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In Lemma 1 of Arcones’ paper Limit theorems for non-linear functionals of a stationary
Gaussian sequence of vectors (The Annals of Probability 1994 Vol. 22 No. 4, 2242–2274)
the following result is proved (with a slightly different notation).

Lemma 1 in Arcones’ paper. Let X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) be
two d-dimensional (jointly Gaussian) standard normal random vectors with covariances
EXjYk = r(j, k), 1 ≤ j, k ≤ d, let f(x1, . . . , xd) ∈ Rd be such a function for which
Ef2(X1, . . . , Xd) <∞, and it has rank τ with some positive integer τ , i.e.

Ef(X1, . . . , Xd)Pk(X1, . . . , Xd) = 0

for any polynomial Pk(x1, . . . , xd) of order 0 ≤ k < τ . Suppose that

ψ =

(

sup
1≤j≤d

d
∑

k=1

|r(j, k)|
)

∨



 sup
1≤k≤d

d
∑

j=1

|r(j, k)|



 ≤ 1. (1)

Then
|Ef(X1, . . . , Xd)f(Y1, . . . , Yd)| ≤ ψτEf2(X1, . . . , Xd). (2)

Here I present a more detailed proof of this result together with some explanation
about its role in the study of some probems.

Remark: First I explain the role of the above lemma in the study of limit theorems (cen-
tral or non-central limit theorems) for non-linear functionals of vector-valued Gaussian
stationary random fields.

In the scalar valued case where limit theorems are proved for the partial sums of
random variables of the form f(Xp), where f(·) is an appropriate real valued function
on the real line, and Xp, p ∈ Rν , is a stationary random field consisting of standard
normal random variables the following argument helps to simplify the problem.

Let us expand the function f with respect to the normalized Hermite polynomials

as f(x) =
∞
∑

t=1
at

Ht(x)√
t!

with
∞
∑

t=1
a2t <∞ if Ef(Xp) = 0 and Ef2(Xp) <∞ for the random

variables Xp of the random field. Let r(p, q) = EXpXq, p, q ∈ Rν , denote the covariance
function of the random field. Then EHt(Xp)Ht′(Xq) = 0 for all indices p and q if t 6= t′,

and Eat
Ht(Xp)√

t!
at

Ht(Xq)√
t!

= a2t r(p, q)
t, hence

∣

∣

∣Eat
Ht(Xp)√

t!
at

Ht(Xq)√
t!

∣

∣

∣ ≤ a2t |r(p, q)|t.

Since Ef(Xp)f(Xq) =
∞
∑

t=1
Eat

Ht(Xp)√
t!

at
Ht(Xq)√

t!
the last inequality implies that the

high-term elements in the expansion of the function f(·) with respect to the Hermite
polynomials have a negligible contribution to the value of the expectation Ef(Xp)f(Xq)
if the covariance function r(·, ·) satisfies certain conditions, (if r(p, q) → 0 sufficiently
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fast, as |p−q| → ∞). This has the consequence that in such cases they have a negligible
role in the limit theorems we are interested in.

The above lemma of Arcones is a natural generalization of the above estimate of
Ef(Xp)f(Xq) to the vector-valued case. It provides a similar reduction in the study
of limit theorems for non-linear functionals of vector-valued stationary random fields.
In such cases we consider a vector-valued Gaussian stationary random field whose ele-
ments Xp = (Xp,1, . . . , Xp,d), p ∈ Rν , are d-dimensional random vectors with standard
normal distribution together with a function f(x1, . . . , xd) defined in the d-dimensional
Euclidean space.

Let us fix two elements Xp = (Xp,1, . . . , Xp,d) and Xq = (Xq,1, . . . , Xq,d) of this
random field, apply the notation Xp = (Xp,1, . . . , Xp,d) = X = (X1, . . . , Xd), Xq =
(Xq,1, . . . , Xq,d) = Y = (Y1, . . . , Yd) and EXp,jXq,k = EXjYk = r(j, k), 1 ≤ j, k ≤ d,
for the elements of the covariance matrix of these two random vectors. Arcones’ lemma
gives an estimate on |Ef(Xp,1, . . . , Xp,d)f(Xq,1, . . . , Xq,d)| with such a notation.

Let us remark that this approach to this problem is very similar in the scalar and
vector valued cases. Formulas (4) and (5) in this note are the natural multivariate ver-
sions of the expansion of the function f(·) with respect to normalized Hermite polyno-

mials. The estimate (6) corresponds to the estimate
∣

∣

∣Eat
Ht(Xp)√

t!
at

Ht(Xq)√
t!

∣

∣

∣ ≤ a2t |r(p, q)|t
in the scalar valued case. Arcones’ estimate can be applied similarly to the correspond-
ing result in the scalar-valued case, only the absolute value |r(p, q)| of the covariance
function has to be replaced with the function ψp,q = ψ defined in formula (1) with the
arguments r(j, k) = rp,q(j, k) = EXp,jXq,k, 1 ≤ j, k ≤ d.

The proof of Arcones’ lemma. In this proof the so-called diagram formula plays an
important role. This formula deals with the following problem. Let us have a Gaus-
sian random vector X = (X1, . . . , Xs) whose coordinates are standard normal random
variables, and let us calculate the expectation of the product Hk1(X1) · · ·Hks

(Xs) with
the help of the elements of the covariance matrix of the random vector X, where Hk(x)
denotes the k-th Hermite polynomial. The diagram formula yields a formula for this
expected value with the help of some diagrams. More explicitly, the diagram formula
contains the following result.

Diagram formula. Let (X1, . . . , Xs) be a Gaussian random vector with EX1 = 0,
EX2

i = 1 for all 1 ≤ i ≤ s. Let r(i, j) = EXiXj for all 1 ≤ i, j ≤ s, and let Hk(x)
denote the k-th Hermite polynomial (with leading coefficient 1). Let us take some non-
negative integers k1, . . . , ks and consider the expected value EHk1(X1) · · ·Hks

(Xs). The
diagram formula expresses this expectation with the help of some diagrams defined in
the following way.

Let Γ = Γ(k1, . . . , ks) denote the set of diagrams γ ∈ Γ, defined in the following
way. Each diagram γ ∈ Γ consists of s rows, and the i-th row, (which corresponds to the
random variable Xi), contains ki vertices, denoted by (i, 1), (i, 2), . . . , (i, ki). A diagram
γ ∈ Γ has vertices defined in the above way, and it contains edges with the following
properties. From each vertex of γ starts exactly one edge. An edge can connect only
vertices from different rows. The set Γ = Γ(k1, . . . , ks) contains the diagrams γ with the
above properties. Given a diagram γ ∈ Γ(k1, . . . , ks) let E(γ) denote the set of edges
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contained in γ.
With the above notations the following identity holds.

EHk1(X1) · · ·Hks
(Xs) =

∑

γ∈Γ(k1,...,ks)

∏

((i,pi),(j,pj))∈E(γ)

r(i, j). (3)

In words: Given a diagram γ ∈ Γ we attach a (possibly negative) weight to it by giving
the weight r(i, j) to an edge connecting a vertex from the i-th row with a vertex from the
j-th row, and then the weight of a diagram γ is defined as the product of the weights of
its edges. The expected value we are interested in equals the sum of the weights of the
diagrams in the set Γ(k1, . . . , ks).

In the proof of Arcones’ lemma we exploit that the products
Hk1

(X1)√
k1!

· · · Hkd
(Xd)√
kd!

for all possible indices (k1, . . . , kd) yield an orthonormal basis in the Hilbert space gen-

erated by the random variables X1, . . . , Xd, and the products
Hk1

(Y1)√
k1!

· · · Hkd
(Yd)√
kd!

yield

an orthonormal basis in the Hilbert space generated by the random variables Y1, . . . , Yd.
It is useful to consider the expansion of the functions f(X1, . . . , Xd) and f(Y1, . . . , Yd)
with respect to these orthonormal systems together with their following natural decom-
position.

f(X1, . . . , Xd) =
∞
∑

t=τ

ft(X1, . . . , Xd)

f(Y1, . . . , Yd) =

∞
∑

t=τ

ft(Y1, . . . , Yd)

(4)

with

ft(x1, . . . , xd) =
∑

(k1,...,kd): k1+···+kd=t

ak1,...,kd
(t)
Hk1(x1)√

k1!
· · · Hkd

(xd)√
kd!

(5)

with some appropriate coefficients ak1,...,kd
(t). Then

∑

(k1,...,kd): k1+···+kd=t

a2k1,...,kd
(t) =

Ef2t (X1, . . . , Xd).
Summation in (4) is taken for τ ≤ t <∞, because the function f has rank τ . The

function ft(·) defined in (5) has rank t. EHk1(X1) · · ·Hkd
(Xd)Hk′

1
(X1) · · ·Hk′

d
(Xd) = 0

if (k1, . . . , kd) 6= (k′1, . . . , k
′
d), hence the random variables ft(X1, . . . , Xd) are orthogonal

for different indices t, and Ef2(X1, . . . , Xd) =
∞
∑

t=τ

Ef2t (X1, . . . , Xd).

Let us also observe that Eft(X1, . . . , Xd)ft′(Y1, . . . , Yd) = 0 if t 6= t′. This follows
from the fact that EHk1(X1) · · ·Hkd

(Xd)Hk′

1
(Y1) · · ·Hk′

d
(Yd) = 0 if t 6= t′ for t =

k1 + · · ·+ kd and t′ = k′1 + · · ·+ k′d. The last identity follows from the diagram formula,
because both the random variables X1, . . . , Xd and the random variables Y1, . . . , Yd
are orthogonal. These orthogonalities imply that only such diagrams yield a non-zero
contribution to the expectation of the above product of Hermite polynomials of standard
normal random variables in the application of the diagram formula in which each edge
connects a vertex from a row corresponding to a random variable Xi with a vertex from
a row corresponding to a random variable Yj . But there are no such diagrams if t 6= t′.
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Remark. Given a set of Gaussian random variables Xt, t ∈ T , and the Hilbert space H
generated by these random variables, there is a so-called Fock–space representation of
this Hilbert space H. In the above discussion we applied this Fock–space representation
in a special case, and showed some of its basic properties.

I claim that under the conditions of Lemma 1 in Arcones’ paper the following
inequality holds for all t ≥ τ :

|Eft(X1, . . . , Xd)ft(Y1, . . . , Yd)| ≤ ψtEf2t (X1, . . . , Xd). (6)

It is not difficult to see that relation (6) implies Arcones’ lemma. Indeed, it yields
(together with the condition ψ ≤ 1) that

|Ef(X1, . . . , Xd)f(Y1, . . . , Yd)| ≤
∞
∑

t=τ

|Eft(X1, . . . , Xd)ft(Y1, . . . , Yd)|

≤
∞
∑

t=τ

ψtEf2t (X1, . . . , Xd) ≤ ψτ

∞
∑

t=τ

Ef2t (X1, . . . , Xd) = ψτEf2(X1, . . . , Xd).

Formula (6) will be proved with the help of the following lemma.

Lemma. Let two random vectors (X1, . . . , Xd), (Y1, . . . , Yd) and a function f of d
variables satisfy the conditions of Lemma 1 in Arcones’ paper. Let us fix an integer t ≥ τ

and a vector (l
(0)
1 , . . . , l

(0)
d ) or (m

(0)
1 , . . . ,m

(0)
d ) with non-negative integer coordinates such

that l
(0)
1 + · · ·+ l

(0)
d = t, and m

(0)
1 + · · ·+m

(0)
d = t. Then the following inequalities hold:

∑

(m1,...,md):m1+···+md=t

∣

∣

∣

∣

EH
l
(0)
1

(X1) · · ·Hl
0)

d

(Xd)
Hm1(Y1) · · ·Hmd

(Yd)

m1! · · ·md!

∣

∣

∣

∣

≤
d
∏

i=1

(|r(i, 1)|+ · · ·+ |r(i, d)|)l
(0)
i ≤ ψt

∑

(l1,...,ld): l1+···+ld=t

∣

∣

∣

∣

EH
m

(0)
1

(Y1) · · ·Hm
(0)

d

(Yd)
Hl1(X1) · · ·Hld(Xd)

l1! · · · ld!

∣

∣

∣

∣

≤
d
∏

j=1

(|r(1, j)|+ · · ·+ |r(d, j|)m
(0)
j ≤ ψt.

(7)

First I prove formula (6) with the help of the Lemma, and then I prove the Lemma.
To prove formula (6) write the inequality

|Eft(X1, . . . , Xd)ft(Y1, . . . , Yd)|

≤
∑

(l1,...,ld): l1+···+ld=t

∑

(m1,...,md):m1+···+md=t

∣

∣

∣

∣

al1,...,ld(t)√
l1! · · · ld!

· am1,...,md
(t)√

m1! · · ·md!

∣

∣

∣

∣

|EHl1(X1) · · ·Hld(Xd)Hm1(Y1) · · ·Hmd
(Yd)|.
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By applying this inequality together with the relation

∣

∣

∣

∣

al1,...,ld(t)√
l1! · · · ld!

· am1,...,md
(t)√

m1! · · ·md!

∣

∣

∣

∣

≤ 1

2

(

a2l1,...,ld(t)

m1! · · ·md!
+
a2m1,...,md

(t)

l1! · · · ld!

)

we get with the help of the Lemma that

|Eft(X1, . . . , Xd)ft(Y1, . . . , Yd)| ≤
∑

(l1,...,ld): l1+···+ld=t

a2l1 ...,ld
(t)

2

∑

(m1,...,md):m1+···+md=t

∣

∣

∣

∣

EHl1(X1) · · ·Hld(Xd)
Hm1(Y1) · · ·Hmd

(Yd)

m1! · · ·md!

∣

∣

∣

∣

+
∑

(m1,...,md):m1+···+md=t

a2m1,...,md
(t)

2

∑

(l1,...,ld): l1+···+ld=t

∣

∣

∣

∣

EHm1(Y1) · · ·Hmd
(Yd)

Hl1(X1) · · ·Hld(Xd)

l1! · · · ld!

∣

∣

∣

∣

≤ ψt
∑

(l1,...,ld): l1+···+ld=t

a2l1,...,ld(t) = ψtEf2t (X1, . . . , Xd),

i.e. relation (6) holds true.

Next I prove an identity which is actually not applied in the proof of the Lemma.
But relation (7) can be proved by a small modification of this proof which may explain

the idea behind the Lemma. To formulate this identity I fix a vector (l
(0)
1 , . . . , l

(0)
d ) with

non-negative integer coordinates such that l
(0)
1 + · · ·+ l(0)d = t. I formulate the following

identity with its help.

∑

(m1,...,md):m1+···+md=t

EH
l
(0)
1

(X1) · · ·Hl
0)

d

(Xd)
Hm1(Y1) · · ·Hmd

(Yd)

m1! · · ·md!

=
d
∏

i=1

(r(i, 1) + · · ·+ r(i, d))l
(0)
i .

(8)

In the proof of (8) all terms in the sum at the left-hand side of this formula will

be calculated with the help of the diagram formula. In this proof the numbers l
(0)
i , mj ,

u(·, ·) will always denote non-negative integers.
Let us fix some vector (m1, . . . ,md) such thatm1+· · ·+md = t, and let us compute

the expected value

EH
l
(0)
1

(X1) · · ·Hl
0)

d

(Xd)
Hm1(Y1) · · ·Hmd

(Yd)

m1! · · ·md!
(9)

by means of the diagram formula.
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In this calculation only such diagrams γ ∈ Γ(l
(0)
1 , . . . , l

(0)
d ,m1, . . . ,md) have to be

considered in which all edges connect a vertex from a row indexed by i with some
1 ≤ i ≤ d with a vertex from a row indexed by d+ j with some 1 ≤ j ≤ d, i.e. a vertex
from a row corresponding to some Xi with a vertex in a row corresponding to some Yj .
The omitted diagrams yield zero contribution in the diagram formula.

Let us define a partition of these diagrams in the following way. Define the set

U(l(0)1 , . . . , l
(0)
d ,m1, . . . ,md) consisting of some vectors by the formula

U(l(0)1 , . . . , l
(0)
d ,m1, . . . ,md) =

{

{u(i, j), 1 ≤ i, j ≤ d}:

d
∑

j=1

u(i, j) = l
(0)
i for all 1 ≤ i ≤ d,

d
∑

i=1

u(i, j) = mj for all 1 ≤ j ≤ d

}

,

and introduce the set of diagrams

Γ({u(i, j), 1 ≤ i, j ≤ d}) = {γ: γ ∈ Γ(l
(0)
1 , . . . , l

(0)
d ,m1, . . . ,md),

there are u(i, j) vertices between the i-th and d+ j-th rows of γ, 1 ≤ i, j ≤ d}

for all {u(i, j), 1 ≤ i, j ≤ d} ∈ U(l(0)1 , . . . , l
(0)
d ,m1, . . . ,md).

Let us consider the sets Γ({u(i, j), 1 ≤ i, j ≤ d}) with all possible arguments

{u(i, j), 1 ≤ i, j ≤ d} ∈ U(l(0)1 , . . . , l
(0)
d ,m1, . . . ,md). They give a partition of those

diagrams of Γ(l
(0)
1 , . . . , l

(0)
d ,m1, . . . ,md) that have to be taken into account when the

expression in (9) is computed by means of the diagram formula. For each argument
{u(i, j), 1 ≤ i, j ≤ d} the set Γ({u(i, j), 1 ≤ i, j ≤ d}) contains

d
∏

i=1

l
(0)
i !

∏

1≤i,j≤d

u(i, j)!
·

d
∏

j=1

mj !

∏

1≤i,j≤d

u(i, j)!

∏

1≤i,j≤d

u(i, j)! =

d
∏

i=1

l
(0)
i !

d
∏

j=1

mj !

∏

1≤i,j≤d

u(i, j)!

diagrams, and all these diagrams have weight
∏

1≤i,j≤d

r(i, j)u(i,j). Hence in the cal-

culation of the expression in (9) by means of the diagram formula the sum of the
contributions of the weights of the diagrams γ ∈ Γ({u(i, j), 1 ≤ i, j ≤ d}) equals

d
∏

i=1

l
(0)!
i

∏

1≤i,j≤d

r(i, j)u(i,j)

∏

1≤i,j≤d

u(i, j)!
=

d
∏

i=1



l
(0)
i !





d
∏

j=1

r(i, j)u(i,j)

u(i, j)!







 .

The sum of these expressions for all {u(i, j), 1 ≤ i, j ≤ d} ∈ U(l(0)1 , . . . , l
(0)
d ,m1, . . . ,md)
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equals the expression in formula (9). In such a way we get the following identity:

EH
l
(0)
1

(X1) · · ·Hl
0)

d

(Xd)
Hm1(Y1) · · ·Hmd

(Yd)

m1! · · ·md!

=
∑

{(u(i,j), 1≤i,j≤d):
∑

d

j=1
u(i,j)=l

(0)
i

, 1≤i≤d,
∑

d

j=1
u(i,j)=mj , 1≤j≤d}

d
∏

i=1



l
(0)
i !





d
∏

j=1

r(i, j)u(i,j)

u(i, j)!







 . (10)

By summing up these identities for all vectors (m1, . . . ,md) such that m1+ · · ·+md = t

we get that

∑

(m1,...,md):m1+···+md=t

EH
l
(0)
1

(X1) · · ·Hl
0)

d

(Xd)
Hm1(Y1) · · ·Hmd

(Yd)

m1! · · ·md!

=
∑

{(u(i,j), 1≤i,j≤d):
∑

d

j=1
u(i,j)=l

(0)
i

, 1≤i≤d}

d
∏

i=1



l
(0)
i !





d
∏

j=1

r(i, j)u(i,j)

u(i, j)!







 . (11)

To prove identity (8) I present a new identity in the next formula (12). In the second
line of this formula the expression at the right-hand side of formula (11) is rewritten as
the product of certain expressions. Then this product is rewritten in a simpler form by
means of the multinomial theorem. Here is formula (12).

∑

{(u(i,j), 1≤i,j≤d):
∑

d

j=1
u(i,j)=l

(0)
i

, 1≤i≤d}

d
∏

i=1



l
(0)
i !





d
∏

j=1

r(i, j)u(i,j)

u(i, j)!









=
d
∏

i=1













∑

{(u(i,j), 1≤j≤d):
∑

d

j=1
u(i,j)=l

(0)
i

}

l
(0)
i !

(

r(i, 1)u(i,1)

u(i, 1)!
· · · r(i, d)

u(i,d)

u(i, d)!

)













=
d
∏

i=1

(r(i, 1) + · · ·+ r(i, d))
l
(0)
i . (12)

Formulas (11) and (12) together imply identity (8).
To prove the first identity in formula (12) let us first observe that if we carry out

the term by term multiplications in the product of sums at the right-hand side of this
identity, then both sides of this identity are sums of terms which have the following
form:

d
∏

i=1

l
(0)
i !

(

r(i, 1)u(i,1)

u(i, 1)!
· · · r(i, d)

u(i,d)

u(i, d)!

)

.
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We have to understand that the same terms appear in the sums of the two sides of this
identity. But in both cases those terms of the above form appear in these sums which
are defined by those vectors (u(i, 1), . . . , u(i, d)), 1 ≤ i ≤ d, which satisfy the identity

u(i, 1) + · · ·+ u(i, d) = l
(0)
i for all 1 ≤ i ≤ d. Hence the first identity in (12) holds.

The second identity in formula (12) is a consequence of the multinomial theorem.

The proof of the first inequality in the first statement of formula (7) can be obtained
with some small, natural modifications in the proof of relation (8).

Let us first observe that the absolute value of the expression at the left-hand side
of (10) is smaller than the expression we get by replacing the terms r(i, j) by |r(i, j)|
at the right-hand side of this identity. Then summing up these inequalities we get such
a version of relation (11) where in the sum at the left-hand side the summands are
replaced by their absolute value, at the right-hand side the variables r(i, j) are replaced
by their absolute value |r(i, j)|, and in this new version of formula (11) the expression
at the left-hand side is less than or equal to the expression at the right-hand side.

Formula (12) remains valid if we replace r(i, j) by |r(i, j)| in it. These new versions
of formulas (11) and (12) imply the first inequality in the first statement of (7).

The proof of the second inequality in the first statement of (7) is much simpler.

Since |r(i, 1)|+ · · ·+ |r(i, d)| ≤ ψ for all 1 ≤ i ≤ d, and l
(0)
1 + · · ·+ l

(0)
d = t

d
∏

i=1

(|r(i, 1)|+ · · ·+ |r(i, d)|)l
(0)
i ≤

d
∏

i=1

ψl
(0)
i = ψt.

The second statement of (7) is equivalent to the first one. Only the variables l
(0)
i

and mj must be replaced by the variables m
(0)
j and li, 1 ≤ i, j ≤ d, and the role of

the random vectors (X1, . . . , Xd) and (Y1, . . . , Yd) have to be exchanged. Lemma 1 in
Arcones’ paper is proved.
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