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Summary: The central limit theorem belongs to the most important
results of probability theory. There is another classical result of the
probability theory, the law of large numbers which states in a slightly
informal language that under some mild conditions the average of the
partial sums of independent and identically distributed random vari-
ables can be well approximated by the expected value of these random
variables. The central limit theorem gives better, more substantial
information about the fluctuation of the average of these partial sums
around their expected value. It states that if we multiply this fluctu-
ation by

√
n, where n denotes the number of random variables in the

average, then the distribution of the fluctuation with this normaliza-
tion is close to a (non-degenerated) distribution independent of the
number n. Moreover, and this is a most remarkable fact, this ap-
proximating distribution does not depend on the distribution of the
random variables whose average is taken. This distribution is a “uni-
versal law” which is called the normal distribution in the literature.
In the series of problems described in this text we shall formulate the
above result in a more precise and more general form.

The method of the proofs also deserves special attention. This
method, which is called the characteristic function method, is actually
the application of the Fourier analysis in the proof of limit theorems.
One goal of this series of problems was to show that this is a natural
approach. The main difference between my text and the discussion of
the central limit theorem in usual text-books is that I tried to supply
a more definitive and detailed explanation about the relation between
the method of the proof of the central limit theorem and some basic
ideas of the Fourier analysis.

The theory of the Fourier series gives a natural method to prove
the local version of the central limit theorem, i.e. to describe the
asymptotic behaviour of the density and not of the distribution func-
tion of the normalized partial sums of independent random variables.
Furthermore, if we understand what kind of additional problems arise
if we want to prove the central limit theorem in its original (and not
in its local) form and also understand the answers supplied by the
results of the Fourier analysis to these questions, then we can prove
the desired results.

Moreover, in such a way we get a natural method to prove some
refinements of the central limit theorem. We also can investigate
the question how good approximation is supplied by the central limit
theorem for the distribution of normalized partial sums of indepen-
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dent random variables, and what kind of better approximation can
be given. But these problems are not discussed here. They will be
the subject of the second part of this series of problems.

Finally, I mention some parts of this work which may be of spe-
cial interest. They are the proof of the Stirling formula in a way sug-
gested by the proof of the local central limit theorem, (problem 2),
the necessary and sufficient condition of the relative compactness of a
sequence of probability measures expressed by means of their charac-
teristic functions (problem 22), a detailed discussion of the question
how the properties of a function or a measure are reflected in the be-
haviour of their Fourier transform (problems 27–34 and the discussion
about these problems).
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Central limit theorems and Fourier analysis

A.) Local limit theorems.

Let us first consider the following problem: Let ξj , j = 1, 2, . . . , be a sequence of
independent and identically distributed random variables which take integer values. We

introduce the notation P (ξ1 = k) = p(k), k = 0,±1,±2, . . . ,
∞∑

k=−∞
p(k) = 1 and define

the partial sums Sn =
n∑

j=1

ξj , n = 1, 2, . . . . Let us consider the probabilities pn(k) =

P (Sn = k), k = 0,±1,±2, . . . , n = 1, 2, . . . , and try to give a good approximation of
the probabilities pn(k) in the case of large parameters n.

A good estimation can be given for these probabilities pn(k) by means of the fol-
lowing method. Let us define the Fourier series

Pn(t) =
∞∑

k=−∞
pn(k)eikt, −π ≤ t ≤ π. (1)

By a basic formula of the theory of Fourier series the coefficients of the above Fourier
series can be expressed by means of the formula

pn(k) =
1

2π

∫ π

−π

e−iktPn(t) dt, k = 0,±1,±2, . . . . (2)

Hence, if we give a good asymptotic formula for the Fourier series Pn(t) and estimate
well the integral in formula (2), then we get a good estimate for the probabilities pn(k)
we are interested in. Let us observe that Pn(t) = EeitSn , −π ≤ t ≤ π. Besides, as Sn

is the sum of independent and identically distributed random variables,

Pn(t) = Eeit(ξ1+···+ξn) =
(
Eeitξ1

)n
= (P1(t))

n
,

where P1(t) =
∞∑

k=−∞
P (ξ1 = k)eikt. Furthermore, P1(0) = 1, and as we shall see,

|P1(t)| < 1 if −π ≤ t ≤ π and t 6= 0 under some natural conditions. Hence in the
estimation of the probabilities pk(n) a so-called singular integral appears in formula (2),
in which only a small neighbourhood of the origin gives an essential contribution to
the integral. Such expressions can be well bounded by some standard methods of the
analysis. Let us first show the following identities which we later need.

1.) Let us show that
1√
2aπ

∫ ∞

−∞
e−u2/2a du = 1

for all real positive numbers a > 0. Furthermore,

1√
2aπ

∫ ∞

−∞
e−(u−z)2/2a du = 1
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for all real positive numbers a > 0 and complex numbers z.

First we apply the above method in a special case. Let us consider the Poisson
distribution with parameter λ = n, that is the distribution of a random variable η for

which P (η = k) = Pn(k) = nk

k! e
−n, k = 0, 1, 2, . . . . The distribution of a Poissonian

random variable with parameter n agrees with the distribution of the sum of n indepen-
dent Poissonian random variables with parameter 1. Hence the above sketched method
makes possible to get a good estimate for the probabilities Pn(k). We get a really good
estimate in the case when the number k is close to the expected value of the random
variable η, i.e. if n ∼ k. In particular, by investigating the appropriate Fourier series we
get a good bound on the number Pn(n). We do not exploit explicitly the probabilistic
content of the coefficients Pn(k) of this Fourier series, but the calculations indicate what
kind of technical problems has to be solved in the analogous problems of probability
theory. Besides, we get in such a way the proof of an important result of the analysis,
the proof of the Stirling formula. This is the content of the next problem.

2.) Let us calculate the value of the Poissonian distribution with parameter n in the
point n with the help of the above discussed method by working with the Fourier
series whose coefficients are the values of this Poisson distribution. Let us show
with the help of this method that

n! =
(n

e

)n 2π
∫ π

−π
en(eit−1−it) dt

. (3)

Let us show that

∫ π

−π

en(eit−1−it) dt =

√
2π√
n

(

1 +O

(
1

n

))

(4a)

and

n! =
√

2πn
(n

e

)n
(

1 +O

(
1

n

))

. (4b)

Let us prove the following improvement of the previous two statements:

∫ π

−π

en(eit−1−it) dt =

√
2π√
n

(

1 +
c1

n1/2
+
c2

n
+ · · · + ck

nk/2
+O

(
1

n(k+1)/2

))

(4c)

for arbitrary integer k ≥ 1 with explicitly calculable coefficients ck. In particular,
c1 = 0. Furthermore,

n! =
√

2πn
(n

e

)n
(

1 +
c̄1

n1/2
+
c̄2

n
+ · · · + c̄k

nk/2
+O

(
1

n(k+1)/2

))

(4d)

for arbitrary integer k ≥ 1 with explicitly calculable coefficients c̄k. In particular,
c̄1 = 0.
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Central limit theorems and Fourier analysis

Similarly to the solution of problem 2 a good asymptotic formula can be given
for the probability of the event that the sum of independent and identically distributed
random variables takes a definite value. This investigation is based on formula (2) where
the integral of a Fourier series with periodicity 2π has to be estimated. But such cases
may appear when this Fourier series also has a smaller periodicity. Such an example
appears for instance if the partial sums of such random variables are considered which
take only even or only odd values. The Fourier series determined by the distribution of
such random variables has a smaller periodicity π. If we want to study the asymptotic
behaviour of the distribution of partial sums of independent and identically distributed
random variables in a systematic way, then we have to clarify which is the smallest period
of the Fourier series in formula (2). In particular, we want to tell when the smallest
periodicity of this Fourier series is precisely 2π. This is the reason why we introduce
the following definition. Then we study the case when the smallest periodicity of the
Fourier series in formula (2) is 2π. The investigation of partial sums of independent
and identically distributed random variables whose distribution takes values on a lattice
kh+ b, k = 0,±1,±2, . . . , with some numbers h and b can be relatively simply reduced
to this special case.

Definition A. The values of a random variable ξ are concentrated on the lattice of

integers (as on the rarest lattice) if
∞∑

k=−∞
P (ξ = k) = 1, and for arbitrary integers

A > 1 and B
∞∑

k=−∞
P (ξ = Ak +B) < 1.

More generally, we call a random variable ξ lattice valued if its values are con-
centrated with probability one on a set of the form {b + kh, : k = 0,±1,±2, . . . } with
some real numbers h > 0 and b. We say that the values of a random variable ξ are
concentrated on a lattice of width h, h > 0, (as on the rarest lattice) if there exists a

real number b such that
∞∑

k=−∞
P (ξ = kh + b) = 1, and

∞∑

k=−∞
P (ξ = Akh + B) < 1 for

all integers A > 1 and real numbers B.

To carry out the further investigation we need the following result.

3.) If ξ is a non-constant random variable concentrated on a lattice, then there exist
a smallest h > 0 number such that it is concentrated on a lattice of width h as the
rarest lattice.

Let ξ be a random variable concentrated on a lattice of width h (as on the rarest

lattice). Let us choose a real number b > 0 such that
∞∑

n=−∞
P (ξ = nh+ b) = 1, and

let us consider the Fourier series P (t) =
∞∑

n=−∞
einhP (ξ − b = nh) determined by

the distribution of the random variable ξ − b. The periodicity of the Fourier series
P (t) equals 2π

h , P (0) = 1, |P (t)| ≤ 1 for all real numbers t, and |P (t)| < 1 if |t| ≤ π
h

and t 6= 0. If the absolute value of the random variable ξ−b has k-th moment, that
is E|ξ− b|k <∞, then the function P (t) is k times continuously differentiable, and
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dP k(t)
dtk

∣
∣
∣
t=0

= ikE(ξ − b)k, (where i =
√
−1).

4.) Let ξ1, ξ2, . . . , be a sequence of independent and identically distributed random
variables whose values are concentrated with probability one on the lattice of the
integers (as on the rarest lattice). Let Eξ1 = m, Eξ21 = m2 <∞, (that is we assume
that the second moment of the random variable ξ1 is finite), and put σ2 = m2−m2

1.
(The number σ2 denotes the variance of the random variable ξ1.) Let us consider
the partial sums Sn = ξ1 + · · · + ξn, n = 1, 2, . . . . Then

P (Sn = k) =
1√

2πnσ
exp

{

− (k − nm)2

2nσ2

}

+ o

(
1√
n

)

, k = 0,±1,±2, . . . ,

and o(·) is uniform in the variable k.

5.) Let us consider such a sequence ξ1, ξ2, . . . , of independent and identically dis-
tributed random variables which satisfies the conditions of the previous problem
together with the condition E|ξ1|3 <∞. Under these conditions prove the following
sharper form of the previous problem.

P (Sn = k) =
1√

2πnσ
exp

{

− (k − nm)2

2nσ2

}

+ ε(n, k), k = 0,±1,±2, . . . ,

where |ε(n, k)| ≤ K
n , and the constant K depends only on the distribution of the

random variable ξ1.

Historically first that special case of the above limit theorems was considered where
the random variable ξ1 is binomially distributed, i.e. P (ξ1 = 1) = 1 − P (ξ1 = 0) = p,
0 < p < 1. In this case the distribution of the sum Sn can be expressed in a simple
explicit form, and this expression can be well bounded with the help of the Stirling
formula. As this special case has a particular importance in combinatorial applications,
it deserves special discussion. This is done in the following problem.

5a.) Let us give an elementary proof of the statement of problem 5 in the special case
when ξ1 is binomially distributed. (Here we want to give a proof where the Stirling
formula is applied instead of the Fourier analysis.)

6.) Let a sequence ξ1, ξ2, . . . of independent and identically distributed random vari-
ables satisfy the conditions of problem 4 with the difference that now we assume
that the values of the random variable ξ1 are concentrated with probability 1 on a
lattice of width h, h > 0, (which is the width of the rarest lattice). Let the values
of the random variable ξ1 be concentrated on the numbers kh+ b, k = ±1,±2, . . . ,
with some real number b. Then with the notations of problem 4

P (Sn = kh+ nb) =
h√

2πnσ
exp

{

− (kh+ nb− nm)2

2nσ2

}

+ o

(
1√
n

)

,

k = 0,±1,±2, . . . ,

(5)
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Central limit theorems and Fourier analysis

where o(·) is uniform in the variable k. If also the condition E|ξ1|3 <∞ is satisfied,
then

P (Sn = kh+ nb) =
h√

2πnσ
exp

{

− (kh+ nb− nm)2

2nσ2

}

+ ε(k, n),

k = 0,±1,±2, . . . ,

where |ε(n, k)| ≤ K
n , and the constant K depends only on the distribution of the

random variable ξ1.

7.) If a sequence of random variables Sn, n = 1, 2, . . . , satisfies relation (5), (it has no
importance what additional properties these random variables have), then

lim
n→∞

P

(
Sn − nm√

nσ
< x

)

=

∫ x

−∞

1√
2π
e−u2/2 du

for all real numbers x. The convergence is uniform with respect to the parameter x.

The above results supply good information on the probabilities the partial sums
of lattice valued independent and identically distributed random variables take differ-
ent values. Then by “integrating out” this relation in problem 7 we have obtained an
estimate about the limit behaviour of the distribution of the appropriately normalized
partial sums of independent and identically distributed random variables if the sum-
mands are lattice distributed. These results can be sharpened, but first we want to
generalize the above result and to investigate the limit behaviour of the distribution
or density (if the density function exists) function of appropriately normalized partial
sums of independent random variables which are not necessarily lattice distributed.

Let ξ1, ξ2, . . . , be a sequence of independent random variables, and let us consider
the partial sums Sn = ξ1 + · · · + ξn, n = 1, 2, . . . . We want to show that if the random
variable ξ1 has a nice density function, then a good asymptotic formula can be given
for the density function of the random sum Sn. Besides, we want to show under general
conditions that the appropriate normalized version of the sums have a limit distribution
as n→ ∞, and also want to describe this limit distribution function. In the case when
the random variables ξn are lattice valued then the corresponding problems could be
solved by means of the investigation of an appropriate Fourier series. The question arises
whether this method can be adapted to solve the analogous problem in the general case.
To carry out such a program we should have a relatively simple inversion formula which
enables to calculate a density or distribution function by means of its Fourier transform.

In case of nice density functions there exists such a simple inversion formula. In case
of general distribution function there are only complicated inversion formulas which are
not really well applicable in the investigations we have in mind. To prove limit theorems
for the appropriately normalized partial sums of independent random variables first we
have to understand what means exactly convergence in distribution. Then we can
prove limit theorems for the normalized partial sums of independent random variables
by means of some basic results of the Fourier analysis. Before doing this we formulate
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an inversion formula for the Fourier transform which is useful in the investigation of the
density functions.

Inversion formula for Fourier transforms. Let f(u) be an integrable function on
the real line, i.e. let us assume that

∫∞
−∞ |f(u)| du < ∞. Let us consider the Fourier

transform

f̃(t) =

∫ ∞

−∞
eituf(u) du, −∞ < t <∞ (6a)

of this function f(·). If the function f̃ is also integrable, i.e.
∫∞
−∞ |f̃(t)| dt < ∞, then

the identity

f(u) =
1

2π

∫ ∞

−∞
e−ituf̃(t) dt (6)

holds in almost all points of the real line with respect to the Lebesgue measure. Moreover,
even the following stronger statement holds. Let µ be a finite measure, i.e. let µ(R1) <
∞. Let f̃(t) =

∫
eitu dµ(u) denote the Fourier transform of this measure µ. If the

function f̃(·) is integrable, then the measure µ has a density function, and it agrees with
the function f(·) defined in formula (6). This result can be slightly generalized. It also
holds if µ is a signed measure with bounded variation, i.e. it is the difference of two
finite measures.

The above definition of the Fourier transform slightly differs from the definition
usually given in the literature, where the integral in formula (6a) and its analog which
defines the Fourier transform of a measure µ is divided by

√
2π. With such a normal-

ization the Fourier transform and the formula expressing its inverse are more similar to
each other. For us the formula given in (6a) is more convenient. We shall prove this
inversion formula for Fourier transforms in the Appendix. Let us remark that the re-
striction that formula (6) holds only for almost all points u with respect to the Lebesgue
measure is natural. Indeed, by modifying a function on a set of Lebesgue measure zero
we get a new function which has the same Fourier transform.

Let us finally remark that the formula about the calculation of the Fourier coef-
ficients by means of the Fourier transform suggest the inversion formula (6). Namely,
let us approximate a function in the points kε, k = 0,±1,±2, . . . , in a natural way
and let us write the Fourier series with these coefficients (in this case we consider the
Fourier series in the interval

[
−π

ε ,
π
ε

]
). Then by expressing the Fourier coefficients of

this Fourier series with the help of the Fourier series and by applying the limit procedure
ε→ 0 we get, at least on a formal level, formula (6).

8.) Let ξ1, ξ2, . . . , be a sequence of independent and identically distributed random
variables, Eξ1 = 0,Eξ21 = 1, (i.e. we consider random variables with expectation
zero and variance one), and put Sn = ξ1 + · · ·+ξn, n = 1, 2, . . . . Let us also assume
that the random variable ξ1 has a density function f(x), and the Fourier transform
ϕ(t) of the density function f(x) is integrable or at least it satisfies the following
weakened condition: There exists an integer k ≥ 1 such that ϕk(t) is integrable.
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Then the random variable Sn√
n

has a density function fn(x) which satisfies the

relation

lim
n→∞

fn(x) =
1√
2π
e−x2/2 for all real numbers x, (7)

and the convergence is uniform in the parameter x.

9.) If a sequence of distribution functions Fn(x), n = 1, 2, . . . have density functions
fn(x), and they satisfy formula (7), then

lim
n→∞

Fn(x) =

∫ x

−∞

1√
2π
e−u2/2 du for all real numbers x.

The convergence is uniform with respect to the variable x.

10.) If the conditions of problem 8 are satisfied, and also the relation E|ξ1|3 <∞ holds,
then relation (7) holds with a better error term. Namely,

fn(x) =
1√
2π
e−x2/2 +O

(
1√
n

)

,

and O(·) is uniform with respect to the parameter x.

Remark: We have proved in problems 6 and 10 that if the absolute value of the ran-
dom variables have finite third moment, then the density function of the appropriately
normalized sums can be approximated with the normal density function with an ac-
curacy of order O

(
n−1/2

)
, where n is the number of summands in the sum. In the

second part of this series of problems we shall prove an analog of this result about the
approximation of the appropriately normalized distribution function of partial sums of
independent and identically distributed random variables. This is an important result
of the probability theory, which is called the Berry–Esseen inequality. It yields an esti-
mate of the same order O

(
n−1/2

)
for the approximation of the normalized distribution

function by the standard normal distribution function. Nevertheless, there is an essen-
tial difference between the estimate supplied by the Berry–Esseen inequality and the
results of problems 6 and 10.

The Berry–Esseen inequality gives an upper bound of the form const.µ3n
−1/2,

where µ3 is the third moment of the absolute value of the summands, and the const.
is a universal number which can be chosen independently of the distribution of the
summands. One cannot give a similar universal estimate on the normal approximation
of the density function. Indeed, if for instance the density function of the summands
take extremely large values in a small neighbourhood of the origin and the probability
of this neighbourhood is relatively large, say larger than 1

10 , then for relatively small
indices n the density function of the normalized sum of n independent random variables
cannot be well approximated by a normal density function, although the third moment
of the absolute value of the summands may be not large. A similar example can be
given for the density function of the partial sums of lattice valued random variables if
the width of the lattice may be very small.
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The above sketched examples show that the analog of the Berry–Esseen inequality
for density functions does not hold. This difference is related to the fact that in the
first case we study distribution functions while in the second case their derivatives. It
is a quite common experience in analysis that for the nice behaviour of a sequence of
functions we have to impose much weaker conditions than for the nice behaviour of their
derivatives.

A deficiency of the results of problems 8 and 9 is that it imposes conditions not
for the density but for the characteristic function of the summands, while in typical
applications we have some direct information about the density and not on the char-
acteristic function. Hence we have to understand the relation between the properties
of a density and the corresponding characteristic function. Later we shall return to
this question. We shall see that relation (7) holds for the density function of normalized
sums of independent and identically distributed random variables if the summands have
“nice” density function.

B.) The definition of the normal distribution function and of the char-
acteristic function. Some important results related to these notions.

Let us introduce the definition of the (standard) normal distribution. The solutions
of the previous problems suggest that in limit distributions the normal limit distribution
appears as the limit.

The definition of the normal distribution. The Φ(x) standard normal distribution
function is the distribution function whose density function the standard density function
ϕ(x) is of the form ϕ(x) = 1√

2π
e−x2/2, that is

Φ(x) =

∫ x

−∞

1√
2π
e−u2/2 du.

More generally, a linear transform of the standard normal distribution function Φ(x) is
called a normal distribution function. More explicitly, a normal distribution function
can be characterized by two parameters, by a real number m and a positive real number σ.
The normal distribution function with parameters m and σ equals Φm,σ(x) = Φ

(
x−m

σ

)
.

Its density function is ϕm,σ(x) = 1
σϕ
(

x−m
σ

)
= 1√

2πσ
e−(x−m)2/2σ2

.

It follows from the solution of problem 1 that Φ(x) is really a distribution function. The
normal distribution is also called the Gaussian distribution in the literature.

11.) Let us show that the expected value of a standard normal random variable equals
zero, and its variance equals one. The expected value of a random variable with
distribution function Φm,σ(x) equals m and its variance equals σ2.

Let us consider the appropriately normalized partial sums of independent and iden-
tically distributed random variables with a nice density function. We have seen that the
density functions of these normalized partial sums tend to the normal density and their
distribution functions to the normal distribution function. A similar result holds for
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sums of lattice valued random variables. We say that the appropriate normalizations
S̄n = Sn−an

bn
, n = 1, 2, . . . , of a sequence of random variables Sn, n = 1, 2, . . . , satisfy

the local central limit theorem if either the random variables S̄n have a density function
for large n, and they converge uniformly to the standard normal distribution function,
or for all large n there exists a lattice khn + bn of width hn, k = 0,±1,±2, . . . , such
that hn → 0 if n → ∞, the random variable S̄n is concentrated on this lattice (as on
the rarest lattice), and P (Sn = khn + bn) = hnϕ(khn + bn) + o(hn), k = 0,±1,±2, . . . ,
o(·) is uniform in the variable k, where ϕ(x) is the standard normal density function.

We have seen in problems 6 and 8 that the appropriately normalized sums of in-
dependent and identically distributed random variables with density function or lattice
valued distribution satisfy the local central limit theorem under fairly general condi-
tions. The normalization is made in a natural way. With the notation of the previous
paragraph we choose an = nEξ1 = ESn, bn =

√
nVar ξn =

√
VarSn, i.e. such a nor-

malization is chosen with which the normalized partial sums have expected value zero
and variance one. We also have seen that the local central limit theorem implies the
(global) central limit theorem (problems 7 and 9). One would expect that the central
limit theorem may hold also in such cases when its local version fails to hold. We want
to show that this belief is right. Moreover, we want to prove the central limit theorem
in more general cases when appropriately normalized partial sums of independent but
not necessarily identically distributed random variables are considered.

We have proved the local central limit theorem with the help of the Fourier trans-
form of the distribution functions we have investigated. We want to show that this
method can be adapted to the proof of (global) central limit theorems. To do this we
recall the definition of the Fourier transform of general (probability) measures. We shall
call them, following the tradition of probability theory terminology, characteristic func-
tions. Since later we also want to study partial sums of vector valued random variables,
hence — to avoid some repetition — we define the multi-dimensional version of the
characteristic functions.

The definition of characteristic functions. Let F (u) = F (u1, . . . , uk) = P (ξ1 <
u1, . . . , ξk < uk) denote the distribution function of a k-dimensional random vector
(ξ1, . . . , ξk). The ϕ(t) = ϕ(t1, . . . , tk), t = (t1, . . . , tk), characteristic function of a k-
dimensional distribution function F or of an F distributed k-dimensional random vector
ξ = (ξ1, . . . , ξk), k ≥ 1, is defined by the formula

ϕ(t) = ϕ(t1, . . . , tk) = Eei(t,ξ) = Eei(t1ξ1+···+tkξk)

=

∫

ei(t,u)F ( du) =

∫

ei(t1u1+···+tkuk)F ( du1, . . . , duk),

where t = (t1, . . . , tk) is an arbitrary point of the k-dimensional Euclidean space. (Here
we applied the following notation: If u = (u1, . . . , uk) and v = (v1, . . . , vk) are two
k-dimensional vector, then (u, v) = u1v1 + · · · + ukvk denotes the scalar product of the
vectors u and v.)

12.) A characteristic function ϕ(t1, . . . , tk) is uniformly continuous in the k-dimensional

11
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Euclidean space Rk, ϕ(0, . . . , 0) = 1 and

|ϕ(t1, . . . , tk)| ≤ 1 in all points (t1, . . . , tk) ∈ Rk.

Let ϕ(t) = ϕ(t1, . . . , tk), t = (t1, . . . , tk), be the characteristic function of a random
vector ξ = (ξ1, . . . , ξk). Let a be a real number and m = (m1, . . . ,mk) a k-
dimensional vector. Then the characteristic function of the random vector aξ+m =
(aξ1 +m1, . . . , aξk +mk) equals

ei(m,t)ϕ(at) = ei(m1t1+···+mktk)ϕ(at1, . . . , atk).

If ξ1, . . . , ξn, 1 ≤ j ≤ n, is a sequence of independent k-dimensional random vectors

with the notation ξj = (ξ
(1)
j , . . . , ξ

(k)
j ), and ϕj(t) = ϕj(t1, . . . , tk), j = 1, . . . , n, t =

(t1, . . . , tk), denotes their characteristic functions, then the characteristic function

of the sum ξ1 + · · · + ξn equals
n∏

j=1

ϕj(t) =
n∏

j=1

ϕj(t1, . . . , tk).

Let us calculate the characteristic function of some important distribution func-
tions.

13.) Let us show that if the random variable ξ

a.) has standard normal distribution, i.e. it has a density function of the form f(u) =
1√
2π
e−u2/2, then its characteristic function equals ϕ(t) = e−t2/2.

b.) has uniform distribution in the interval [0, 1], i.e. it has a density function of the
form f(u) = 1 if 0 ≤ u ≤ 1 and f(u) = 0 is otherwise, then its characteristic

function equals ϕ(t) = eit−1
it .

c.) has exponential distribution with parameter λ > 0, i.e. it has a density function
of the form f(u) = λe−λu if u ≥ 0 and f(u) = 0 if u < 0, then its characteristic
function equals ϕ(t) = λ

λ−it .

d.) has Cauchy distribution, i.e. it has a density function of the form f(u) = 1
π

1
1+u2 ,

then its characteristic function equals ϕ(t) = e−|t|.

e.) has Poisson distribution with parameter λ > 0, i.e. P (ξ = k) = λk

k! e
−λ, k =

0, 1, 2, . . . , then its characteristic function equals ϕ(t) = exp
{
λ(eit − 1)

}
.

f.) has binomial distribution with parameters n and p where n ≥ 1 is an integer,
0 < p < 1, i.e. P (ξ = k) =

(
n
k

)
pk(1 − p)n−k, k = 0, 1, . . . , n, then its characteristic

function equals ϕ(t) = (1 − p+ peit)n.

g.) has negative binomial distribution with parameters n and p, where n ≥ 1 is an
integer, 0 < p < 1, i.e. P (ξ = k) =

(
n+k−1

k

)
pk(1 − p)n, k = 0, 1, 2, . . . , then its

characteristic function equals ϕ(t) =
(

1−p
1−peit

)n

.

h.) has γ distribution with parameter s, s > 0, i.e., its density function is γs(u) =
1

Γ(s)u
s−1e−u, if u > 0, and γs(u) = 0, if u < 0, where Γ(s) =

∫∞
0
us−1e−u du, then

its characteristic function equals ϕs(t) = 1
(1−it)s .

12
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It may be worth mentioning that the density function γs(u), considered in point h.)
shows some similarity with the Poissonian distribution, and this can be exploited to
prove, similarly to the solution of Problem 2, a good asymptotic formula for the function
Γ(s) if s → ∞. This means a generalization of Stirling’s formula, since one prove with
the help of some partial integration that Γ(n) = (n− 1)!.

Let us observe that γs1(u) ∗ γs2(u) = γs1+s2(u), where ∗ denotes convolution.
This can be seen e.g. with the help of the form of the characteristic function of γs

and some important properties of the characteristic functions discussed later. Further,

we can write the identity γs(s) = ss−1e−s

Γ(s) = 1
2π

∫∞
−∞

e−ts

(1−it)s ds with the help of the

inverse Fourier transform formula for density functions. Then we get by giving a good
asymptotic formula for the expression at right-hand side of this identity (similarly to
the solution of Problem 2) that Γ(s) ∼

√

2π(s− 1)( s−1
e )s−1 if s→ ∞.

C.) The definition of the convolution and some of its important proper-
ties.

In this series of problems we investigate the asymptotic behaviour of the distribution
and density function of appropriately normalized partial sums of independent random
variables. These distribution or density functions can be directly expressed by means
of the distribution of density functions of the random variables in these partial sums.
Hence the limit theorems discussed in this text also can be expressed in the language of
distribution (and density) functions without speaking of sums of independent random
variables. To do this we have to introduce the notion of the convolution operator.
We introduce this notion in a slightly more general form and define the convolution
of integrable (not necessary density) functions and signed measures. We shall not use
the notion of the convolution in this series of problems. Hence this section could be
omitted. Nevertheless, the discussion of limit theorems without the introduction of the
convolution would not be complete, hence we introduce it. In several investigations of
the analysis and probability theory this notion appears in a natural way, and it appears
in the more general form introduced in this text.

The definition of the convolution operator. If f(x1, . . . , xk) and g(x1, . . . , xk)
are two k-dimensional measurable functions of k variables which are integrable, i.e.
∫
|f(x1, . . . , xk)| dx1 . . . dxk < ∞ and

∫
|g(x1, . . . , xk)| dx1 . . . dxk < ∞, then the con-

volution f ∗ g of the functions f and g is the function of k variables defined by the
formula

f ∗ g(x1, . . . , xk) =

∫

f(u1, . . . , uk)g(x1 − u1, . . . , xk − uk) du1 . . . duk (8)

in all such points (x1, . . . , xk), where this integral is meaningful. (In the remaining
points we can define the function f ∗ g in an arbitrary way.)

Let µ and ν be two signed measures of bounded variation on the measurable sets of
the k-dimensional Euclidean space Rk. This means that we assume that there exist two
representations µ = µ1 − µ2 and ν = ν1 − ν2 such that µi and νi, i = 1, 2, are finite
measures on the measurable subsets of the space Rk, i.e. µk(Rk) <∞ and νk(Rk) <∞,

13
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k = 1, 2. Let µ × ν denote the direct product of these signed measures µ and ν on the
product space Rk ×Rk = R2k. Then the convolution µ ∗ ν is the signed measure on the
measurable subsets of the space Rk defined by the formula

µ ∗ ν(A) = µ× ν{(u, v): u+ v ∈ A} for all measurable sets A ⊂ Rk.

In other words, µ ∗ ν is the pre-image of the product (signed) measure µ× ν induced by
the transformation T: Rk ×Rk → Rk defined by the formula T(u, v) = u+ v.

Let f(x1, . . . , xk) be a measurable and integrable function of k variables, ν a measure
of bounded variation on the measurable subsets of Rk. The convolution f ∗ν(x1, . . . , xk)
is the following function of k variables:

f ∗ ν(x1, . . . , xk) =

∫

f(u1, . . . , uk)ν(x1 − du1, . . . , xk − duk)

in all points (x1, . . . , xk) ∈ Rj, where this integral is meaningful. This means that we
integrate the function f(·) with respect to the measure ν̄x1,...,xk

defined by the formula

ν̄x1,...,xk
(A) = ν((x1, . . . , xk) −A).

(In the remaining points where this integral is not meaningful we define the function
f ∗ ν in an arbitrary way.)

We have not defined the convolution f ∗ g(x1, . . . , xk) of two functions f and g

or the convolution f ∗ ν(x1, . . . , xk) of a function f and a measure ν in all points
(x1, . . . , xk) ∈ Rk. But this restriction is not so disturbing as one might think at the
first sight. As we shall see in problem 14, these convolutions exist for almost all points
(x1, . . . , xk) ∈ Rk with respect to the Lebesgue measure in the k-dimensional Euclidean
space. On the other hand, in typical applications these convolutions appear as the
density function of a signed measure which is absolutely continuous with respect to the
Lebesgue measure, and such density functions are determined only almost everywhere.

14.) If f(x1, . . . , xk) and g(x1, . . . , xk) are two measurable and integrable functions
on the space Rk, then the integral in formula (8) defining the convolution f ∗
g(x1, . . . , xk) is meaningful for almost all points (x1, . . . , xk) ∈ Rk with respect to
the Lebesgue measure. The convolution f ∗ g is a finite and integrable function
on Rk.

If µ and ν are two signed measures of bounded variation on the space Rk, then
their convolution µ ∗ ν has the same property.

If µ and ν are two signed measures of bounded variation on the space Rk, and the
measure µ has a density function f(u1, . . . , uk), that is µ(A) =

∫

A
f(u1, . . . , uk) du

for all measurable sets A ⊂ Rk, then the convolution of these signed measures, the
signed measure µ ∗ ν has a density function, and it equals the function f ∗ ν. In
particular, the function f ∗ ν(x) is integrable. If both signed measures µ and ν

have a density function f(u1, . . . , uk) and g(u1, . . . , uk), then their convolution, the
signed measure µ∗ν also has a density function, and it equals the convolution f ∗g.
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15.) If ξ and η are two independent random vectors on the space Rk, the distribution
of ξ is µ, the distribution of η is ν, then the distribution of the sum ξ + η is the
convolution µ ∗ ν. If the random vector ξ has a density function f(u1, . . . , uk),
then the sum ξ + η also has a density function, and it equals f ∗ ν. If ξ has a
density function f and ν a density function g, then the sum ξ+η also has a density
function, and it equals the convolution f ∗ g.
As a consequence, if ξj , j = 1, . . . , n, are independent random vectors with distri-

bution functions Fj(x) = Fj(x1, . . . , xk), j = 1, . . . , n, S̄n =

n∑

j=1

ξj−A

B with some
norming factors A = (A1, . . . , Ak) and B > 0, then the distribution of the expres-
sion S̄n equals F1∗· · ·∗Fn(Bx+A). If the random vectors ξj have density functions
fj , 1 ≤ j ≤ n, then S̄n has a density function of the form Bf1 ∗ · · · ∗ fn(Bx+A).

f ∗ g = g ∗ f , µ ∗ ν = ν ∗ µ, (f ∗ g) ∗ h = f ∗ (g ∗ h), (µ1 ∗ µ2) ∗ µ3 = µ1 ∗ (µ2 ∗ µ3),
i.e. the convolution operator is commutative and associative.

The next problem is about the relation between the convolution operator and
Fourier transform.

16.) If f(u1, . . . , uk) and g(u1, . . . , uk) are two integrable functions on Rk with Fourier
transforms

ϕ(t1, . . . , tk) =

∫

ei(t1u1+···+tkuk)f(u1, . . . , uk) du1 . . . duk

and

ψ(t1, . . . , tk) =

∫

ei(t1u1+···+tkuk)g(u1, . . . , uk) du1 . . . duk,

then the Fourier transform of the convolution f ∗ g(u1, . . . , uk) is the function
ϕ(t1, . . . , tk)ψ(t1, . . . , tk).

If µ and ν are two signed measures on Rk of bounded variation with Fourier trans-
forms (or in other terminology with characteristic functions

ϕ(t1, . . . , tk) =

∫

ei(t1u1+···+tkuk)µ( du1, . . . , duk)

and

ψ(t1, . . . , tk) =

∫

ei(t1u1+···+tkuk)ν( du1, . . . , duk)

then the Fourier transform of the convolution µ∗ν equals ϕ(t1, . . . , tk)ψ(t1, . . . , tk).

In an informal way the following problem can be formulated as the statement that
the convolution is a smoothing operator. The convolution of two smooth functions is
an even smoother function. For the sake of simplicity we shall consider only functions
of one variable.
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17.) Let f(u) and g(u) be two integrable functions. Let us assume that the derivatives
djf(u)

duj exist, they are integrable functions, and lim
u→−∞

djf(u)
duj = 0 for all integers

0 ≤ j ≤ k with some integer k ≥ 1. Let us also assume that the derivatives djg(u)
duj

also exits, they are also integrable functions, and lim
u→−∞

djg(u)
duj = 0 for all integers

0 ≤ j ≤ l with all integers l ≥ 1. Then the derivative dk+lf∗g(u)
duk+l also exists, it is an

integrable function, and lim
u→−∞

dk+lf∗g(u)
duk+l = 0.

Let f(u) and g(u) be two integrable functions such that the function f(u) has an
analytic continuation to the domain {z: |Im z| < A} with some number A > 0.
Let us further assume that

∫
|f(u + ix)| du < ∞ for all numbers |x| < A, and for

all numbers ε > 0 and B > 0 there exists a constant K = K(A,B, ε) such that
∫

|u|>K
|f(y − u + ix)g(u)| du < ε if |y| < B and |x| < A . Then the convolution

f ∗ g is also an analytic function in the domain {z: |Im z| < A}.
D.) Convergence in distribution.

Although there is no convenient inversion formula for the expression of a distribu-
tion function by means of its characteristic function, the proof of the local limit theorems
suggests that the convergence of a sequence of distribution functions can be proved by
means of the convergence of their characteristic functions. This statement really holds,
but to prove it we have to understand the situation better.

First we have to understand the meaning of the convergence of distribution func-
tions. Before giving the formal definition let us consider a simple example which may
explain some details of the definition.

Let us consider a sequence of negative numbers xn, n = 1, 2, . . . , which satisfies the
relation lim

n→∞
xn = 0, and put x0 = 0. Let us introduce the (degenerated) probability

measures µn, n = 0, 1, 2, . . . , on the real line which are concentrated in the points
xn, n = 0, 1, 2, . . . , that is µn({xn}) = 1, n = 0, 1, 2, . . . . It is natural to expect
that by a right definition of convergence of probability distributions the sequence of
these measures µn converges to the measure µ0 as n → ∞. Let us remark that the
measures µn, n = 0, 1, 2, . . . , are determined by the distribution functions defined by
the formula Fn(u) = 0 if u ≤ xn, and Fn(u) = 1 if u > xn, n = 0, 1, 2, . . . , i.e.
µn([a, b)) = Fn(b) − Fn(a) for arbitrary pairs of numbers a < b. Observe that the
relation lim

n→∞
Fn(x) = F0(x) holds for all numbers x 6= 0, but this relation does not

hold for x = 0, since F0(0) = 0, and Fn(0) = 1 if n 6= 0. This example shows that
the naive picture by which the convergence of a sequence of distribution functions to
a limit distribution function would mean that these distribution functions converge to
the limit distribution function in all points of the real line would not supply a good
definition. In the previous example the convergence does not hold in the point x = 0,
where the limit distribution function is not continuous. The right definition of the
convergence of distribution functions given below does not demand convergence in the
points of discontinuity of the limit distribution function. We shall give this definition
in the multi-dimensional case.
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Definition of convergence of distribution functions. Let Fn(x1, . . . , xk), n =
0, 1, 2, . . . , be a sequence of k-dimensional, k ≥ 1, distribution functions. We say that
the distribution functions Fn converge to a distribution function F0 in distribution, or
in other words the probability measures µn, determined by the distribution functions Fn,
n = 1, 2, . . . , converge in distribution to the measure µ0 determined by the distribution

function F0, or in a third terminology the random vectors ξn = (ξ
(1)
n , . . . , ξ

(k)
n ), n =

1, 2, . . . , with distribution function Fn converge in distribution to a random vector ξ0 =

(ξ
(1)
0 , . . . , ξ

(k)
0 ), with distribution function F0 as n→ ∞, if

lim
n→∞

Fn(x1, . . . , xk) = F0(x1, . . . , xk)

in all points of continuity (x1, . . . , xk) ∈ Rk of the distribution function F0(x1, . . . , xk).
(Sometimes the convergence in distribution is called weak convergence in the literature.)

In later investigations the following Theorem A formulated below plays an impor-
tant role. This result gives an equivalent condition for the convergence in distribution.
The next problem is the proof of Theorem A. We remark that the same problem also
appears in problem 1 of the series of problems Weak convergence of probability measures
in metric space. (For the time being it exists only in Hungarian.)

Theorem A. The distribution functions Fn(x1, . . . , xk) converge in distribution to the
distribution function F0(x1, . . . , xk) if and only if

∫

f(x1, . . . , xk) dFn(x1, . . . , xk) →
∫

f(x1, . . . , xk) dF0(x1, . . . , xk) if n→ ∞ (9)

for all continuous and bounded functions f(x1, . . . , xk) in the k-dimensional Euclidean
space Rk.

18.) Let us prove Theorem A.

Let us remark that the characterization of the convergence in distribution given
in Theorem A also plays an important role in other investigations. It helps to find
the good definition of convergence in distribution in general topological spaces. The
original definition is closely related to the notion of distribution functions which exploits
the simple geometrical structure of the Euclidean space. Hence this definition has no
natural generalization to more sophisticated spaces. The result of Theorem A helps to
overcome this difficulty, and this is the reason why Theorem A appears in the series of
problems mentioned above.

It is also worth mentioning that condition (9) in Theorem A can also be inter-
preted as a particular case of the weak convergence introduced in functional analysis.
The probability measures in the k-dimensional Euclidean space can also be considered
as continuous linear functionals on the space of bounded and continuous functions on
Rk endowed with the usual supremum norm. Then relation (9) means that the proba-
bility measures µn determined by the distribution functions Fn weakly converge to the
measure µ0 determined by the distribution function µ0. Here we identify the measures
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µn with the linear functionals on the space of continuous and bounded functions they
induce and apply the usual terminology of weak convergence in functional analysis. This
fact may explain why convergence in distribution is sometimes called weak convergence.

Theorem A suggests a natural approach to study limit theorems in distribution
with the help of Fourier analysis. For arbitrary k-dimensional vector the trigonomet-
rical function et(x) = et1,...,tk

(x1, . . . , xk) = ei(t,x) = ei(t1x1+···+tkxk) is continuous and
bounded. Hence relation (9) demands in particular that for all vectors (t1, . . . , tk) the
relation

ϕn(t1, . . . , tk) → ϕ0(t1, . . . , tk), if n→ ∞ (9′)

should hold, where ϕn(t1, . . . , tk) is the characteristic function of the distribution func-
tion Fn(t1, . . . , tk), n = 0, 1, 2, . . . .

Because of the nice properties of trigonometrical functions it is simpler to check
relation (9′) than formula (9) dealing with general bounded and continuous functions.
The question arises whether relation (9′) is sufficient to guarantee the validity of relation
of (9) i.e. to prove convergence in distribution. We shall prove a more refined positive
result in this direction, and this result serves as the basic tool in investigation of limit
theorems in distribution. To prove this result we need such a result which states that the
trigonometrical functions et1,...,tk

(x1, . . . , xk) = ei(t1x1+···+tkxk), or more precisely their
finite linear combinations are a sufficiently rich sub-class of the space of continuous and
bounded functions. In our discussion we shall apply Weierstrass second approximation
theorem which is a result in this spirit. In the Appendix we also supply a proof of
Weierstrass second approximation theorem.

Weierstrass second approximation theorem. For all continuous and periodic by 2π
functions f(t) and real numbers ε > 0 there exists a trigonometrical polynomial Pn(t) =

n∑

k=−n

ake
ikt such that

sup
−∞<t<∞

|f(t) − Pn(t)| < ε.

(The degree of the polynomial Pn and the coefficients ak in it depends both on the
function f(·) and the real number ε > 0. If the function f(·) is real valued, then the
coefficients ak can be chosen in such a way that a−k = āk for all indices k = 0, 1, . . . , n,
where z̄ is the conjugate of the number z. Then also the polynomial Pn(t) is real valued.)

Also the following multi-dimensional version of this result holds. If f(t1, . . . , tk) is
a continuous function in the k-dimensional Euclidean space which is periodic in all of
its variables, i.e. f(t1 + 2j1π, . . . , tk + 2jkπ) = f(t1, . . . , tk) for all integers j1, . . . jk,
and a real number ε > 0 is fixed, then there exists a trigonometrical polynomial of k
variables

Pn(t1, . . . , tk) =
∑

(j1,...,jk): |j1|+···+|jk|≤n

aj1,...,jk
ei(j1t1+···+jktk),

where j1, . . . , jk are integers such that

|f(t1, . . . , tk) − Pn(t1, . . . , tk)| < ε for all real numbers t1, . . . , tk.
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An application of Weierstrass second approximation theorem together with an ap-
propriate scaling makes possible to approximate a k-dimensional continuous function
f(x1, . . . , xk) with arbitrary accuracy with a finite linear combination of trigonometrical
sum

∑
a(t1, . . . , tk)ei(t1x1+···+tkxk) in an arbitrary finite domain. On the other hand,

given a probability measure µ the integral of the approximating trigonometrical can
be expressed by means of the characteristic function ϕ(t1, . . . , tk) of the measure µ as
∑
a(t1, . . . , tk)ϕ(t1, . . . , tk). If the domain where the trigonometrical sum well approxi-

mates the original function f is chosen sufficiently large, then the above expression gives
a natural approximation of the integral

∫
f(x1, . . . , xk) dµ(x1, . . . , xk).

In such a way Weierstrass second approximation gives a good approximation of a
continuous function in a finite domain by a trigonometrical sum whose integral with
respect to a probability measure can be expressed by means of the characteristic func-
tion of this measure. But it yields no information about the contribution of a “small
neighbourhood of infinity” to the integrals in formula (9). This is not the deficiency of
Weierstrass second approximation theorem, but this difficulty belongs to the essence of
the problem we investigate. In the following problems we shall show that a sequence of
distribution functions may converge in distribution only if the contribution of an appro-
priate neighbourhood of the infinity in formula (9) is uniformly small for all distribution
functions we consider. We shall formulate this statement in a more precise form, and
we shall also show that the problem about convergence of distribution functions can
be well investigated by means of their characteristic functions. First we introduce the
following definition.

Definition of the relative compactness and tightness of distribution func-

tions. Let a sequence of distribution functions Fn(t1, . . . , tk), n = 1, 2, . . . , be given
in the k-dimensional Euclidean space, and let µn denote the probability measure on Rk

determined by the distribution function Fn. We say that the sequence of distribution
functions Fn or probability measures µn is relatively compact if all subsequences Fnk

(or
µnk

), k = 1, 2, . . . , of the original sequence Fn or µn have a (sub)subsequence Fnkj
(or

µnkj
), j = 1, 2, . . . , which is convergent in distribution.

We say that a sequence of distribution functions Fn or of probability measures µn

determined by these distribution functions is tight if for all numbers ε > 0 there exists a
number K = K(ε) such that the k-dimensional cube K(K)k = [−K,K] × · · · × [−K,K]

︸ ︷︷ ︸

k-fold product

satisfies the inequality µn(K(K)k) ≥ 1 − ε for all indices n = 1, 2, . . . .

19.) Let µ be a probability measure on the Borel measurable subsets of the k-dimensional
Euclidean space, and let us fix a real number ε > 0. Then there exists a num-
ber K = K(µ, ε) > 0 in such a way that the k-dimensional cube Kk(K) =
−[K,K] × · · · × [−K,K]
︸ ︷︷ ︸

k-fold product

satisfies the inequality µ(K(K)k) > 1 − ε. Let us show

with the help of this statement and Weierstrass second approximation theorem that
a probability measure on Rk is uniquely determined by its characteristic function,
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that is if two probability measures µ1 and µ2 on Rk have the same characteristic
function, then µ1 = µ2.

Furthermore, all signed measures µ of bounded variation on the k-dimensional space
Rk is uniquely determined by their Fourier transform

ϕ(t1, . . . , tk) =

∫

ei(t1x1+···+tkxk)µ( dx1, . . . , dxk), (t1, . . . , tk) ∈ Rk.

20.) Let us give an example which shows that the characteristic function of a distribution
function in a finite interval does not determine this distribution function. That is let
us show that for all numbers T > 0 there exist two different characteristic functions
F1(·) and F2(·) such that their characteristic functions ϕi(t) =

∫
eitu dF (u), i = 1, 2,

satisfy the identity ϕ1(t) = ϕ2(t) for all real numbers −T ≤ t ≤ T .

21.) Let µn, n = 1, 2, . . . , be a sequence of probability measures on the k-dimensional
Euclidean space Rk. This sequence of probability measures is relatively compact
if and only if it is tight. In particular, all sequences of probability measures on Rk

which are convergent in distribution are tight.

The hard part in the proof of problem 21 is to show that tightness implies relative
compactness. To prove this the limit of an appropriate subsequence of distribution func-
tions has to be constructed, and it has to be checked that the limit is really a distribution
function. The proof could be simplified with the help of a classical result of functional
analysis (Riesz theorem) which represents finite measures on a compact topological
space as the linear functionals on the space of continuous functions on this topological
space. This result together with a one-point compactification of the Euclidean space
and the characterization of the convergence in distribution given in Theorem A may
yield a simpler proof. The tightness condition would guarantee that the limit measure
we obtain has no mass in the “infinity”. Nevertheless, I have described an elementary
but more complicated proof.

I make a small détour. I describe a natural generalization of the results discussed in
this section to sequences of probability measures on complete separable metric spaces.
We shall not use these results in this note, but they are useful e.g. in the proof of the
so-called functional central limit theorem. I shall explain these results without proof,
although the results discussed in these section may be useful in these proofs.

Theorem A and formula (9) in it may give a natural idea for the definition of
convergence in distribution of probability measures on a separable metric space. We
say that a sequence of probability measures defined on a separable metric space (X, ρ)
converges in distribution (or weakly, as this convergence is often called in the literature)
to a probability measure µ on this metric space, if for all continuous and bounded
functions on (X, ρ) the relation

lim
n→∞

∫

f(x)µn( dx) =

∫

f(x)µ( dx).

holds.
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It may be worth remarking that a meausure µ on a separable metric space is
uniquely determined by the integrals

∫
f(x)µ( dx) of all continuous, bounded functions

f(x). This fact implies in particular, that the limit of probability measures on a metric
space is uniquely determined. We can also define the relative compactness and tightness
of sequences of probability measures on general metric spaces, and we can formulate
theorems similar to the results of this section for them. At this point it is useful to
restrict our attention to complete separable metric spaces.

A sequence of probability measurs µn on a complete separable metric space (X, ρ)
is called relatively compact if each subsequence µnk

of µn has a sub-subsequence µnkj

convergent in distribution (or in other words weakly). It can be proved that in a
complete separable metric space of all probability measures µ and real numbers ε > 0
there exists a compact set K such that µ(K) > 1 − ε. Hence we can also define the
tightness of a sequence of probability measures on a complete separable metric space.
We say that a sequence µn, n = 1, 2, . . . , of probability meausures on a complete metric
space (X, ρ) is tight if for all numbers ε > 0 there exists a compact set K = K(ε) such
that µn(K) > 1 − ε for all indices n = 1, 2, . . . . The following theorem holds.

Theorem about the relation of tightness and relative compactness of proba-

bility measure sequences. Let µn, n = 1, 2, . . . , be a sequence of probability measures
on a complete separable metric space (X, ρ). This sequence of probability meausures is
relatively compact if and only if it is tight. In particular, all sequences of probability
measures on a compact, complete separable metric space are (relatively) compact.

This result is useful in the study of convergence of probabilty measures on general
metric spaces. (These problems are interesting, the functional central limit theorem e.g.
can be obtained with the help of such an investigation.) To apply the above results in a
concrete metric space we need a description of the compact sets of this metric space. The
description of the compact sets in the C([0, 1]) space (in the Banach space of continuous
functions on the interval [0, 1] with the supremum norm.) We shall describe them in
the next theorem.

Theorem about the charactrization of the compact sets in the space C([0, 1]).
The compact sets of C([0, 1]) (and in general of all metric spaces are closed.) A closed
set F in the space C(0, 1]) is compact if and only if

(a) The set C = {x(0): x(·) ∈ F} is bounded, and

(b) The functions x(·) contained in the set F are universally uniformly continuous, i.e.
for all numbers δ > 0 there is such a number η = η(δ) > 0 for which the relation

sup
x(·)∈F

sup
0≤s,t≤1, |t−s|≤η

|x(t) − x(s)| ≤ δ.

holds.

In certain investigations, e.g. in the proof of the functional central limit theorem
the following consequence of the above results is useful.
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Consequence. Let Xn(t), 0 ≤ t ≤ 1, n = 1, 2, . . . , be a sequence of C([0, 1])-valued
random variables. The sequence Xn(t) converges weakly to some C([0, 1]) valued random
variable X(t), 0 ≤ t ≤ 1, as n→ ∞ if and only if

(a) For all finite sequences of numbers 0 ≤ t1 < · · · < tk ≤ 1 the random vectors
(Xn(t1), . . . , Xn(tk)) converge in distribution as n→ ∞.

(b) For all numbers ε > 0 and δ > 0 there is a number η = η(δ, ε) > 0 such that

P

(

ω: sup
0≤s,t≤1, |t−s|≤η

|Xn(t, ω) −Xn(s, ω)|) ≤ δ

)

> 1 − ε

for all indices n = 1, 2, . . . .

Remark. Point (a) of the above consequence guarantees that the distributionos of all
convergent subsequence of the C([0, 1]) valued random variables Xn(·) have the same
limit. Furthermore, it can be proved with the help of point (b) and the convergence of
the (real valued) random variables Xn(0), n = 1, 2, . . . , that the µn distributions of the
random variables Xn(·) constitute a relatively compact set.

E.) The relation between the convergence of distribution functions and
the convergence of their characteristic functions.

To express the conditions of convergence in distribution by means of characteristic
functions it is useful to give the necessary and sufficient condition of tightness (or of rel-
ative compactness which property is equivalent to tightness by the result of problem 20)
of probability measures with the help of distribution functions. This is the content of
the next problem.

22.) Let Fn(u), n = 1, 2, . . . , be a sequence of distribution functions on the real line with
characteristic functions ϕn(t), n = 1, 2, . . . . This sequence of distribution functions
Fn(·) is tight if and only if

lim
δ→0

lim sup
n→∞

1

2δ

∫ δ

−δ

Re (1 − ϕn(t)) dt = 0, (10)

where Re z denotes the real part of the complex number z.

Although we shall not need the following observation let us also show that relation
(10) is equivalent to the following relation (10′):

lim
δ→0

sup
n

1

2δ

∫ δ

−δ

Re (1 − ϕn(t)) dt = 0. (10′)

With the help of the result of problem 22 and Weierstrass second approximation
theorem we can give the necessary and sufficient condition of convergence of a sequence
of distribution function in distribution in the language of characteristic function. We
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formulate and prove this result which we call because of its importance fundamental
theorem.

The Fundamental Theorem about the convergence of distribution functions.

Let Fn(u1, . . . , uk) be a sequence of distribution functions on the k-dimensional Eu-
clidean space Rk with characteristic functions ϕn(t1, . . . , tk), n = 1, 2, . . . . If the char-
acteristic functions ϕn(t1, . . . , tk) have the limit ϕ0(t1, . . . , tk) = lim

n→∞
ϕn(t1, . . . , tk) in

all points (t1, . . . , tk) ∈ Rk, and the limit function ϕ0(t1, . . . , tk) is continuous in the
origin, then there exists a distribution function F0(u1, . . . , uk) in the k-dimensional
space whose characteristic function is this limit function ϕ0(t1, . . . , tk). Besides, the
distribution functions Fn(u1, . . . , uk) converge in distribution to this distribution func-
tion F0(u1, . . . , uk). Moreover, the condition about the continuity of the limit function
ϕ0(t1, . . . , tk) in the origin can be slightly weakened. The above statements also hold
if we only demand that the restriction of the function ϕ0(t1, . . . , tk) to each coordinate
axis is continuous in the origin.

In the converse direction we state that if a sequence of k-dimensional distribution
functions Fn(u1, . . . , uk), n = 1, 2, . . . , converges in distribution to a k-dimensional
distribution function F0(u1, . . . , uk), and ϕn(t1, . . . , tk), n = 0, 1, . . . , denotes the char-
acteristic function of the distribution function Fn(u1, . . . , uk), then ϕ0(t1, . . . , tk) =
lim

n→∞
ϕn(t1, . . . , tk) in all points (t1, . . . , tk) ∈ Rk. Furthermore, this convergence is

uniform in all compact subsets of the space Rk.

We have formulated the above fundamental theorem in a slightly stronger form than
it is done in the literature. We remarked that if we want to deduce the convergence of
the distribution functions from the convergence of the characteristic functions, then it
is enough to know that the restriction of this limit function to the coordinate axes is
continuous in the origin. We have made this remark because its proof causes no problem,
and it is useful in certain multi-dimensional application of the result. In particular, it
simplifies the solution of problem 46 in this series of problems.

We want to prove the above formulated Fundamental Theorem. To do this let us
first prove the following problem interesting in itself.

23.) Let ξ(n) = (ξ
(n)
1 , . . . , ξ

(n)
k ) be a sequence of k-dimensional random vectors and

let ϕn(t1, . . . , tk) denote their characteristic functions. Prove (with the help of
problem 22) that if the characteristic functions ϕn(t1, . . . , tk) converge to a function
ϕ(t1, . . . , tk) in a small neighbourhood of the origin which is continuous in the

origin, then the distribution functions of the random vectors ξ(n) = (ξ
(n)
1 , . . . , ξ

(n)
k )

are tight. Moreover, this tightness property also holds under the weaker condition
that the restrictions of the limit function ϕ(t1, . . . , tk) to the coordinate axes are
continuous in the origin.

24.) Let us prove the Fundamental Theorem about the convergence of distribution func-
tions.

25.) Let us show an example for a sequence of characteristic functions ϕn(t), n =
0, 1, 2, . . . , on the real line such that lim

n→∞
ϕn(t) = ϕ0(t), this convergence is uniform
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on all finite intervals, but it is not uniform on the whole real line.

Let us make some comments about the above formulated Fundamental Theorem.

i.) The fundamental theorem gives conditions which automatically guarantee that the
limit of characteristic functions is also a characteristic function. This result is very
useful in a more systematic investigation of limit theorems. For instance it makes
possible to describe all possible limit distributions which appear as the limit of
appropriately normalized partial sums of independent random variables.

ii.) In the Fundamental Theorem we stated the limit of characteristic functions is again
a characteristic function if it is continuous in the origin. On the other hand, we know
that the characteristic functions are uniformly continuous in the whole space Rk

(see for instances the result of problem 12). Let us remark that the class of the
characteristic functions is a special class of all continuous functions. There is a non-
trivial characterization of characteristic functions. A famous result of the analysis,
the Bochner theorem yields such a characterization. This result plays an important
role both in the analysis and in the probability theory. Although we shall not use
this result in this series of problems, we shall prove Bochner’s theorem in the
second part of this series of problems. The information obtained in the proof of
limit theorems are useful in the proof of Bochner’s theorem.

iii.) The condition that the limit of the characteristic functions is continuous in the
origin guarantees that the distribution functions corresponding to them are tight.
Informally saying this means that “no mass flows out to the infinity”. If some mass
“may flow out to the infinity”, then the asymptotic behaviour of the characteristic
functions does not supply such a simple description of the asymptotic behaviour
of the distribution functions corresponding to them as the Fundamental Theorem.
The content of the next problem is to show this with the help of an example.

26.) Let us show an example for a sequence of probability measures µn, n = 1, 2, . . . ,
on the real line which satisfy the relation lim

n→∞
µn(K) = 0 for all bounded sets K,

and the characteristic functions ϕn(t) of the measures µn either

a.) have a limit in all points of the real line or

b.) do not have a limit function on the real line.

F.) The relation between the behaviour of a function or measure and its
Fourier transform.

If we want to investigate the behaviour of distribution functions by means of their
characteristic functions, or more generally if we want to study the properties of a func-
tion or a measure by means of its Fourier transform, then we need a good “dictionary”
which describes how the properties of a function or a measure are reflected in their
Fourier transform, and what kind of properties of the original function or measure fol-
low from certain properties of their Fourier transform. The “dictionary” described in
this section will be by no means complete, but it also contains some results which we
do not need in our further investigation. Actually, if we only wanted to get a proof of
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the central limit theorem and were not interested in the more intricate questions re-
lated to this problem, then the proof of the first statement in problem 27 in this section
would suffice for our purposes. The results of this section will be formulated only in
the one-dimensional case, although the proof of their multi-dimensional generalization
would cause no essential difficulty.

Informally the content of this “dictionary” can be formulated in the following way:
The smoother a function or a measure (more precisely its density function) on the
real line is, the faster its Fourier transform tends to zero at infinity. The less mass a
probability measure on the real line contains in a small neighbourhood of the infinity
(or in other words the more moments the absolute value of a random variable with this
distribution has), the smoother the Fourier transform of this probability measure is.
Besides, the derivatives of the Fourier transform at the origin determine the moments
of a random variable whose distribution this probability measure is.

In the other direction: If the characteristic function of a distribution function is
smooth, and it is enough to assume this smoothness property in a small neighbourhood
of the origin, then the smoother the characteristic function is the less mass the proba-
bility measure with this characteristic function contains in the vicinity of the infinity.
On the other hand, the faster the characteristic function tends to zero as its argument
tends to infinity, the smoother the original distribution function is. Furthermore, some
results also show that if a function is very smooth everywhere except some points where
the function has a singularity, then the behaviour of its Fourier transform in the vicinity
of the infinity very well reflects the character of these singularities. We shall discuss
this last statement, — which we shall not need later — only superficially, and omit the
proof.

Actually, the statement of problem 22 can also be considered as an element of
this dictionary, and its content is in full agreement with the above sketched heuristic
picture. The statement that a class of distribution functions is tight means that there
is an appropriate neighbourhood of the infinity which has a small measure with respect
to all measures determined by this class of distribution functions. On the other hand,
formula (10) which is equivalent to this property has the content that the characteristic
functions of this distribution functions satisfy some sort of uniform continuity in a small
neighbourhood of the origin. (Let us recall that 1 − ϕ(0) = 0.)

The results of problems 17 and 16 are also consistent with the above heuristics. The
result of problem 17 formulates a statement by which the convolution of two smooth
density functions is a function which is even smoother than the functions taking part
in the convolution. On the other hand, the Fourier transform of the convolution of two
functions equals the product of their Fourier transforms. By the above sketched heuristic
argument the smoothness of a function depends on how fast its Fourier transform tends
to zero in the neighbourhood of infinity. On the other hand, the product of two functions
tending to zero in the vicinity of the infinity tends to zero faster than the functions in this
product. This fact corresponds to the smoothing property of the convolution operator
in the language of Fourier transforms.

27.) If the absolute value of the random variable ξ has finite k-th moment, i.e. E|ξk| <
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∞, then the characteristic function ϕ(t) = Eeitξ of the random variable ξ is k times

continuously differentiable, and djϕ(t)
dtj

∣
∣
∣
t=0

= ijEξj for all numbers 0 ≤ j ≤ k.

A random variable ξ has exponential moments in a small neighbourhood of the
origin if and only if the distribution function of the random variable |ξ| tends to 1
exponentially fast in the infinity, i.e. Eeuξ < ∞ for all numbers |u| ≤ t with some
sufficiently small number t > 0 if and only if P (|ξ| > x) < Ce−αx for all x > 0
with some appropriate constants C > 0 and α > 0. In this case the characteristic
function ϕ(t) = Eeitξ has an analytic extension to the domain {z: |Re z| < a} with
some appropriate number a > 0.

28.) If the absolute value of the function f(u) is integrable on the real line, then the
Fourier transform ϕ(t) =

∫
eituf(u) du of the function f(u) satisfies the relations

lim
t→∞

ϕ(t) = 0 and lim
t→−∞

ϕ(t) = 0. (Riemann lemma.)

If the absolute value of the function f(u) is integrable, the function f(u) is k-times

differentiable, and the absolute value of the functions djf(u)
duj is integrable for all

numbers 1 ≤ j ≤ k, then
∫∞
−∞ eituf(u) du = o

(
(1 + |t|)−k

)
in case |t| → ±∞.

If the function f(u) has an analytic continuation to the domain {z: |Re z| < A}
with some A > 0, |

∫
|f(u + iv)| du < ∞, if |v| < A, then ϕ(t) =

∫
eituf(u) du =

O
(
e−α|t|) as t→ ±∞ with some constant α > 0.

29.) Let ξ be a random variable with non-degenerated distribution, (i.e. assume that
ξ does not equal a constant with probability 1), and let ϕ(t) = Eeitξ denote its
characteristic function. There exists a constant t 6= 0 such that |ϕ(t)| = 1 if and
only if ξ is a lattice valued random variable. (The notion of lattice valued random
variable is introduced in Definition A.) If the values of the random variable ξ are
concentrated on a lattice of width h (as on the rarest lattice), then the relation
|ϕ(t)| = 1 holds for the characteristic function of the random variable ξ if and only if
t = 2π k

h with some k = 0,±1,±2, . . . . If ξ is a lattice valued, non constant random
variable, then there exits a rarest lattice of width h where the distibution of ξ is
concentrated. If the random variable ξ is not lattice valued, then sup

A≤|t|≤B

|ϕ(t)| < 1

for all pairs of numbers 0 < A < B <∞.

30.) Let the distribution of the random variable ξ be given by the formula P (ξ = 1) =
P (ξ =

√
2) = P (ξ = −1) = P (ξ = −

√
2) = 1

4 . Then the characteristic function
ϕ(t) = Eeitξ satisfies the inequality |ϕ(t)| < 1 if t 6= 0, and also the relation
lim sup

t→∞
|ϕ(t)| = 1 holds. The relations lim sup

t→∞
|ϕ(t)| = 1 and |ϕ(t)| < 1 if t 6= 0

also hold in the more general case when the values of the random variable ξ are
concentrated in finitely or countably many points but ξ is not a lattice valued
random variable.

Remark 1: By a classical result of measure theory all (finite) measures can be decom-
posed (in a unique way) as the sum of an absolute continuous, a discrete (i.e. con-
centrated in countably many points) and a singular measure. (An absolute continuous
measure has a density function with respect to the Lebesgue measure, a singular mea-
sure is concentrated on a set of Lebesgue measure zero, but all points have measure
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zero with respect to it.) By the result of problem 28 the Fourier transform ϕ(t) of an
absolute continuous measure tends to zero as t→ ±∞, and the smoother density func-
tion the measure has the faster this convergence is. The results of problems 29 and 30
tell that the Fourier transform of a discrete measure behaves in the opposite way in the
neighbourhood of infinity. The lim sup of the absolute value of the Fourier transform
of a discrete measure equals the measure of the real line with respect to this measure.
The behaviour of a singular measure in the neighbourhood of the infinity cannot be
characterized in a similar simple way.

Remark 2: Let us consider in the neighbourhood of infinity the behaviour of the Fourier
transform f̃(u) of an integrable function f(s) which is sufficiently many times differen-
tiable everywhere except a point a ∈ R1. Let the function f have a singularity of the
form f(s) ∼ C|s − a|α, α > −1, α 6= 2k, k = 0, 1, 2, . . . , in the neighbourhood of the
point a. In this case the Fourier transform of the function f behaves asymptotically as
f̃(u) ∼ C̄eiuau−α−1 if u → ∞, where the constant C̄ 6= 0 can be given explicitly. We
give a short heuristic explanation of this result.

Because of the smoothness properties of the function f(s) the asymptotic behaviour
of its Fourier transform in the neighbourhood of the infinity is determined by the singu-
larity of the function f in the point a, and the Fourier transform equals asymptotically
the expression

g̃(u) = C

∫ ∞

−∞
eius|s− a|α ds = Ceiau

∫ ∞

−∞
eius|s|α ds

= Ceiauu−α−1

∫ ∞

−∞
eis|s|α ds = C̄eiauu−α−1

as u→ ∞.

The above calculation was rather incorrect. The main problem is that the integrals
considered here are meaningless because of the factor |s|α in the integrand, at least
as usual Lebesgue integrals. Nevertheless, this calculation supplies a correct result.
Moreover, by replacing the integral to the imaginary axis we can express the constant
C̄ by means of the Γ(·) function. If the function f has several similar singularities, then
their effects sum up if the Fourier transform of the function in the neighbourhood of
the infinity is described.

Although we shall not apply the results sketched in this Remark 2, such kind of
results play an important role in certain investigations of probability theory and analysis.
The cases α = 2k, k = 0, 1, . . . , had to be excluded, because in this case the function
f(s) is smooth in a small neighbourhood of the point a. The exceptional behaviour of
the function |s−a|α with such parameters α has deep consequences in certain problems
of statistical physics.

The results of the subsequent problems 31–34 yield information about the behaviour
of a probability measure by means of the properties of its Fourier transform.

31.) If the characteristic function ϕ(t) = Eeitξ of a random variable ξ is twice differ-
entiable in the origin, then the random variable ξ has finite second moment, i.e.
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Eξ2 < ∞. Let us prove by induction that if the characteristic function of the
random variable ξ is 2k-times differentiable in the origin, then Eξ2k <∞.

32.) If the characteristic function ϕ(t) = Eeitξ of the random variable ξ is differentiable
in a small neighbourhood of the origin, and the derivative is a Lipschitz α function in
a small neighbourhood of the origin with some parameter α > 0, i.e. |ϕ′(t)−ϕ′(s)| <
C|t− s|α with an appropriate constant C > 0 if |s| < ε, |t| < ε with some number
ε > 0, then E|ξ| <∞. Under these conditions also the following somewhat stronger
result holds: P (|ξ| > u) < const.u−1−α for all numbers u > 0.

If the characteristic function ϕ(t) is 2k + 1-times differentiable in a small neigh-
bourhood of the origin, and the 2k + 1-th derivative is a Lipschitz α function with
some constant α > 0, then E|ξ|2k+1 <∞.

Remark: It follows from the results of problems 31 and 27 that the second moment of a
random variable is finite if and only if the characteristic function of the random variable
is twice differentiable in the origin. If the absolute value of a random variable has finite
expected value, then the characteristic function of this random variable is differentiable
in the origin (and everywhere). But to guarantee the existence of a finite expected value
of the absolute value of the random variable ξ we have imposed a stronger condition
than the differentiability of the characteristic function in the origin. (This would be the
natural analog of the statement in problem 31.) Although the conditions of 32 could
be weakened, the differentiability of the characteristic function of a random variable in
the origin does not suffice for the finiteness of the expectation of the absolute value of
this random variable.

Indeed, a necessary and sufficient condition of the differentiability of the character-
istic function of a random variable can be expressed with the help of the distribution
function of this random variable in a relatively simple way. Since this problem arises in
a natural way in the investigation of the weak law of large numbers, this result is also
contained in problem 12 of the series of problems Convergence in probability and with
probability one. (For the time being it exists only in Hungarian). Let us formulate this
result. The characteristic function of a random variable with distribution function F

has a finite derivative ia, −∞ < a <∞, in the origin if and only if

lim
x→∞

x [F (−x) + (1 − F (x))] = 0, and lim
u→∞

∫ u

−u

xF ( dx) = a.

33.) If the characteristic function of a random variable ξ has an analytic continuation
to a small neighbourhood of the origin, then there exists a number α > 0 such that
P (|ξ| > x) ≤ const. e−αx for all numbers x > 0.

34.) If the characteristic function ϕ(u) = Eeiuξ of a random variable ξ is integrable,
i.e.

∫
|ϕ(u)| du < ∞, then the random variable ξ has a density function f(x). If

|ϕ(u)| < const. |u|−(k+1+ε) with some number ε > 0, then the density function f(x)
has continuous and bounded k-th derivative. If |ϕ(u)| < const. e−α|u| with some
number α > 0, then the density function f(x) is analytic.
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Remark 1: The statement of problem 34 can be slightly generalized. To guarantee the
existence of a density function of the random variable ξ it is enough to assume that the
square of the characteristic function ϕ(u) = Eeiuξ is integrable. This statement holds
because the inverse Fourier formula which expresses the density function of a random
variable by means of its characteristic function in the form written down in relation (6)
also holds if the characteristic function is only square integrable. Only in this case the
integral in formula (6) has to be considered not as a usual Lebesgue integral. It has to
be defined by the extension of the L2 isomorphism between a function and its Fourier
transform which follows from the Parseval formula. This is a classical result of the
Fourier analysis, but we do not discuss it here. It implies the result of this Remark 1.

Remark 2: We remarked in the formulation of problem 8 that to guarantee the local
central limit theorem the condition about the integrability of the characteristic function
of the random variables we have considered can be weakened. It is enough to assume
that a sufficiently large power of the characteristic function is integrable. The expo-
nential distribution is an example for such a distribution function whose characteristic
function is not integrable, but it is square integrable (see problem 13.c). Hence only the
strengthened form of the result of problem 8 yields the local central limit theorem in this
case. The results of this section may explain the deeper background of this example.

Let us observe that the density function of the exponential distribution function
has a discontinuity in the origin, and the non-integrability of its characteristic function
is caused by this discontinuity. The convolution of the exponential distribution function
with itself yields a distribution function with a smoother density function whose char-
acteristic function is the square of the exponential distribution function. This fact may
explain why the square of the Fourier characteristic function of the exponential distri-
bution is integrable. A similar picture arises in the cases of random variables with such
a density function which is sufficiently smooth except some exceptional points where
the density function has a not too strong singularity.

G.) The central limit theorem.

The previous results enable us to prove the central limit theorem by means of
characteristic functions.

35.) Let ξ1, ξ2, . . . , be a sequence of independent an identically distributed random vari-
ables, Eξ1 = 0, Eξ21 = 1. Put Sn = ξ1 + · · · + ξn. Let us show that the random
variables Sn√

n
, n = 1, 2, . . . , converge in distribution to the standard normal distri-

bution function.

We want to prove the central limit theorem in the more general case when the nor-
malized partial sums of independent but not necessarily identically distributed random
variables are considered. It is worth formulating this question in an even more general
setting when for all positive integers k we consider the sum of independent random vari-
ables indexed with this number k, but we assume nothing about the relation between
random variables with different indices k. If the random variables indexed with the

29
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same number k are uniformly small, then under some weak conditions the sums of the
random variables with the same index k have a Gaussian limit as k → ∞.

Essentially we can give the necessary and sufficient condition for the convergence of
the distributions of the above sums to a Gaussian law. To formulate this statement in
an explicit form we introduce the notion of triangular arrays. The central limit theorem
for normalized partial sums of independent but not necessarily identically distributed
random variables can be deduced as the special case of the central limit theorem for
triangular arrays.

The definition of triangular arrays. A system of random variables

ξ1,1, . . . , ξ1,n1

...
...

ξk,1, . . . , ξk,nk

...
...

with k = 1, 2, . . . is called a triangular array, if the random variables ξk,1, . . . , ξk,nk

with the same first index k are independent. (We assume nothing about the relation of
the random variables with different first index k.)

To prove the central limit theorem by means of characteristic function it is worth
proving the following technical lemma. It gives an estimate of the difference of the
function eit and the sum of the first k terms of its Taylor series.

36.) For all non-negative integers k and real numbers t

∣
∣
∣
∣
eit −

(

1 +
it

1!
+ · · · + (it)k

k!

)∣
∣
∣
∣
≤ |t|k+1

(k + 1)!
. (11)

If we want to prove the central limit theorem for triangular arrays with the help
of characteristic functions, then the following approach is natural. Let us consider the
characteristic functions ϕk,j(·) of the random variables ξk,j , 1 ≤ j ≤ nk. We have to
show that the product of these characteristic functions converge to the characteristic
function of a Gaussian random variable. Let us consider the logarithm of these products.
Then we have to investigate the sum of the functions logϕk,j(t) with a fixed index k

and fixed argument t. If we have a condition which says that the random variables ξk,j

are small in an appropriate sense, then it is natural to expect that ϕj,k(t) ∼ 1 for a
fixed number t, and the error of the approximation logϕk,j(t) ∼ (1 − ϕk,j(t)) gives a
negligible error. This enables to reduce the proof to the investigation of a simpler sum.
The goal of the next problem is to give a precise formulation and justification of the
above heuristic argument. It makes possible to study both the necessary and sufficient
conditions of the central limit theorem.

37.) Let us consider the characteristic function ϕ(t) of a random variable ξ with a fixed
argument t.
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a.) If Eξ = 0 and Eξ2 ≤ ε with a sufficiently small positive number ε = ε(t) > 0,

then |1 − ϕ(t)| ≤ t2

2 Eξ
2, and | logϕ(t) + (1 − ϕ(t))| ≤ t4

(
Eξ2

)2
.

b.) Let ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, be a triangular array such that Eξk,j = 0,

k = 1, 2, . . . , 1 ≤ j ≤ nk, lim
k→∞

nk∑

j=1

Eξ2k,j = 1, and let the elements of triangular

array satisfy the uniform smallness condition lim
k→∞

(

sup
1≤j≤nk

Eξ2k,j

)

= 0. Let

ϕk,j(t) = Eeitξk,j , −∞ < t < ∞, denote the characteristic function of the
random variable ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk. The random sums Sk =
nk∑

j=1

ξk,j , 1 ≤ k <∞, converge in distribution to the Gaussian distribution with

expectation m and variance σ2 as k → ∞ if and only if

lim
k→∞

nk∑

j=1

(ϕk,j(t) − 1) = −σ
2t2

2
+ imt (12)

for all numbers −∞ < t <∞.

Although we are first of all interested in the question when the partial sums Sk of
a triangular array satisfying the conditions of problem 37 converge in distribution to
the standard normal distribution, it was also useful to formulate the condition for the
convergence of these random sums to a general Gaussian distribution with expectation
m and variance σ2. This knowledge helps us to find also the necessary conditions of
the central limit theorem. We shall also show such examples where the appropriately
normalized partial sums of independent random variables with expectation zero converge
to a Gaussian distribution with expectation m 6= 0.

In the investigation of the central limit theorem for triangular arrays the so-called
Lindeberg condition formulated below plays a fundamental role. We shall see that the

partial sums Sk =
nk∑

j=1

ξk,j of a triangular array satisfying part b) of problem 37 converge

to the standard normal distribution function if and only if this triangular array satisfies
the Lindeberg conditions.

The definition of the Lindeberg condition: Let ξk,j, k = 1, 2, . . . , 1 ≤ j ≤
nk, be such a triangular array for which Eξk,j = 0, k = 1, 2, . . . , 1 ≤ j ≤ nk, and

lim
k→∞

nk∑

j=1

Eξ2k,j = 1. This triangular array satisfies the Lindeberg condition if and only

if for all positive real numbers ε > 0

lim
k→∞

nk∑

j=1

Eξ2k,jI ({|ξk,j | > ε}) = 0,

where I(A) denotes the indicator function of a set A.
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38.) Let ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, be a triangular array which satisfies the relations

Eξk,j = 0, k = 1, 2, . . . , 1 ≤ j ≤ nk, lim
k→∞

nk∑

j=1

Eξ2k,j = 1 and the Lindeberg

condition. Then

a.) the triangular array ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, also satisfies the uniform

smallness condition lim
k→∞

(

sup
1≤j≤nk

Eξ2k,j

)

= 0.

b.) The random sums Sk =
nk∑

j=1

ξk,j , 1 ≤ k < ∞, converge in distribution to the

standard normal distribution (i.e. to the normal distribution with expectation
zero and variance 1) if k → ∞.

The above result can be reversed in the following way.

39.) Let ξk,j , k = 1, 2, . . . , 1 ≤ j ≤ nk, be a triangular array such that Eξk,j = 0,

k = 1, 2, . . . , 1 ≤ j ≤ nk, lim
k→∞

nk∑

j=1

Eξ2k,j = 1, and it satisfies the uniform smallness

condition lim
k→∞

(

sup
1≤j≤nk

Eξ2k,j

)

= 0. Let us also assume that the random sums

Sk =
nk∑

j=1

ξk,j , 1 ≤ k <∞, converge in distribution to a normal distribution function

with variance 1 and arbitrary expected value if k → ∞. Then the triangular array
ξk,j , 1 ≤ k <∞, 1 ≤ j ≤ nk, also satisfies the Lindeberg condition.

The content of the Lindeberg condition is that it guarantees that the too large
values (which have the same order as the square-root of the variance of the sum) have
a negligible influence in the central limit theorem. The contribution of such extremely
large values have a small influence both on the variance and the distribution of the sum
we investigate. The next problem expresses such a fact. This result together with the
result of problem 42 formulated later have the following consequence: Let us consider
a triangular array which satisfies the Lindeberg condition. If we truncate the too large
values (those which are greater than a fixed positive number ε > 0) and then normalize
the truncated random variables in such a way that their expected value be zero, then
the sum of these modified random variables have the same limit in distribution as the
sums of the original random variables.

It is worth mentioning that some modification of the above argument may help to
find a different proof of the central limit theorem if the Lindeberg condition holds. It
can be seen that we may also truncate and normalize the elements of the k-th row of
the triangular array at a level εk > 0 with such a sequence εk → 0 which converges to
zero sufficiently slowly instead of a fixed number ε > 0 and we can guarantee that the
new triangular array is equiconvergent with the original one. Then some not too hard
calculation shows that all moments of the sums made from this truncated and normalized
random variables converge to the corresponding moments of a random variable with
standard normal distribution. On the other hand, it is known from the general theory
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that this fact implies the central limit theorem. Now we omit the details. We return to
this remark in Part II. of this series of problems.

40.) Let a triangular array ξk,j , 1 ≤ j ≤ nk, lim
k→∞

nk∑

j=1

Eξ2k,j = 1, Eξk,j = 0, satisfy

the Lindeberg condition. Let us fix a real positive number ε > 0, and define
the random variable ξ̄k,j = ξ̄k,j(ε) = ξk,jI(|ξk,j | < ε) − Eξk,jI(|ξk,j | < ε). Then

lim
k→∞

nk∑

j=1

Eξ̄2k,j = 1. Let us also define the partial sums S̄k =
nk∑

j=1

ξ̄k,j and Sk =

nk∑

j=1

ξk,j . Then the differences Sk − S̄k converge stochastically to zero if k → ∞.

Let us emphasize that to guarantee the validity of the Lindeberg condition in
problem 39 we have imposed not only the condition that the random sums Sk converge
in distribution to a normal law. We also demanded that the limit distribution have the
“right” variance 1. We also shall show examples where the triangular array ξk,j , 1 ≤
k < ∞, 1 ≤ j ≤ nk, satisfies the uniform smallness condition lim

k→∞

(

sup
1≤j≤nk

Eξ2k,j

)

=

0, it does not satisfy the Lindeberg condition, and the random sums Sk converge in
distribution to a normal distribution. But in this example the variance of the limit
distribution is less than 1. Before the discussion of such examples we present some results
which give useful sufficient conditions for the validity of the Lindeberg conditions. We
shall consider only normalized partial sums of independent random variables instead of
triangular arrays. First we formulate the appropriate version of the Lindeberg condition
for sequences of independent random variables.

The definition of the Lindeberg condition for sequences of independent ran-

dom variables. Let ξn, n = 1, 2, . . . , be a sequence of independent random vari-
ables, for which Eξn = 0, σ2

n = Eξ2n < ∞, n = 1, 2, . . . , and the sequence of num-

bers s2n =
n∑

k=1

σ2
k, n = 1, 2, . . . , satisfies the relation lim

n→∞
s2n = ∞. The sequence ξn,

n = 1, 2, . . . , satisfies the Lindeberg condition if

lim
n→∞

1

s2n

n∑

k=1

Eξ2kI({|ξk| > εsn}) = 0.

for all numbers ε > 0.

Given a sequence ξn, n = 1, 2, . . . , of independent random variables for which

Eξn = 0, σ2
n = Eξ2n <∞, and the sequence s2n =

n∑

k=1

σ2
k satisfies the relation lim

n→∞
s2n =

∞, define the triangular array ξk,j , k = 1, 2, . . . , j = 1, . . . , nk, by the formulas nk = k

and ξk,j =
ξj

sk
, if 1 ≤ j ≤ k with the help of this sequence. The original sequence of

random variables ξn, n = 1, 2, . . . satisfies the Lindeberg condition if and only if the
triangular array ξk,j defined by its help satisfies it. Hence the central limit theorem and
its converse formulated for triangular arrays can be reformulated for normalized partial
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sums of independent random variables. (In this reformulation the uniform smallness

property of the summands have the form lim
n→∞

max
1≤k≤n

σ2
k

s2
n

= 0.) In the next problem we

formulate some properties which imply the Lindeberg condition.

41.) Let ξn, n = 1, 2, . . . , be a sequence of independent random variables for which

Eξn = 0, σ2
n = Eξ2n < ∞, n = 1, 2, . . . , lim

n→∞
s2n = ∞, where s2n =

n∑

k=1

σ2
k. This

sequence of random variables satisfies the Lindeberg condition if one of the following
properties holds.

a.) E|ξk|2+α < ∞, for all numbers k = 1, 2, . . . with some constant α > 0, and

lim
n→∞

(
n∑

k=1

E|ξk|2+α

)2/(2+α)

s2
n

= 0. In particular, this condition holds if Eξ2k ≥ K

with some constant K > 0 for all indices k = 1, 2, . . . , and besides the relation
E lim

k→∞
k−α/2E|ξk|2+α = 0 holds.

b.) The independent random variables ξn, n = 1, 2, . . . , are uniformly distributed.
(This means that the result of problem 35 follows from the central limit theorem
formulated under general conditions.)

We want to show an example for a sequence of independent random variables with
expectation zero and finite variance which satisfies the uniform smallness condition, the
normalized partial sums made with the help of this sequence converge in distribution to
the standard normal distribution, but the normalization is not the natural one, that is
we divide the partial sums not with the square-root of their variances. Such an example
shows that the normalized partial sums of independent random variables may satisfy the
central limit theorem (with a non-usual normalization) also if the Lindeberg condition
does not hold. Before the construction we prove a simple result which is useful also in
other investigations. This result states that a sequence of random variables convergent
in distribution has the same limit as its small perturbations. Let us remark that a
similar result also holds for random variables taking values in more general spaces.

42.) Let two sequences of random variables Sn and Tn, n = 1, 2, . . . , be given such that
the sequence of random variables Sn, n = 1, 2, . . . , converges in distribution to a
distribution function F and the sequence Tn, n = 1, 2, . . . , converges stochastically
to zero, i.e. P (|Tn| > ε) → 0 for all numbers ε > 0 if n→ ∞. Then the sequence of
random variables Sn + Tn, n = 1, 2, . . . , converges to the distribution function F .

43.) Let us construct a sequence of independent random variables ξn, n = 1, 2, . . . ,
for which Eξn = 0, Eξ2n = 1, n = 1, 2, . . . , and the sequence of partial sums

Sn =
n∑

k=1

ξk, n = 1, 2, . . . , satisfy one of the following statement:

a.) The sequence of normalized partial sums
√

2
nSn, n = 1, 2, . . . , converge in distri-

bution to the central normal distribution.
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b.) The sequence of normalized partial sums
√

2
nSn, n = 1, 2, . . . , converges in distri-

bution to a normal random variable with expected value m 6= 0 and variance 1.

The result of problem 38 implies that an example satisfying problem 43 cannot
satisfy the Lindeberg condition. Indeed, if the Lindeberg condition held, then the
distribution of the normalized partial sums Sn√

n
would converge to the standard normal

distribution function. Let us also remark that in the counter examples of problem 43
the limit distribution had a strictly smaller variance than the variance of the normalized
partial sums. The following problem shows that no counter-example exists where the
limit distribution has too large variance.

44.) Let a sequence of distribution functions Fn, n = 1, 2, . . . , converge in distribution
to a distribution function F0(x). Then lim inf

n→∞

∫
u2Fn( du) ≥

∫
u2F0( du).

H.) The multi-dimensional central limit theorem.

The multi-dimensional limit theorems can be investigated by means of the charac-
teristic functions similarly to their one-dimensional analog. Moreover, the characteristic
function method enables us to reduce the investigation of the multi-dimensional limit
theorems to the one-dimensional case. This is the content of the subsequent two prob-
lems.

45.) Let Z = (Z1, . . . , Zm), n = 1, 2, . . . , be an m-dimensional random vector. Let
us consider for all m-dimensional vectors (a1, . . . , am) ∈ Rm the random variable

Z = Z(a1, . . . , am) =
m∑

j=1

ajZj . The distribution functions of all one-dimensional

random variables Z = Z(a1, . . . , am) also detbermine the distribution of the random
vector Z = (Z1, . . . , Zm).

46.) Let Zn = (Z1,n, . . . , Zm,n), n = 1, 2, . . . , be a sequence of m-dimensional random
vectors. The random vectors Zn converge in distribution to an m-dimensional
distribution as n → ∞ if and only if for all vectors (a1, . . . , am) ∈ Rm the one-

dimensional random variables Zn = Zn(a1, . . . , am) =
m∑

j=1

ajZj,n, n = 1, 2, . . . ,

converge in distribution as n→ ∞. If the random vectors Zn converge in distribu-
tion to a probability measure µ in the m-dimensional space, then this limit measure
µ can be characterized in the following way. If Z = (Z1, . . . , Zm) is a random vector
with distribution µ, and (a1, . . . , am) ∈ Rm is an arbitrary m-dimensional vector,

then the distribution function of the random variable Z = Z(a1, . . . , am) =
m∑

j=1

ajZj

equals the limit of the distribution functions of the random Zn = Zn(a1, . . . , am) =
m∑

j=1

ajZj,n. In particular, we claim that these relations uniquely determine the

measure µ.

Let us define the notion of multi-dimensional normal (Gaussian) distributions. It
will be the natural analog of the one-dimensional normal distribution. The multi-
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dimensional normal distributions with expectation zero are exactly those distributions
which appear as the limit in the multi-dimensional version of the central limit theorem.
Before their formal definition let us recall some notions.

The expected value of an m-dimensional random vector Z = (Z1, . . . , Zm) is the m-
dimensional vector M = (M1, . . . ,Mm) whose coordinates are the numbers Mj = Eξj ,
1 ≤ j ≤ m. The covariance matrix of the random vector Z = (Z1, . . . , Zm) is the m×m
matrix (Dj,k), 1 ≤ j, k ≤ m whose elements are the numbersDj,k = EZjZk−EZjEZk =
E(Zj − EZj)(Zk − EZk). In our notations a vector b = (b1, . . . , bm) will mean a
row-vector, and we shall denote its transpose, which is a column vector, by b∗. If
x = (x1, . . . , xm) ∈ Rm and y = (y1, . . . , ym) ∈ Rn are two m-dimensional vectors, then

(x,y) denotes their scalar product, i.e. (x,y) =
m∑

j=1

xjyj .

The definition of the multi-dimensional normal distribution. Let ξj, 1 ≤ j ≤ m,
be independent random variables with standard normal distribution. Then the random
vector ξ = (ξ1, . . . , ξm) will be called an m-dimensional standard normal random vector
and its distribution the m-dimensional standard normal distribution. If B = (bj,k),
1 ≤ j, k ≤ m, is an m×m matrix, M = (M1, . . . ,Mm) is an m-dimensional vector and
ξ = (ξ1, . . . , ξm) is an m-dimensional standard normal random vector, then ξB + M is
called an m-dimensional vector with normal distribution. A probability measure µ on the
measurable sets of the m-dimensional Euclidean space Rm is called an m-dimensional
normal distribution if and only if it equals the distribution of an m-dimensional random
vector with normal distribution defined in the above way with an appropriate m × m

matrix B and a vector M ∈ Rm.

Let us first characterize the multi-dimensional normal distributions.

47.) The covariance matrix Σ of all m-dimensional random vectors is positive semi-
definite, i.e. for all m-dimensional vectors x = (x1, . . . , xm) xΣx∗ = (xΣ,x) ≥ 0. In
the converse direction, for all m-dimensional vectors M = (M1, . . . ,Mm) ∈ Rm and
m×m symmetric, positive semi-definite matrices Σ there exists an m-dimensional
random vector with normal distribution whose expected value is this vector M

and whose covariance matrix is this matrix Σ. The characteristic function of an
m-dimensional normal distribution with expected value M and covariance matrix
Σ equals

ϕ(t1, . . . , tm) = Eei(t,ξ) = Eei(t1ξ1+···+tmξm) = exp

{

− (tΣ, t)

2
+ i(t,M)

}

, (13)

where t = (t1, . . . , tm), and ξ = (ξ1, . . . , ξm) denotes an m-dimensional random
vector with expected value M and covariance matrix Σ. In particular, an m-
dimensional normal distribution is uniquely determined by its expected value M

and covariance matrix Σ.

The special form of the characteristic function of an m-dimensional characteristic
function given in formula (13) has several simple but important consequences. It implies
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the most important properties of Gaussian distributions. Although these results do not
belong to the subject of this series of problems, I discuss two problems that may be
useful in such investigations.

48.) Let ξj , 1 ≤ j ≤ m, be m independent random variables with standard normal
distribution, M = (M1, . . . ,Ml) an l-dimensional (deterministic) vector, and B a
rectangular matrix of size l × m. Then (η1, . . . , ηl) = (ξ1, . . . , ξm)B + M is an
l-dimensional random vector with normal distribution. In particular, if we preserve
only l coordinate of a a normal random vector η of dimension m, then we get a
normal random vector of dimension l.

49.) Let η = (η1, . . . , ηm) be such a random vector of dimension m with normal distribu-
tion whose covariance matrix Σ = (σp,q), 1 ≤ p, q ≤ m, has the following property:

The set {1, . . . ,m} has a partition {1, . . . ,m} =
k⋃

j=1

Lj , 1 ≤ j ≤ k, such that the

non zero elements of the matrix Σ are concentrated in the union of the squares
L1 × L1, . . . , Lk × lk, i.e., σp,q = 0, if p ∈ Lj , q ∈ Lj′ , and j 6= j′. In this case the
random vectors η̄j = (ηp, p ∈ Lj), 1 ≤ j ≤ k, obtained by an appropriate grouping
of the coordinates of the vector η are Gaussian random vectors, independent of
each other.

Finally we formulate the multi-dimensional central limit theorem for appropriately
normalized partial sums of independent vectors. We do not formulate this result in its
most general form, and do not discuss its version for triangular arrays, although this
would be also possible.

50.) Let ξk = (ξ1,k, . . . , ξm,k), k = 1, 2, . . . , be a sequence of independent m-dimensional
random vectors with expectation zero, i.e. we assume that the relation Mk =
(Eξ1,k, . . . , Eξm,k) = (0, . . . , 0) holds for all numbers k = 1, 2, . . . . Let us also
assume that the random vectors ξk = (ξ1,k, . . . , ξm,k) have a finite covariance matrix

Σk for all indices k = 1, 2, . . . , and the relation lim
n→∞

1
A2

n

n∑

k=1

Σk = Σ holds with an

m×m matrix Σ and with norming constants An, n = 1, 2, . . . , such that An → ∞
if n→ ∞. If beside this all coordinates of the random vectors ξk, k = 1, . . . , satisfy
the Lindeberg condition, i.e.

lim
n→∞

1

A2
n

n∑

k=1

Eξ2p,kI(|ξp,k| > εAn) = 0, for all numbers p = 1, . . .m, (14)

for all ε > 0, then the normalized partial sums 1
An

Sn = 1
An

(S1,n, . . . , Sm,n) =

1
An

n∑

k=1

(ξ1,k, . . . , ξm,k) converge in distribution to the normal distribution function

with expected value M = (0, . . . , 0) and covariance matrix Σ.

In particular, if ξk = (ξ1,k, . . . , ξm,k), k = 1, 2, . . . , is a sequence of independent
and identically distributed m-dimensional random vectors with expectation zero
and finite covariance matrix Σ, then the normalized partial sums 1√

n
(S1, . . . , Sm) =
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1√
n

n∑

k=1

(ξ1,k, . . . , ξm,k) converge in distribution to the normal distribution function

with expectation zero and covariance Σ.

51.) Let ξn = (ξ1,n, . . . , ξm,n), n = 1, 2, . . . , be a sequence of m-dimensional random
vectors with expectation zero and such that all random vectors ξn = (ξ1,n, . . . , ξm,n)
have a finite covariance matrix Σn for all indices n = 1, 2, . . . . Let us further

assume that the relation lim
n→∞

1
A2

n

n∑

k=1

Σn = Σ with an appropriate matrix Σ and

norming factors An, n = 1, 2, . . . , such that An → ∞, ha n→ ∞. Besides, we also

assume that the uniform smallness condition lim
n→∞

max
1≤j≤m

max
1≤k≤n

Eξ2
j,k

A2
n

= 0 holds. If

the sequence of random vectors Sn

An
converges in distribution to an m-dimensional

normal distribution whose covariance matrix is Σ, then also the Lindeberg condition
formulated in relation (14) holds.

Some additional remarks

We formulate some problems whose investigation is a natural continuation of the study
of the problems in this paper.

1.) The central limit theorem for appropriately normalized partial sums of indepen-
dent random variables was deduced from the convergence of their characteristic
functions. Actually not only the convergence of the characteristic functions can be
proved, but also the speed of convergence can be given. Besides, the characteristic
functions of the normalized partial sums can be better approximated if we add
some correction terms to the characteristic function of the approximating normal
distribution. These correction terms can be found by means of a natural Taylor
expansion. It is natural to expect that these estimates also supply a good estimate
about the accuracy of the normal approximation of the distribution function of
normalized partial sums of independent random variables. Moreover, a better ap-
proximation of their characteristic functions also yields a better approximation of
the distribution function of normalized partial sums of independent random vari-
ables if some appropriate correction terms are added to the normal approximation.

A natural analog of the above question is to give a good estimate on the Gaussian
approximation of the density function of appropriately normalized partial sums of
independent random variables and to find a better approximation for this density
function by means of an appropriate asymptotic expansion. Naturally, in this
investigation we have to impose some additional assumptions on the distribution of
the random variables whose partial sums we investigate to guarantee the existence
of a nice density function. This problem about the behaviour of density functions
is simpler, because there exists a relatively simple inverse Fourier transformation
formula to express a density function by means of its Fourier transform. On the
other hand, there is no really useful formula for the calculation of distribution
functions with the help of their characteristic function in a simple, well applicable
form. But by convolving the distribution function of the normalized partial sums we
want to investigate with an appropriate density function (essentially concentrated
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in a small neighbourhood of the origin) we get a new distribution function close to
the original one which has a density function, and as a consequence this modified
(smoothed) distribution function can be well estimated as the integral of its density
function. This approach together with some additional ideas enables us to study
the problems mentioned in the previous paragraph. These problems will be the
main part of the (essentially shorter) second part of this series of problems.

2.) We have seen that the appropriately normalized partial sums of independent ran-
dom variables converge in distribution to a normal distribution function under some
mild conditions. On the other hand, we would like to get a complete picture about
all possible limit theorems for the distribution of appropriately normalized partial
sums or in a more general way, for the sums of the elements in the same rows of
a triangular array of random variables. It is natural to impose some kind of uni-
form smallness condition which should guarantee that there are no such dominating
terms in the random sums we investigate whose magnitude is comparable with the
magnitude of the whole sum.

A fairly complete picture can be given about all possible limit theorems for the
normalized partial sums of independent random variables. In the proof the Funda-
mental Theorem about the convergence of distribution functions proved also in this
series of problems plays a key role. It makes possible to reformulate the problem to
the language of characteristic functions. The first question to be understood in this
problem is the description of all possible limit theorems. This leads to the study of
the fixed points of certain operators in the space of distribution functions defined
by means of convolution and rescaling. This study leads to the description of the
so-called infinitely divisible distributions which appear as the limits in limit theo-
rems. Further investigations make possible also to describe in which limit theorems
a certain infinitely divisible distribution appears.

These problems are solved by means of certain methods of the analysis about the
study of the behaviour of the characteristic functions, but the proof also contains
several probabilistic ideas. We also remark that although there are several different
kind of limit theorems, the central limit theorem is the only “universal law” for
the limit distribution of normalized partial sums of independent random variables,
where the limit distribution function “forgets” the distribution of the single terms
in the partial sums. Here we do not explain the more precise meaning of this
rather loose statement. A fairly complete discussion with complete proofs of the
problems mentioned in this Section 2 can be found together with the explanation
of the ideas behind the proofs in the text Limit theorems and infinitely divisible
distribution on my homepage. (For the time being it exists only in Hungarian.) It
also contains the explanation of the statement that the central limit theorem is the
only “universal law” among the limit theorems for the limit distribution of partial
sums of independent variables.

3.) Let us consider a sequence ξ1, ξ2, . . . , of independent, identically distributed ran-
dom variables with expectation zero and finite variance together with the partial

39
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sums Sn =
n∑

k=1

ξn, n = 1, 2, . . . , defined with their help. The central limit theo-

rem gives a good estimate on the probability P
(

Sn√
n
> x

)

for large indices n and

fixed numbers x. We may ask whether a similar good estimate can be given for

the probabilities P
(

Sn√
n
> xn

)

, that is we are interested in a good estimate on the

probability of a similar event when the number x is replaced by a number xn which
may depend on n. The special case xn = x

√
n, that is the investigation of the prob-

ability of the event that the average of independent, identically distributed random
variables is larger than a fixed number x is a particularly important question. This
problem belongs to an important part of the probability theory, called the theory
of large deviations. The above mentioned problem is discussed together with some
additional questions also in a series of problems The theory of large deviation; the
case of partial sums of real valued random variables on my homepage. (For the
time being it exists only in Hungarian). Let us remark that the estimates in the
large deviations problems do not agree with the estimates suggested by a formal
extension of the central limit theorem.

It would be natural to try to estimate the probability P (Sn > nx) similarly to
the estimate of the event P (Sn >

√
nx) in the proof of the central limit theorem.

Nevertheless, this method in itself does not suffice to estimate this probability. It
is worth understanding why the method of the proof of the central limit theorem
is not sufficient to estimate this probability. Let us first consider the case when
the distribution function P (Sn > nx) also has a nice density function fn(x) =
d
dxP (Sn > nx), and let us first estimate this density function. Then we have to
investigate the integral fn(x) = n

2π

∫
e−intxϕn(t) dt, where ϕ(t) is the characteristic

function of the random variable ξ1. This integral is similar to the integral appearing
in the proof of the local central limit theorems. The only difference is that the factor
eit

√
nx in the integral investigated in the proof of the local central limit theorem is

replaced by the term eit
√

nx in this case.

In the proof of the local central limit theorem a singular integral had to be inves-
tigated which was strongly concentrated in a small neighbourhood of the origin.
In the analogous large deviation problem a similar singular integral has to be in-
vestigated. But there is a small difference which makes the latter problem more
difficult. The cause of this difficulty is that although the absolute value of the
complex number valued integrand whose integral has to be estimated in the large
deviation problem has a strongly localized maximum in the origin, but its imaginary
part has a strong fluctuation in a small neighbourhood of the origin. This fluctua-
tion causes a strong cancellation, hence we cannot claim that the contribution of a
small neighbourhood of the origin yields the main contribution to the integral we
are estimating. In the proof of the local central limit theorem this difficulty did not
appear, since in this case the fluctuation of the imaginary part of the integrand is
not so strong in a small neighbourhood of the origin. The reason for this difference
is that the term e−i

√
ntx appears instead of the term e−intx in the integral inves-

tigated in the proof of the local central limit theorem and dϕ(t)
dt

∣
∣
∣
t=0

= Eξ1 = 0 in

40



Central limit theorems and Fourier analysis

this case.

Such kind of problems appear often in the analysis, and an important technique,
the saddle point method was worked out to investigate such problems. To apply
the saddle point method let us rewrite the integral we are interested in in the
form fn(x) = n

2π

∫
en(−itx+log ϕ(t)) dt. (In this heuristic explanation let us disregard

such technical difficulties as the problem that we cannot always take logarithm of
a function.) If the function n(−itx + logϕ(t)) in the exponent of the integrand
we study is an analytic function of the variable t, then the saddle-point method
suggests to replace the domain of integration to an appropriate new curve which
goes through the saddle point, i.e. through a point z which satisfies the identity

d(−izx+ logϕ(z))

dz
= 0. (∗)

The integral we are investigating does not change by this replacement. On the
other hand this new integral can be better estimated since the absolute value of
the integrand on this new curve has a strongly localized (local) maximum in the
saddle point, and its fluctuation around the saddle point is small. The proof of the
large deviation estimates for averages of independent and identically distributed
random variables are based on this idea. Naturally, it is useful to combine it with
some additional observations. For instance, it is enough to look for the saddle
point on the imaginary axis where the imaginary part of the left-hand side of the
saddle point equation (∗) is automatically zero. If the saddle point equation has no
solution, then an appropriate approximation and some additional ideas are needed
to solve the large deviation problems.

Let us remark that in most probability text-books on the theory of large deviations
the saddle point method is not discussed. In these text-books the notion of the
so-called conjugated distributions are introduced, and the problem is solved with
their help. On the other hand, a better understanding of the problem may help us
to understand that the introduction of conjugated distributions can be interpreted
as the application of the saddle point method to the investigation of large deviation
problems formulated in the language of probability theory.

Finally we make the following remark. The above sketched saddle point method can
be applied for the investigation of large deviation problems only if the characteris-
tic function of the random variables whose averages we investigate has an analytic
continuation. One may ask whether this condition does not mean an unnecessary
restriction. A detailed investigation shows that the answer to this question is neg-
ative. It turns out that this condition about the analiticity of the characteristic
function has a probabilistic content, and the behaviour of the probabilities we in-
vestigate in large deviation problems heavily depends on whether the characteristic
function is analytic. If this analiticity property does not hold, then the probabilities
investigated in the large deviation problems have an essentially different behaviour.
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Solutions.

1.) Put I = 1√
2aπ

∫∞
−∞ e−u2/2a du. By expressing the number I2 as a double integral

and rewriting it in polar coordinate system we get that

I2 =
1

2aπ

∫ ∞

−∞

∫ ∞

−∞
e−(u2+v2)/2a du

=

∫ π

−π

∫ ∞

0

1

2π
· r
a
e−r2/2a dr dϕ =

∫ π

−π

1

2π
dϕ = 1.

This relation implies the first statement of the problem.

Let us fix a number a > 0. Put F (z) = 1√
2aπ

∫∞
−∞ e−(u−z)2/2a du. With the

substitution ū = u− z we get that

F (z) =
1√
2aπ

∫ ∞

−∞
e−ū2/2a dū = 1

for all real numbers z. We can generalize this identity for all complex numbers z
with the help of one of the following argument of the theory of analytic functions.

First argument: Both functions F (z) and G(z) ≡ 1 are analytic function on the
plane of complex numbers. As they agree for all real numbers they also agree for
all complex numbers. To see that the function F (z) is really analytic, observe
that it can be obtained as the limit of analytic functions in such a way that the
convergence is uniform on all compact subsets of the plane of complex numbers.
Then the limit of these analytic functions, i.e. the function F (z) is also analytic.
Such analytic functions converging to F (z) can be obtained by approximating the
integrals F (z) by the natural approximating sums of these integrals.

Second argument: We get with the change of variable ū = u− z that

F (z) =
1√
2aπ

∫ ∞−Im z

−∞−Im z

e−ū2/2a dū = 1.

To prove the above identity observe that lim
|u|→∞

e−(u+iv)2/2a = 0, and the conver-

gence is uniform with respect to the variable v if |v| is in a bounded interval. This
fact together with the result of analytic functions by which the contour integral of
an analytic function (containing no singular point) on a closed curve is zero imply
that the value of the above integral does not change if we replace the route of in-
tegration [−∞− Im z,∞− Im z] to the line [−∞,∞]. This implies the identity we
wanted to prove.

2.) Let ξ be a random variable with Poissonian distribution with parameter λ = n,

i.e. P (ξ = k) = nk

k! e
−n, k = 0, 1, 2, . . . . The Fourier series corresponding to the

distribution of this random variable ξ equals

Pn(t) =

∞∑

k=0

P (ξ = k)eitk =

∞∑

k=0

nk

k!
e−n+ikt = e−n+neit

.
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This identity together with relation (2) imply relation (3) with the choice k = n.

Let us observe that relation (4b) is a simple consequence of relations (3) and (4a)
and the asymptotic formula 1

1+x = 1 − x+O(x2) = 1 +O(x), if |x| ≤ 1
2 .

To prove formula (4a) let us first give an upper bound about the contribution of
the domain {t: |t| ≥ n−1/3} to the integral at the left-hand side of formula (4a).
Then let us consider the restriction of this integral to the domain {t: |t| < n−1/3}
and let us give a good asymptotical estimate on it.

To carry out the first estimate let us observe that
∣
∣
∣en(eit−1−it)

∣
∣
∣ = enRe (eit−1−it) = en(cos t−1) < e−nt2/4 < e−n1/3/4 if n−1/3 ≤ t ≤ π,

and this implies that
∣
∣
∣
∣
∣

∫

{n−1/3≤|t|≤π}
en(eit−1−it) dt

∣
∣
∣
∣
∣
= O

(

e−const. n1/3
)

. (2.1)

To carry out the second estimation let us give a good asymptotical formula on the
integrand of relation (4a) in a small neighbourhood of the origin by means of a

Taylor expansion. We get that n(eit − 1 − it) = n
(

− t2

2 − i t3

6 +O(t4)
)

and

en(eit−1−it) = e−nt2/2e−int3/6+O(nt4)

= e−nt2/2

(

1 − i(
√
nt)3

6
√
n

+O

(
(
√
nt)4

n

)

+O

(√
nt)6

n

))

,

if |t| ≤ n−1/3. By exploiting this estimate and making the substitution of variables
t̄ =

√
nt we get that

∫ n−1/3

−n−1/3

en(eit−1−it) dt =
1√
n

∫ n1/6

−n1/6

e−t̄2/2

(

1 − i
t̄3

6
√
n

+
O
(
t̄4 + t̄6

)

n

)

dt̄

=
1√
n

(
∫ ∞

−∞
−
∫

|t̄|>n1/6

)

.

On the other hand,

∫

|t|≥n1/6

e−t2/2

(

1 − i
t3

6
√
n

+
O(t4 + t6)

n

)

dt = O
(

e−n1/3/4
)

,

and
∫ ∞

−∞
e−t2/2

(

1 − i
t3

6
√
n

+
O(t4 + t6)

n

)

dt

=

∫ ∞

−∞
e−t2/2 dt−

∫ ∞

−∞

i

6
√
n
t3e−t2/2 dt+O

(
1

n

)

=
√

2π +O

(
1

n

)
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because of the result of the first problem, and since the function t3e−t2 is odd.
These relations imply that

∫ n1/3

−n−1/3

en(eit−1−it) dt =

√
2π√
n

(

1 +O

(
1

n

))

. (2.2)

Then relation (4a) is a consequence of formulas (2.1) and (2.2).

Relation (4d) follows similarly from formulas (4c) as formula (4a) implies rela-
tion (4b). The only difference is that now we apply a better approximation 1

1+x =

1 − x + x2 − · · · + (−1)kxk + O
(
|x|k+1

)
for |x| ≤ 1

2 . Also formula (4c) can be
proved similarly to formula (4a). The difference is that now we consider the
Taylor expansion of the functions n(eit − 1 − it) and Pn(t) defined by the iden-

tity en(eit−1−it) = e−nt2/2(1 + Pn(
√
nt)) up to the k-th and not only to the first

term in the interval |t| ≤ n−1/3. Since Pn(t) = exp
{

t3√
n
R
(

t√
n

)}

with an an-

alytic function R(t) bounded on the real line, these calculations enable us to
give an estimate for the integrand of the integral in (4.1) with an accuracy of

e−nt2/2O

(∑k

j=1
(
√

n|t|)j(l(j)

n(k+1)/2

)

= O
(

e−nt2/4

n(k+1)/2

)

, where l(j) = min{l: lj ≥ k + 1} with

a function of the form e−nt2/2 (1 +Qn(t)). The function Qn(t) can be written

as Qn(t) =
k∑

j=1

Q̄j(
√

nt)

nj/2 , with some polynomials Q̄j which do not depend on the

parameter n, and they can be calculated explicitly. In particular, Q̄1(t) = −i
6 t

3.
Then by carrying out the substitution t̄ =

√
nt we get the improvement (4c) of

formula (4a).

3.) Let us first show that the distribution of a random variable ξ has the periodicity
h if and only if |Ee2πiξ/h| = 1. Indeed, if |Ee2πteiξ/h| = 1, then Ee2πiξ/h = e2πi/b

with some real number b. But this is possible if and only if the distribution of
the random variable 2π ξ−b

h is concentrated in the points n = 0,±1,±2, . . . , i.e.
the random variable ξ is concentrated on the lattice nh + b, n = 0,±1,±2, . . . .
To see the statement in the converse direction observe that if the distribution of a
random variable ξ is concentrated on a lattice nh + b, n = 0,±1, . . . , of width h,
then |Ee2πiξ| = 1. Furthermore, if the random variable ξ concentrated on some
lattice is not concentrated in a single point, then there are two numbers a and b,
a 6= b, such that P (ξ = a) > 0 and P (ξ = b) > 0. Then we have |Eeitx| < 1 for all
sufficiently small t > 0, and we can even state that there exists a smallest number
t > 0 such that |Eeitξ| = 1.

Take the smallest number t > 0 such that |Eeitξ| = 1. Then h = 2π
t is the greatest

number h such that the distribution of the random variable ξ is concentrated on a
lattice nh + b, n = 0,±1,±2, . . . , of width h. Then the periodicity of the Fourier

series P (t) = Eeit(ξ−b) =
∞∑

n=−∞
P (ξ − b = nh)eitnh of the random variable ξ − b

is 2π
h . Further, from the definition of the number h follows that |P (t)| < 1, if
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0 < t < 2π
h . Since P (−t) = P

(
2π
h − t

)
the above relation can be rewritten as

|P (t)| < 1, if 0 < |t| < π
h . Clearly, P (0) = 1.

Formal differentiation by terms of the infinite sum P (t) yields that P (k)(t)
dtk =

∞∑

n=−∞
ik(nh)keitnhP (ξ − b = nh), and P (k)(t)

dtk

∣
∣
∣
t=0

=
∞∑

n=−∞
ik(nh)kP (ξ − b = nh) =

ikE(ξ − b)k. Under the condition E|ξ − b|k <∞ this formal calculation is allowed.
Indeed, the approximating partial sums of the k-th derivative of the function P (t)

satisfies the inequality
N∑

n=−N

|ik(nh)keitnhP (ξ − b = nh)| ≤ E|ξ − b|k, and this

property allows (k-fold) differentiation by terms.

4.) By relation (2) and the formula written after it

P (Sn = k) =

∫ π

−π

1

2π
e−iktPn(t) dt =

∫

|t|< 1
ε
√

n

+

∫

1
ε
√

n
<|t|<ε

+

∫

ε<|t|<π

= I1+I1+I3,

where P (t) =
∞∑

k=−∞
eiktP (ξ1 = k), and ε > 0 is an arbitrary (small) positive real

number. We solve the problem if we give a good estimate for the integrals I1, I2
and I3 for small ε > 0.

It is easy to bound the integral I3. It follows from the result of problem 3 and the
continuity of the function P (t) that sup

ε≤|t|<π

|P (t)| < 1 with some number 0 < q =

q(ε) < 1. Hence

|I3| =

∣
∣
∣
∣
∣

∫

ε<|t|<π

1

2π
e−iktPn(t) dt

∣
∣
∣
∣
∣
< qn

with some number 0 < q < 1. To estimate the integrals I1 and I2 we need a good
bound on the function Pn(t) if |t| < ε. It is more convenient to work with the
function logP (t) instead. (For small numbers ε > 0 this is allowed, since in this
case the value of the function P (t) in the interval [−ε, ε] is in a small neighbourhood
of the number 1.) Simple calculation yields that

d logP (t)

dt
=
P ′(t)

P (t)
,

d logP (t)

dt

∣
∣
∣
∣
t=0

= im,

d2 logP (t)

dt2
=
P ′′(t)P (t) − P ′(t)2

P 2(t)
,

d2 logP (t)

dt2

∣
∣
∣
∣
t=0

= −m2 +m2 = −σ2,

hence a Taylor expansion around the origin yields that

logP (t) = imt− σ2

2
t2 + o(t2), if |t| < ε.
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This estimate together with the relation |Pn(t)| = enRe log P (t) = e−nσ2t2/2+no(t2) ≤
e−nσ2t2/3, if |t| < ε and n ≥ n(ε) imply that

|I2| ≤
1

2π

∫

1
ε
√

n
<|t|<ε

|Pn(t)| dt ≤ 1

2π

∫

1
ε
√

n
<|t|<ε

e−nσ2t2/3 dt

≤ 1

π
√
n

∫ ∞

− 1
ε

e−σ2t2/3 dt ≤ e−σ2/4ε2

√
n

.

Furthermore,

I1 =

∫ 1
ε
√

n

− 1
ε
√

n

1

2π
e−ikt+inmt−nσ2t2/2+o(nt2) dt

=

∫ 1
ε

− 1
ε

1

2π
√
n
ei(mn−k)t/

√
n−σ2t2/2+o(t2) dt

=

∫ 1
ε

− 1
ε

1

2π
√
n
ei(mn−k)t/

√
n−σ2t2/2(1 + o(t2)) dt

=

∫ ∞

−∞

1

2π
√
n
ei(nm−k)t/

√
n−σ2t2/2 dt−

∫

|t|> 1
ε

1

2π
√
n
ei(nm−k)t/

√
n−σ2t2/2 dt

+ o

(
1√
n

)

.

On the other hand
∣
∣
∣
∣
∣

∫

|t|> 1
ε

1

2π
√
n
ei(nm−k)t/

√
n−σ2t2/2 dt

∣
∣
∣
∣
∣
≤ e−σ2/4ε2

√
n

,

and by completing the quadratic term in the exponent of the last formula we get
that

∫ ∞

−∞

1

2π
√
n
ei(nm−k)t/

√
n−σ2t2/2 dt

=
e−(nm−k)2/2nσ2

2π
√
n

∫ ∞

−∞
exp

{

−σ
2

2

(

t− i
nm− k√

n

)2
}

dt =
e−(nm−k)2/2nσ2

√
2πnσ

by the result of problem 1. These estimates imply that

∣
∣
∣
∣
I1 −

1√
2πnσ

exp

{

− (k − nm)2

2nσ2

}∣
∣
∣
∣
≤ const.

e−σ2/4ε2

√
n

if n > n(ε). As the estimates given for the expressions I1, I2 and I3 hold for all
ε > 0 if n is sufficiently large, hence they imply the result of problem 4.
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5.) The solution of this problem is similar to that of problem 4. Since the random vari-
able ξ1 has three finite moments in the present case, hence we can make the following

better approximation of the function logP (t): logP (t) = imt− σ2

2 t
2+O(t3). Hence

Pn(t) = eimnt−nσ2t2/2+O(nt3). Then we can solve problem 5 by making estimations
similar to those in the proof of problem 4. The only essential difference is that now
we define the domain of integration in the definition of the expressions in I1 and I2
in a different way. Now put I1 =

∫

|t|<n−1/3 and I2 =
∫

n−1/3≤|t|<ε
. The reason the

domain of integration in the definition of expression I1 was chosen in the above
way is that in the domain is that eO(nt3) = 1+O(nt3) in the domain {|t| < n−1/3},
hence the approximation e−iktPn(t) = ei(mn−k)t−nσ2t2/2

(
1 +O(nt3)

)
holds in this

domain. Then by applying a natural adaptation of the calculation in problem 4 that
by omitting the error term O(nt3) from the integral approximating the expression
I1 we get an error of order O

(
1
n

)
. The error of all other remaining estimations is

essentially smaller. They are of order eO(−const. n1/3). Hence these estimates yield
the solution of problem 5.

5a.) We have to estimate the expression P (Sn = k) =
(
n
k

)
pk(1 − p)n−k. Let us first

consider the case αn < k < βn with some numbers 0 < α < β < 1. By the Stirling
formula

(
n

k

)

=
n!

k!(n− k)!
=

(
n
e

)n

(
n−k

e

)n−k (k
e

)k

√
n

2πk(n− k)

(

1 +O

(
1

n

))

=

(

1 − k

n

)−(n−k)(
k

n

)−k
1

√
2πn

√
k
n

(
1 − k

n

)

(

1 +O

(
1

n

))

.

A Taylor expansion of the function log x around the point p yields that

pk

(
k

n

)−k

= exp

{

k

(

log p− log
k

n

)}

= exp

{

−k
p

(
k

n
− p

)

+
k

2p2

(
k

n
− p

)2

+O

(

n

(
k

n
− p

)3
)}

.

Similarly,

(1 − p)n−k

(
n− k

n

)−(n−k)

= exp

{

n− k

1 − p

(
k

n
− p

)

+
n− k

2(1 − p)2

(
k

n
− p

)2

+O

(

n

(
k

n
− p

)3
)}

.

By multiplying the last two expressions and exploiting that in the formula got in

such a way the coefficient of the term
(

k
n − p

)2
is

k

2p2
+

n− k

2(1 − p)2
=

(k − np)2

2p(1 − p)
+ (1 − 2p)

(k − np)3

n2
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we get that

pk

(
k

n

)−k

(1−p)n−k

(
n− k

n

)−(n−k)

= exp

{

− (kn− p)2

2np(1 − p)
+O

(

n

(
k

n
− p

)3
)}

.

Since k
n

(
1 − k

n

)
= p(1 − p)

(

1 +O
(

k−np
n

))

the above calculations yield that

P (Sn = k) =
exp

{

− (kn−p)2

2np(1−p) +O
(

n
(

k
n − p

)3
)

+O
(

k
n − p

)
+O

(
1
n

)}

√

2πp(1 − p)n

Since Eξ1 = p, Var ξ1 = p(1 − p) the last formula yields an estimate stronger than
we want in the case |k − np| < γn with a sufficiently small number γ > 0. Indeed,
by introducing the quantity z = k−np√

n
we get the demanded estimate with an error

term ε(n) of the following form:

ε(n) = ε(n, z) ≤ C√
n
e−K1z2

[

exp

{

K2
|z|3√
n

+K3
|z|√
n

+
K4

n

}

− 1

]

with appropriate constants C > 0, and Kj > 0, j = 1, . . . , 4. Then we have
to show that ε(z, n) ≤ const.

n , if |z| ≤ γ
√
n. This estimate holds for n1/6 >

|z| < γ
√
n, since in this case ε(n, z) ≤ e−K1z2/2. If |z| ≤ n1/6 then e(n, z) ≤

C√
n
e−K1z2

(
|z|3+|z|+1√

n

)

≤ const.
n , that is the demanded estimate holds also in this

case.

If |k − np| ≥ γn, then the result of problem 5a follows from the relations P (Sn =

k) ≤ const.
n and e−(k−np)2/2np(1−p) < const.

n2 . Actually, even stronger estimates
could be proved. The first estimate is a consequence of the Chebishev inequality,
since P (Sn = k) ≤ P (|Sn − ESn| ≥ γn) ≤ Var Sn

γ2n2 ≤ const.
n . The second inequality

is obvious.

6.) Let us introduce the random variables ξ̄j =
ξj−b

h , j = 1, . . . , n, and S̄n =
n∑

j=1

ξ̄j .

Then Eξ̄j = m−b
h and Var ξ̄j = σ2

h2 . Since P (Sn = kh+ nb) = P (S̄n = k), and the
random variable S̄n is concentrated on the lattice of the integers as on the rarest
lattice, statement formulated in this problem follows from the results of problems 4
and 5.

7.) It follows from formula (5) that the relation

lim
n→∞

P

(

A <
Sn − nm√

nσ
< B

)

=

∫ B

A

1√
2π
e−u2/2 du, (2.3)

holds if −∞ < A < B < ∞, and the limit in this relation is uniform for all
pairs of numbers (A,B) such that C1 ≤ A < B ≤ C2 with some fixed numbers
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−∞ < C1 < C2 <∞. Indeed,

P

(

A <
Sn − nm√

nσ
< B

)

= P (A
√
nσ + nm− nb < Sn − nb < B

√
nσ + nm− nb)

=
∑

k: k∈K(A,B)

P (Sn = kh+ nb)

=
h√

2πnσ

∑

k: k∈K(A,B)

exp

{

− (kh+ nb− nm)2

2nσ2

}

+
√
no

(
1√
n

)

=
h√
nσ

∑

l(k,n)∈L(A,B)

1√
2π
e−l(k,n)2/2 + o(1)

where K(A,B) = {k: A√nσ < kh+ nb− nm > B
√
nσ}, l(k, n) = kh−nm+nb√

nσ
, and

L(A,B) =

{

l(k, n) =
kh− nm+ nb√

nσ
, k = 0,±1,±2, . . .

}

∩ (A,B),

i.e. the points of the set L(A,B) are the points of the lattice of width h√
nσ

and

containing the point nb−nm√
nσ

which fall into the interval (A,B). This implies for-

mula (2.3), since for a fixed number n the probability at the left-hand side is an
approximating sum of the integral at the right-hand side plus an error which tends
to zero as n→ ∞.

We prove that relation (2.3) also holds for A = −∞. Indeed, for all ε > 0 we

can choose a number K = K(ε) such that
∫K

−K
1√
2π
e−u2/2 du > 1 − ε. Then

lim
n→∞

P
(∣
∣
∣
Sn−nm√

nσ

∣
∣
∣ < K

)

> 1 − ε, and lim
n→∞

P
(

Sn−nm√
nσ

< −K
)

< ε. Then

lim sup
n→∞

∣
∣
∣
∣
P

(
Sn − nm√

nσ
< x

)

−
∫ x

−∞

1√
2π
e−u2/2 du

∣
∣
∣
∣

≤ lim sup
n→∞

∣
∣
∣
∣
P

(

−K ≤ Sn − nm√
nσ

< x

)

−
∫ x

−K

1√
2π
e−u2/2 du

∣
∣
∣
∣
+ ε ≤ ε.

Since the last relation holds for all ε > 0, it implies the statement of problem 7.

8.) Let ϕ(t) =
∫∞
−∞ eitxf(x) dx = Eeitξ1 denote the Fourier transform of the density

function of the random variable ξ1. Then the Fourier transform of the density
function of the random sum Sn = ξ1 + · · ·+ ξn equals Eeit(ξ1+···+ξn) =

(
Eeitξ1

)n
=

ϕn(t). Since |ϕ(t)| ≤ 1, hence under the conditions of problem (8) the function
ϕn(t) is integrable for k ≥ n, and the density function fn(t) of the random sum can
be expressed by formula (6) if we replace the function ϕ(t) by ϕn(t). Moreover,
this relation also holds if we only assume that the function ϕk(t) is integrable,
and n ≥ k. The above calculation makes possible to prove problem 8 similarly to
problem 4 with some natural modification. Now we have to estimate the integral
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(6) instead of the integral (2) (with the modification that we write ϕn(t) instead of
the function ϕ(t) in (6). Further, because of the condition a Eξ2 <∞ the Fourier
transform ϕ(t) is twice differentiable, ϕ′(0) = iEξ1, ϕ(0)′′ = −Eξ21 . This means
that the analogs of the relations applied in the solution of problem 4 holds in this
case. (Later we shall discuss the properties of the Fourier transform ϕ(t) in the
general case.)

The only essential difference in the estimation of the integral we have to investi-
gate is that the integral I1 =

∫

ε<|t|<π
e−iktPn(t) dt introduced in the solution of

problem 4 now we write I ′1 = I ′1(x) =
∫

ε<|t|<∞ e−itxϕn(t) dt. Observe that

I ′1 ≤
∫

ε<|t|<∞
|ϕ(t)|n dt ≤ sup

ε≤|t|<∞
|ϕ(t)|n−k

∫

ε<|t|<∞
|ϕ(t)|k dt

≤ const. sup
ε≤|t|<∞

ϕ(t)|n−k,

since ϕk(·) is an integrable function. For a fixed number t, t 6= 0, |ϕ(t)| < 1.
Further, by the Riemann lemma lim

|t|→∞
|ϕ(t)| = 0, and ϕ(t) is a continuous function.

(This series of problem also contains the proof of the Riemann lemma.) These
facts imply that sup

ε<|t|<∞
|ϕ(t)| < q < 1. This relation together with the previous

estimates imply that |I ′1| ≤ const. qn. The only further difference in the solution of
problem 8 when compared to the solution of problem 4 is that now in the integrals
defining the expressions I1 and I2 the functions e−iktPn(t) are replaced by the
function e−itxϕn(t). These expressions can be estimated in the same way as the
analogous integrals in problem 4.

9.) The solution of this problem is similar to that of problem 6, only the notations are
simpler. The condition directly implies that

lim
n→∞

(Fn(B) − Fn(A)) =

∫ B

A

1√
2π
e−u2/2 du,

and the convergence is uniform for pairs of numbers (A,B) in a bounded set. Then
we can show similarly to the argument in problem 6 that the number A in the
above formula can be replaced by −∞.

10.) The proof is a slight modification of the proof sketched in the solution of problem 8.
This modification is similar to the modification made in the solution of problem 5
compared to problem 4. Since E|ξ1|3 <∞, hence the approximation

logϕ(t) = itEξ1 −
t2

x
Eξ21 +O(t3)

holds in a small neighbourhood of the origin. This makes possible to get the solution
of the problem by modifying the domain of integration in the expressions I2 and
I3 as it was done in the solution of problem 5.
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11.) Let ξ be a random variable with standard normal distribution. Then

Eξ =

∫ ∞

−∞

1√
2π
ue−u2/2 du = 0,

since the integrand is an odd function. On the other hand, integration by parts
yields that

Eξ2 =

∫ ∞

−∞

1√
2π
u2e−u2/2 du = −

∫ ∞

−∞

1√
2π
u

(
d

du
e−u2/2

)

du

=

∫ ∞

−∞

1√
2π
e−u2/2 du = 1.

If ξ is a Φm,σ distributed random variable, then its transform ξ−m
σ has standard

normal distribution, ı.e. it has expectation zero and variance 1. Hence ξ has
expectation m and variance σ2.

12.) Let ϕ(t) = ϕ(t1, . . . , tk) = Eei(t,ξ) = Eei(t1ξ1+···+tkξk) denote the characteristic
function of a k-dimensional random vector ξ = (ξ1, . . . , ξk), where t = (t1, . . . , tk),

and (t, ξ) =
k∑

j=1

tjξj . Then |ϕ(t)| ≤ E|ei(t,ξ)| = 1. For arbitrary number ε > 0 there

exists a constant R = R(ε) such that P (|ξ| > R) = P

(
k∑

j=1

ξ2j > R2

)

< ε
2 . Put δ =

ε
2R(ε) and consider such numbers t = (t1, . . . , tk) for which |t|2 =

k∑

j=1

t2j < δ. Then

|ei(t,ξ) − 1| ≤ |(t, ξ)| ≤ ε
2 for |x| < R(ε), and |ϕ(t) − ϕ(t̄)| = |Eei(t,ξ) − Eei(t̄,ξ)| ≤

E|ei(t−t̄,ξ) − 1| ≤ E|ei(t−t̄,ξ) − 1|I(|ξ| ≤ R) + P (|ξ| > R) ≤ E|(t − t̄, ξ)|I(|ξ| ≤
R) + ε

2 ≤ ε if |t − t̄| ≤ δ, where I(A) denotes the indicator function of a set A.
Hence the function ϕ(t) is uniformly continuous.

The characteristic function of a random vector aξ + m in a point t ∈ Rk, where
a ∈ R, m ∈ Rk is the function Eei(t,aξ+m) = e(it,m)Eei(at,ξ) = e(it,m)ϕ(at), where
ϕ denotes the characteristic function of the random vector ξ.

If ξj , j = 1, . . . , n, are independent random vectors with characteristic functions
ϕj(t), then the characteristic function of the random sum ξ1+ · · ·+ξn in a point t ∈

Rk equals Eei(t,ξ1+···+ξn) = Eei(t,ξ1) · · · ei(t,ξn) = Eei(t,ξ1) · · ·Eei(t,ξn) =
k∏

j=1

ϕj(t).

13.) a.) If the random variable ξ has standard normal distribution, then

Eeitξ =

∫ ∞

−∞

1√
2π
eitu−u2/2 du = e−t2/2

∫ ∞

−∞

1√
2π
e−(it−u)2/2 du = e−t2/2

by the result of problem 1.
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b.) If the random variable ξ has uniform distribution in the interval [0, 1], then

Eeitξ =

∫ 1

0

eitu du =
eit − 1

it
.

c.) If the random variable ξ has exponential distribution with parameter λ > 0,
then

Eeitξ =

∫ ∞

0

λeitu−λu du =
λ

λ− it
.

d.) If ξ is a random variable with Cauchy distribution, then

Eeitξ =

∫ ∞

−∞

1

π

eitu

1 + u2
du.

This integral can be calculated by means of the residium theorem in the theory
of analytic functions.

The function g(z) = g(z, t) = eitz

π(1+z2) is analytic in the plane of complex

numbers with two poles z = ±i. The residium of the function g(z) in the point
i equals e−t, and in the point −i it equals et. Let us consider the following
contour integral. Let us first integrate the function g(z) = g(z, t) on the
interval [−R,R] and then on the half-circle |z| = R, Im z ≥ 0 if t ≥ 0 and on
the half-circle |z| = R, Im z ≤ 0 if t ≤ 0. The above contour integral equals
the residium of the function g(z) in the point i if t > 0 and the residium of
this function in the point −i if t < 0. On the other hand the restriction of the
integral to the half-circle of radius R tends to zero if R→ 0. This implies that
Eeitξ =

∫∞
−∞ g(t, u) du = e−|t|.

The following argument gives another different a little bit artificial but correct
proof of this statement. The characteristic function of the density function
f(x) = 1

2e
−|x| equals

1

2

∫ ∞

−∞
e−|x|+itx dx =

1

2

(
1

1 + it
+

1

1 − it

)

=
1

1 + t2
.

Since the function 1
1+t2 is integrable the inverse Fourier transformation for-

mula (6) implies the desired statement.

e.) If the random variable ξ has Poissonian distribution with parameter λ > 0,
then

Eeitξ = e−λ
∞∑

k=0

λk

k!
eikt = exp

{
λ(eit − 1)

}
.

f.) If the random variable ξ has binomial distribution with parameters n and p,
then

Eeitξ = e−λ
n∑

k=0

(
n

k

)

pkeikt(1 − p)n−k =
(
1 − p+ peit

)
.
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g.) If ξ is a random variable with negative binomial distribution with parameters
n and p, then its distribution agrees with the distribution of the random sum
ξ1 + · · · + ξn, where ξj , 1 ≤ j ≤ n, are independent random variables with
negative binomial distribution with parameters 1 and p. (To see this property
observe that a possible the random variable ξ has the following probabilistic
interpretation: If we make independent experiment after each other which are
successful with probability p, then ξ denotes the number of unsuccessful exper-
iments up to the n-th successful experiment. If ξj denotes the number of the
unsuccessful experiments between the j−1-th and j-th successful experiments,
then we get the above representation.) Hence Eeitξ =

(
Eeitξ1

)n
. On the other

hand,

Eeitξ1 =
∞∑

k=0

(1 − p)pkeitk =
1 − p

1 − peit
.

h.) We get with the change of variables ū = (1 − it)u that

ϕs(t) =
1

Γ(s)

∫ ∞

0

e−u+ituus−1 du =
1

Γ(s)

1

1 − it)s

∫ ∞

0

e−ūūs−1 dū =
1

(1 − it)s
.

In this calculation we applied some complex analysis argument. At the change
of variables step ū = (1 − it)u of the calulation the domain of integration
became the line (1 − it)u, u > 0, instead of the positive abscissa axis. But we
can turn back the domain of integration to the positive abscissa axis by means
of a usual complex analysis argument, by which the integral of an analytic
function on a closed curve equals zero. At this step we have to exploit that
the function e−z tends to zero fast as Re z → ∞.

14.) If f(x1, . . . , xk) and g(x1, . . . , xk) are two integrable functions, then

∞ >

∫ ∫

|f(x1, . . . , xk)||g(u1, . . . , uk)| dx1 · · · dxkdu1 . . . duk

(with substitution ūj = xj + uj j = 1, . . . , k, )

=

∫ ∫

|f(x1, . . . , xk)||g(ū1 − x1, . . . , ūk − xk)| dx1 · · · dxk dū1 . . . dūk

=

∫ (∫

|f(x1, . . . , xk)||g(ū1 − x1, . . . , ūk − xk)| dx1 · · · dxk

)

dū1 . . . duk

=

∫

|f | ∗ |g|(x1, . . . , xk) dx1 . . . dxk.

This relation implies that the function |f ∗ g(x1, . . . , xk)| ≤ |f | ∗ |g|(x1, . . . , xk) is
bounded in almost all points (x1, . . . , xk) ∈ Rk. It also implies that f ∗ g is an
integrable function. In the sequel we write x instead of (x1, . . . , xk) and u instead
of (u1, . . . , uk).

If µ and ν are two measures of bounded variation, then there exists a representation
µ = µ1 − µ2, ν = ν1 − ν2 such that µi and νi, i = 1, 2, are finite measures. The
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identity µ ∗ ν = (µ1 ∗ ν1 +µ2 ∗ ν2)− (µ1 ∗ ν2 +µ2 ∗ ν1) holds. Since µi ∗ νj(R
k) <∞

for all indices i, j = 1, 2, this implies that µ ∗ ν is a measure of bounded variation.

If the measure µ has a density function f , then we have for all measurable sets
A ⊂ Rk

∫

A

f ∗ ν(x) dx =

∫

A

(∫

f(u)ν(x− du)

)

dx =

∫

A

(∫

f(x− u)ν( du)

)

dx

=

∫ (∫

A

f(x− u) dx

)

ν( du) =

∫ (∫

I(x: x ∈ A)f(x− u) dx

)

ν( du)

=

∫ (∫

I(v: u+ v ∈ A)f(v) dv

)

ν( du)

=

∫ ∫

I(v: u+ v ∈ A)µ( dv)ν( du)

= µ× ν ({(u, v): u+ v ∈ A}) = µ ∗ ν(A)

and this means that the function f ∗ ν is the density function of the convolution
µ ∗ ν of the measures µ and ν.

Let us observe that the above calculations also imply that the function f ∗ ν(x)
is finite in almost all points x ∈ Rk, moreover it is integrable. Indeed, the above
calculation implies this result with the choice A = Rk if µ and ν are (bounded)
positive measures. The general case can be reduced to this case if we decompose
the measures µ and ν as the difference of two positive finite measures. (We may
assume that the measures in the decomposition µ = µ1−µ2 have density function.)

If the measure µ has a density function f and the measure ν has a density function
g then let us define the measures ν̄x(A) = ν(x − A) for all x ∈ Rk. The density
function of the measure ν̄x(A) equals g(x−u) in the point u ∈ Rk, and the density
function of the measure µ ∗ ν in the point x equals

∫

f(u)ν̄x(du) =

∫

f(u)g(x− u) du = f ∗ g(x)

by the already proved results.

15.) It follows from the definition of the convolution that if ξ an η are independent
random variables with distributions µ and ν, then the distribution of the random
sum ξ + η equals µ ∗ ν. It follows from the result of the previous problem that
if the distribution µ of the random variable ξ has a density function f , then the
distribution µ ∗ ν of the random variable ξ + η has a density function f ∗ ν. If also
the measure ν has a density function g, then this density function equals f ∗ g.
If the distribution of the random variable Z is F (x), then the distribution of the
random variable Z̄ = Z−A

B with B > 0 equals F (Bx+ A). If the random variable
Z has a density function f(x), then the random variable Z̄ has a density func-
tion Bf(Bx + A). The previous results imply the statements formulated for the
distribution and density function of the random sum S̄n.
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The relation µ ∗ ν = ν ∗ µ follows from the definition of the convolution. The
statement (µ1 ∗ µ2) ∗ µ3 = µ1 ∗ (µ2 ∗ µ3) follows from the fact that the identity

(µ1 ∗ µ2) ∗ µ3(A) = µ1 ∗ (µ2 ∗ µ3)(A) = µ1 × µ2 × µ3({(u, v, w): u+ v + w ∈ A})

holds for all measurable sets A. The analog statements about the convolution of
functions can be reduced to these statement if we represent the convolution of
functions as the convolution of the density function of the corresponding signed
measures. Otherwise these statement also can be simply proved by simple calcula-
tion.

16.) If µ and ν are two signed measures of bounded variation with Fourier transforms
f̃(t1, . . . , tk) and g̃(t1, . . . , tk), then

f̃(t1, . . . , tk)g̃(t1, . . . , tk)

=

∫

ei(t1(u1+v1)+···+tk(uk+vk))µ( du1, . . . , duk)ν( dv1, . . . , dvk).

The transformation T(u1, . . . , uk, v1, . . . , vk) = (u1+v1, . . . , uk+vk), (u1, . . . , uk) ∈
Rk, (v1, . . . , vk) ∈ Rk, is a measurable transformation from the space
(Rk ×Rk,B2k, µ× ν) to the space (Rk, Bk, µ ∗ ν), where B2k and Bk denote the σ-
algebras in the spacesR2k andRk. By applying the measure theoretical result which
describe how measurable transformations transform integrals for the functions

h(x1, . . . , xk) = eit(x1+···+xk))

and

g(u1, . . . , uk, v1, . . . , vk) = h(T(u1, . . . , uk, v1, . . . , vk)) = ei(t1(u1+v1)+···+tk(uk+vk))

with the above defined transformation T(u1, . . . , uk, v1, . . . , vk) we get from the
relation written at the beginning of the solution that

f̃(t1, . . . , tk)g̃(t1, . . . , tk) =

∫

ei(t1x1+···+tkxk)µ ∗ ν( dx1, . . . , dxk).

This implies the statement about the Fourier transform of the convolution of mea-
sures. The analogous statement about the Fourier transform of the convolution of
density functions follows from this statement and the relation between the convo-
lution of measures and their density functions.

17.) By differentiating the identity f ∗ g(x) =
∫
f(x− u)g(u) du k times we get that

df ∗ gk(x)

dxk
=

∫
dfk(v)

dvk

∣
∣
∣
∣
v=x−u

g(u) du =

∫
dfk(v)

dvk

∣
∣
∣
∣
v=u

g(x− u) du.
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The conditions of the problem allow the above successive differentiations. Further,
working with the right-hand side of the last formula we can carry out l additional
differentiations and get that

df ∗ gk+l(x)

dxk+l
=

∫
dfk(v)

dvk

∣
∣
∣
∣
v=u

dgl(v)

dvl

∣
∣
∣
∣
v=x−u

du.

If f(u) is analytic function which also satisfies the other conditions of the problem,
then the function

F (z) =

∫

f(z − u)g(u) du

is an analytic continuation of the convolution f ∗g(x) to the domain {z: Im z < A}.
18.) a.) Convergence in distribution implies the convergence of the integrals:

Since F (x1, . . . , xk) → 1 if xj → ∞ for all j = 1, . . . , k, and F (x1, . . . , xk) → 0
if xj → −∞ for one of the indices 1 ≤ j ≤ k hence for all ε > 0 there exists a
k-dimensional rectangle K = K(ε) such that µF (K) > 1− ε. (Given a distribution
function F in the sequel we shall denote by µF the probability measure on Rk

induced by the distribution function F .) We also may assume, by enlarging the
rectangle K if it is necessary, that the boundary of the rectangles K has zero
µF measure. Indeed, the projection of the distribution function F to the j-th
coordinate is a one-dimensional distribution function, and as a consequence it has
at least countably many atoms (points with positive measure with respect the
measure induced by this distribution) for all indices j = 1, . . . , k. This implies that
we can choose a larger rectangle K if this is necessary whose boundary has µF

measure zero.

Because of the boundedness of the function f the relation

∣
∣
∣
∣
∣

∫

Rk\K
f(x1, . . . , xk) dF (x1, . . . , xk)

∣
∣
∣
∣
∣
< const. ε

holds, and also lim sup
n→∞

∣
∣
∣

∫

Rk\K f(x1, . . . , xk) dFn(x1, . . . , xk)
∣
∣
∣ < const. ε for all n =

1, 2, . . . because of the zero µF boundary of the rectangle K and the convergence
of the distribution functions Fn to the distribution function F . Furthermore, the
function f is uniformly continuous on the rectangle K hence there exists some
constant δ > 0 such that |f(x)−f(y)| < ε if |x−y| ≤ δ, and x, y ∈ K. The rectangle
K can be decomposed to finitely many rectangles ∆j , j = 1, . . . , p(K), of diameter
less than δ without joint interior points, and such that all these rectangles ∆j have
boundaries with µF measure zero. These properties imply that lim

n→∞
µFn(∆j) =

µF (∆j) for all indices j = 1, . . . , p(K), and because of the uniform continuity of
the function f on the rectangle K

lim sup

∣
∣
∣
∣

∫

K

f dFn −
∫

K

f dF

∣
∣
∣
∣
< ε.
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The above inequalities imply that lim sup
∣
∣
∫
f dFn −

∫
f dF

∣
∣ < const. ε with a

const. independent of ε. Since this inequality holds for all ε > 0, it implies the
statement we wanted to prove.

b.) The convergence of the integrals implies convergence in distribution:

Let x = (x1, . . . , xk) be a point of continuity of the distribution function F . Then
for all numbers ε > 0 there exists a number δ = δ(ε) > 0 such that the points
y = (y1, . . . , yk) = (x1 − δ, . . . , xk − δ) and z = (z1, . . . , zk) = (x1 + δ, . . . , xk + δ)
satisfy the inequalities F (y) > F (x)−ε and F (z) < F (x)+ε. There exist continuous
functions f1(u) and f2(u) an the k-dimensional Euclidean space Rk which satisfy
the following properties: 0 ≤ fi(u) ≤ 1 for all u ∈ Rk, i = 1, 2. Further f1(u) = 1
for u = (u1, . . . , uk) if uj ≤ yj for all indices j = 1, . . . , k, and f1(u) = 0 if
uj ≥ xj for some of the indices 1 ≤ j ≤ k. The function f2(·) satisfies the following
relations: f2(u) = 1 if uj ≤ xj for all j = 1, . . . , k, and f2(u) = 0 if uj ≥ zj for
some 1 ≤ j ≤ k. Then

lim sup
n→∞

Fn(x) ≥ lim
n→∞

∫

f1(u) dFn(u) =

∫

f1(u) dF (u) ≥ F (x) − ε

lim inf
n→∞

Fn(x) ≤ lim
n→∞

∫

f2(u) dFn(u) =

∫

f2(u) dF (u) ≤ F (x) + ε.

Since these relations hold for all ε > 0, they imply the statement of part b.).

19.) Since
∞⋃

K=1

K(K)k = Rk, and the rectangles K(K)k, K = 1, 2, . . . , constitute

a monotone increasing series of sets, hence lim
K→∞

µ(K(K)k) = µ(Rk) = 1, i.e.

µ(K(K)k) ≥ 1 − ε if K ≥ K(ε).

To show that the characteristic function of the probability measure µ is determined
by its characteristic function let us first observe that the integrals

∫
f(u) dµ(u)

determine the measure µ if we take all continuous functions f(·) with a bounded
support. Indeed, the measure µ of those rectangles P = [K1, L1) × · · · × [Kk, Lk)
whose boundary has µ measure zero determine the measure µ. Besides, we claim
that for all numbers ε > 0 and rectangles P there exists a function fε,P(·) such
that 0 ≤ fε,P(u) ≤ 1 for all points u ∈ Rk, fε,P(u) = 1 if u ∈ P, and fε,P(u) = 0
if ρ(u,P) > ε. (In the sequel ρ(·, ·) denotes the usual Euclidean distance in the
space Rk.) Then the relation µ(P) = lim

ε→0

∫
fP,ε dµ(u) implies the above property.

A possible construction of a function fP,ε with the above properties is the following:
Put fP,ε(u) = 1 − gP,ε(u) and gP,ε(u) = min

(
1, 1

ερ(u,P)
)
.

Given a continuous function f(·) of compact support together with a sufficiently
large number K > 0 for which the cube [−K,K]× · · · × [−K,K] contains the sup-
port of the function f(·) let us define the periodic extension of the function f(·)
with period 2K by the formula fK(u1 + 2Kj1, · · · , uk + 2Kjk) = f(u1, · · · , uk),
−K ≤ uj < K, lj = 0,±1,±2, . . . , j = 1, . . . , k. The integrals

∫
fK(u) dµ(u)

of these functions obtained by periodic extension determine the measure µ, since
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∫
f(u) dµ(u) = lim

K→∞

∫
fK(u) dµ(u) because of the tightness property of the mea-

sure µ formulated in the already proven part of problem 19.

Finally, by Weierstrass second approximation theorem for all continuous functions
fK(· · · ) K with period K and real number ε > 0 there exists a trigonometrical
polynomial

gε = gε,fK
(u1, · · · , uk) =

∑

cεj1,...,jk
eiπ(j1u1+···+jkuk)/K

such that sup
u∈Rk

|fK(u) − gε(u)| ≤ ε. Hence

∣
∣
∣
∣

∫

fK(u) dµ(u) −
∫

gε(u) dµ(u)

∣
∣
∣
∣
≤ ε.

On the other hand,
∫
gε(u) dµ(u) =

∑
cεj1,...,jk

ϕ
(

πj1
K , . . . , πjk

K

)
, that is the above

integral can be calculated by means of the characteristic function of the measure µ.
This implies that this characteristic function determines the integrals of the form
∫
fK(u) dµ(u). Hence it also determines the measure µ.

The proof can be generalized without any essential modification to arbitrary signed
measures µ with bounded variation.

20.) First we show that for all numbers a > 0 there exists an even density function f(u)
whose Fourier transform ϕ(t) is sufficiently smooth, e.g. it is twice differentiable,
and it equals zero outside the interval [−a, a].
Indeed, let us consider a continuously differentiable function g(u) which is concen-
trated in the interval

[
−a

2 ,
a
2

]
, g−(u) = g(−u). Then put h(u) = g ∗ g−(u), f(u) =

2π
M

∫
eituh(u) du, where ∗ denotes convolution, and M = h(0) =

∫
|f(u)|2 du.

We claim that this function f is a density function, and its characteristic func-

tion is the function h−(u)
M , h−(u) = h(−u), which vanishes outside the interval

[−a, a]. Indeed, the function h(·) is twice differentiable, (see problem 17), hence
its Fourier transform tends to zero in plus–minus infinity with order |t|−2 (see
e.g. problem 28 of this series of problems discussed later), hence the above de-

fined Fourier transform f(·) of the function h(u)
M is integrable, and we can ap-

ply the inverse Fourier transform for it. Since f(·) is en even function, this

means that the function h−(u)
M =

∫
eitxf(u) du is the Fourier transform of the

function f(u). In particular, h(0)
M = 1 =

∫
f(u) du. Finally, f(t) ≥ 0 for all

numbers t ∈ R1, since the Fourier transform of the function g ∗ g−(·) equals
∫
eitug ∗ g−(u) du =

∫
eitug(u) du

∫
eitug−(u) du =

∣
∣
∫
eitug(u) du

∣
∣
2 ≥ 0. These

properties mean that the function f(·) is a density function. (We shall return
to the above problem in the second part of this series of problems where such a
construction will be useful in a different context.)

Let us consider an even density function f(u) whose characteristic function ϕ(t)
is twice differentiable, and vanishes outside of a finite interval [−a, a]. Consider
a number T > a, and let us define the numbers ak = 1

4πT

∫
e−iπtk/Tϕ(t) dt, k =
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0,±1,±2, . . . . Let us put weights ak in the points πk
T , k = 0,±1,±2, . . . . We claim

that in such a way we constructed a probability distribution on the lattice πk
T ,

k = 0,±1,±2, · · · , whose characteristic function to the interval [−T, T ] agrees with
the restriction of the characteristic function ϕ(t) to this interval. The characteristic
function of this discrete distribution is the periodic extension of the restriction of
ϕ(t) to the interval [−T, T ] with period 2T . This statement means in particular,
that the above defined discrete distribution together with the distribution with
density function f(·) yield an example satisfying the statement of problem 20.

The statement formulated for the discrete distribution with weights ak holds, be-
cause for one hand a comparison of the definition of the number ak with the
inverse Fourier transformation formula expressing the function f(·) yields that

ak = 1
2T f

(
πk
T

)
≥ 0. On the other hand, the trigonometrical sum

∞∑

k=−∞
ake

πik/T is

the Fourier series of the function ϕ(t) restricted to the interval [−T, T ]. In particu-

lar, ϕ(0) = 1 =
∞∑

k=−∞
ak. (As ϕ(·) is a twice differentiable function, hence it equals

his Fourier series in all points.)

21.) Let us first show that if the sequence of the probability measures µn, n = 1, 2, . . . ,
is relatively compact, then it is also tight.

Let us assume indirectly this sequence of measures µn, n = 1, 2, . . . , is not tight.
Then there exists a constant ε > 0, a subsequence µnk

of the sequence of probability
measures µn and a sequence of positive numbers Kn, n = 1, 2, . . . , such that Kn →
∞, and µnk

([−Kn,Kn] × · · · × [−Kn,Kn]) < 1 − ε. We shall show that this
subsequence µnk

of the sequence of measures µn has no sub-subsequence convergent
in distribution. This means that the above formulated indirect assumption leads
to contradiction.

Indeed, let us assume indirectly that the sequence of measures µnk
has a subse-

quence µnkj
which converges in distribution to a probability measure µ. Then,

there exists a constant K > 0 such that µ([−K,K] × · · · × [−K,K]) > 1 − ε
2 , and

the hyperplanes uj = ±K, j = 1, 2, . . . , k, have µ measure zero. Then also the
relation lim

j→∞
µnkj

([−K,K] × · · · × [−K,K]) = µ([−K,K] × · · · × [−K,K]) should

hold. But this is not possible, since the lim sup of the probabilities at the left-hand
side is smaller than 1 − ε, while the right-hand side is greater than 1 − ε

2 .

Let us show that if the sequence of measures µn is tight then it is also relatively
compact.

We have to show that an arbitrary subsequence of the sequence µn has a sub-
subsequence convergent in distribution. For the sake of simpler notations let us
denote by reindexing the elements of the subsequence again by µn. We have to
show that this (also tight) sequence of probability measures µn has a subsequence
convergent in distribution.

Let Fn(u) = Fn(u1, . . . , uk) denote the distribution function Fn(u1, . . . , uk) =
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µn({(v1, . . . , vk): vj < uj , j = 1, . . . , k}) determined by the measure µn. Let

u(p) =
(

u
(p)
1 , . . . , u

(p)
k

)

, p = 1, 2, . . . ,

denote the (countable) set of points u(p) ∈ Rk with rational coordinates with some
indexing. First we show with the help of the so-called diagonal procedure that
there exists an appropriate sequence of positive integers nj , j = 1, 2, . . . , such that
the limit

lim
j→∞

Fnj

(

u
(p)
1 , . . . , u

(p)
k

)

= F̃
(

u
(p)
1 , . . . , u

(p)
k

)

(2.4)

exists for all numbers p = 1, 2, . . . .

Indeed, as 0 ≤ Fn(u) ≤ 1, there is a subsequence n̄j = (nj,1) of the integers

such that the limit lim
j→∞

Fnj,1(u
(1)) = F̃ (u(1)) exists. This sequence has a sub-

sequence nj,2 such that the limit lim
j→∞

Fnj,2(u
(2)) = F̃ (u(2)) also exists. Follow-

ing this procedure we can construct sequences nj,p, j = 1, 2, . . . , p = 1, 2, . . .
in such a way that the p + 1-th sequence is a subsequence of the p-th sequence,
i.e. {nj,p+1, j = 1, 2, . . . } ⊂ {nj,p, j = 1, 2, . . . }, p = 1, 2, . . . , and the limit

lim
j→∞

Fnj,p(u(p)) = F̃ (u(p)) exists for all numbers p = 1, 2, . . . . Then the sequence

nj = nj,j satisfies relation (2.4).

Let us introduce the function

F (u1, . . . , uk) = sup
{

u(p)=(u
(p)
1 ,...,u

(p)

k
): u

(p)
s <us, s=1,...,k

}
F̃
(

u
(p)
1 , . . . , u

(p)
k

)

, (2.5)

where the function F̃ satisfies relation (2.4) with an appropriate (fixed) sequence of
positive integers nj , and the points u(p) are the points of the k-dimensional space
with rational coordinates. We claim that the above defined function F (u1, . . . , uk)
is a distribution function, and the distribution functions Fnj (u1, . . . , uk) converge
in distribution to it. If we prove this statement then we complete the solution of
problem 21.

To show that the function F (u1, . . . , uk) is a distribution function we recall an
“internal” characterization result of distribution functions which describes the dis-
tribution functions only with the help of their property. The result we recall states
that a function F (u1, . . . , uk) is a distribution function if and only if it satisfies the
following four properties:

(i) The function F (u1, . . . , uk) is a function continuous from the left in all of its
arguments.

(ii) lim
uj→∞

for all indices j=1,...,k

F (u1, . . . , uk) = 1.

(iii) lim
uj→−∞

for some index 1≤j≤k

F (u1, . . . , uk) = 0.
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Finally, to formulate the last condition let us define for a function F on the
space Rk and a rectangle K = [a1, b1) × · · · × [ak, bk) the number

µ(K) = µF (K) =
∑

uj= aj vagy bj

j=1,...,k

(−1)χ(u1,...,uk)F (u1, . . . , uk),

where χ(u1, . . . , uk) denotes the quantity of the numbers aj in the sequence
u1, . . . , uk. Then

(iv) µF (K) ≥ 0 for all rectangles K.

Since the function F̃ (u1, . . . , uk) defined in points of rational coordinates is a mono-
tone increasing function in all of its coordinates, the function F (·) defined in for-
mula (2.5) also satisfies property (i). Furthermore, this monotonicity also implies
that we can replace the sup by lim in formula (2.5) if we consider such sequences

of indices
(

u
(p)
1 , . . . , u

(p)
k

)

, p = 1, 2, . . . , in the limit for which u
(p)
j < uj for all

numbers 1 ≤ j ≤ k and p = 1, 2, . . . , and lim
p→∞

u
(p)
j = uj for all indices j = 1, . . . , k.

Let us consider such rectangles K(p) whose edges have rational coordinates, and
the edges of these coordinates converge in a monotone increasing way to the coor-
dinates of the corresponding edges of the rectangle K. Then µF̃ (K(p)) ≥ 0, since

F̃ is the limit of distribution functions. Hence µF (K) = lim
p→∞

µF̃ (K(p)) ≥ 0, i.e.

the function F satisfies property (iv). Let us observe that properties (ii) and (iii)
hold if the functions Fn are replaced by the function F̃ , and the limit is taken
only in rational points. (We applied at this point of the proof the tightness of
the measures µn.) This property together with formula (2.5) imply that the func-
tion F satisfies properties (ii) and (iii). Property (i) also holds. This is a simple
consequence of it definition in formula (2.5).

To show that the distribution functions Fnj converge in distribution to the dis-
tribution function F let us consider a point of continuity u = (u1, . . . , uk) of the
function F , and let us then choose for all numbers ε > 0 such a constant number
δ = δ(ε) > 0 for which F (u) − ε ≤ F (u− δ) ≤ F (u) ≤ F (u+ δ) ≤ F (u) + ε, where
u ± δ = (u1 ± δ, . . . , uk ± δ). Let us then choose two points r = (r1, . . . , rk) ∈ Rk

and r̄ = (r̄1, . . . , r̄k) ∈ Rk with rational coordinates such that uj − δ < rj < uj <

r̄j < uj + δ for all indices j = 1, . . . , k. Then by the monotonicity properties of the

function F̃ (·) and the definition of the function F

F (u) − ε ≤ F (u− δ) < F̃ (r) ≤ F (u) ≤ F̃ (r̄) ≤ F (u+ δ) ≤ F (u) + ε.

This relation together with the definition of the function F̃ and the monotonicity
property of the functions Fnj imply that

F (u) − ε ≤ lim
j→∞

Fnj (r) ≤ lim inf
j→∞

Fnj (u)

≤ lim sup
j→∞

Fnj (u) ≤ lim
j→∞

Fnj (r̄) ≤ F (u) + ε,
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hence

−ε ≤ lim inf
j→∞

Fnj (u) − F (u) ≤ lim sup
j→∞

Fnj(u) − F (u) ≤ ε.

Since this relation holds for all ε > 0, it implies that lim
j→∞

Fnj (u) = F (u).

22.) Fix some δ > 0 and write the following identity:

1

2δ

∫ δ

−δ

Re [1 − ϕn(t)] dt =

∫ δ

−δ

1

2δ

∫ ∞

−∞
[1 − cos tx] dFn(x) dt

=

∫ ∞

−∞

1

2δ

∫ δ

−δ

[1 − cos tx] dt dFn(x) =

∫ ∞

−∞

[
t

2δ
− sin tx

2δx

]t=δ

t=−δ

dFn(x)

=

∫ ∞

−∞

(

1 − sin δx

δx

)

dFn(x) =

∫ K

−K

(

1 − sin δx

δx

)

dFn(x)

+

∫

|x|>K

(

1 − sin δx

δx

)

dFn(x) = Iδ
1,n(K) + Iδ

2,n(K).

(2.6)

First we show with the help of relation (2.6) that the validity of formula (10) implies
that the sequence of distribution functions Fn is tight. Since

(
1 − sin δx

δx

)
≥ 0 for

all x and δ, hence the left-hand side of formula (2.6) yields an upper bound on
the expression Iδ

2,n(K) for all numbers δ > 0, n ≥ 1 and K > 0. If formula (10)
holds, then for all ε > 0 there exists a number δ = δ(ε) > 0 and threshold index
n0 = n0(δ, ε) such that ε

2 ≥
∫

|x|>K

(
1 − sin δx

δx

)
dFn(x) for n ≥ n0. Put K = 2

δ .

Then 1 − sin δx
δx ≥ 1

2 for all |x| ≥ K. Hence the previous estimate implies that
ε
2 ≥

∫

|x|>K

(
1 − sin δx

δx

)
dFn(x) ≥ 1

2 [(1−Fn(K))+Fn(−K)], i.e. ε ≥ [(1−Fn(K))+

Fn(−K)] with this number K if n ≥ n0. By increasing the number K > 0 if it is
necessary we can achieve that the above inequality holds for all indices n ≥ 1. This
means that the distribution functions Fn, n = 1, 2, . . . , are tight.

Let us prove with the help of formula (2.6) that the tightness of the distribu-
tion functions Fn implies formula (10) and even its slightly stronger version, for-
mula (10′) where lim sup

n→∞
is replaced by sup

n≥1
. Since

∣
∣1 − sin δx

δx

∣
∣ ≤ 2, the tightness of

the distribution functions Fn makes possible to choose a number K = K(ε) > 0 for

all ε > 0 such that |Iδ
2,n(K)| =

∣
∣
∣

∫

|x|>K

(
1 − sin δx

δx

)
dFn(x)

∣
∣
∣ ≤ ε

2 for all numbers δ >

0 and n = 1, 2, . . . . After fixing the number K = K(ε) > 0 we can choose a number
δ̄ = δ̄(ε,K) > 0 such that the inequality ε ≥ 1 − sin δx

δx ≥ 0 holds for all numbers

|x| < K and 0 < δ < δ̄. Hence |Iδ
1,n(K)| =

∣
∣
∣

∫K

−K

(
1 − sin δx

δx

)
dFn(x)

∣
∣
∣ ≤ ε

2 . These

estimates together with relations (2.6) imply that
∣
∣
∣

1
2δ

∫ δ

−δ
Re [1 − ϕn(t)] dt

∣
∣
∣ ≤ ε for

all n ≥ 1 if δ ≤ δ̄(ε). The statements of problem 22 are proved.

23.) Let us consider the j-th coordinate, 1 ≤ j ≤ k, of the random vectors ξ(n), i.e. the

random variables ξ
(n)
j for all indices n = 1, 2, . . . . The characteristic function of
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the random variable ξ
(n)
j is the function

ϕ(j)
n (t) = ϕn( 0, · · · , 0,

︸ ︷︷ ︸

j−1
0 coordinates

t, 0, · · · , 0
︸ ︷︷ ︸

n−j−1
0 coordinates

).

By the conditions of the problem the functions ϕ
(j)
n (t) converge to a function ϕ(j)(t)

continuous in zero in a small neighbourhood of the origin. Let us remark that

ϕ(j)(0) = lim
n→∞

ϕ
(j)
n (0) = 1. Hence the continuity of the function ϕ(j)(t) in the

origin implies that for all numbers ε > 0 there exists a threshold index δ̄ = δ̄(ε) > 0
such that for all numbers 0 < δ < δ̄

0 ≤ 1

2δ

∫ δ

−δ

Re [1 − ϕ(j)
n (t)] dt < ε.

Furthermore, as lim
n→∞

Re [1 − ϕ
(j)
n (t)] = Re [1 − ϕ(j)(t)] if |t| < δ < δ̄ (we choose a

smaller threshold δ̄ > 0 if it is necessary), and 0 ≤ Re [1 − ϕ
(j)
n (t)] ≤ 2, it follows

from Lebesgue’s dominated convergence theorem that 0 ≤ lim sup
n→∞

1
2δ

∫ δ

−δ
Re [1 −

ϕ(j)(t)] dt < ε. Hence the result of problem 22 shows that the distribution functions

of the random variables ξ
(j)
n , n = 1, 2, . . . , are tight, i.e. for all ε > 0 there exists a

constant K = K(ε) > 0 such that the inequality P
(∣
∣
∣ξ

(j)
n

∣
∣
∣ > K

)

< ε
k holds. Since

this statement holds for all numbers j = 1, . . . , k, it implies that the distributions

of the random vectors ξ̄n = (ξ
(n)
1 , . . . , . . . , ξ

(n)
k ) are tight.

24.) It follows from the results of problems 21 and 23 that the sequence of distribution
functions Fn(u1, . . . , uk), n = 1, 2, . . . , is relatively compact, i.e. an arbitrary sub-
sequence of the sequence of the distribution functions Fn has a sub-subsequence
convergent in distribution if the characteristic functions of the distribution func-
tions Fn converge to a function continuous in the origin. (Moreover, it is enough
to assume that this property holds for the restriction of the characteristic func-
tions to the coordinate axes.) To see that under the conditions of the first part
of problem 24 the distribution functions Fn converge in distribution it is enough
to show that in this case all convergent subsequences of this sequence of distri-
bution functions have the same limit. To justify this reduction of the problem
let us choose a convergent subsequence Fnl

which converges to some distribution
function F (u1, . . . , uk). If this distribution function F (·) were not the limit of the
distribution functions Fn, then the distribution function F (u1, . . . , uk) would have
a point of continuity u = (u1, . . . , uk) together with a constant ε > 0 and a se-
quence of indices nj , j = 1, 2, . . . , such that |Fnj (u1, . . . , uk) − F (u1, . . . , uk)| > ε

for all j = 1, 2, . . . . But this would mean that a convergent subsequence of the
sequence of distribution functions Fnj , j = 1, 2, . . . , would have a limit different of
the distribution function F (u1, . . . , uk).

The statement that all convergent subsequences of the distribution functions Fn

have the same limit follows from the results of Theorem A and problem 19. Indeed,
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it follows from Theorem A that the characteristic function of the limit distribution
function of a convergent subsequence of the distribution functions Fn is the limit
of the characteristic functions of the distribution functions in this subsequence.
The limit of these characteristic functions does not depend on which convergent
subsequence we have considered. But by the result of problem 19 a distribution
function is determined by its distribution function. Hence the condition that the
characteristic functions of a sequence of distribution functions converge to a func-
tion continuous in the origin implies that these distribution functions converge in
distribution to a distribution function, and besides the characteristic function of
the limit distribution function equals the limit of the characteristic functions of the
distribution functions we have considered.

If a sequence of distribution functions Fn(u1, . . . , uk) converges in distribution to
a distribution function F0(u1, . . . , uk), then it follows from Theorem A that the
characteristic functions ϕn(t1, . . . , tk) of these distribution functions converge to
the characteristic function ϕ0(t1, . . . , tk) of the distribution function F0 in all points
(t1, . . . , tk) ∈ Rk. To complete the proof of the Fundamental Theorem we have still
to show that this convergence is uniform in all compact subset of the Euclidean
space Rk.

To prove this statement let us observe that since the distribution functions Fn

converge in distribution they are tight. Hence for all ε > 0 there exists a constant

K = K(ε) such that a sequence of random vectors ξn = (ξ
(1)
n , . . . , ξ

(k)
n ), n = 1, 2, . . . ,

with distribution functions Fn satisfy the inequality P (|ξn| > K) < ε
3 for all indices

n = 0, 1, 2, . . . . (In the further part of the proof ξ(ω), t ∈ Rk, u ∈ Rk denote points
of the k-dimensional space, and (u, t), u ∈ Rk, t ∈ Rk, denotes the scalar product
of the vectors u and t.) Let us choose a finite set of points T =

{
t(1), . . . , t(s)

}
⊂ K,

s = s(K, δ), in a compact set K ⊂ Rk which is δ-dense in the set K, i.e. for all
t ∈ K there is a point t(j) ∈ T such that ρ(t, t(j)) < δ. Then

∣
∣
∣ϕn(t) − ϕn(t(j))

∣
∣
∣ =

∣
∣
∣Eei(t,ξn) − ei(t(j),ξn)

∣
∣
∣

≤ E
∣
∣
∣ei(t−t(j),ξn) − 1

∣
∣
∣ I (|ξn| ≤ K) + P (|ξn| > K) ≤ 2ε

3
for all numbers n = 1, 2, . . . . Further we can choose a threshold index n0 = n0(ε),
such the inequality sup

n≥n0

sup
t(j)∈T

∣
∣ϕn(t(j)) − ϕ0(t

(j))
∣
∣ < ε

3 holds. It follows from the

last inequalities that sup
t∈K

|ϕn(t) − ϕ0(t)| < ε if n ≥ n0. This means that the

convergence ϕn(t) → ϕ0(t) is uniform on all compact sets K.

25.) Let ϕ0(t) denote the characteristic function of the uniform distribution in the in-

terval [−1, 1], i.e. ϕ0(t) =
∫ 1

−1
1
2e

itu du = eit−e−it

2it . Let us define the characteristic
functions ϕn(t) as the characteristic functions of the following discretizations µn,
n = 1, 2, . . . , of the uniform distribution on the interval [−1, 1]: µn

(
k
n

)
= 1

2n+1 ,
−n ≤ k ≤ n. Then

ϕn(t) =
1

2n+ 1

n∑

k=−n

eikt/n =
ei(n+1)t/n − ei(−n+1)t/n

(2n+ 1)(eit/n − 1)
.
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Simple calculation shows that ϕn(t) → ϕ0(t) for all points t ∈ R1, and the conver-
gence is uniform in all finite intervals. On the other hand, the convergence is not
uniform on the whole real line, since lim

t→∞
ϕ0(t) = 0, while ϕn(t) = 1 in the points of

the form t = 2πkn, k = 0,±1,±2, . . . . (The background of this construction: We
have approximated the characteristic function of a distribution function having a
density function with the characteristic function of more and more closer discretiza-
tion of this distribution function. These discretized approximations of the original
distribution functions had lattice distributions. The characteristic functions of such
approximating distributions converge to the characteristic function of the limit dis-
tribution by the Fundamental Theorem. Besides, the characteristic function of a
distribution function with a density function tends to zero in the infinity by the
Riemann lemma. On the other hand the characteristic function of a lattice valued
distribution is a periodic function which has absolute value 1 in certain points.)

26.) An example for case a): Let the measures µn have uniform distribution in the

interval [−n, n]. Then ϕn(t) = 1
2n

∫ n

−n
eitu du = eitn−e−itn

2int . Hence lim
n→∞

ϕn(t) = 0

if t 6= 0, and lim
n→∞

ϕn(0) = 1.

An example for case b): Let µ2n({n}) = µ2n({−n}) = 1
2 , and µ2n+1 be the proba-

bility measure µn defined in case a). Then ϕ2n(t) = 1
2 (eitn + e−itn), and it equals 1

in the points of the form 2kπ
n . This means that in the points of the form t = ϕ

(
2kπ

l

)

ϕnk
(t) = 0 for a certain subsequence nk, and lim

k→∞
ϕn̄k

(t) = 1 for a certain subse-

quence n̄k.

27.) Let F (x) denote the distribution function of the random variable ξ. Then ϕ(t) =
∫
eitudF (u). By successive differentiation we get that dkϕ(t)

dtk = ik
∫
ukeitu dF (u),

in particular dkϕ(t)
dtk

∣
∣
∣
t=0

= ik
∫
uk dF (u) = ikEξk if the order of derivation and

integration can be changed in the above calculation. The above calculation is
legitim if the distribution F is concentrated in the interval [−K,K], because the

integrand in the integral expressing the fraction ϕ(t+h)−ϕ(t)
h satisfies the relation

ei(t+h)u−eitu

h = iueitu +O(h), and for a fixed number t the order O(h) is uniform if
u ∈ [−K,K].

If E|ξ| =
∫
|u| dF (u) < ∞, then to prove the statement of problem 27 for the first

derivative we introduce the functions

Gn(t) =

∫ n

−n

eiut dF (u), Hn(t) = i

∫ n

−n

ueiut dF (u), n = 1, 2, . . . ,

and G(t) =
∫∞
−∞ eiut dF (u) és H(t) = i

∫∞
−∞ ueiut dF (u). Then lim

n→∞
Gn(t) = G(t),

and lim
n→∞

dGn(t)
dt = H(t) with H(t) = i

∫∞
−∞ ueiut dF (u). We show with the help

of the above statements that the function G(t) is differentiable, and dG(t)
dt =

H(t). Indeed, G(t) = lim
n→∞

Gn(t) = lim
n→∞

[

Gn(0) +
∫ t

0
Hn(s) ds

]

, hence the rela-

tions lim
n→∞

Gn(0) = G(0), lim
n→∞

Hn(s) = H(s), and the validity of the inequality
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|Hn(s)| ≤ E|ξ| for all numbers n and s together with Lebesgue dominated conver-

gence theorem imply that G(t) = G(0) +
∫ t

0
H(s) ds. Hence dG(t)

dt = H(t), and this
is what we had to prove.

The statement about the k-th derivative of the Fourier transform under the con-
dition E|ξ|k < ∞ can be proved similarly by induction with respect to the pa-

rameter k with the help of the identity dGk(t)
dtk = d

dt (
dGk−1(t)

dtk−1 ). Only in this case

we have to work with the functions Gn(t) = ik−1
∫∞
−∞ uk−1eiut dF (u), Hn(t) =

ik
∫ n

−n
ukeiut dF (u), n = 1, 2, . . . , and G(t) = ik−1

∫∞
−∞ uk−1eiut dF (u), H(t) =

ik
∫∞
−∞ ukeiut dF (u). We prove the identity G(t) = G(0) +

∫ t

0
H(s) ds also in this

case.

If Eetξ <∞ with some number t > 0, then P (ξ > x) = P (etξ > etx) ≤ e−txEetξ ≤
const. e−tx for all numbers x ≥ 0. Similarly, P (ξ < −x) ≤ const. e−tx, if Ee−tξ <

∞. Hence P (|ξ| > x) ≤ const. e−tx if Eeux < ∞ for |u| ≤ t. Conversely, if
G(u) = P (|ξ| > x) ≤ const. e−αx, then we get by partial differentiation that
Eet|ξ| =

∫∞
0
etu dG(u) = [etuG(u)]∞0 −

∫∞
0
tetuG(u) du <∞ in the case 0 < t < α.

Hence Ee±tξ ≤ 1 + Eet|ξ| <∞.

Finally, if P (|ξ| > x) ≤ const. e−αx, then the function G(z) =
∫
eizx dF (x) is

analytic in the domain {z: |Im z| < α}, because in an arbitrary compact set in the
interior of this domain the function G(z) can be represented as the uniform limit
of analytic functions (finite sums approximating this integral). This function G(z)
is the analytic continuation of the function ϕ(t) to the above domain.

28.) Let us first prove Riemann’s lemma. If g(u) = I([a, b]) is the indicator function of

an interval [a, b], then
∫
eitug(u) du = eibt−eiat

it → 0 if t → ∞ or t → −∞. This

relation also holds if g(u) =
k∑

j=1

cjI([aj , bj ]), ı.e. g(·) is a finite linear combination

of indicator functions of intervals. Such functions constitute an everywhere dense
subset of the integrable functions in L1 norm, that is for all numbers ε > 0 and
integrable function f(·) there exists a function g(·) or the above form such that
∫
|f(u)−g(u)| du < ε. This relation implies that

∣
∣
∫
eituf(u) du−

∫
eitug(u) du

∣
∣ < ε

for all numbers t ∈ R1. The Riemann lemma is a consequence of the above relations.

If the function f(t) is k times differentiable, and the first k derivatives are integrable
functions on the real line, then we get by successive partial differentiation that

ϕ(t) = ikt−k
∫
eitu dfk(s)

dsk

∣
∣
∣
s=u

du. This relation together with Riemann’s lemma

imply that in this case ϕ(t) = o(t−k) if t→ ±∞.

If the function f(·) is analytic in a strip {z: Re z ∈ [−A,A]} around the real line
and the function f(−ia+ ·) is integrable for a < A, then we can write, because of
the inequality |ei(u−ia)t

∣
∣ < e−at that

|ϕ(t)| =

∣
∣
∣
∣

∫ −ia+∞

−ia−∞
eituf(u) du

∣
∣
∣
∣
≤ e−at

∫ ∞

−∞
|f(u− ia)| du ≤ const. e−at

for t > 0. The case t < −0 can be handled similarly, only the integral has to be
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replaced to the line [−∞ + ia,∞ + ia] on the positive half-space.

29.) The relation |ϕ(t)| = 1 holds if and only if ϕ(t) = eita, that is Eeit(ξ−a) =
1 with some real number a. This identity holds if and only if P (t(ξ − a) ∈
2π{0,±1,±2, . . . , }) = 1. This means that |ϕ(t)| = 1 with some t 6= 0 if the values
of the random variable ξ are concentrated to a lattice

{
2πk

t + a, k = 0,±1,±2, . . .
}

of width 2π
t . In particular, the relation |ϕ(t)| = 1 for all t ∈ R1 can hold if and

only if the random variable takes a constant value with probability 1. If ξ is not
a deterministic constant, and it is lattice distributed, then there is a largest h > 0
such that the distribution of ξ has period h. Indeed, in this case there are two
numbers a and b, a 6= b, such that P (ξ = a) > 0, and P (ξ = b) > 0. Then the
distribution of ξ may have a period only with b−a

k , where k is a positive integer.
Since the distribution of ξ has a period h > 0, the above statement holds.

To finish the solution of the problem it is enough to observe that the characteristic
function is continuous on the real line, and the characteristic function ϕ(·) of a non-
lattice valued random variable satisfies the inequality |ϕ(t)| < 1 if t 6= 0. Hence

sup
A≤|t|≤B

|ϕ(t)| < 1 in this case.

30.) The characteristic function of the random variable ξ considered in this problem
equals ϕ(t) = 1

2

(
cos t+ cos(

√
2t)
)
. There exist pairs of integers (pn, qn), n =

1, 2, . . . , such that qn → ∞, and |
√

2qn − pn| ≤ 1
qn

. (Such pairs of integers (pn, qn)
can be found as the nominator and denominator of the continued fraction of the
number

√
2.) Choose tn = 2πqn. Then cos tn = 1, and lim

n→∞
cos(

√
2tn) = 1. Hence

tn → ∞, and |ϕ(tn)| → 1, if n→ ∞. On the other hand, ϕ(t) 6= 1 if t 6= 0.

If ξ is a random variable whose values are concentrated in a subset of the real
line consisting of finitely or countably many points, then for all numbers ε > 0
there exists an integer s = s(ε) < ∞ and points u1, . . . , us on the real line such
that P (ξ ∈ {u1, . . . , us}) ≥ 1− ε

3 . Further, by a classical (and simple) result of the
number theory, by a result of Dirichlet, for all numbersN ≥ 1 there exists an integer
1 ≤ qN ≤ N and a set of s integers p1, . . . , ps such that |qNuk − pk| ≤ N−1/s, for
all indices k = 1, . . . , s. Hence, by choosing the number N sufficiently large we can
achieve with the choice t = 2πqN that Re eituk ≥ 1 − ε

3 for all indices 1 ≤ k ≤ s.

Then ReEeitξ ≥
s∑

k=1

P (ξ = uk)(1 − ε
3 ) − ε

3 ≥ 1 − ε. Since we can make this

construction for all ε > 0, there exists a sequence of positive integers qN , N =
1, 2, . . . , such that the sequence tN = 2πqN satisfies the relation lim

N→∞
ϕ(tN ) = 1.

Since the random variable ξ is not lattice distributed, hence sup
2π≤t≤B

|ϕn(t)| ≤ q < 1

for any B > 2π with an appropriate constant q = q(B) < 1. This implies that
the above constructed sequence of positive real numbers tN satisfies the relation
tN → ∞ if N → ∞.

31.) Let us denote the distribution function of the random variable ξ by F (u), its char-
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acteristic function by ϕ(t) and put Reϕ(t) = u(t). Then for all h ≥ 0

1 − u(h)

h2
=

∫ ∞

−∞

1 − coshu

h2u2
u2 dF (u),

and since lim
h→0

1−cos hu
h2u2 = 1

2 , 1−cos hu
h2u2 ≥ 0 for all numbers u ∈ R1 and h ∈ R1, hence

lim inf
h→0

∫∞
−∞

1−cos hu
h2u2 u2 dF (u) ≥ 1

2

∫∞
−∞ u2 dF (u) = 1

2Eξ
2 by Fatou’s lemma. Hence,

to solve the problem it is enough to show that lim sup
h→0

1−u(h)
h2 < ∞ if the function

ϕ(t) is twice differentiable in the origin. If the function ϕ(t) is twice differentiable
in the origin, then the same relation holds for the function u(t). Then the derivative

u′(t) = du(t)
dt exists in a small neighbourhood of the origin, and u′(0) = 0, as u(·)

is an even function. Further, u(0) = 1, u(t) ≤ 1 for all numbers t ∈ R1, hence

0 ≤ 1−u(h)
h2 = u(0)−u(h)

h2 = −u′(ϑh)
h ≤ sup

0≤s≤h

u′(0)−u′(s)
s <∞ for small number h > 0,

if u(·) is twice differentiable in the origin, where 0 ≤ ϑ ≤ 1 is an appropriate number,

and u′(·) denotes the derivative of the function u(·). Hence lim sup
h→0

1−u(h)
h2 < ∞ in

this case.

By induction with respect to the parameter k we can see that if ξ is a random
variable with distribution function F , and the 2k-th derivative of the character-
istic function in the origin is finite, then the random variable ξ has finite 2k-th
moment. Indeed, by the induction hypothesis there exists a distribution function

F (k−1)(du) = u(2k−2)F (du)
m2k−2

where m2k−2 =
∫
u2k−2 dF (u). Further, the charac-

teristic function of the distribution function F (k−1) has finite second moment in
the origin, since the characteristic function of this distribution function equals the
2k−2-th derivative of the characteristic function of the distribution function F mul-
tiplied by (−1)k−1m−1

2k−2, and the characteristic function of a random variable with

distribution function F (k−1)(u) has finite second derivative in the origin. Hence by
the already proven part of this problem a random variable with distribution func-
tion F (k−1) has finite second moment. This is equivalent to the statement that a
random variable with distribution function F has finite 2k-th moment.

32.) The solution of this problem applies similar idea as the proof of problem 22. In
problem 22 we deduced from some kind of continuity of the characteristic function of
a distribution function in the origin some sort of estimate about the tail behaviour
of the distribution function. In this problem we exploit that if we know more
continuity about the distribution function in the neighbourhood of the origin, then
we get sharper estimates about the tail behaviour of the distribution function.

Let F (x) denote the distribution function of the random variable ξ, and put u(t) =

Reϕ(t). The estimate
∣
∣
∣
1−u(h)

h

∣
∣
∣ = |u′(ϑh)| ≤ const.hα holds with an appropriate

constant 0 < ϑ < 1 under the conditions of the problem. Then the following analog
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of formula (2.6) holds.

const.h1+α >

∫ h

−h

1 − u(t)

h
dt =

∫ 1/2h

−1/2h

(

1 − sinhx

hx

)

dF (x)

+

∫

|x|> 1
2h

(

1 − sinhx

hx

)

dF (x) ≥
∫

|x|> 1
2h

1

2
dF (x)

=
1

2
P

(

|ξ| > 1

2h

)

.

This implies that P (|ξ| > u|) ≤ const.u−1−α for all numbers u > 0. Let us
introduce the function G(u) = P (|ξ| > u|). Integration by parts yields that

E|ξ| =

∫ ∞

0

|u| dG(u) = [uG(u)]
∞
0 −

∫

G(u) du <∞.

If the characteristic function ϕ(t) is 2k + 1-times differentiable in a small neigh-
bourhood of the origin, and the 2k + 1-th differential is a Lipschitz α function,
α > 0, in this small neighbourhood, then let us introduce the distribution function

F (k)(du) = u2kF (du)
mk

, where F (·) denotes the distribution function of the random

variable ξ, and mk =
∫
u2k dF (u). The argument applied in the solution of the

previous problem can be adapted to the present case. The already proven part of
this problem can be applied to a random variable with distribution function F (k),
and it yields that E|ξ|2k+1 <∞.

33.) The relation (−1)kEξ2k = d2kϕ(t)
dt2k

∣
∣
∣
t=0

= (2k)!
2πi

∮

z=R
ϕ(z)

z2k+1 dz holds for all integers k

by the result of problem 31 and the Cauchy integral formula if the circle with center
in the origin and radius R is in the domain of analiticity of the function ϕ(z). Since
sup
z=R

|ϕ(z)| < ∞ the above relation implies that Eξ2k ≤ (ak)2k with some constant

a > 0, and P (|ξ| > x) ≤
(

ak
x

)2k
for all positive integers k ≥ 1. If x ≥ C0 with some

number C0 > 0, then let us fix the constant k =
[

x
2a

]
, where [u] is the greatest

integer smaller than u. This implies that the inequality P (|ξ| > x) < const. e−αx

holds for all numbers x > 0 with an appropriate constant α > 0.

Let us remark that we had to apply the above relatively complicated argument,
because at the beginning of the proof we did not know that the analytic continuation
of the characteristic function of a random variable ξ is always the function ϕ(z) =
Eeizξ.

34.) If the characteristic function of a random variable ξ is integrable, then the result
about the inverse Fourier transform can be applied. It implies that the random vari-
able ξ also has a density function f(x), and the identity f(x) = 1

2π

∫
e−itxϕ(t) dt

holds. Also the formula dkf(x)
dxk = (−i)k

2π

∫
tke−itxϕ(t) dt holds if the order of integra-

tion and differentiation can be changed in the inverse Fourier transform formula.
In the solution of problem 27 we have proved that this change of order can be
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carried out if the functions |t|j |ϕ(t)| are integrable for all indices 0 ≤ j ≤ k. Hence
the statement of this problem holds if |ϕ(u)| < const. |u|−(k+1+ε) with some num-
ber ε > 0. If |ϕ(u)| < const. e−α|u| with some constant α > 0, then the function
f(z) = 1

2π

∫
e−itzϕ(t) dt is an analytic continuation of the density function f(x) of

the random variable ξ.

35.) Let ϕ(t) = Eitξ denote the characteristic function of the random variable ξ1. The

normalized partial sum Sn√
n

has the characteristic function ϕn
(

t√
n

)

. Hence by the

Fundamental Theorem about convergence in distribution and the result of prob-

lem 13a) it is enough to show that ϕn
(

t√
n

)

→ e−t2/2 for all numbers t ∈ R1 if

n → ∞. On the other hand, a Taylor expansion of the function ϕ(t) around the

point t = 0 and the result of problem 27 yield that ϕ(t) = 1− t2

2 + o(t2) if t = o(1),

and ϕ
(

t√
n

)

= 1− t2

n +o
(

1
n

)
= e−t2/2n+o(n−1) if t = O(1). The last relation implies

that ϕn
(

t√
n

)

= e−t2/2+o(1) → e−t2/2 for all fixed number t, if n→ ∞.

36.) Let us introduce the function F (t) = eit−
(

1 + it
1! + · · · + (it)k

k!

)

, and let us consider

its derivatives F (j)(t), j = 1, 2, . . . , k. Observe that F (j)(0) = 0 of all 0 ≤ j ≤ k,
and |F (k+1)(t)| = |eikt| = 1 for all t ∈ R1. We get by induction with respect to

the parameter j that |F (j)(t)| ≤
∫ t

0
|F (j+1)(s)| ds ≤

∫ t

0
|s|k−j ds
(k−j)! = |t|k+1−j

(k+1−j)! for all

indices j = k + 1, k, . . . , 0. In particular, |F (t)| ≤ |t|k+1

(k+1)! , and this is the statement

of the problem.

37.a) By applying formula (11) with k = 1 we get that |eitξ − 1 − itξ| ≤ t2ξ2

2 . Taking
the expected value of the expression at the left-hand side between the abso-

lute value sign we get that |ϕ(t) − 1| ≤ t2

2 Eξ
2. If Eξ2 < ε with a sufficiently

small number ε = ε(t) > 0, then |1 − ϕ(t)| ≤ 1
4 , and | logϕ(t) + (1 − ϕ(t))| =

| log (1 − (1 − ϕ(t))) − (1 − ϕ(t))| ≤ |1 − ϕ(t)|2 ≤ t4
(
Eξ2

)2
.

b.) The sequence of random variables Sk converge in distribution to a normal random
variable with expected value m and variance σ2 if and only if

lim
k→∞

nk∏

j=1

ϕk,j(t) = e−σ2t2/2+imt for all t ∈ R1. (2.7)

Let us take the logarithm in the relation (2.7). We claim that formula (2.7) is
equivalent to formula (2.7′) formulated below.

lim
k→∞

nk∑

j=1

logϕk,j(t) = −σ
2t2

2
+ imt for all t ∈ R1. (2.7′)

The equivalence of relations (2.7) and (2.7′) is less obvious than it may seem at
first sight. Some difficulty arises because in the space of complex numbers where
we have to work the equation ez1 = ez2 only implies that z1 = z2 + i2kπ with
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some integer k, but the numbers z1 and z2 may be different. Hence although
the implication (2.7′) ⇒ (2.7) needed in the proof of the central limit theorem is
straightforward, the proof of the implication (2.7) ⇒ (2.7′) needed in the proof
of the converse of the central limit theorem requires a more careful argument.

Before the proof of the implication (2.7) ⇒ (2.7′) let us remark that because
of the uniform smallness condition for a fixed value t ∈ R1 the characteristic
function ϕk,j(t) we consider is in a small neighbourhood of the number 1 for
all 1 ≤ j ≤ nk if the index k is sufficiently large. Hence for a sufficiently large
k ≥ k0(t) > 0 there is a version logϕk,j(t) of the functions ϕk,j(t) which is in a
small neighbourhood of the origin, say | logϕk,j(t)| < 1

2 . We take this version of
the logarithm in formula (2.7′).

To prove the implication (2.7) ⇒ (2.7′) let us first make the following observa-
tion. We have seen in the proof of problem 24 (in the proof of the Fundamental
Theorem about convergence of distribution functions) that the convergence in
formula (2.7) is uniform in all finite intervals. Besides, the right-hand side of
formula (2.7) is separated both from zero and infinity in a finite interval. Hence
we get by taking logarithm in formula (2.7) that for all ε > 0 and T > 0 there
exists a k0 = k0(ε, T ) and δ = δ(ε, k, T ) such that

∣
∣
∣
∣
∣
∣

nk∑

j=1

logϕk,j(t) −
(

−σ
2t2

2
+ imt

)

+ i2πlk(t)

∣
∣
∣
∣
∣
∣

< ε if |t| ≤ T and k ≥ k0

(2.7′′)
with some integer lk(t) which may depend both on k and t. We have to show
that lk(t) ≡ 0 in formula (2.7′′). First we prove the weaker statement that
lk(t) = lk, i.e. this constant in formula (2.7′′) does not depend on t. Indeed,
otherwise for all δ = δk > 0 a pair of constant −T ≤ s, t ≤ T , |t − s| <
δ could be found such that lk(t) 6= lk(s), i.e. |2πi(lk(t) − lk(s)| ≥ 2π. But

this is not possible, because the function gk(t) =
nk∑

j=1

logϕk,j(t) is uniformly

continuous in the interval [−T, T ]. Hence fixing a small ε > 0 we can write
|gk(t) − gk(s)| < ε for sufficiently small δ = δ(k, ε, T ) > 0. Besides, also the

inequality
∣
∣
∣

(

−σ2t2

2 + imt
)

−
(

−σ2s2

2 + ims
)∣
∣
∣ < ε holds if δ > 0 is sufficiently

small. Let ε < 1
3 . The above relations together with formula (2.7′′) would

contradict to the assumption |2πi(lk(t) − lk(s)| ≥ 2π. Hence lk(t) = lk. Finally,
it is easy to see that lk = lk(0) = 1. Hence relation (2.7′′) holds for all ε > 0
with lk(t) ≡ 0, and this implies relation (2.7′).

Because of the uniform smallness condition of problem 37 and the already proved
part a) of this problem we can write for k ≥ k0(t)

∣
∣
∣
∣
∣
∣

nk∑

j=1

logϕk,j(t) −
nk∑

j=1

(ϕk,j(t) − 1)

∣
∣
∣
∣
∣
∣

≤ t4
nk∑

j=1

(
Eξ2k,j

)2 ≤ const. t4 max
1≤j≤nk

Eξ2k,j ,
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since lim
k→∞

nk∑

j=1

Eξ2j,k = 1. Because of this relation and the uniform smallness

condition

lim
k→∞

∣
∣
∣
∣
∣
∣

nk∑

j=1

logϕk,j(t) −
nk∑

j=1

(ϕk,j(t) − 1)

∣
∣
∣
∣
∣
∣

= 0.

These relations also imply part b) of problem 37.

38.) Let us fix a number ε > 0. Then

Eξ2k,j = Eξ2k,jI({(|ξk,j | < ε})+Eξ2k,jI({|ξk,j | ≥ ε}) ≤ ε2 +

nk∑

j=1

Eξ2k,jI({|ξk,j | ≥ ε}),

hence by the Lindeberg condition lim sup
k→∞

sup
1≤j≤nk

Eξ2k,j ≤ ε2. Since this formula

holds for all numbers ε > 0, it implies the uniform smallness property.

By formula (12) (with the choice m = 0 and σ = 1) to prove the central limit
theorem it is enough to show that under the conditions of this problem

lim
k→∞

nk∑

j=1

(ϕk,j(t) − 1) = lim
k→∞

nk∑

k=1

E
(
eitξk,j − 1 − itξk,j

)
→ − t

2

2
,

or since lim
k→∞

nk∑

j=1

Eξ2k,j = 1 it is enough to show that

lim
k→∞

nk∑

j=1

E

(

eitξk,j − 1 − itξk,j +
t2

2
ξ2k,j

)

→ 0.

By applying formula (11) for k = 2 if |tx| ≤ ε and for k = 1 if |tx| ≥ ε together
with the Lindeberg condition we get that

∣
∣
∣
∣
∣
∣

nk∑

j=1

E

(

eitξk,j − 1 − itξk,j +
t2

2
ξ2k,j

)

I({|ξk,j | ≤ ε})

∣
∣
∣
∣
∣
∣

≤
nk∑

j=1

E
|tξk,j |3

6
I({|ξk,j | ≤ ε})

≤ ε|t|3
nk∑

j=1

E
ξ2k,j

6
≤ const. ε,

and

lim
k→∞

∣
∣
∣
∣
∣
∣

nk∑

j=1

E

(

eitξk,j − 1 − itξk,j +
t2

2
ξ2k,j

)

)I({|ξk,j | > ε})

∣
∣
∣
∣
∣
∣

≤ lim
k→∞

nk∑

j=1

Et2ξ2k,jI({|ξk,j | > ε}) = 0.
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Since these relations hold for all ε > 0, it implies formula (12) with the choice
m = 0 and σ2 = 1. In such a way we have solved problem 38.

39.) If the conditions of the problem are satisfied, then lim
k→∞

nk∑

j=1

Re (ϕk,j(t)− 1) = − t2

2 .

Further, since the sum of the random variables in the k-th row is almost 1 for large
index k, hence

lim
k→∞

nk∑

j=1

E

(

cos(tξk,j) − 1 +
t2ξ2k,j

2

)

= 0 for all numbers t ∈ R1.

Let us observe that cosu−1+ u2

2 ≥ 0 for all numbers u ∈ R1, since we have for the

function F (u) = cosu− 1+ u2

2 ≥ 0, F (0) = 0, F ′(0) = 0 and F ′′(u) = 1− cosu ≥ 0

for all numbers u ∈∈ R1. Besides, cosu − 1 + u2

2 ≥ u2

4 if |u| > 3. The above
inequalities imply that

lim
k→∞

nk∑

j=1

t2

4
Eξ2k,jI

({

|ξk,j | ≥
3

t

})

= 0.

We get the solution of problem 39 from this relation with the choice t = 3
ε .

40.) By the Schwarz inequality

(Eξk,jI(|ξk,j | ≤ ε)
2

= (Eξk,jI(|ξk,j | > ε)
2 ≤ Eξ2k,jI(|ξk,j | > ε).

Hence the Lindeberg condition implies that

lim
k→∞

nk∑

j=1

(Eξk,jI(|ξk,j | ≤ ε))
2 ≤ lim

k→∞

nk∑

j=1

Eξ2k,jI(|ξk,j | > ε) = 0,

and

lim
k→∞

nk∑

j=1

Eξ2k,jI(|ξk,j | ≤ ε) = 1.

These two relations imply the first statement of the problem.

To prove the second statement let us first observe that E(ξ̄k,j − ξk,j) = Eξ̄k,j −
Eξk,j = 0, 1 ≤ j ≤ nk. Hence the Chebishev inequality and Lindeberg condition
imply that for all ε > 0

P (|Sk − S̄k| > ε) ≤ Var (Sk − S̄k)

ε2
=

1

ε2

nk∑

j=1

Var (ξk,j − ξ̄k,j)

≤ 1

ε2

nk∑

j=1

Eξ2k,jI(|ξk,j | > 0) → 0.

73
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Since this relation holds for all ε > 0 it implies the second statement of the problem.

41.) By the Hölder inequality

n∑

k=1

Eξ2kI(|ξk| > εsn) ≤
n∑

k=1

(

E|ξk|(2+α)
)(2/α+2)

P (|ξk| > εsn)α/(2+α)

≤
(

n∑

k=1

E|ξk|(2+α)

)(2/α+2)( n∑

k=1

P (|ξk| > εsn)

)α/(2+α)

.

On the other hand, by the Chebishev inequality
n∑

k=1

P (|ξk| > εsn) ≤
n∑

k=1

Eξ2
k

ε2s2
n

= 1
ε2 .

Hence it the conditions of part a) of problem 41 hold, then

lim
n→∞

1

s2n

n∑

k=1

Eξ2kI(|ξk| > εsn) = 0,

i.e. these conditions imply the Lindeberg condition.

In the case considered at the end of part a.) s2n ≥ const.n, and
n∑

k=1

E|ξk|2+α =

o
(
n(α+2)/2)

)
if n → ∞, hence in this case the condition formulated in part a) of

problem 41 is satisfied.

If ξ1, ξ2, . . . , is a sequence of independent and identically distributed random vari-
ables, Eξ1 = 0, 0 < Eξ21 <∞, then

1

s2n

n∑

k=1

Eξ2kI(|ξk| > εsn) =
1

Eξ21
Eξ21I

(

|ξ1| > ε

√

nEξ21

)

→ 0

if n→ ∞. This means that the Lindeberg condition holds also in this case.

42.) If the point x is a point of continuity of the limit distribution function F (·), then
for all ε > 0 there exists a δ > 0 such that F (x) − ε

2 < F (x − δ) < F (x) <
F (x+ δ) < F (x+ δ) + ε

2 . Since the monotone increasing function F (·) has at most
countably infinite points of discontinuity, hence we may assume without violating
the generality that we choose the point δ > 0 in such a way that the points x ± δ

are also points of continuity of the function F (·). Then there exists an index n0 =
n0(δ, ε) such that P (Sn < x+ δ) < F (x+ δ)+ ε

4 , P (Sn > x− δ) < 1−F (x− δ)+ ε
4 ,

and P (|Tn| ≥ δ) < ε
4 if n ≥ n0. Then P (Sn + Tn < x) ≤ P (Sn < x+ δ) +P (|Tn| >

δ) < F (x + δ) + ε
2 < F (x) + ε if n ≥ n0(ε, δ). We get in a similar way that

P (Sn + Tn > x) < 1 − F (x) + ε if n ≥ n0(ε, δ). Since the above statements hold
for all ε > 0, they imply the statement of the problem.

43.) Let the independent random variables ξn, n = 1, 2, . . . , have the following dis-
tribution: P (ξn = n) = P (ξn = −n) = 1

4n2 , P (ξn = 2) = P (ξn = −2) = 1
4 ,

and P (ξn = 0) = 1
2 − 1

2n2 , n = 1, 2, . . . . Then Eξn = 0, Eξ2n = 1. Put
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Xk = ξkI(|ξk| ≤ 2), Yn = ξkI(|ξk| > 2) for all k = 1, 2, . . . . Consider the par-

tial sums Sn =
n∑

k=n

Xk and Tn =
n∑

k=1

Yk, n = 1, 2, . . . . Then the normalized

partial sums
√

2
nSn converge in distribution to the standard normal distribution.

Indeed, the partial sums of the random variables Xk, k = 1, 2, . . . , satisfy the con-
ditions of the central limit theorem, and EX2

k = 1
2 , k = 1, 2, . . . . On the other

hand, the expressions
√

2
nTn converge stochastically to zero if n → ∞. Indeed,

∞∑

k=1

P (Yk 6= 0) < ∞, hence with probability 1 only finitely many terms Yk(ω) do

not equal zero, and
∞∑

k=1

|Yk(ω)| ≤ K(ω). Since
√

2
n

n∑

k=1

ξk =
√

2
nSn +

√
2
nTn, the

above calculation and the result of problem 42 imply that the above construction
yields an example for the statement of part a) of problem 43.

Let us make some slight modifications in the construction of the above random
variables ξn. Let us put similarly to the previous construction P (ξn = 2) = P (ξn =
−2) = 1

4 and P (ξn = n) = 1
4n2 . Let us define further

P

(

ξn =
1√
n

)

=
1

2
− 1

2n2
, and P

(

ξn = −n− 2n3/2

(

1 − 1

n2

))

=
1

4n2
,

n = 1, 2, . . . . Then Eξn = 0, n = 1, 2, . . . . By applying the truncation technique
of part a) and carrying out a natural modification of the calculation following it
we get that these random variable ξn, n = 1, 2, . . . , yield an example for part b) of
problem 43.

44.) Let us choose an arbitrary number L such that
∫
u2F0( du) > L. It is enough

to show that lim inf
n→∞

∫
u2Fn( du) ≥ L. There exists such a bounded and continu-

ous function g(u) = gL(u) for which g(u) ≤ u2, and
∫
g(u)F0( du) ≥ L. Indeed,

the function g(u) = gL(u) = min(u2,K) satisfies this property if we choose a
sufficiently large constant K = K(L) > 0. Then the characterization of the con-
vergence in distribution given in Theorem A implies that lim inf

n→∞

∫
u2Fn( du) ≥

lim
n→∞

∫
g(u)Fn( du) =

∫
g(u)F0( du) ≥ L.

45.) The distribution of the random vector Z = (Z1, . . . , Zm) is determined by its
characteristic function. (See the result of problem 19.) On the other hand, the
characteristic function Ei(t1Z1+···+tmZm) of the random vector (Z1, . . . , Zm) in the
point (t1, . . . , tm) agrees with the characteristic function of the random variable
Z(t1, . . . , tm) in the point 1. Hence the characteristic function and distribution
function of the random vector Z is determined by the distribution of the above
considered one dimensional distributions.

46.) First we show with the help of the Fundamental Theorem about the convergence of
distribution functions that the random vectors Zn = (Z1,n, . . . , Zm,n), n = 1, 2, . . . ,
converge in distribution to some m-dimensional distribution as n → ∞ if the one-
dimensional random variables Zn = Zn(a1, . . . , am), n = 1, 2, . . . , converge in dis-
tribution for all real numbers a1, . . . , am as n→ ∞. Indeed, if the one-dimensional
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random variables interested in this problem convergence in distribution, then the
characteristic functions of the random vectors Zn, n = 1, 2, . . . , converge to a
function ϕ(t1, . . . , tm) in all points (t1, . . . , tm) ∈ Rm, and the restriction of this
limit function to the coordinates axes is continuous. Hence by the Fundamental
Theorem the random vectors Zn, n = 1, 2, . . . , also converge in distribution, and
the characteristic function of the limit distribution is the above limit function.
The Fundamental Theorem also implies that the convergence of the random vec-
tors Zn implies the convergence of the random variables of the random variables
Zn(a1, . . . , am) in distribution.

If the random vectors Zn converge in distribution, then the limit distribution is
determined by its characteristic function which is the limit of the characteristic
functions of these random variables. Similarly, the characteristic function of the
limit of the one-dimensional random variables we have considered equals the limit
of the characteristic function of these random variables. These facts imply the
characterization of the limit distribution µ given in this problem together with the
statement that the above characterization determines the limit distribution in a
unique way.

47.) Let Σ = (Dj,k), 1 ≤ j, k ≤ m, denote the covariance matrix of an m-dimensional
random vector (Z1, . . . , Zm), i.e. let Dj,k = E(Zj −EZj)(Zk −EZk), 1 ≤ j, k ≤ m.

Then the matrix Σ is symmetrical. Besides, xΣx∗ =
m∑

j=1

m∑

k=1

xjE(Zj − EZj)(Zk −

EZk)xk = E

(
k∑

j=1

xj(Zj − EZj)

)2

≥ 0 for all vectors x = (x1, . . . , xm) ∈ Rm, and

this means that the matrix Σ is positive semi-definite.

On the other hand, if Σ is an arbitrary m×m positive semi-definite matrix, then
the results of linear algebra imply that there exists a matrix B such that Σ = B∗B.
(The matrix B satisfying this relation is not determined in a unique way. A possible
construction of a matrix B satisfying the above relation can be given in the following
way: It is known from linear algebra that a symmetric matrix Σ can be represented
in the form Σ = UΛU∗ where the matrix U is unitary and the matrix Λ is diagonal
with some elements λ1, . . . , λm in the diagonal. The matrix Σ is positive semi-
definite if and only if all elements λj , 1 ≤ j ≤ m, in the above representation are
non-negative. If Σ = UΛU∗ is a positive semi-definite matrix, then let us define the
symmetric matrix B = U

√
ΛU∗, where

√
Λ is the diagonal matrix with elements

√
λj , j = 1, . . . ,m, in the diagonal. Then Σ = B2 = B∗B.)

Let Σ = (Dj,k), 1 ≤ j, k ≤ m, be an arbitrary m ×m positive semi-definite ma-
trix, and M = (M1, . . . ,Mm) ∈ Rm a vector in the Euclidean space Rm. Let
ξ = (ξ1, . . . , ξm) be an m-dimensional random variable with standard normal dis-
tribution, B = (bj,k), 1 ≤ j, k ≤ m, an m × m matrix such that B∗B = Σ. Let
us define the m-dimensional random vector η = (η1, . . . , ηm) = ξB + M. Then η

has normal distribution, and we claim that it has expected value M and covariance
matrix B∗B = Σ. This implies that for all vectors M ∈ Rm and m × m posi-
tive semi-definite matrices Σ there exists an m-dimensional normally distributed
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random vector with expectation zero and covariance matrix Σ.

Indeed, Eη = (Eη1, . . . , Eηm) = (M1, . . . ,Mm) = M, and the elements of the
covariance matrix of η can be calculated in the following way.

E(ηj − Eηj)(ηk − Eηk) = E

(
m∑

l=1

bj,lξl

)(
m∑

p=1

bk,pξk

)

=

p
∑

l=1

bj,lbk,l = Dj,k

for all indices 1 ≤ j, k ≤ m, because Eξlξp = 0, if l 6= p, Eξ2l = 1. The last identity
means the identity B∗B = Σ in coordinate form.

Let us consider an m-dimensional random vector η = (η1, . . . , ηm) = ξB + M

with normal distribution function, where the random vector ξ = (ξ1, . . . , ξm) has
standard normal distribution, B is an m ×m matrix, M = (M1, . . . ,Mm) ∈ Rm.
Put B∗B = Σ = (Dj,k), 1 ≤ j, k ≤ m. Let us calculate the characteristic function
ϕ(t1, . . . , tm) = Eei(t1η1+···+tmηm) η of the random vector η. To calculate it let us in-
troduce the random variable ζ = t1η1+· · ·+tmηm. Then ζ is a normally distributed

random variable with expected value M̄ = M̄(t1, . . . , tm) =
m∑

k=1

tkMk = (M, t) and

variance σ2 =
m∑

j=1

m∑

k=1

tjtkEηjηk =
m∑

j=1

m∑

k=1

tjtkDj,k = tΣt∗, where t = (t1, . . . , tm).

Hence the characteristic function of the random variable ζ with normal distribu-
tion equals ψ(u) = Eeiuζ = e−u2

tΣt/2+i(M,t)u. This implies that ϕ(t1, . . . , tm) =
Eei(t1η1+···+tmηm) = ψ(1) = e−tΣt

∗/2+i(M,t), that is relation (13) holds.

It follows from formula (13) that if η is an m-dimensional random variable with
normal distribution, then the characteristic function and as a consequence, the
distribution function of this random vector is determined by its expectation and
covariance matrix. Let us remark that there can be given two different m × m

matrices B1 and B2 such that B∗
1B1 = B∗

2B2. Let ξ be an m-dimensional random
vector with standard normal distribution, B1 and B2 two m×m matrices such that
B∗

1B1 = B∗
2B2, an M ∈ Rm an arbitrary vector. Let us define the random vectors

η1 = ξB1 + M and η2 = ξB2 + M. Then the expectation and covariance matrix,
hence the distribution function of the random vectors η1 and η2 agree, although
this statement is not self-evident because of the relation B1 6= B2.

48.) We get similarly to the proof of formula (13) in problem 47., that the characteristic
function of the random vector η = (η1, . . . , ηl) equals Eei(t,η) = e−tΣt

∗/2+i(M,t),
where t = (t1, . . . , tl), and Σ = B∗B. It follows from this formula that η is
a normally distributed random vector with covariance matrix Σ and expectation
vector M.

Given a normally distributed random vector η of dimension m, let us write it in
the form η = ξB + M, where ξ is a random vector of dimension m with standard
normal distribution. (It can be proved that such a representation is always possible.
Actually it would be enough for us such a representation of a random vector with
the same distribution as η. The possibility of such a representation follows from
the definition of the normally distributed random vectors.) If we omit some of the
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coordinates of the random vector η and we preserve only l coordinates, then the
random vector η′ we obtain after this delition of coordinates can be presented in the
following way. Let us omit those rows of the vector B which have the same indices
as the elements of η we omitted. Similarly let us omit the coordinates of the vector
M with the same indices as the coordines omitted from η. Let us denote the matrix
and vector obtained in such a way by M′ and B′. Then we have η′ = ξB′ + M′,
hence η′ is normally distributed by the already proved part of the problem.

49.) I shall give two different solutions of the problem, because, this may be instructive.

First soulution: We can write up the characteristic function of the random vector η,
as Eei(t,η) = e−tΣt

∗/2+i(M,t) where t = (t1, . . . , tm), and M = (M1, . . . ,Mm) is the
expected value of η, with the introduction of some notations in the following way.
Let tj denote the restriction of the vector t, and let Mj denote the restriction of
vector M to the coordinates p ∈ Lj , 1 ≤ j ≤ k. Let us define similarly the matrix
Σj as the restriction of the matrix Σ to the coordinates σp,q, p ∈ Lj and q ∈ Lj ,

1 ≤ j ≤ k. With such a notation Eei(t,η) =
k∏

j=1

e−tjΣjt
∗
j /2+i(Mj ,tj). (We exploited

the properties of the matix Σ at this point.) Let η′1, . . . , η
′
k independent, normally

distributed random vectors with covariance matrix Σj and expected value Mj ,

1 ≤ j ≤ k. The characteristic function of Eη′j equals Eei(tj ,η′
j) = e−tjΣjt

∗
j /2+i(Mj ,tj)

for all indices 1 ≤ j ≤ k. Hence the characteristic function of the random vectors
η′ = (η′1, . . . , η

′
k) and η agree. Hence the distribution of η and η′ also agree, and

as a consequence the random vectors η̄j , 1 ≤ j ≤ k, are independent of each other,
similarly to the random vectors η′j .

Second solution: Let us apply the notations introduced in the previous solution.
The random vector η′ defined there is normally distributed with covariance matrix
Σ and expected value M. As the distribution of a normal random vector is deter-
mined by its covariance matrix and expected value, hence the distribution of η és
η′ agree. Therefore the random vectors η′1, . . . , η′k are independent, similarly to
the random vectors η̄1, . . . , η̄k.

50.) Because of the result of problem 46 it is enough to show that for all vectors
a = (a1, . . . , am) ∈ Rm the normalized partial sums 1

An
Sn = 1

An
Sn(a1, . . . , am) =

1
An

m∑

p=1
apSp,n, n = 1, 2, . . . converge in distribution to the normal distribution

with expectation zero and variance σ2 = aΣa∗ if n → ∞. Let us observe that

1
An
Sn = 1

An

n∑

k=1

ηk, n = 1, 2, . . . , where ηk =
m∑

p=1
apξp,k, k = 1, 2, . . . . Besides, the

random variables ηk, k = 1, 2, . . . are independent, Eηk = 0, Eη2
k = aΣka

∗.

Let us consider separately the cases aΣa∗ = 0 and aΣa∗ > 0. If aΣa∗ = 0, then

1
A2

n
ES2

n = 1
A2

k

k∑

j=1

aΣja
∗ → 0 if k → 0, hence Sn

An
converges to zero stochastically if

n → ∞. That is, in this case the random variables 1
An
Sn converge in distribution

to the (degenerated) normal variable with expectation zero and variance zero. In
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the case aΣa∗ > 0 let us define the triangular array ηk,n = ηk

An

√
aΣa∗ , 1 ≤ k ≤ n,

n = 1, 2, . . . . Then
n∑

k=1

Eη2
k,n = 1

A2
n

n∑

k=1

aΣka
∗

aΣa∗ → 1 if n → ∞. Hence in the case

aΣa∗ > 0 the convergence of the normalized partial sums 1
An
Sn, n = 1, 2, . . . , to

the normal distribution with expectation zero and variance aΣa∗ follows from the
central limit theorem for triangular arrays formulated in problem 38 if we show
that the above defined triangular array ηk,n, 1 ≤ k ≤ n, n = 1, 2, . . . , satisfies
the Lindeberg condition. This implies the statement of the problem. To prove
the Lindeberg condition first we show the following inequality (2.8). Here we shall
apply the notation K = max

1≤p≤m
|ap|.

E(η2
k,nI(|ηk,n| > ε) ≤ K2m2

A2
naΣa∗

m∑

p=1

Eξ2p,kI(|ξp,k| > ε̄An) (2.8)

for all indices 1 ≤ k ≤ n and n = 1, 2, . . . , where ε̄ = ε̄(k) = ε
m sup

1≤p≤m

|ap| ·
1√

aΣa∗ . By

summing up these inequalities for all indices 1 ≤ k ≤ n, and applying formula (14)
for all 1 ≤ p ≤ m, we get that the triangular array ηk,n, 1 ≤ k ≤ n, n = 1, 2, . . .
satisfies the Lindeberg condition.

To prove formula (2.8) let us introduce the random index p̄(k) = p̄(k, ω) which is
the (smallest) number p such that |ξp̄(k),k(ω)| = max

1≤p≤m
|ξp,k(ω)|. Let us observe

that

{ω: |ηk,n(ω)| > ε} ⊂
M⋃

p=1

{ω: |ξp,k(ω)| > ε̄An},

hence I(|ηk(ω)| > ε) ≤ I(|ξp̄(k,ω),k(ω)| > ε̄An). Besides, |ηk(ω)|2 ≤ m2K2

A2
naΣa∗ ξ

2
p̄(k),k.

This implies that

η2
kI(|ηk| > ε) ≤ m2K2

A2
naΣa∗ ξ

2
p̄(k),kI(|ξp̄(k,ω),k(ω)| > ε̄An)

≤ m2K2

A2
naΣa∗

m∑

p=1

ξ2p,kI(|ξp,k| > ε̄An).

By taking expection in this inequality we get formula (2.8).

Let us finally observe that if ξk = (ξ1,k, . . . , ξm,k), k = 1, 2, . . . , is a sequence of
independent and identically distributed m-dimensional random vectors with expec-
tation zero and finite covariance matrix Σ, then this sequence of random vectors
satisfies relation (14) with the choice A2

n = n. This statement was proved in part b)
of problem 41 for those coordinates p for which Eξ2p,1 > 0. For those coordinates p
for which Eξ2p,1 = 0, ξp,1 ≡ 0. Hence these coordinates can be omitted.

51.) Let us consider first those numbers p, 1 ≤ p ≤ m for which the p-th element of the
diagonal of the (semi-definite) matrix Σ Dp,p satisfies the inequality Dp,p > 0. Let

79
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us define the triangular array ηk,j = ηk,j(p) =
ξp,j

AkDp,p
, 1 ≤ j ≤ k, k = 1, 2, . . . .

Then lim
k→∞

Eη2
k,j = 0, and the triangular array ηk,j , 1 ≤ j ≤ k, k = 1, 2, . . . satisfies

the condition of uniform smallness and the central limit theorem. Hence by the
result of problem 39 the Lindeberg condition formulated in formula (14) holds for
all such indices p.

Since the matrix Σ is positive semi-definite, hence Dp,p ≥ 0 for all 1 ≤ p ≤ m.
Therefore we have still consider those indices p for which Dp,p = 0. In this case

lim
n→∞

1
A2

n

n∑

k=1

Eξ2p,k = 0. Since Eξ2p,k ≥ Eξ2p,kI(|ξp,k| > εAn), relation (14) also holds

for such indices p.

Appendix

The proof of the inversion formula for Fourier transforms.

Let us introduce the function f̂(u) =
∫
e−ituf̃(u) du. To prove formula (6) we have to

show that f̂(u) = f(u) for almost all numbers u ∈ R1. This statement is equivalent to

the identity
∫ t

0
f(u) du =

∫ t

0
f̂(u) du for all numbers t ∈ R1. Since

∫ t

0

f̂(u) du =
1

2π

∫ ∞

−∞

∫ t

0

e−iusf̃(u) ds du =
1

2π

∫ ∞

−∞

e−itu − 1

−itu f̃(u) du, (A1)

we have to show the identity

∫ ∞

−∞
I[0,t](u)f(u) du =

1

2π

∫ ∞

−∞

e−itu − 1

−itu f̃(u) du, (A2)

where I[0,t](·) is the indicator function of the interval [0, t]. The identity (A2) is a special
case of an important identity of the Fourier analysis, of the Parseval formula. Let us
formulate it.

Parseval formula. ∫

f(u)ḡ(u) du =
1

2π

∫

f̃(u)¯̃g(u) du, (A3)

where f̃(·) denotes the Fourier transform and f̄(·) the conjugate of a function f(·).
Formula (A3) holds if one of the following conditions is satisfied:

a.) Both functions f and g are square integrable.

b.) Both functions f̃ and g̃ are square integrable.

If one of the conditions a.) and b.) is satisfied, then also the other condition holds.
In this case the identity

∫
|f(u)|2 du = 1

2π

∫
|f̃(u)|2, du holds (because of the Parseval

formula). The transformation Tf = f → 1√
2π
f̃ is an automorphism in the space of

square integrable function. This statement means not only the validity of the identity
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∫
Tf(u)Tg(u) du =

∫
f(u)ḡ(u) du. It also states that all square integrable functions f

can be represented in the form f = Th with a square integrable function h.)

Let us finally remark that in a complete formulation of the Parseval formula the no-
tion of the Fourier transform has to be defined for all square integrable but not necessarily
integrable functions f(·). This definition can be given by means of the above mentioned
L2 isomorphism. For all square integrable functions f(·) there exists a sequence of inte-
grable and square integrable functions fn(·) which converges to the function f(·) in the
L2 norm of square integrable functions, i.e.

∫
|fn(u) − f(u)|2 du → 0 if n → ∞. Then

the Fourier transform f̃(·) of the function f(·) is the limit of the functions f̃n(·) in the
L2 norm. This limit always exists, and it does not depend on the choice of the sequence
of functions fn(·) converging to the function f(·).

In the Parseval formula formulated in this text a norming factor 1
2π is present which

does not appear in its formulation in text books. The reason of this difference is that
we have chosen a different normalization in the definition of the Fourier transform. (We
have omitted the factor 1√

2π
from the definition.)

If the Fourier transform of an integrable function f is integrable, then it is also
square integrable, since it is a bounded function. Further, the Fourier transform of

the function g(u) = I[0,t](u) is the square integrable function g̃(v) =
∫ t

0
eiuv du = eiv−1

iv .
Hence the formula (A2) (and therefore also formula (6)) is a consequence of the Parseval
formula with the choice of the above functions f(·) and g(·).

We can prove that a finite measure µ with an integrable Fourier transform f̃(u) =
∫
eituµ( dt) has a density function f(·) defined by formula (6) with the help of the

following smoothing argument. Let us consider for all numbers ε > 0 the Gaussian
measure νε with expectation zero and variance ε. This measure has density function
ϕε(u) = 1√

2πε
e−u2/2ε and Fourier transform e−εu2/2. Let us introduce the convolution

µε = µ ∗ νε, i.e. µε(A) = µ ∗ νε(A) =
∫
µ(A− u)ϕε(u) du.

The measure µε has a density function fε(u) =
∫
ϕε(u− v)µ( dv), and the Fourier

transform of this measure is the integrable function f̃ε(u) = e−εu2/2f̃(u). Hence the
function fε(u) can be expressed as the inverse Fourier transform of the function f̃ε(u)
defined in formula (6). If ε→ 0, then fε(u) → f(u), where f(u) is the function defined
in formula (6), and this convergence is uniform in the variable u. On the other hand,
the measure µ is the weak limit of the measures µε if ε → 0, that is the probability
measures µε

µ(R1) converge weakly to the probability measure µ
µ(R1) . (Let us remark that

µ(R1) = µε(R
1).) Hence we get by taking limit ε → 0 that µ((a, b]) =

∫ b

a
f(u) du if

µ({a}) = µ({b}) = 0, i.e. if the points a and b are points of continuity of the measure µ.
This implies that the function f is the density function of the measure µ.

By some slight modification of the above argument we can prove the above state-
ment also in the case if µ is a signed measure with bounded variation and integrable
Fourier transform. Let us remark that by refining the argument of the above limit
procedure and exploiting the L2 isomorphism property of the Fourier transform, the
above result about the density function of a measure µ and its Fourier transform can
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Péter Major

be strengthened. It is enough to assume that the Fourier transform of the (signed)
measure µ is square integrable. But in this case the inverse Fourier transform defined
in formula (6) has to be defined by means of the L2 extension of the original integral,
and we cannot claim that the density function of the measure µ is continuous.

The proof of the Parseval formula. Let us first prove the Parseval formula for such simple
pairs of functions (f, g) which disappear outside of a finite interval [−A,A], and which
are sufficiently smooth, say they have two continuous derivatives. Then by considering
the restriction of these functions to some interval [−πT, πT ] ⊃ [−A,A], Tπ ≥ A, and
the discrete version of the Parseval formula we can write that

∫

f(u)g(u) du = 2πT
∞∑

k=−∞
ak(T )b̄k(T ),

where ak(T ) = 1
2πT

∫
eiku/T f(u) du = 1

2πT f̃
(

k
T

)
, and bk(T ) = 1

2πT g̃
(

k
T

)
. But the above

expression 2πT
∞∑

k=−∞
ak(T )b̄k(T ) is an approximating sum of the integral

∫
f̃(u)¯̃g(u) du,

and the Fourier transforms f̃(u) and g̃(u) tend to zero fast as |u| → ∞ because of the
smoothness of the functions f and g. (See for instance the result of problem 28.) Hence
the limit procedure T → ∞ yields formula (A3) in this special case.

The Parseval formula yields with the choice f = g the identity
∫
|f(u)|2 du =

1
2π

∫
|f̃(u)|2 du, further the functions f for which we have proved these identity are

everywhere dense in the space of square integrable functions. Hence we get proof of
the Parseval formula by extending the isometry T: f → Tf = 1√

2π
f̃ in the L2 norm

to the space of all square integrable functions. To complete the proof we still have to
show that this extension of the transformation T maps to the whole space of square
integrable functions.

To prove this missing part let us consider those functions f which are sufficiently
smooth (say they are 10-times differentiable) and to zero sufficiently fast in plus minus
infinity (say |f(u)| ≤ const.

(
1 + |u|100

)
). Since such functions constitute an everywhere

dense set in the space of square integrable functions it is enough to show that they are
in the image space of the operator T. We will show that the identity T

√
2πf̃− = f ,

where f−(u) = f(−u), follows from the already proved statements.

Also the function f̃ is smooth, and it tends to zero fast. (This also follows from
the statements of problems 27 and 28. Actually the statement of problem 27 deals
only with the Fourier transform of probability measures, but it is not difficult to see
that this statement also holds for the Fourier transform of all signed measures with
bounded variance. We want to exploit that the measures µ±, µ±(A) =

∫

A
f±(u) du,

f+(u) = max(f(u), 0), f−(u) = −min(f(u), 0) have at least 8 moments.) Since both
the functions f(u) and the indicator function I[0,t](u) of the interval [0, t] are square
integrable, formula (A2) holds by the already proved part of the Parseval formula. Since

the faction f̂ defined with the help of the function f̃(u) at the start of this Appendix
is integrable, also formula (A1) holds. Formulas (A1) and (A2) together imply that
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the pair of functions (f, f̃) satisfy relation (6). But this relation is equivalent to the

statement that the function f is the Fourier transform of the function 2πf̃−, where
f−(u) = f(−u), and this is what we wanted to prove.

The proof of Weierstrass second approximation theorem.

The functions 1
(2π)k/2 e

i(j1t1+···+jktk) constitute a complete orthonormal system in

the space of square integrable functions which are periodic by 2π in all their arguments.
This important result of the theory of Fourier series implies that all sufficiently smooth
and in all their arguments periodic functions are the uniform limits of their Fourier
series. Indeed, in this case the Fourier coefficients tend to zero fast, and this implies
the uniform convergence. Since such functions are everywhere dense in the supremum
norm in the space of continuous functions, this statement implies Weierstrass second
approximation theorem. Nevertheless, instead of this argument we present a direct proof
of Weierstrass second approximation theorem which does not apply the completeness
of the trigonometrical functions in the L2 space. We shall prove Fejér’s theorem, more
precisely its multi-dimensional version. Weierstrass second approximation theorem is a
direct consequence of this result.

Fejér’s theorem. Let f(x1, . . . , xk) be a continuous function of k arguments which
is periodic by 2π in all of its arguments. Let us define for all k-dimensional vectors
(n1, . . . , nk) with non-negative integers the trigonometrical sum

sn1,...,nk
(f)(t1, . . . , tk) =

n1∑

j1=−n1

· · ·
nk∑

jk=−nk

Aj1,...,jk
ei(j1t1+···+jktk),

where

Aj1,...,jk
=

1

(2π)k

∫ π

−π

· · ·
∫ π

−π

e−i(j1u1+···+jkuk)f(u1, . . . , uk) du1 . . . duk.

Let us also consider the following Cesaro means An(f), n = 1, 2, . . . , of the above
trigonometrical sums:

An(f)(t1, . . . , tk) =
1

(n+ 1)k

∑

0≤nj≤n
for all indices 1≤j≤k

sn1,...,nk
(f)(t1, . . . , tk).

Then lim
n→∞

An(f)(t1, . . . , tk) = f(t1, . . . , tk), and the above convergence is uniform in

all of its arguments t1, . . . , tk.

The proof of Fejér’s theorem. The proof of Fejér’s theorem is based on the following
formula:

An(f)(t1, . . . , tk) =

∫ π

−π

· · ·
∫ π

−π

f(u1, . . . , uk)K̄n(t1−u1, . . . , tk −uk) du1 . . . duk, (A4)
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where
K̄n(u1, . . . , uk) = Kn(u1) · · ·Kn(uk), (A5)

and

Kn(u) =
1

2π(n+ 1)

n∑

k=−n

(n+ 1 − |k|)eiuk =
sin2

(
n+1

2 u
)

2π(n+ 1) sin2
(

u
2

) . (A5′)

These relations hold, since by writing into the definitions of the expressions An(f) and
sn1,...,nk

(f) the definition of the Fourier coefficient Aj1,...,jk
we get relation (A4) together

with formula (A5), where

K̄n(u1, . . . , uk) =
1

(2π(n+ 1))k

∑

0≤nj≤n
for all indices 1≤j≤k

∑

|mj |≤nj

for all indices 1≤j≤k

ei(m1u1+···+mkuk)

=
1

(2π(n+ 1))k

k∏

j=1





n∑

nj=0

nj∑

mj=−nj

eimjuj



 = Kn(u1) . . .Kn(uk),

and the function Kn(u) is defined in the middle term of formula (A5′). This sum can
be written in a closed form with the help of the following calculation.

1

2π(n+ 1)

n∑

k=−n

(n+ 1 − |k|)eiuk =
1

2π(n+ 1)

(
n∑

k=0

eiuk

)(
n∑

k=0

e−iuk

)

=
1

2π(n+ 1)

∣
∣
∣
∣

ei(n+1)u − 1

eiu − 1

∣
∣
∣
∣

2

=
1

2π(n+ 1)

∣
∣ei(n+1)u/2 − e−i(n+1)u/2

∣
∣
2

∣
∣eiu/2 − e−iu/2

∣
∣
2

=
sin2

(
n+1

2 u
)

2π(n+ 1) sin2
(

u
2

) .

The function Kn(u) defined in formula (A5′) have the following properties important
for us:

(i)
∫ π

−π
Kn(u) du = 1. This statement follows from the representation of the functions

Kn(·) in the form of a sum.

(ii) Kn(u) ≥ 0 for all numbers u ∈ R1.

(iii) lim
n→∞

sup
ε≤|u|≤π

Kn(u) = 0 for all numbers ε > 0.

Statements (ii) and (iii) follow from the representation of the functions Kn(·) given
in a closed form.

Since a function continuous on a compact set is uniformly continuous, there exists a
constant δ = δ(ε, f) for all ε > 0 such that the continuous and in its coordinates periodic
function f satisfies the inequality |f(x1, . . . , xk)−f(y1, . . . , yk)| < ε if |xj−yj | < δ for all
indices j = 1, . . . , k. (In this relation we identify the points xj + 2πl, l = 0± 1,±2, . . . ,
and the inequality |xj − yj | < δ means that |xj − yj + 2πll| < δ with an appropriate
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integer lj .) Let us introduce the notation B(δ, (t1, . . . , tk)) = {(u1, . . . , uk): |uj − tj | <
δ, −π ≤ uj < π, j = 1, . . . , k}. Because of property (i)

An(f)(t1, . . . , tk) − f(t1, . . . , tk)

=

∫

[−π,π)k

(f(u1, . . . , uk) − f(t1, . . . , tk))Kn(t1 − u1) · · ·Kn(tk − uk) du1 . . . duk

=

∫

B(δ,(t1,...,tk))

[· · · ] du1 . . . duk +

∫

[−π,π)k\B(δ,(t1,...,tk))

[· · · ] du1 . . . duk

= I1,n(t1, . . . , tk) + I2,n(t1, . . . , tk).

It follows from the definition of the set B(δ, (t1, . . . , ut)), the number δ and properties (i)
and (ii) that

|I1,n(t1, . . . , tk)| ≤ ε

∫

[−π,π)k

Kn(t1 − u1) · · ·Kn(tk − uk) du1 . . . duk ≤ ε

for all indices n = 1, 2, . . . and points (t1, . . . , tk). On the other hand, by applying the
notation sup

(u1,...,uk)

|f(u1, . . . , uk)| = L and carrying out the substitutions tj − uj = ūj

we can show with the help of relations (i), (ii) and (iii) that

|I2,n(t1, . . . , tk)| ≤ 2L

∫

[−π,π)k\B(δ,(0,...,0))

Kn(ū1) · · ·Kn(ūk) dū1 . . . dūk → 0,

if n→ ∞, since

∫

δ<|ūj |<π
−π≤ūl<π, l 6=j, 1≤l≤k

Kn(ū1) · · ·Kn(ūk) dū1 . . . dūk =

∫

δ<|u|<π

Kn(u) du

≤ 2π sup
δ<|u|<π

Kn(u) → 0, ha n→ ∞.

for all numbers 1 ≤ j ≤ k. Since the above estimates hold for all constants ε > 0
(together with an appropriate number δ = δ(ε, f)), they imply Fejér’s theorem.
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