0) ≥ x, and

{ω : F̃ (ξ(ω, ε(ω)) < x}

= {ω : ξ(ω) < z} ∪ {ω : ξ(ω) = z, F (z) + ε(ω)[F (z + 0) − F (z)] < x}.

Hence

P
(

F̃ (ξ, ε) < x
)

= P (ξ < z) + P (ξ(ω) = z)P (ε(ω)[F (z + 0) − F (z)] < x − F (z))

= F (z) + [F (z + 0) − F (z)]
x − F (z)

F (z + 0) − F (z)
= x.

This implies the second statement of problem 7.

8.) The results of problem 7 imply that the distribution of the random variable ξ̄ is

F , and the distribution of η̄ is G. Furthermore F̃ (¯̄ξ, ε) is uniformly and ¯̄η is G
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distributed random variable. To show that the distribution of the vectors (ξ̄, η̄)

and (¯̄ξ, ¯̄η agree, it is enough to show that F−1(F̃ (¯̄ξ, ε)) = ¯̄ξ with probability one.
Indeed, this means that both random vectors can be represented (with the exception
of a set of measure zero) as the transformation of an appropriate in the interval
[0, 1] uniformly distributed random variable, (both coordinates of the vectors are
obtained as the transform of the same random variable) and the representation of
both vectors applies the same transformation.

The statement from which we can deduce the statement of problem 8 can be even
weakened a little bit. It is enough to show that P (F−1(F̃ (¯̄ξ, ε)) ≤ ¯̄ξ) = 1, since
if one random variables is larger than another random variable with the same
distribution functions with probability one, then these two random variables equal
with probability one.

If ¯̄ξ(ω) = x, then

F−1(F̃ (¯̄ξ(ω), ε(ω))) = sup{u : F (u) < F̃ (x, ε(ω))},

and since F (v) ≥ F̃ (x, ε(ω)) if v > x, this implies that F−1(F̃ (¯̄ξ(ω), ε(ω))) ≤ x =
¯̄ξ(ω) in this case. Problem 8 is solved.

9.) Let us remark that if ξ and η are defined by the formula ξ = F−1(ζ) and η =
G−1(ζ), where ζ is a random variable with uniform distribution in the interval [0, 1],
that is these random variables are defined by means of the quantile transform, then
the two sides of the inequality investigated in this problem are equal. Let us first
prove this inequality in the special case when the distributions of both random
variables ξ and η are concentrated in a finite subset X = {x1, . . . , xn}, x1 < x2 <
· · · < xn of the real line. Put pj = P (ξ = xj), qk = P (η = xk), and let us consider
the joint distribution of the random variables ξ and η r(xj , yk) = P (ξ = xj , η = xk),
1 ≤ j, k ≤ n. Let us introduce the quantities

r(xj , xk, yj , yk) = min (r(xj , yk), r(xk, yj)) ,

r = max
{xj ,xk,yj ,yk}∈X×X×X×X

xj<xk, yj<yk

r(xj , xk, yj , yk)

Let us observe that if the vector (ξ, η) is constructed by means of the quantile
transform, then r = 0 for the above defined number r. Furthermore, the condition
r = 0 and the distribution F of the random variable ξ together the distribution G
of the random variable η also determine the joint distribution of the vector (ξ, η),
i.e. the property r = 0 characterizes the quantile transform.

Indeed, we may assume without violating the generality that the probability space
(Ω,A, P ), where the random vector (ξ, η) is defined has the following structure:
Ω = X × X, A is the discrete σ-algebra on X × X, and the random variables are
defined as ξ(xj , xk) = xj η(xj , xk) = xk, 1 ≤ j, k ≤ n. In this space the measure P
with the property r = 0 we are looking for can be represented as the solution of the
following “transport problem”: Let us consider the bipartitated graph consisting
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of the pairs (xj , xk), 1 ≤ j, k ≤ n, attach the weights p(xj) = pj = P (ξ = xj) to
the first coordinates and the weights q(xk) = qk = P (η = xk), 1 ≤ j, k ≤ n to the
second coordinates. Then let us consider such a transports where weights pj are
sent from the first coordinates xj , and weights qk arrive to the second coordinates
Let r(j, k) denote the mass transported from the point xj to xk. Then P (ξ =
xj , η = xk) = r(j, k) denotes a joint distribution with the prescribed marginal
distributions, and all joint distributions with such marginal distributions can be
presented in such a way. The condition r = 0 means that the transport of the
weights pj to weights qk is done in the following way: We transport the mass p1

from the point x1 first to the place x1, then if some mass is still left to the point
x2, then to the point x3, e.t.c. After this we transport the mass p2 from the point
x2 coordinate to the smallest point where some empty space is still left, then to the
next smallest space, e.t.c. Then we fill the smallest places where not all masses are
sent to from the points x3, x4, e.t.c. This means in particular, that the condition
r = 0 and the marginal distributions of the random variables ξ and η determine
the joint distribution of the random vector (ξ, η).

We claim that
min

ξ is F distributed
η is G distributed

EΦ(ξ − η) = EΦ(ξ̄ − η̄), (b)

where (ξ̄, η̄) is a random vector with marginal distributions F and G such that
r = 0.

Indeed, if the distribution of the random vector (ξ, η) is such that r 6= 0, then there
exists a quadruple (xj , xk, yj , yk), xj < xk and yj < yk such that

r̃ = r(xj , xk, yj , yk) = min (r(xj , yk), r(xk, yj)) > 0.

We show that in this case a new joint distributions r̃(xj , xk), 1 ≤ j, k ≤ n, can
be introduced in such a way that the marginal distribution of a random vector
(ξ̃, η̃) with this distribution has marginal distributions F and G, and EΦ(ξ − η) ≤
EΦ(ξ̃ − η̃). Furthermore, if Φ is a strictly convex function then there is a strict
inequality in the last relation.

We shall define this probabilities in the following way.

r̃(xj , yj) = r(xj , yj) + r̃

r̃(xk, yk) = r(xk, yk) + r̃

r̃(xj , yk) = r(xj , yk) − r̃

r̃(xk, yj) = r(xk, yj) − r̃

r̃(x, y) = r(x, y) otherwise.

Then the marginal distributions of the random vector (ξ̃, η̃) are the prescribed ones,
and

EΦ(ξ̃ − η̃) − EΦ(ξ − η) = r̃ (Φ(xj − yj) + Φ(xk − yk) − Φ(xj − yk) − Φ(xk − yj)) .
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This expression is non-negative. Moreover, it is strictly positive, if the function
Φ(·) is strictly convex. Indeed,

xj − yk <
xj − yj

xk − yk

< xk − yj ,

hence the convexity of the function Φ implies that

Φ(xj − yj) + Φ(xk − yk) ≤ Φ(xj − yk) + Φ(xk − yj),

(here we also exploit that (xj − yj) + (xk − yk) = (xj − yk) + (xk − yj),) and there
is a strict inequality if Φ is a strictly convex function.

We show that the above relations imply formula (b). The proof of this statement
is simpler in the case when Φ(·) is a strictly convex function. Indeed, the function
EΦ(ξ−η) takes its minimum somewhere if such pairs of vectors (ξ, η) are considered
which are prescribed at the left-hand of formula (b). By the results of the previous
paragraph this minimum is taken in the case r = 0. If the function Φ(·) is convex,
but not necessarily strictly monotone, then for all ε > 0 let us define the function
Φε(x) = Φ(x)+ εx2. Then Φe(·) is a strictly convex function, and we get by letting
ε → 0 the relation

Φ(ξ − η) = lim
ε→ε

Φε(ξ − η) ≥ lim
ε→ε

Φε(ξ̄ − η̄) = Φ(ξ̄ − η̄).

This implies the statement of problem 9 in the case when the distribution of the
random variables ξ and η are concentrated in finitely many points.

If F and G are two distribution functions concentrated to a finite interval, then it
is useful to approximate these distributions by the discrete distributions Fn(x) =

F
(

[nx]
n

)

and Gn(x) = G
(

[nx]
n

)

. More precisely, it is worthwhile to approximate

the two dimensional distribution H(x, y) with marginal distributions F (x) and G(y)

by the distribution Hn(x, y) = H
(

[nx]
n , [ny]

n

)

, where [u] denotes the integer part of

the number u. By applying the result of problem 9 in the already proven case and
letting n → ∞ we get the desired results in this case.

The general case can be reduced to the previous case by means of an appropriate
limiting procedure. Let us truncate our random variables at the level ±u. We do
this truncation in such a way that if the vector (ξ, η) takes its value outside the
square [−u, u] × [−u, u], then the truncated version of this vector has its value in
the origin. Then carrying out the limit procedure u → ∞ we can get the result
of problem 9 in the general case. We make some comments which may be useful
when carrying out this limit procedure. The convexity of the function Φ implies
that Φ(x) ≥ Ax + B for all real numbers x with appropriate constants A and B,
hence EΦ(ξ − η) ≥ −|A|E(|ξ|+ |η| − |B| > −∞ under the conditions of problem 9.
Let us remark that by adding an appropriate linear function to Φ(x) we can reduce
the problem to the case when Φ(x) ≥ 0 for all real numbers x, and Φ(0) = 0.

24



Coupling methods in Probability Theory

We may also assume that EΦ(ξ − η) < ∞, since the statement of problem 9 is
otherwise trivial. These remarks may simplify the limit procedure. At the left-
hand side of the inequality we can apply the monotone convergence theorem, and
at the right-hand side the lemma Fatou. We omit the details.

9a.) As f(x) = |x| is a convex function, the result of problem 9 can be applied in this
case. To finish the proof it is enough to show the identity

∫ 1

0

∣

∣F−1(x) − G−1(x)
∣

∣ dx =

∫ ∞

−∞

|F (x) − G(x)| dx.

This relation can be seen for instance by considering the domain

D = {(x, y) : −∞ < x < ∞, min(F (x), G(x)) < y ≤ max(F (x), G(x))} ⊂ R2,

and calculating the area of this domain first by integrating with respect to the
variable y to get the left-hand side and then to integrate first with respect to the
variable x to get the right-hand side of this identity. (Observe, that the intersection
of the domain D with the horizontal line y = u is an interval whose end-points are
min(F−1(u), G−1(u)) and max(F−1(u), G−1(u)).)

10.) Let γ be the projection of the measure µ or (what is equivalent because of the
conditions of the problem) of the measure ν to the space X2. Furthermore, let
P (x,A) be the conditional distribution of the measurable sets of the form A × X2

with respect to prescribed value x ∈ X2 on the space (X1 × X2,A1 × A2, µ), and
Q(x,C) the conditional distribution of the measurable sets of the form X × C
with respect to prescribed values x ∈ X2 on the space (X2 × X3,A2 × A3, ν).
That is, let µ(A × B) =

∫

B
P (x,A)γ( dx) for all measurable sets A ∈ A, and

ν(B × C) =
∫

B
Q(x,C)γ( dx) for all sets C ∈ A3. (Such conditional distributions

exist on complete separable metric spaces.) Let us define the measure of measurable
sets of the form A × B × C in the space X1 × X2 × X3 by means of the formula
P (A × B × C) =

∫

B
P (x,A)Q(x,C)γ( dx). This measure can be extended to the

whole space az (X1 × X2 × X3,A1 ×A2 ×A3), and it has the required properties.

11.) Let P (x,A), where x ∈ X, A is a measurable subset of the space X, the conditional
distribution of the second coordinate of the space X×X endowed with the measure
ν with respect to the first coordinate, that is let P (x, ·) be a probability measure on
the measurable sets of the space X, P (·, A) a measurable function for all measurable
sets A ⊂ X, and ν(A × B) =

∫

A
P (x,B)µ( dx) for all measurable sets A ⊂ X and

B ⊂ X. By a classical result of the probability theory (measure theory) such a
conditional distribution exists.

Let us consider the probability space (Q,B, λ), where Q = [0, 1], B is the Borel σ-
algebra on the interval [0, 1], and λ is the Lebesgue measure on the σ-algebra B of
the interval [0, 1]. We claim that a set of random variables ζ(x, u), u ∈ Q = [0, 1],
x ∈ X indexed by a parameter x ∈ X can be constructed on the probability
space (Q,B, λ) in such a way that ζ(x, ·) is a random variable with distribution
P (x, ·) for all points x ∈ X, where P (x,A) is the conditional distribution defined
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in the previous paragraph, and ζ(·, ·) is a measurable function on the product space
X×[0, 1] with the natural product σ-algebra. Actually we shall prove only a slightly
weaker statement. We only claim the distribution of the random variable ζ(x, ·)
agrees with the formerly given measure P (x, ·) for almost all points x with respect
to the measure µ. But this is not a real restriction. If we replace the measures
P (x, ·) by some other probability measures on a set of the points x with µ measure
zero we get an equivalent version of the conditional distribution P (x,A).

The above statement can be proved by a natural adaptation of the construction
given in the solution of problem 3. In that problem we have described a possible
construction of a random variable on the probability space (Q,B, λ) with prescribed
distribution on a separable complete metric space (X, ρ). We want to show that by
applying this method we can construct a measurable function ζ(x, u), x ∈ X, u ∈
[0, 1] on the product space X× [0, 1] in such a way that for a fixed x ∈ X ζ(x, ·) is a
µ = P (x, ·) distributed random variable on the probability space ([0, 1],B, λ), where
B denotes the Borel σ-algebra and λ the Lebesgue measure on the unit interval
[0, 1]. We construct such a function ζ(x, u) by applying the method of construction
described in the solution of problem 3 with the following modification. We choose
such partitions Xk whose elements Aj1,...,jk

has such boundaries for which the
condition µ̄(∂Aj1,...,jk

) = 0 is satisfied, where the measure µ̄ is the projection of the
measure ν to the second coordinate of the space X×X. Then the properties of the
conditional distributions imply that P (x, (∂Aj1,...,jk

)) = 0 for all partitions Xk and
all (countably many) sets Aj1,...,jk

in these partitions except a measurable set of
x ∈ X with µ measure zero. Let us apply the construction described in problem 3
for all such points x for which the boundaries of all elements in the partitions have
zero P (x, ·) probabilities. For the sake of a complete construction let us define
ζ(x, u) = x0, on the exceptional set of points x, where x0 ∈ X is an arbitrary
fixed point. Let us observe that by applying this construction we get the function
ζ(x, u) as the limit of discrete valued measurable functions. Then the limit of these
functions is also measurable. The random variables ζ(x, u) constructed in such a
way have the desired properties.

Define η(ω) = ζ(ξ(ω), χ(ω)) with the help of the above function ζ(x, u) and the
independent random variables ξ(ω) and χω) appearing in the formulation of prob-
lem 11. (The idea behind this definition is that P (ζ(ξ(ω), χ(ω)) ∈ B|ξ(ω) = x) =
P (ζ(x, χ(ω) ∈ B) = P (x,B).) We claim that this random variable η satisfies the
statement of the problem, that is P (ξ(ω) ∈ A, η(ω) ∈ B) = ν(A × B) for all mea-
surable sets A ⊂ X and B ⊂ X. Indeed, since the distribution of the random
vector (χ(ω), ξ(ω)) is dv µ(dx) on the space [0, 1] × X, hence we get that

P (ξ(ω) ∈ A, η(ω) ∈ B) = E (I(ξ(ω) ∈ A)I(ζ(ξ(ω), χ(ω)) ∈ B))

=

∫ (∫

I (x ∈ A) I(ζ(x, v) ∈ B) dv

)

µ( dx)

=

∫

I(x ∈ A)P (x,B)µ( dx)
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=

∫

A

P (x,B)µ( dx) = ν(A × B),

where I(C) is the indicator function of the set C. In such a way we have solved
problem 11.

12.) The measures µ and ν have a decomposition of the following form: µ = γ + µ1,
ν = γ + ν1, where the measure γ is the “joint part” of the measures µ and ν, the
measures µ1 and ν1 are singular to each other. This means that there exists such a
set C ∈ A, for which the measure µ1 is concentrated to the set C and the measure
ν1 is concentrated to the set X \ C, that is µ1(X \ C) = 0, and ν1(C) = 0. To
see that such a decomposition exists let us consider a measure dominating both
measures µ and ν (we can choose for instance the measure µ+ν

2 as this dominating
measure), let f(x) be the density function of the measure µ and g(x) the density
function of the measure ν with respect to this dominating measure. Let us define
the measure γ as the measure with density function min(f(x), g(x)), the measure µ1

as the measure with density function f(x)−min(f(x), g(x)) the measure ν1 as the
measure with density function g(x)−min(f(x), g(x)) with respect to the dominating
measure. Finally, define the set C by the formula C = {x : f(x) ≥ g(x)}. This
decomposition satisfies the requested properties. Beside this, µ(A)−ν(A) ≤ µ(C)−
ν(C) for all sets A ∈ A. Let us observe that µ(C) − ν(C) = µ(C) − γ(C) =
µ1(C) = µ1(X) = 1 − γ(X), which implies that sup

A∈A
(µ(A) − ν(A)) = 1 − γ(X).

The quantities ν(A) − µ(A) can be estimated similarly. As a consequence, we get
that Var (µ, ν) = sup

A∈A
|µ(A) − ν(A)| = 1 − γ(X). If ξ and η are µ respectively ν

distributed random variables, then

P (ξ 6= η) ≥ P ({ξ ∈ C} ∩ {η /∈ C}) ≥ µ(C) − ν(C) = Var (µ, ν).

To make such a construction where the two sides of the above inequality are equal
let us define the following probability space (Ω,B, P ). Put Ω = X ∪ (X × X), and
let B be the natural σ-algebra on the space Ω whose restriction to the set X is
A, and to the set X × X A × A. Let us define the measure P in the following
way. Let the restriction of the measure µ P to the set X γ, and to the set X × X
D · µ1 × ν1, where D−1 = µ1(X) = ν1(X), that is D is the natural norming factor.
Let us define the random variables ξ and η in the following way: If ω = x ∈ X,
than ξ(ω) = η(ω) = x, if ω = (x1, x2) ∈ X × X, then ξ(ω) = x1, η(ω) = x2.
With such a definition the random variable ξ is µ and the random variable η is
ν distributed random variable. Furthermore, P (ξ = η) = γ(X) = 1 − Var (µ, ν),
since the restriction of the measure P to the set X × X is concentrated on the set
C × (X \ C), where ξ(ω) 6= η(ω). We have solved problem 12.

Remark: It had some technical reasons why the random variables which yield identity in
the inequality of problem 12 were constructed on the probability space Ω = X∪(X×X)
and not on the space Ω1 = X × X, which might have been a more natural choice. But
if we had worked in the probability space Ω1, then the measure γ should have been
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concentrated to the diagonal D = {(x, x) : x ∈ X}. On the other hand, there are cases
when this diagonal D is a non-measurable subset of the space Ω1 = X × X, and this
causes some problems. We wanted to avoid this difficulty and make a construction
which also works in such cases.

13.) It is enough to prove that under the conditions of the central limit theorem a
triangular array ξ̃k,j , k = 1, 2. . . . , 1 ≤ j ≤ nk, and Wiener processes Wk(t),
0 ≤ t ≤ 1, k = 1, 2, . . . , can be constructed in such a way that the distribution
of the random variables ξ̃k,j and ξk,j agree, and the random broken line S̃k,j(·)

defined with the help of the random variables ξ̃k,j in the same way as the random
broken line Sk(t) with the help of the random variables ξk,j satisfy, together with

the constructed Wiener processes Wk(t), the relation sup
0≤t≤1

|S̃k(t) − Wk(t)| ⇒ 0 as

k → ∞, where ⇒ denotes stochastic convergence.

Let us observe that the Lindeberg condition implies that lim
k→∞

sup
1≤j≤nk

σ2
k,j = 0,

where σ2
k,j = Eξ2

k,j . Let us consider the sequences uk,l =
l
∑

j=1

σ2
k,j , fix some ε > 0,

of the form ε =
1

M
, where M is a positive integer, and define for all k = 1, 2, . . . , the

subsequence 0 = mk,0 < mk,1 < · · · < mk,s, mk,r = mk,r(ε), 1 ≤ r ≤ s, s = s(k, ε),
of the sequence 0, 1, 2, . . . , nk in the following way: Put mk,0 = 0, and if mk,r is
already defined, then the number mk,r+1 is defined as the number L > mk,r for
which uk,L−uk,mk,r

≥ ε, uk,L−1−u,mk,r < ε if uk,nk
−uk,mk,r

≥ ε, and mk,r+1 = nk

and r + 1 = s(k, ε) is otherwise. Put ūk,j =
uk,j

uk,nk

, 1 ≤ j ≤ nk. Let us observe

that lim
k→∞

sup
1≤r≤s(k,ε)

|ūk,mr
− ūk,mr−1

− ε|

ε
= 0, and the random variables Tk,j =

Sk,mk,rj
− Sk,mk,rj−1

√

ūk,mk,j
− ūk,mk,j−1

satisfy the central limit theorem with arbitrary indices j for

which 1 ≤ rj ≤ s(k, ε), and Sk,r =
r
∑

j=1

ξk,j . Let us also observe that s(k, ε) ≤ ε−1.

The above results together with the coupling results of this paper (e.g.problem 2 or
Statement A can be applied) imply that such pairs of independent random variables
(T̃k,j , Xk,j), 1 ≤ j ≤ s(k, ε) can be constructed for all k = 1, 2, . . . for which
the random variables Xk,j have standard normal distribution, the distributions of

the random variables Tk,j and T̃k,j agree, and sup
1≤j≤s(k,ε)

∣

∣

∣T̃k,j − Xk,j

∣

∣

∣ ⇒ 0, where

⇒ denotes convergence in probability. Let Zk,l,ε =
l
∑

j=1

√

ūk,mk,j
− ūk,mk,j−1

T̃k,j ,

Yk,l,ε =
l
∑

j=1

√

ūk,mk,j
− ūk,mk,j−1

Xk,j , 1 ≤ l ≤ s(k, ε), and put Zk,0,ε = 0 and

Yk,0,ε = 0, Then the relation sup
1≤l≤s(k,ε)

|Zk,l,ε − Yk,l,ε| ⇒ 0 also holds. Since this
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relation holds for all numbers ε of the form ε =
1

M
, the relation

sup
1≤l≤s(k,εk)

|Zk,l,εk
− Yk,l,εk

| ⇒ 0, and εk → 0 if k → ∞ (1)

also holds with an appropriate sequence εk, k = 1, 2, . . . . Because of the distribution
of the sequences (Zk,j,εk

, 1 ≤ j ≤ s(k, εk)), (Yk,j,εk
, 1 ≤ j ≤ s(k, εk) and the result

of Problem 10 a triangular array S̃k,j and a sequence of Wiener processes Wk(t)

can be constructed in such a way that the distribution of the sequences ξ̃k,j and
ξk,j , 1 ≤ j ≤ nk, agree for a fixed k = 1, 2, . . . , and beside this the partial sums

S̃k,l =
l
∑

j=1

ξ̃k,j satisfy the identity S̃k,mk,l
= Zk,l,εk

, Wk(ūk,mk,l
) = Yk,l,εk

, 1 ≤ l ≤

s(k, εk). (Actually we construct directly the partial sums S̃k,j and not the random
variables ξk,j . We do this under the condition that their values are prescribed
for certain indices and their distributions must agree with the distribution of the
corresponding partial sums of the random variables ξk,j . The Wiener processes
Wk(·) can be constructed in a simpler way by using its Markov property and some
basic facts about Wiener processes.)

We claim that the random broken lines S̃k(t) determined by the above constructed
triangular array ξ̃k,j , k = 1, 2, . . . , 1 ≤ j ≤ nk together with the Wiener processes

Wk(t) constructed together with it satisfy the relation sup
0≤t≤1

|S̃k(t) − Wk(t)| ⇒ 0.

It follows from the construction and relation (1) that

sup
1≤r≤s(k,εk)

∣

∣

∣S̃k(ūk,mk,r
) − Wk(ūk,mk,r

)
∣

∣

∣⇒ 0,

and beside this lim
k→∞

sup
1≤r≤sk

(

ūi,mk,r
− ūk,mk,r−1

)

= 0. Hence to prove the functional

central limit theorem it is enough to prove that

P

(

sup
0≤r<s(k,εk)

sup
ūk,mk,r

≤u≤ūk,mk,r+1

∣

∣Wk(u) − Wk(ūk,mk,r
)
∣

∣ > ε

)

≤
∑

0≤r<s(k,εk)

P

(

sup
ūk,mk,r

≤u≤ūk,mk,r+1

∣

∣Wk(u) − Wk(ūk,mk,r

∣

∣ > ε

)

→ 0
(2a)

P

(

sup
0≤r<s(k,εk)

sup
ūk,mk,r

≤u≤ūk,mk,r+1

∣

∣

∣
S̃k(u) − S̃k(ūk,mk,r

)
∣

∣

∣
> ε

)

≤
∑

0≤r<s(k,εk)

P

(

sup
ūk,mk,r

≤u≤ūk,mk,r+1

∣

∣

∣S̃k(u) − S̃k(ūk,mk,r
)
∣

∣

∣ > ε

)

→ 0
(2b)

as k → ∞ for all ε > 0. Relation (2.2b) can be rewritten because of the structure
of the random broken lines S̃k(t) as

∑

0≤r<s(k,εk)

P



 sup
mk,r+1≤p≤mk,r+1

∣

∣

∣

∣

∣

∣

p
∑

j=mk,r+1

ξ̃k,j

∣

∣

∣

∣

∣

∣

> ε



→ 0 for all ε > 0. (2c)
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The proof of relation (2a) is relatively simple, since the probabilities at its right-
hand side can be calculated explicitly. Indeed,

P

(

sup
ūk,mk,r

≤u≤ūk,mk,r+1

∣

∣Wk(u) − Wk(ūk,mk,r

∣

∣ > ε

)

= P

(

sup
0≤u≤1

|Wk(u)| >
ε

√

ūk,mk,r+1
− ūk,mk,r

)

≤ 4

(

1 − Φ

(

ε
√

ūk,mk,r+1
− ūk,mk,r

))

,

where Φ(·) denotes the standard normal distribution function. Because of the
relation lim

k→∞
sup

1≤r<s(k,εk)

(ūk,mk,r+1
− ūk,mk,r

) = 0 we have

lim
k→∞

(

1 − Φ

(

ε
√

ūk,mk,r+1
− ūk,mk,r

))

ūk,mk,r+1
− ūk,mk,r

= 0.

The above relations together with the identity
s(k,εk)
∑

r=1
(ūk,mk,r+1

− ūk,mk,r
) = 1 imply

formula (2a).

The proof of formula (2c) needed to complete the proof of the functional central
limit theorem is more difficult. We describe one possible proof. Let us first observe
that because of the Lindeberg condition there exists some sequence δk of positive

numbers, k = 1, 2, . . . , such that lim
k→∞

δk = 0 and lim
k→∞

nk
∑

j=1

Eξ̃2
k,jI(|ξ̃k,j | > δk) = 0.

Let us fix such a sequence δk, and let us choose the decomposition ξ̃k,j = ξ̄k,j +¯̄ξk,j

with ξ̄k,j = ξ̃k,jI(|ξ̃k,j | > δk) − Eξ̃k,jI(|ξ̃k,j | > δk) and ¯̄ξk,j = ξ̃k,jI(|ξ̃k,j | ≤ δk) −

Eξ̃k,jI(|ξ̃k,j | ≤ δk). Then lim
k→∞

nk
∑

j=1

Eξ̄2
k,j = 0, lim

k→∞

nk
∑

j=1

E¯̄ξ
2

k,j = 1, E¯̄ξ
4

k,j ≤ δ2
kE¯̄ξ

2

k,j ,

and to prove relation (2c) it is enough to show that

∑

0≤r<s(k,εk)

P



 sup
mk,r+1≤p≤mk,r+1

∣

∣

∣

∣

∣

∣

p
∑

j=mk,r+1

ξ̄k,j

∣

∣

∣

∣

∣

∣

> ε



→ 0 for all ε > 0,
(3a)

∑

0≤r<s(k,εk)

P



 sup
mk,r+1≤p≤mk,r+1

∣

∣

∣

∣

∣

∣

p
∑

j=mk,r+1

¯̄ξk,j

∣

∣

∣

∣

∣

∣

> ε



→ 0 for all ε > 0.
(3b)

We can write P

(

sup
mk,r+1≤p≤mk,r+1

∣

∣

∣

∣

∣

p
∑

j=mk,r+1

ξ̄k,j

∣

∣

∣

∣

∣

> ε

)

≤

mk,r+1
∑

j=mk,r+1

Eξ̄2
k,j

ε2 by the Kol-

mogorov inequality. We get relation (3.1) by summing up this relation for 0 ≤ r ≤
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s(k, εk) and applying the relation lim
k→∞

nk
∑

j=1

Eξ̄2
k,j = 0.

The proof of relation (3b) demands a more intricate argument. Let us observe that
the following version of the Kolmogorov inequality holds.

P



 sup
mk,r+1≤p≤mk,r+1

∣

∣

∣

∣

∣

∣

p
∑

j=mk,r+1

¯̄ξk,j

∣

∣

∣

∣

∣

∣

> ε



 ≤

E

(

mk,r+1
∑

j=mk,r+1

¯̄ξk,j

)4

ε4
.

Indeed, the sequence of the random variables

(

p
∑

j=mk,r+1

¯̄ξk,j

)4

, p = mk,r + 1, . . . ,

mk,r+1, is a semimartingale. (This follows for instance from the fact that the convex
function of a martingale is a semimartingale.) Then the above inequality can be
proved similarly to the proof of the Kolmogorov inequality with the help of this fact.

We can prove formula (3b) with the help of a good estimate on E

(

mk,r+1
∑

j=mk,r+1

¯̄ξk,j

)4

.

Indeed, we have

E





mk,r+1
∑

j=mk,r+1

¯̄ξk,j





4

≤

mk,r+1
∑

j=mk,r+1

E¯̄ξ
4

k,j + 3





mk,r+1
∑

j=mk,r+1

E¯̄ξ
2

k,j





2

≤

(

δ2
k + 3 sup

0≤r<s(,εk)

(

uk,mk,r+1
− uk,mk,r

)

)





mk,r+1
∑

j=mk,r+1

E¯̄ξ
2

k,j



 .

(Here we have exploited that because of the relation E¯̄ξk,j = 0 and the inde-

pendence of the random variables ¯̄ξk,j by carrying out the multiplications in the

expression E

(

mk,r+1
∑

j=mk,r+1

¯̄ξk,j

)4

we get a sum whose summands are the expected

value of products of the random variables ξk,j . Those summands which contain a
term with power one equal zero.) The above relations imply that

∑

0≤r<s(k,εk)

P



 sup
mk,r+1≤p≤mk,r+1

∣

∣

∣

∣

∣

∣

p
∑

j=mk,r+1

¯̄ξk,j

∣

∣

∣

∣

∣

∣

> ε





≤

(

δ2
k + 3 sup

0≤r<s(,εk)

(

uk,mk,r+1
− uk,mk,r

)

)(

nk
∑

j=1

E¯̄ξ
2

k,j

)

ε4
.

Formula (3b) follows from this inequality, since lim
k→∞

E
nk
∑

j=1

¯̄ξ
2

k,j = 1, lim
k→∞

δk = 0,

and lim
k→∞

sup
0≤r<s(k,εk)

(

uk,mk,r+1
− uk,mk,r

)

= 0.
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14.) Let us consider a sequence of random variables ξn with distribution µn, n =
0, 1, 2, . . . , on the space (X, ρ) such that the random variables ξn converge with
probability one to the random variable ξ0 as n → ∞. This is possible by the result
of Problem 5. Then also the Fµn distributed random variables ηn = Fξn con-
verge to the Fµ0 distributed random variable η0 = Fξ0 with probability one. This
implies the statement of Problem 14.

Appendix

The proof of the König–Hall theorem. The necessity of the condition is obvious. We
prove sufficiency by induction with respect to the size of the set Y . If |Y | = 1, then the
statement is obvious. Let us assume that we know the sufficiency of the condition for
|Y | = k < n, and let us prove it for |Y | = n. We distinguish two cases:

a.) There exists a set A ⊂ Y such that 0 < |A| = k < n, and |B(A)| = |A|.

b.) For all sets A ⊂ Y such that 0 < |A| < n |B(A)| > |A|.

In case a.) we claim that the conditions of the theorem hold for both pairs of sets
Ȳ = A, Z̄ = B(A) and Ȳ = Y \ A, Z̄ = Z \ B(A) and the restriction of the function
d(y, z) to these sets Ȳ × Z̄. Then the inductive hypothesis implies the sufficiency of the
condition in case a.) In case Ȳ = A, Z̄ = B(A) this statement is obvious. If Ȳ = Y \A
and Z̄ = Z \B(A) let us consider the set C ⊂ Y \A. Put C̄ = C∪A. Then |C| = |C̄|−k,
|B(C̄)| ≥ |C̄|, and B(C)∩ Z̄ ⊃ B(C̄) \B(A). Hence |B(C)∩ Z̄| ≥ |B(C̄)| − k ≥ |C̄| − k,
and |B(C) ∩ Z̄| ≥ |C|, as we have claimed.

In case b.) let us consider a point zj ∈ Z, for which d(y1, zj) = 1. Let us pair the
point y1 with the point zj . To complete the proof of the theorem it is enough to show
that the sets Ȳ = Y \ {y1} and Z̄ = Z \ {zj} satisfy the conditions of the theorem in
case b.). But this is obvious, since in case b.) |B(A)∩ Z̄| ≥ |B(A)| − 1 ≥ |A| for all sets
A ⊂ Z.

The proof of the continuous version of the König–Hall theorem. The necessity of the
condition is obvious also in this case. We prove the sufficiency of the conditions by
means of the original König–Hall theorem.

Let us first consider the special case when there is an integer N such that u(yj) =
kj

N
for all yj ∈ Y and v(zl) =

pl

N
for all zl ∈ Z, where kj and pl are integers. In this case

let us define the following bipartitated graph: Ȳ = {(yj ,m(j)), yj ∈ Y, 1 ≤ m(j) ≤ kj},
Z̄ = {(zl, n(l)), zl ∈ Z, 1 ≤ n(l) ≤ pl}, d̄((yj ,m(j)), (zl, n(l))) = d(yj , zl). Then
the bipartitated graph (Ȳ , Z̄, d̄(·, ·)) satisfies the conditions of the König–Hall theorem.
Indeed, it is enough to check the conditions of the König–Hall theorem for those sets
A ⊂ Ȳ for which in the case ȳ = (yj ,m(j)) ∈ A with some points (yj ,m(j)) ∈ Ȳ also
the relation (yj , k) ∈ A holds for all points (yj , k), 1 ≤ k ≤ kj . On the other hand, this
condition agrees with the relation

∑

z∈B(A)

v(z) ≥
∑

y∈A

u(y) for all A ∈ Y .
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Hence there exists such a pairing of the elements of the sets Ȳ and Z̄, in which
the points ȳ and z̄ in a pair satisfy the relation d̄(ȳ, z̄) = 1. Put w̄(ȳ, z̄) = 1, if
ȳ and z̄ are in a pair, and w̄(ȳ, z̄) = 0 otherwise. Then the function w(yj , zl) =
1

N

∑

ȳ=(yj ,m(j)),1≤m(j)≤kj

z̄=(zl,n(l)),1≤nl≤pl

w̄(ȳ, z̄) satisfies the statement of the theorem in this special

case.

The general case can be reduced to the already proved situation with an appro-
priate approximation. We can assume without violating the generality that

∑

y∈Y

u(y) =
∑

z∈Z

v(z) = 1. For all N = 1, 2, . . . let us define the following system approximating the

original one. Put Ȳ = ȲN = Y ∪ {r + 1}, Z̄ = Z̄N = Z ∪ {s + 1}, d̄(y, z) = d̄N (y, z) =
d(y, z), if y ∈ Y , z ∈ Z, and d̄(yr+1, z) = d̄N (yr+1, z) = d̄(y, zs+1) = d̄N (y, zs+1) = 1,
(this means that the points yr+1 and zs+1 are connected to all points of the other set),

ūN (y) =
[Nu(y)]

N
, if y ∈ Y , v̄N (z) =

[Nv(z)]

N
, if z ∈ Z, where [u] denotes the integer

part of the number u, beside this ūN (yr+1) =
∑

y∈Y

(u(y) − ūN (y)) = 1 −
∑

y∈Y

ūN (y),

and v̄N (ys+1) =
∑

z∈Z

(v(z) − v̄N (z)) = 1 −
∑

z∈Z

v̄N (z). Let us observe that this new

system also satisfies the conditions of the theorem. Indeed, if A ⊂ YN , then the set
of points BN (A) of Z̄N connected to a set A ⊂ YN is B̄N (A) = B(A) ∪ {zs+1}, and
∑

y∈A

ūN (y) ≤
∑

y∈A

u(y) ≤
∑

z∈B(A)

v(z) ≤
∑

z∈B(A)

v̄N (z) + v̄N (zs+1) ≤
∑

z∈B̄(A)

v̄N (z). If

yr+1 ∈ A, then B̄N (A) = Z̄N , and
∑

y∈A

ūN (y) ≤ 1 =
∑

z∈Z̄N

v̄N (z). Hence the already

proved part of the Theorem can be applied in this case.

Let us consider for all N = 1, 2, . . . a “transport function” w̄N (y, z), y ∈ Ȳ , z ∈ Z̄
satisfying the theorem. As 0 ≤ w̄N (y, z) ≤ 1 for all points y ∈ Ȳ , z ∈ Z̄, and numbers
N = 1, 2, . . . a subsequence Nk → ∞ of the integers can be chosen in such a way that
the limit w(y, z) = lim

k→∞
wNk

(y, z) exists for all points y ∈ Ȳ and z ∈ Z̄. This function

w(y, z) satisfies the theorem.
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