
Approximation of partial sums of independent random variables

Let X1, X2, . . . be a sequence of independent and identically distributed random vari-

ables, and let us consider the partial sums S0 = 0, Sn =
n
∑

k=1

Xk, n = 1, 2, . . . , defined

by them. Let us also define the following S(t), 0 ≤ t <∞, (random) broken line:

S(n) = Sn, n = 0, 1, 2, . . . ,

S(t) = S(n) + (t− n)(S(n+ 1) − S(n)) if n ≤ t < n+ 1, n = 0, 1, 2, . . . .
(1)

The stochastic process S(t), t ≥ 0, behaves similarly to a Wiener process W (t), t ≥ 0,
(i.e. to a Gaussian stochastic processW (t) with continuous trajectories with expectation
EW (t) = 0 for all t ≥ 0 and covariance function EW (s)W )t) = min(s, t) for all pairs
of numbers 0 ≤ s, t < ∞). In this work we are interested in the question how well
the process S(t) can be approximated by means of an appropriate Wiener process.
For the sake of convenience we shall study the following equivalent problem. Given a
Wiener process W (t), 0 ≤ t < ∞, at the start we want to construct a broken line type
random process S̄(t), 0 ≤ t ≤ ∞, with the same distribution as the random broken
line S(t), 0 ≤ t < ∞, defined in (1) which is as close to the Wiener process W (t) as
possible. More explicitly, we want to get such a construction for which the probability

P

(

sup
0≤t≤T

|S̄(t) −W (t)| > A(T )

)

is almost zero for all sufficiently large parameters T ,

and we would like to have this relation with a function A(T ), T ≥ 0, as small as
possible. This question is a natural counterpart of the problem studied in the series
of problems The approximation of the normalized empirical distribution function by a
Brownian bridge. A similar result can be proved also in this case. Namely, the following
Theorem holds.

Approximation Theorem. Let F be a distribution function such that

∫

xF ( dx) = 0,

∫

x2F ( dx) = 1,

∫

esxF ( dx) <∞, if |s| < s0 (2)

with some appropriate number s0 > 0, (i.e. a random variable X with distribution
function F satisfies the relations EX = 0, EX2 = 1 and EesX < ∞ if the absolute
value of the number s is small). Let a Wiener process W (t) = W (t, ω), t ≥ 0, be given on
some probability space (Ω,A, P ). Then a sequence of independent, identically distributed
random variables X1, X2, . . . with distribution function F can be constructed on this
probability space (Ω,A, P ) in such a way that the random broken line S(t) = S(t, ω),

t ≥ 0, defined by means of the partial sums S0 = 0, Sn =
n
∑

k=1

Xk, n = 1, 2, . . . , in

formula (1) satisfies the inequality

P

(

sup
0≤t≤T

|S(t, ω) −W (t, ω)| > C1 log T + x

)

< C2e
−λx (3)
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for all numbers x ≥ 0 with some appropriate constants C1 > 0, C2 > 0 and λ > 0
depending only on the distribution function F .

It is not difficult to prove the following statement of Problem 1.

1.) If the random broken line S(t) = S(t, ω) and Wiener process W (t) = W (t, ω), t ≥ 0
satisfy relation (3), then there exists some constant K > 0 such that

lim sup
T→∞

sup
0≤t≤T

|S(t, ω) − T (t, ω)|

log T
< K with probability 1. (4)

The approximation theorem or its consequence formulated in Problem 1 states in
a slightly informal interpretation that in the case of an appropriate construction the
relation |S(t) −W (t)| = O(log n) holds. On the other hand, the order of magnitude of
the random variables S(t) and W (t) is const.

√
t. This means that the estimation of the

Approximation theorem yields an approximation of the same order as the result of the
series of problems The approximation of the normalized empirical distribution function
by a Brownian bridge for the approximation of the normalized empirical distribution
function by a Brownian bridge. I shall formulate two Statements whose content is that
the estimate of the Approximation theorem is sharp. More explicitly, there is no such
construction for the approximation of partial sums by a Wiener process which would
yield a version of formula (4) with some function g(T ) such that g(T ) = o(log T ) as
T → ∞. Beside this, condition (2) of the Approximation Theorem cannot be dropped.
In more detail, I formulate the following results:

Statement 1. Let X1, X2, . . . , be a sequence of independent and identically distributed

random variables on a probability space (Ω,A, P ). Put S0 = 0, Sn =
n
∑

k=1

Xk, n =

1, 2, . . . , and define the random broken line S(t) = S(t, ω) from these random variables
by means of formula (1). Let W (t), t ≥ 0, be a Wiener process on the same probability
space (Ω,A, P ). If the random variables Xk are not standard normal distributed, then
there exists some constant K > 0 such that

lim sup
T→∞

sup
0≤t≤T

|S(t, ω) − T (t, ω)|

log T
> K with probability 1. (5)

Statement 2. If the random broken line S(t), t ≥ 0, made from the partial sums of
some independent and identically distributed random variables X1, X2, . . . by means of
formula (1) and a Wiener process W (t), t ≥ 0 satisfy relation (4), then EX1 = 0,
EX2

1 = 1 and EesX1 < ∞ for |s| < s0 with some number s0 > 0, i.e. the distribution
function F (x) of the random variable X1 satisfies relation (2).

Statements 1 and 2 follow from the results of Problems 10 and 12 of this note.
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Not only the result of the Approximation Theorem is similar to the main result
of the series of problems in The approximation of the normalized empirical distribution
function by a Brownian bridge, but also the constructions yielding these results are
based on a similar idea. To explain the relation between them it is useful to formulate
the version of the Approximation Theorem about a sequence of finitely many partial
sums.

The finite version of the Approximation Theorem. Let us fix a positive integer n.
Let F be a distribution function satisfying the properties given in formula (2), and let
W (t), 0 ≤ t ≤ 2n, be a Wiener process on the interval 0 ≤ t ≤ 2n. A sequence
of independent and identically distributed random variables Xk, 1 ≤ k ≤ 2n, can be
constructed with distribution function F in such a way that the partial sums S0 = 0,

Sk =
k
∑

j=1

Xj, 1 ≤ k ≤ 2n, and random broken line function Sn(t), 0 ≤ t ≤ 2n defined

by the formula

Sn(t) = Sk−1 + (t− (k − 1))(Sk − Sk−1), if k − 1 ≤ t ≤ k, 1 ≤ k ≤ 2n, (1′)

satisfy the following inequalities:

P

(

sup
0≤t≤2n

|Sn(t, ω) −W (t, ω)| > C̄1n+ x

)

< C̄2e
−λx, (6)

and in the end point t = 2n

P (|S2n(ω) −W (2n, ω)| ≥ C1 + x) ≤ C̄2e
−λx (6a)

for all numbers x > 0 with some appropriate constants C̄1 > 0, C̄2 > 0 and λ > 0
depending only on the distribution function F .

Remark. Relation (6a) can be proved as the consequence of the following statement.
A sequence of independent random variables satisfying the finite version of the Approx-
imation Theorem for which

|S2n(ω) −W (2n, ω)| ≤ C
W (2n, ω)2

2n
+D, if |W (2n, ω)| ≤ ε2n/2

with some appropriate constants C > 0, D > 0 and ε > 0.

Let us prove the following (simple) statement.

2.) The Approximation Theorem can be deduced from the Finite version of the Ap-
proximation Theorem.

A construction leading to the proof of the Finite version of the Approximation
Theorem can be obtained as a natural adaptation of the construction described in The
approximation of the normalized empirical distribution function by a Brownian bridge,
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at least if we impose some additional conditions about the distribution function F in
this result.

Given a Wiener process W (t), 0 ≤ t ≤ 2n, first we construct the random variable

S2n as the quantile transform of W (2n), i.e. let Sn(2
n) = S2n = F−1

2n

(

Φ
(

W (2n)
2n/2

))

=
{

u : F2n(u) < Φ
(

W (2n)
2n/2

)}

, where F2n(x) = F̄2n(2n/2x), and F̄2n(x) is the distribution

function of the random variable S2n , i.e. it equals the 2n-times convolution of the
function F with itself, and Φ(x) is the standard normal distribution function, hence

it is the distribution function of the random variable W (2n)
2n/2 . Since the distribution

function of the sum of N independent, identically distributed random variables with
expectation zero and variance 1 can be well approximated by the normal distribution
function with expectation zero and variance N , and also a good large deviation type
result is known about this approximation (this result is also proved in Problem 22 of
the series of problems The theory of large deviations I. which exists only in Hungarian
for the time being), it can be proved with the help of some calculation that the above
construction satisfies relation (6a). In the approximation of the standardized empirical
distribution function by a Brownian bridge B(t) no step corresponding to this argument
appears, since Zn(1) = B(1) = 0, in the end-point t = 1. Hence in the point t = 1 the
random process Zn(t) need not be fitted to the process B(t).

After the definition of the value of the stochastic process Sn(t) in the end-points
t = 2n and t = 0 (we have Sn(0) = 0), we can define its values in the points
t = (2k − 1)2n−l, 1 ≤ k ≤ 2l−1, by means of induction with respect to the parameter
l, l = 1, . . . , n, as an appropriate transform of the Wiener process W (t), 0 ≤ t ≤ 2n.
This definition is a natural adaptation of the “halving” construction of the normal-
ized empirical distribution function by means of the Brownian bridge described in The
approximation of the normalized empirical distribution function by a Brownian bridge.
The main difference between these constructions is that now the Brownian bridge B(t)
is replaced by the Wiener process 2−n/2W (2nt) and the normalized empirical distribu-
tion function Zn(t) by the random broken line 2−n/2Sn(2nt), 0 ≤ t ≤ 1. More explicitly,
our definition is based on the following observation.

If S1, . . . , S2n are partial sums of independent, identically distributed random vari-
ables with distribution F , and W (t), 0 ≤ t ≤ 2n, is a Wiener process, then we define the
analogs of the random variables Uk,l, Vk,l, Ūk,l and V̄k,l and σ-algebras Fl and Gl intro-
duced in formulas (1)–(4) of The approximation of the normalized empirical distribution
function by a Brownian bridge by means of the following formulas:

Uk,l = Uk,l,n = 2(l−n+1)/2
[

W
(

k2n−l
)

−W
(

(k − 1)2n−l
)]

, 1 ≤ k ≤ 2l, 0 ≤ l ≤ n,

Vk,l = Vk,l,n = 2(l−n+1)/2
[

Sk2n−l − S(k−1)2n−l

]

, 1 ≤ k ≤ 2l, 0 ≤ l ≤ n,

Fl = B
{

Uk,l, 1 ≤ k ≤ 2l
}

, 0 ≤ l ≤ n,

Gl = B
{

Vk,l, 1 ≤ k ≤ 2l
}

, 0 ≤ l ≤ n,

Ul = {Uk,l, k = 1, . . . , 2l}, 0 ≤ l ≤ n

Vl = {Vk,l, k = 1, . . . , 2l}, 0 ≤ l ≤ n
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and

Ūl+1 = {Ū1,l+1, . . . , Ū2l+1,l+1}, V̄l+1 = {V̄1,l+1, . . . , V̄2l+1,l+1},
Ūk,l+1 = Uk,l+1 − E(Uk,l+1|Fl), V̄k,l+1 = Vk,l+1 − E(Vk,l+1|Gl)

1 ≤ k ≤ 2l+1, 0 ≤ l ≤ n− 1.

These random variables Uk,l, Vk,l, Ūk,l and V̄k,l satisfy the natural analogs of the prop-
erties listed in Problems 3 and 4 of The approximation of the normalized empirical
distribution function by a Brownian bridge. In particular, the following identities hold:

V̄2k−1,l+1 = 2(l−n)/2

(

S(2k−1)2(n−l−1) − S(k−1)2(n−l−1) − 1

2

(

Sk2(n−l) − S(k−1)2(n−l)

)

)

=
2(l−n)/2

2

((

S(2k−1)2(n−l−1) − S(k−1)2(n−l)

)

−
(

Sk2(n−l) − S(2k−1)2(n−l−1)

))

V̄2k,l+1 = 2(l−n)/2

(

Sk2(n−l) − S(2k−1)2(n−l−1) − 1

2

(

Sk2(n−l) − S(k−1)2(n−l)

)

)

(7a)

= −V̄2k−1,l+1

and

Ū2k−1,l+1 = 2(l−n)/2

(

W ((2k − 1)2(n−l−1)) −W ((k − 1)2(n−l−1))

− 1

2

(

W (k2(n−l)) −W ((k − 1)2(n−l))
)

)

=
2(l−n)/2

2

(

(

W ((2k − 1)2(n−l−1)) −W ((k − 1)2(n−l))
)

−
(

W (k2(n−l)) −W ((2k − 1)2(n−l−1))
)

)

Ū2k,l+1 = 2(l−n)/2

(

W (k2(n−l)) −W ((2k − 1)2(n−l−1))

− 1

2

(

W (k2(n−l)) −W (k − 1)2(n−l))
)

)

= −Ū2k−1,l+1

(7b)

for all numbers 0 ≤ l ≤ n − 1 and 1 ≤ k ≤ 2l. These relations also imply that
U2k−1,l+1 = −U2k,l+1 for all numbers 1 ≤ k ≤ 2l, and the random variables U2k−1,l+1,
0 ≤ l ≤ n− 1 and 1 ≤ k ≤ 2l are independent with standard normal distribution.

We have to prove some properties of the random variables Vk,l and V̄k,l introduced
in the present investigation which cannot be considered as the natural analogs of the
results in The approximation of the normalized empirical distribution function by a
Brownian bridge. Namely, we have to give a good asymptotic formula for the condi-
tional distribution function of the random variables Vk,l+1 under the condition of the
σ-algebra Gl.
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The random variables V̄2k−1,l+1, 1 ≤ k ≤ l, are conditionally independent under
the σ-algebra Gl also in the present case. Beside this, the conditional distribution of the
random variable V̄2k−1,l+1 = −V̄2k,l+1 under the condition of the σ-algebra Gl can be
expressed explicitly as a function of the random variable Vk,l. We can write that

P
(

V̄2k−1,l+1 < x
∣

∣Gl
)

= P (V2k−1,l+1 < x|V1,l, . . . , V2l,l

)

= P (V2k−1,l+1 < x|Vk,l) = F2n−l−1(x|Vk,l),
(8a)

where the functions FN (x|y), N = 1, 2, . . . , are defined by the formula

FN (x|y) = P

(

√

2

N

(

SN − 1

2
S2N

)

< x

∣

∣

∣

∣

∣

S2N√
2N

= y

)

, where Sk =

k
∑

j=1

Xj , k = 1, 2, . . .

and X1, X2, . . . , are independent random variables with distribution function F
(8b)

for all numbers N = 1, 2, . . . .

3.) Let us prove formulas (7a), (7b), (8a) and (8b).

The random variables Xk = 1√
2
Vk,n can be defined by means of the above formulas

similarly to the method of The approximation of the normalized empirical distribution
function by a Brownian bridge by means of the inductive (with respect to the param-
eter l) construction by defining first the random variables V̄2k−1,l and then V2k−1,l,
1 ≤ k ≤ 2l−1. The only essential difference is that we define the random variable
V̄2k−1,l+1 by means of the relation

V̄2k−1,l+1 = F−1
2n−l−1(Φ(Ū2k−1,l)|Vk,l), (9)

where the function FN (x|y) was defined in formula (8b), and

F−1
2n−l−1(x|y) = sup{u : F2n−l−1(u|y) < x}.

(This corresponds to formula (6a) in The approximation of the normalized empirical
distribution function by a Brownian bridge.

The statement that the above construction satisfies the Finite version of the Ap-
proximation Theorem can be proved similarly to the corresponding result in The ap-
proximation of the normalized empirical distribution function by a Brownian bridge.
Moreover, since in the present case the partial sums of independent random variables
have to be estimated, some steps of the proof become simpler. Here we do not need the
Poisson approximation applied in the above mentioned series of problems which was
needed to overcome some difficulties arising from the not complete independence of the
random variables we had to work with. Let me also remark that in the study of the
approximation of the normalized empirical distribution functions we have applied such
properties of the binomial and exponential distributions, whose analogs also hold for all
random variables with distribution function F satisfying relation (2).
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If we consider the approximation result of a random broken line process defined
with the help of normalized partial sums of independent random variables in formula (1)
by means of a Wiener process in the way described above and want to show that it
yields a good approximation one serious problem appears in the proof. We have to
show that the random variable V̄2k−1,l+1 defined in formula (9) is sufficiently close to
the random variable Ū2k−1,l+1. To do this we need a good estimate on the closeness
of conditional distribution function FN (x|y) defined in formula (8b) to the standard
normal distribution function. I shall formulate a sharp estimate for the difference of
these two distribution functions under the name Property A which will be sufficient for
our purposes. But the proof of Property A which does not follow directly from standard
well-known results is not simple. In the next part I shall concentrate on the proof of
this result and the difficulties related to it.

The definition of Property A. Let a distribution function F be given, and let us
consider a sequence Xk, k = 1, 2, . . . of independent F distributed random variables.

Let us define the partial sums Sn =
n
∑

k=1

Xk, n = 1, 2, . . . , of this random variables. We

shall say the distribution function F satisfies Property A if there exists some number
ε > 0 and threshold index n0 such that the relation

1 − Fn(x|y) = P

(

√

2

n

(

Sn − 1

2
S2n

)

> x

∣

∣

∣

∣

∣

S2n√
2n

= y

)

= (1 − Φ(x)) exp

{

O

(

x3 + x2|y| + |y| + 1√
n

)}

if 0 ≤ x ≤ ε
√
n, 0 ≤ |y| ≤ ε

√
n

Fn(−x|y) = P

(

√

2

n

(

Sn − 1

2
S2n

)

< −x
∣

∣

∣

∣

∣

S2n√
2n

= y

)

= (1 − Φ(x)) exp

{

O

(

x3 + x2|y| + |y| + 1√
n

)}

if 0 ≤ x ≤ ε
√
n, 0 ≤ |y| ≤ ε

√
n,

(10)

holds, where Φ(x) is the standard normal distribution function, and the error term O(·)
is uniform in the variables x, y and n.

Let me remark that the error term O(·) in formula (10) contains such a polynomial
of order 3 which is in his variable |y| only of order 1. An estimate analogous to Property A
also appeared in The approximation of the normalized empirical distribution function by
a Brownian bridge. In Problem 2 of that work the approximation of normalized partial
sums of independent binomial random variables was considered by standard normal
random variables in the case when partial sums of the binomial random variables were
divided by a number which might slightly differ from the square root of the variance of
this sum. This problem corresponds to the approximation of the random variable defined
in formula (9) by standard normal random variable. This problem could be solved with
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the help of an estimate about the distribution of partial sums of independent random
variables with binomial distribution which is a natural analog of Property A.

We shall show that if the distribution function F has moment generating function
and a sufficiently smooth density function, then the distribution function F satisfies
Property A. We shall prove with the help of the solution of some problems the following
Proposition.

Proposition. Let us assume that the distribution function F satisfies property (2), and
its moment generating function R(s) =

∫

esxF ( dx) together with its analytic continua-
tion R(z) = R(s+ it) =

∫

esu+ituF ( du) satisfies the relation

∫ ∞

−∞
|R(s+ it)|k dt <∞ (11)

with some appropriate positive integer k > 0, if |s| < s0 with some real number s0 > 0.
Then the distribution function F satisfies Property A.

The conditions of the Proposition are satisfied if the distribution function F (x) satisfies
Condition (2), and it has a sufficiently smooth density function f(x). In this case the
function R(s + it), as a function of the variable t with some fixed number s, is the
Fourier transform of the function esxf(x) which tends to zero as t → ∞ sufficiently
fast. Hence Condition (11) is satisfied in this case even with k = 1.

If the distribution function F (x) satisfies the conditions of the Proposition, then
formula (11) guarantees that the distribution function F (x) or of its k-fold convolution
with itself has an f(x) or fk(x)) density function whose n-fold convolution with itself is
close to the standard normal density function, and there is a good estimate is known for
the difference of these density functions. By means of this estimate a good asymptotic
formula can be given for the (existing) density function fn(x|y) = ∂

∂xFn(x|y) of the
conditional distribution function Fn(x|y) defined in formula (8b). By integrating this
density function we can get the proof of the Proposition.

In the discussion of the next problems the details of the above method will be
worked out. The question may arise whether there exists a different method to prove
Property A. This question is interesting in particular, because there are such conditions
among the conditions of the Proposition which do not appear among the conditions of
the Approximation Theorem. Hence the result of the Proposition in its original form
may only help to prove a weaker form of the Approximation Theorem.

On the other hand I shall also show such an example where a distribution function
F satisfies relation (2), but if does not satisfy Property A. In this case the construction
discussed above is not sufficient for the proof of the Approximation Theorem. It will be
discussed how to overcome this difficulty.

First I formulate the result about the approximation of the density function of nor-
malized sums of independent, identically distributed random variables by the standard
normal density function which we shall apply in the proof of the Proposition. This result
can be found (with different scaling) in Problem 23 of the series of problems Theory of
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Large Deviations I. (At present it exists only in Hungarian.) I shall present the proof
in the Appendix.

Sharp form of the local central limit theorem. Let X1, X2, . . . , be independent

random variables with distribution function F , and put Sn =
n
∑

j=1

Xj. Let us assume that

the distribution function F satisfies the conditions formulated in relations (2) and (11).
Then there exists a number ε > 0 in such a way that the distribution function Fn(x) =

P
(

Sn√
n
< x

)

has a density function fn(x) = dFn(x)
dx , and it satisfies the relation

fn(x) = exp

{

x3

√
n
λ

(

x√
n

)}

e−x
2/2

√

2π
(

1 + x√
n
µ
(

x√
n

))

(

1 +O

(

1√
n

))

= ϕ(x) exp

{

x3

√
n
λ

(

x√
n

)}

exp

{

O

(

1 + |x|√
n

)}

, if |x| ≤ ε
√
n, and n ≥ k

(12a)
(with the number k in formula (11)) where µ(x) and λ(x) are analytic function in a small

neighbourhood of the origin, ϕ(x) = 1√
2π
e−x

2/2 is the standard normal density function,

and the error term O(·) is uniform in both variables x and n. Also the inequality

fn(x+ z) ≤ const. fn(x)e
−sz√n, if |x| ≤ ε

√
n and n ≥ k (12b)

holds for arbitrary real number z, where the number s is the solution of the equation
d
ds [logR(s)] = x√

n
with R(s) =

∫

esxF ( dx). The const. in formula (12b) depends only

on the distribution function F . Beside this, the above introduced number s satisfies the
relation s ≥ 0 if x ≥ 0, and s < 0 if x < 0.

Beside this, there exists a constant K > 0 depending only on the distribution F
(but not on the parameter n) such that

sup
−∞<x<∞

fn(x) ≤ K if n ≥ k (12c)

with the number k in condition (11).

Let us solve with the help of the above results the following problems.

4.) Let a distribution function F together with a sequence X1, X2, . . . , of independent
F distributed random variables be given such that for all sufficiently large indices n

the distribution function Fn(x) = P
(

Sn√
N
< x

)

defined with the help of the partial

sums Sn =
n
∑

j=1

Xj has a density function fn(x). Then the conditional distribution

function Fn(x|y) defined in formula (8b) (with the notation of parameter N instead
of n in that formula) has a conditional density function fn(x|y) = ∂

∂xFn(x|y) for
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all large indices n, (the index n can be chosen so large that the density function
fn(x) exists), and it satisfies the identity

fn(x|y) =
fn

(

y+x√
2

)

fn

(

y−x√
2

)

f2n(y)
. (13a)

b) If the distribution function F satisfies relation (12a), then the conditional
density function fn(y|x) satisfies the following version of Property A:

fn(x|y) =
e−x

2/2

√
2π

exp

{

O

( |x|3 + x2|y| + |y| + 1√
n

)}

, (13b)

if 0 ≤ |x| ≤ ε
√
n, 0 ≤ |y| ≤ ε

√
n with some appropriate number ε > 0 and all

sufficiently large index n. The error term O(·) in formula (13b) is uniform in
its variables x, y and n.

5.) Let a distribution function F satisfy the conditions formulated in relations (2)
and (11). Let us show with the help of formula (13b) the asymptotic formula

Fn(ε
√
n|y) − Fn(x|y) = (1 − Φ(x)) exp

{

O

(

x3 + x2|y| + |y| + 1√
n

)}

(14)

for all n ≥ n0 with an appropriate threshold number n0 and a sufficiently small
number ε > 0 if 0 ≤ x ≤ ε

4

√
n and |y| ≤ ε

4

√
n.

b) Let us give under the above conditions on the function F a good upper bound on
1− Fn(ε

√
n) with the help of relation (12b) if n ≥ n0 with a sufficient number n0,

0 ≤ x ≤ ε
4

√
n and |y| ≤ ε

4

√
n. Prove with the help of this estimate and the formula

in (14) that if a distribution function F satisfies both relations (2) and (11), then
Property A holds for it.

In the next problem it will be shown that there exists a distribution function F
satisfying relation (2) but not satisfying Property A. This counter example is based
on the following idea: Let us take a distribution function F which is concentrated on
such points x1, x2, . . . which are linearly independent over the rational numbers, i.e. if
k
∑

j=1

rjxj = 0 with some positive integer k and rational numbers r1, . . . , rk, then rj = 0

for all numbers 1 ≤ j ≤ k. If we choose a sequence X1, . . . , X2n of independent random

variables with such a distribution function F , then the value of the sum S2n =
2n
∑

k=1

Xk

determines the value of the set of random variables {X1, . . . , X2n}, only the indices
of the random variables in this set remain undetermined. If the set of these random
variable contains an extremely large number, then the value of Sn − 1

2S2n is very large
or very small depending on whether this value is taken by a random variable with an
index smaller or larger than n. Hence for an appropriate not too large number y the

10



conditional distribution of the random variable
√

2
n (Sn − 1

2S2n) under the condition

S2n = y
√

2n may strongly differ from the standard normal distribution function.

6.) LetX1, X2, . . . , EX1 = 0, EX2
1 = 1 be independent, identically distributed random

variables with expectation zero and variance 1 which take some values x1, x2, . . . ,

with probabilities p1, p2, . . . , pn > 0, n = 1, 2, . . . ,
∞
∑

n=1
pn = 1. Put Sn =

n
∑

k=1

Xk,

n = 1, 2, . . . . Let us assume that the numbers x1, x2, . . . and p1, p2, . . . satisfy the
following conditions:

a.) The numbers x1, x2, . . . are independent (in algebraic sense) over the field of
rational numbers.

b.) n < |xn| < n + 1 and B1e
−n ≤ pn ≤ B2e

−n with some appropriate constants
0 < B1 < B2 <∞ for all numbers n = 1, 2, . . . .

Let us define a set An = An(p, C) with some appropriate constants 0 < p < 1 and
C > 0. The set An consists of such sequences {xj1 , . . . , xj2n−1} of length 2n − 1
whose elements belong to the above introduced numbers x1, x2, . . . and satisfy the
following properties.

(i.)

∣

∣

∣

∣

2n−1
∑

s=1
xjs

∣

∣

∣

∣

< C
√
n

(ii.) Let us consider all permutations π = π2n−1 = {π(1), . . . , π(2n− 1)} of the set
{1, . . . , 2n− 1}. There exist more than p

(

2n−1
n−1

)

such permutations π for which

the inequality

∣

∣

∣

∣

n−1
∑

s=1
xjπ(s)

∣

∣

∣

∣

< C
√
n holds.

Let us show that with an appropriate choice of the constants C > 0 and 0 < p < 1
it can be achieved that P ({X1, . . . , X2n−1} ∈ An) > q with some constant q > 0
not depending on the number n. Moreover, it can be achieved that this number
q > 0 be arbitrarily close to the number 1.

Given a sequence {xj1 , . . . , xj2n−1} ∈ An put y1 =
2n−1
∑

j=1

xj1 , m = m(y1) = [y1],

where [u] denotes the integer part of the number u, and introduce the numbers
M = M(n) = [5m] and y = y1+xM√

2n
. Then

P

(∣

∣

∣

∣

∣

√

2

n

(

Sn − 1

2
S2n

)

∣

∣

∣

∣

∣

> C

∣

∣

∣

∣

∣

S2n√
2n

= y

)

≥ q

2
.

This implies that the distribution function F of the random variables X1, X2, . . .
does not satisfy Property A. Moreover, the probability of the event that the normal-
ized sum S2n√

2n
takes such a value y, for which the conditional distribution function

Fn(x|y) at the left-hand side of formula (10) satisfies the inequality

sup
|x|<K

|Fn(x|y) − Φ(x)| > α > 0

11



with some appropriate constants K > 0 and α > 0 is greater than econst.
√
n.

This means that the probability of existence of such “bad values” of y is rela-
tively large, if we compare it with the probability of the event P (|S2n| ≥ εn} which is
exponentially small. It was natural to compare the probability of these two events, be-
cause Property A does not supply a good approximation of the conditional distribution
function F (x|y) under the condition S2n = y

√
2n if |y|

√
2n ≥ εn.

In Problem 6 such a distribution function F supplied the counter example for Prop-
erty A which is not smooth, and it takes large values with relatively large probability.
If Property A does not hold, then the proof of the Finite Version of the Approxima-
tion Theorem has to be modified. I briefly sketch how this result can be proved by a
slight modification of the construction applied in its proof if the distribution function
F satisfies one of the following conditions.

a.) The distribution function F has a representation F = pG + (1 − p)H with two
distribution functions G and H such 0 < p ≤ 1, and the distribution function G
has a density function.

b.) The distribution function F is the distribution of a bounded random variable. That
is, there exist some numbers −∞ < A < B <∞ such that F (A) = 0 and F (B) = 1.

Beside this a Problem 8 will be formulated which enables to reduce the proof of the
Finite Version of the Approximation Theorem to these two special cases when either
condition a) or b) is satisfied. (Let me remark that in the counter example considered
in Problem 6 neither condition a) nor condition b) is satisfied.)

It is a natural idea that in the case of such independent and identically distributed
random variables X1, . . . , X2n whose distribution function F does not satisfy Prop-
erty A, and as a consequence the Finite Version of the Approximation Theorem cannot
be satisfied with the help of the previous construction we can try to overcome this dif-
ficulty by means of an appropriate smoothing of the distribution function F . We may
expect that by adding sufficiently small independent normal random variables ηi with
expectation zero and appropriately chosen variance to the random variables Xi (which
are independent of them) we get a new sequence of independent identically distributed
random variables with smooth distribution function, hence they satisfy a slightly mod-
ified version of Property A. Then we may try to apply a natural modification of the
original construction in the proof of the Finite Version of the Approximation Theorem
to this new sequence. In such a way we may prove that this new sequence of indepen-
dent random variables satisfies the Finite Version of the Approximation Theorem. If
we can do this with the help of Gaussian random variables ηi with sufficiently small
variances, then the result we get for the modified sequence implies automatically the
Finite Version of the Approximation Theorem for the original sequence of independent
random variables. I briefly show that this program can be carried out if the distribu-
tion function F satisfies the above formulated condition a). (Several technical details
of the proof will be omitted.) On the other hand, we can apply this way of proof only
if condition a) holds, because we need the contribution of the absolute continuous part
of the distribution function F to get sufficiently strong smoothing effect.

12



Let X1, . . . , X2n be a sequence of independent and identically distributed random
variables with a distribution function F satisfying formula (2) and condition a.) and
take a sequence η1, . . . , η2n of independent normally distributed random variables with
expected value zero and variance σ2 = 2−n which is independent also of the origi-
nal sequence X1, . . . , X2n . Define the sequence of random variables X̄k = Xk + ηk,
k = 1, . . . , 2n. The sequence X̄1, . . . , X̄2n consists of independent F̄ = F̄ (n) = F ∗G0,2−n

distributed random variables, where G0,2−n denotes the normal distribution with ex-
pectation zero and variance 2−n and is ∗ the convolution operator. If a Wiener process
W (t) is given, then the method of proof of the finite version of the Finite Version of
the Approximation Theorem enables us to construct a sequence X̄ ′

1, . . . , X̄
′
2n with the

same distribution as X̄1, . . . , X̄2n such that the partial sums S ′
k =

k
∑

j=1

X̄ ′
j , k = 1, . . . , 2n,

satisfy an appropriate version of formulas (6) and (6a). We get this version by replac-
ing the random broken line Sn(t, ω) with the random broken line which appears if we
write the random variables S̄′

k instead of S′
k in formula (1′). Furthermore, I state that

this result also implies that a distribution function F satisfying both formula (2) and
condition a) also satisfies the Finite Version of the Approximation Theorem.

The existence of a sequence X̄1, . . . , X̄2n with the properties mentioned in the
last paragraph can be proved by means of the halving procedure with the help of the
underlying Wiener procedure. To prove that the random variables obtained in such a
way satisfy the appropriate version (6) and (6a) we have to show that if we consider
instead of the conditional distribution

Fn(x|y) = P

(

√

2

n

(

Sn − 1

2
S2n

)

≤ x

∣

∣

∣

∣

∣

S2n√
2n

= y

)

the conditional distribution

F
(n)
n̄ (x|y) = P

(

√

2

n̄

(

S̄n̄ − 1

2
S̄2n̄

)

≤ x

∣

∣

∣

∣

∣

S̄2n̄√
2n̄

= y

)

, (15)

then this new conditional distribution function satisfies an appropriate version of Prop-

erty A. In the definition of the conditional distribution F
(n)
n̄ (x|y) we have introduced a

new parameter n̄, and considered the partial sums S̄n̄ =
n̄
∑

j=1

X̄j , and give an estimate of

the closeness of the conditional distribution function F
(n)
n̄ (x|y) and the standard normal

distribution function depending on both parameters n and n̄. (In the applications we
have in mind the parameter n is fixed at the start as we consider a sequence of length 2n

and choose Gaussian random variables with variance 2−n. In the successive application
of the halving procedure we have to investigate the conditional distribution functions

F
(n)
n̄ (x|y) with different parameters n̄ = 2n−l, l = 1, . . . , n.) Actually it is enough to

prove a good result on the asymptotic behavior of the conditional distribution func-

tion F
(n)
n̄ (x|y) only in the case n̄ ≥ Kn with an appropriate (large) number K > 0

13



not depending on the number n. (To understand why such a reduced version of this
estimate is sufficient for our purposes we have to remember that the fluctuation of the
Wiener process W (t, ω) and random broken line process S̄n(t, ω) is relatively small in
small intervals. A detailed calculation shows that the fluctuations of these processes is
sufficiently small for our purposes in intervals of length [0,Kn]. I formulate the version
of Property A we need in this case.

The definition of the modified version of Property A. We say that a sequence
of independent identically distributed random variables X1, X2, . . . , with distribution
function F satisfies the modified version of Property A, if the conditional distribution

functions F
(n)
n̄ (x|y) defined in formula (15) satisfy the following asymptotic relation.

There exists some numbers ε > 0, K > 0 and threshold index n0 such that

1 − F
(n)
n̄ (x|y) = (1 − Φ(x)) exp

{

O

(

x3 + x2|y| + |y| + 1√
n̄

)}

if n̄ ≥ Kn, 0 ≤ x ≤ ε
√
n̄, 0 ≤ |y| ≤ ε

√
n̄

F
(n)
n̄ (−x|y) = (1 − Φ(x)) exp

{

O

(

x3 + x2|y| + |y| + 1√
n̄

)}

if n̄ ≥ Kn, 0 ≤ x ≤ ε
√
n̄, 0 ≤ |y| ≤ ε

√
n̄,

(10a)

holds, where Φ(x) is the standard normal distribution function, and the error term O(·)
is uniform in the variables x, y, n and n̄.

To prove the Modified version of Property A if the distribution function F satisfies
relation (2) and condition a) in the same way as the original Property A was proved

it is enough to show that the density functions f
(n)
n̄ (x) of the normalized partial sums

S̄n̄√
n̄

= 1√
n̄

n̄
∑

j=1

X̄j satisfy such a version of relations (12a) and (12b) in the Sharp form of

the local central limit theorem where the number n is replaced by n̄ everywhere at the
right-hand side of these relations, and it is assumed that n̄ ≥ Kn.

This version of the Sharp form of the Local Central Limit Theorem can be proved
by the method of the solution of Problem 23 in the Theory of Large Deviations I. if the
distribution function F (x) satisfies condition a.). The main idea of the proof is that the
density function we want to estimate can be expressed by the inverse Fourier transform
of the characteristic function, or by the analytic continuation of this formula, provided
that the characteristic function and its analytic continuation is an integrable function.
Beside this, the expression we get in such a way can be well investigated.

We have to study the expressions in the following identity:

√
n̄f (n)(

√
n̄x) =

1

2π

∫

e(is−t)x
R̄n̄(s+ it)

R̄n̄(it)
ds,

where R̄n̄(s + it) =
(

R(s+ it)e2
−n−1(t2−s2)

)n̄

, and R(s + it) =
∫

e(is−t)xF ( dx) is the

analytic continuation of the characteristic function of the F (x) distribution function.
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This means that R̄n̄(s + it) is the analytic continuation of the distribution function

F
(n)
n̄ (x). This function, as the function of the variable s with a fixed parameter t is

integrable, since the function e2
−n−1(t2−s2) is integrable, and the function R(s + it) is

bounded. But in the proof of the modified version of the Sharp form of the Local Central
Limit Theorem we need some more information. We have to know that the integral
expressing the density function as the inverse Fourier transform of the characteristic
function and its analytic continuation is essentially localized in a small neighbourhood
of the origin, where the integrand can be well estimated. Condition a) was imposed to
guarantee this property. The consequence of condition a) needed for us is formulated
in the following Problem 7.

7.) If the distribution function F satisfies condition a), then for all numbers A > 0 and
B > 0 there exists some number α = α(A,B) < 1 such that

∣

∣

∣

∣

R(s+ it)

R(it)

∣

∣

∣

∣

< α if |s| > A and |t| < B,

where R(s+ it) =
∫

e(is−t)xF ( dx).

The result of Problem 7 together with the fact that the function e2
−n−1n̄(t2−s2) (as

a function of the variable s with a fixed t) is integrable, and the integral of this function
is not too large, guarantees that the localization property we need in the proof of the
modified version of the Sharp form of the Local Central Limit Theorem can be proved
if condition a) holds, and n̄ ≥ Kn. Here I omit the discussion of the technical details.

The Finite version of the Approximation Theorem also holds if condition b) holds,
but in this case we can prove this statement with the help of a modified version of the
construction and with different justification of this method.

In this case we can apply the following modified version of the halving procedure.
We have a Wiener process W (t, ω), 0 ≤ t ≤ 2n, at the start. Step zero of our procedure
is carried out in the usual way; the random sum S2n(ω) is defined as the quantile
transform of the random variable W (2n, ω), of the value of the Wiener process W (t, ω)
in its end-point t = 2n. After this we construct in the knowledge of the value of the
random sum S2n(ω) the set of random variables {X1(ω), . . . , X2n(ω)} with the right
conditional distribution in such a way that their sum equal S2n(ω). In the construction
of this set we apply beside the random variable S2n(ω) such random variables which
are independent of the Wiener process W (t, ω). At this step we define the value of all
random variables {X1(ω), . . . , X2n(ω)}, but do not tell their indices. Let us observe that
the conditional distribution of all possible indexations of this set under the condition
that the set of values of our random variables is prescribed, only the index of the random
variable which takes a given value is not known has the same probability (2n!)−1. If
we define the indexation in such a way that the probability of all possible indexation
equals (2n!)−1 in the case of all possible set of values {X1(ω), . . . , X2n(ω)}, then the
random variables X1(ω), . . . , X2n(ω) constructed in such a way are independent with
distribution F . On the other hand, we want to make this random indexation in such a
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way that the random sums Sk(ω) =
k
∑

j=1

Xk(ω) be close to W (k, ω), to the value of the

Wiener process W (t, ω) in the point t = k for all values 1 ≤ k ≤ 2n W (k, ω).

We define the indexation by an inductive procedure. In the first step of this proce-
dure we tell with the help of the random variable 2W (2n−1, ω)−W (2n, ω) which elements
of the set {X1(ω), . . . , X2n(ω)} have an index less than or equal to 2n−1, and which ele-
ments have an index greater than 2n−1. We want to do this in such a way that all subsets
of the set {1, 2, . . . , 2n} with 2n−1 elements is chosen with the same probability for the set
of indices of the (random) subset {X1(ω), . . . , X2n−1(ω)}. Let us observe that by defin-
ing this set we also define the value of the random variable 2S2n−1(ω)−S2n(ω). We want
to make the first step of the construction in such a way (with the help of the quantile
transformation) that the difference

[

2W (2n−1, ω) −W (2n, ω)
]

− [2S2n−1(ω) − S2n(ω)]
be small. We try to make a similar construction also in the subsequent steps of the
procedure.

After the l-th step of our construction we have determined the random sets

{Xk2n−l+1(ω), . . . , X(k+1)2n−l(ω)}, 0 ≤ k ≤ 2l − 1,

but we do not know the indices of the individual random variables in this set. In the
l + 1-th step we tell with the help of the random variable

[W ((2k+1)2n−l−1, ω)−W (k2n−l+1, ω)]− [W ((k+1)2n−l, ω)−W ((2k+1)2n−l−1, ω)]

which elements of this set have an index less than or equal to (2k + 1)2n−l−1. We
choose this random set of indices in such a way that all subsets of {k2n−l + 1, k2n−l +
2, . . . , (k+1)2n−l} of 2n−l−1 elements are chosen with the same probability for this set.
Beside this, we make this halving of the sets {k2n−l + 1, k2n−l + 2, . . . , (k+ 1)2n−l} for
different indices k, 0 ≤ k < 2l, independently of each other. We also want to achieve
(with the application of the conditional quantile transform) that the random variables

[W ((2k+1)2n−l−1, ω)−W (k2n−l+1, ω)]− [W ((k+1)2n−l, ω)−W ((2k+1)2n−l−1, ω)]
(16a)

and

[S(2k+1)2n−l−1(ω) − Sk2n−l+1(ω)] − [S(k+1)2n−l(ω) − S(2k+1)(2n−l−1)(ω)] (16b)

be close to each other.

We make the l + 1-th step of the halving procedure by defining first the random
variables in (16b) by calculating the distributions of the expressions in (16b) (which
depends on the elements in the k-th block, hence on the number of index k, and then
by constructing the random variables in (16b) by means of the quantile transform from
the random variables in (16a). In such a way we prescribe the value of the random sums
S(2k+1)2n−l−1(ω) − Sk2n−l+1(ω) for all k = 1, . . . , 2l. If it determines the value of the
terms taking part in this sum in a unique way, then the indices of the terms in this sum

16



constitute the set {k2n−l + 1, . . . , (2k + 1)2n−2, }. If there are several possibilities for
writing down this random variable as the sum of 2n−l−1 terms of the prescribed numbers,
then we choose one of them randomly, by choosing all possibilities with equal probability,
and the indices of these terms will belong to the set {k2n−l + 1, . . . , (2k + 1)2n−l−1, }.
Let us also observe that the random variables in (16a) are independent for different
indices l or k. This fact guarantees the independence we need in the halving procedure.

Let us remark that in the case when the distribution function F of the random
variables Xk(ω), 1 ≤ k ≤ 2n, is concentrated in a set of numbers linearly independent
over the set of rational numbers (such a case was considered in the counter example of
Problem 6) then the previously described construction agrees with the original construc-
tion in the proof of The finite version of the approximation theorem. We want to show
that if the distribution function F satisfies condition b), then the above construction
satisfies the desired estimate. This means that if the random variables with distribution
F are bounded, then a situation similar to the counter example of Problem 6 cannot
appear. To prove that the construction described above yields the above result we need
the following theorem.

Theorem B. Let 2N real numbers x1, . . . , x2N be given which satisfy the condition

max
1≤k≤2N

|xk| ≤ K, and σ2 =

2N
∑

k=1

(xk − x̄)2 ≥ cN, if x̄ =
1

2N

2N
∑

k=1

xk

with appropriate constants K > 0 and c > 0. Let us choose randomly one of the permuta-
tions {π(1), . . . , π(2N)} of the numbers 1, . . . , 2N , by choosing all possible permutations
with probability 1

(2N)! , and define the random variable

SN =
(

xπ(1) + · · · + xπ(N)

)

−
(

xπ(N+1) + · · · + xπ(2N)

)

It satisfies the following form of the central limit theorem and its large deviation version:

P
(

SN > σx
√
N
)

=

(

1 − Φ

(

x√
N

))

exp

{

O

(

x3 + 1√
N

)}

,

P
(

SN < −σx
√
N
)

= Φ

(

− x√
N

)

exp

{

O

(

x3 + 1√
N

)}

for all numbers 0 ≤ ε
√
N with some appropriate number ε = ε(c,K) > 0, where the

error term O(·) means the absolute value of the difference of the left-hand side and the

main term at the right-hand side is less than B x3+1√
N

with a constant B depending only

on the parameters C and K, but not on the numbers x and N .

The proof of the (non-trivial) Theorem B will be omitted. It can be found in the
proof of Lemma 3 of the work of János Komlós, Péter Major and Gábor Tusnády An
approximation of Partial Sums of Independent RV’-s and the Sample DF. II. Zeitschrift
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für Wahrscheinlichkeitstheorie 34 (1976) 34–58. Here I only present a heuristic expla-
nation of this result. I also omit the details of the proof of the Finite Version of the
Approximation Theorem in the case when condition b) holds.

Let us make a random pairing (xj2k
, xj2k+1

), 1 ≤ k ≤ N , of the numbers x1, . . . , x2N ,
define independent, identically distributed random variables r1, . . . , rN such that P (rk =
1) = P (rk = −1) = 1

2 , 1 ≤ k ≤ N , and introduce the random variable U =
N
∑

k=1

rk
(

xj2k
− xj2k+1

)

. The random variable U is the sum of independent random vari-

ables with expectation zero, hence we can estimate its distribution well by means of a
normal distribution function with expectation zero and appropriate variance. But this
variance depends on the pairing (xj2k

, xj2k+1
), 1 ≤ k ≤ N , of the numbers we consider.

The distribution of the random variable SN considered in Theorem B equals the aver-
age of the distributions of the (almost normal) random variables U corresponding to all
possible pairings of the numbers x1, . . . , x2N . To prove that this average satisfies the
statement of Theorem B it is enough to show that the variances of the distributions
taking part in this average are typically very close to the number Nσ2. The proof of
this non-trivial statement is the most important step of the proof.

In the next step I formulate Problem 8 which enables us to reduce the proof of the
Finite Version of the Approximation Theorem to the two special cases when the dis-
tribution function F of the independent random variables we are investigating satisfies
either condition a) or condition b).

8.) Let us fix some distribution functions F1, F2 and G1, G2. Let Sin, and T in, n =
1, 2, . . . , be the sequences of partial sums of independent, identically distributed
random variables with distribution functions Fi and Gi, i = 1, 2. Let us fix some
number 0 ≤ p ≤ 1 and define the distribution functions F = pF1 + (1 − p)F2 and
G = pG1 + (1 − p)G2. Let us show that some pairs Sn and Tn, n = 1, 2, . . . , of
sequences of partial sums of independent, identically distributed random variables
can be constructed with distribution functions F and G in such a way that they
satisfy the relation

P

(

sup
1≤j≤n

|Sj − Tj | ≥ a+ b

)

≤ P

(

sup
1≤j≤n

∣

∣

∣
S

(1)
j − T

(1)
j

∣

∣

∣
≥ a

)

+ P

(

sup
1≤j≤n

∣

∣

∣
S

(2)
j − T

(2)
j

∣

∣

∣
≥ b

)

for arbitrary real numbers a > 0, b > 0 and integer n > 0.

Let us reduce with the help of the above statement the proof of the Finite Version of
the Approximation Theorem to the two special cases when the distribution function
F of the independent random variables we are investigating satisfy one of the
conditions a) or b).

In the next problems we investigate the converse of the above Approximation The-
orem, that is we are interested in the question which are the lower bounds for the
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possibility of approximation of partial sums with Wiener process or of normalized the
empirical distribution function by Brownian bridge. The proof of these lower bounds is
based on such estimates which give a lower bound on the possibility of approximation of
the distribution function of partial sums of independent random variables by means of
a normal distribution function. These estimates belong to the estimates of the theory of
the central limit theorem and large deviation theory. Because of some technical reasons
it is more convenient to work with the moment generating functions of our random
variables instead of their distribution. The result of the next Problem 9 has such a
content.

9.) Let F (x) be such a distribution function for which the moment generating function
R(s) =

∫

esxF ( dx) exists in some interval −a < s < a, a > 0. The value of the
moment generating function R(s) in the interval [−a, a] uniquely determines the
distribution function F (x). (This number a > 0 can be chosen sufficiently small.)

In the next problem we prove formula (5) in the case when the random variable X
has moment generating function in a small neighbourhood of the origin.

10.) Let X1, X2, . . . , be a sequence of independent, identically distributed random vari-
ables which satisfy the relation R(2s) = Ee2sX1 <∞ with some number s > 0. Let

us fix some positive integer n and define the random variables Sk,n =
k(n+1)
∑

j=kn+1

Xj ,

k = 1, 2, . . . . Let us choose a sufficiently large number A > 0 and put N(n) = eAn.
Then the relation

lim
n→∞

1

N(n)Rn(s)

N(n)
∑

k=1

esSk,n = 1 with probability 1 (17)

holds if A > 0 is sufficiently large (N(n) = eAn), and R(s) = EesX1 .

Let Y1, Y2, . . . , be a sequence of independent random variables with standard nor-

mal distribution and put Tk,n =
k(n+1)
∑

j=kn+1

with some appropriate real number n.

Let us observe that such a version of relation (17) holds in which the random
variable Sk,n is replaced by Tk,n and the moment generating function R(s) by

R̄(s) = EesY1 = es
2/2. Furthermore by the result of the previous problem there

exists an arbitrary small number s > 0 for which R(s) 6= R̄(s) if X1 is not a stan-
dard normal random variable. Let us prove with the help of the above observation
formula (5) if the random variable X1 has moment generating function formula (5)
in a small neighbourhood of the origin.

The result of the next problem is about approximation of the normalized empirical
distribution function by a Brownian bridge, and it is the analog of the previous result.

11.) Let Zn(t), 0 ≤ t ≤ 1, be a normalized empirical distribution with n sample points.
(This means that there are n independent random variables ξ1, . . . , ξn with uniform
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distribution on the interval [0, 1], and we consider the random process Zn(t) =

1√
n

(Pn(t) − nt), where Pn(t) =
n
∑

j=1

I(ξj < t), and I(A) denotes the indicator

function of the set A.) Beside this, let Xn(t), 0 ≤ t ≤ 1, be a Brownian bridge
on the same probability space where the random process Zn(t) is defined. (The
distribution of the process Xn(t) does not depend on the number n.) Let us fix
a sufficiently small number c > 0, and define the numbers uk = k c log n

n , 0 ≤ k ≤
M(n), where M(n) =

[

n
c logn

]

, and [·] denotes integer part. Let us fix the random

variables Uk =
√
n (X(uk) −X(uk−1)) and Vk = Uk,n =

√
n (Zn(uk) − Zn(uk−1)),

1 ≤ k ≤M(n) Fix a number t > 0 and prove the following relations:

1

M(n)R̄(n)

M(n)
∑

k=1

etVk ⇒ 1

1

M(n)R(n)

M(n)
∑

k=1

etUk ⇒ 1

where the number c > 0 is sufficiently small, and ⇒ denotes stochastic convergence,

R̄(n) = EetV1 = exp

{

c log n(et − 1 − t) +O

(

(log n)2

n

)}

,

and

R(n) = EetU1 = exp

{

1

2
c log n

(

1 − c log n

n

)}

.

Let us show with the help of the above statements that there exists a sufficiently
small number K > 0 such that

P

(√
n sup

0≤t≤1
(Zn(t) −Xn(t)) > K log n

)

→ 1 if n→ ∞.

In the next problem we consider the sequence of independent, identically distributed
random variables and the partial sums made from them in the case when some moment
type function of these random variables in infinite. We shall show that in this case the
fluctuation between the neighbouring terms of the partial sums is sometimes very large,
and this yields a lower bound for the approximation of these partial sums by the partial
sums of independent standard normal random variables. A Special case of this result is
Statement 2 which also contains that part of Statement 1 not considered in Problem 10
which deals with the case when the random variables we consider have no distribution
function.
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12.) Let X1, X2, . . . , be a sequence of independent and uniformly distributed random

variables, and put Sn =
n
∑

k=1

Xk, n = 1, 2, . . . , X+
k = max(Xk, 0), k = 1, 2, . . . . Let

H(x) be a continuous, strictly monotone function defined on the set of non-negative
real numbers for which H(0) = 0, lim

x→∞
H(x) = ∞, the numbers Kn, n = 1, 2, . . .

as the solution of the equation H(x) = n. Then

Sn − Sn−1 ≥ Kn with probability 1 for infinitely many indices n

if and only if EH(X+
1 ) = ∞

Let EH(X+
1 ) = ∞, and let us also assume that H(x) ≤ eαx with some number

α > 0. Let Y1, Y2, . . . be a sequence of independent random variables with standard

normal distribution function, and put Tn =
n
∑

k=1

Xk, n = 1, 2, . . . . Then

lim sup
n→∞

|Sn − Tn|
2Kn

≥ 1 with probability 1. (18)

In particular, if EeαX
+
1 = ∞ or EeαX

−
1 = ∞ with some number α > 0, where

X−
1 = −min(X1, 0), then relation (18) holds with the choice Kn = 1

α log n. If
E|X1|r = ∞ with some number r > 0, then relation (18) holds with the choice
Kn = Cn1/r, where C > 0 can be arbitrarily large fixed positive number.

In the last two problems such results are considered which may be useful in an
overview of this subject.

13.) Let Xn, n = 1, 2, . . . , be a sequence of independent random variables with normal
distribution such that EXn = 0, EX2

n = σ2
n, 0 < σn < 1, n = 1, 2, . . . , and

lim
n→∞

σ2
n = 1. Let us introduce the sequence of the partial sums Sn =

n
∑

k=1

Xk,

n = 1, 2, . . . . There exists such a sequence Yn, n = 1, 2, . . . , (for instance the
choice Yn = Xn

σn
, n = 1, 2, . . . , is an appropriate choice) for which the partial sums

Tn =
n
∑

k=1

Yk, n = 1, 2, . . . , satisfy the relation

lim
n→∞

|Sn − Tn|√
n log log n

= 0 with probability 1.

On the other hand this relation is sharp. To formulate this statement more explic-

itly let us define the numbers D2
n =

2n
∑

k=2n−1+1

σ2
k. Let us show that for an arbitrary

sequence un, un ≥ 1, n = 1, 2, . . . , the event

S2n − S2n−1 ≥ Dnun
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holds with probability 1 for infinitely or finitely many indices n depending on

the convergence or divergence of the sum
∞
∑

n=1

e−u2
n/2

un
. Let us show with the help

of this result that for every sequence f(n), f(n) > 0, n = 1, 2, . . . , such that
lim
n→∞

f(n) = ∞, there exists a sequence σn, 0 < σn ≤ 1, lim
n→∞

σn = 1, n = 1, 2, . . . ,

such that if Xn, n = 1, 2, . . . , is a sequence of independent Gaussian random
variables with expectation zero and variance EX2

n = σ2
n, Yn, n = 1, 2, . . . , is

a sequence of independent standard normal random variables, and Sn and Tn,
n = 1, 2, . . . , denotes the partial sums of these random variables, then they satisfy
the relation

lim sup
n→∞

f(n)
|Sn − Tn|√
n log log n

= ∞ with probability 1.

14.) Let four urns be given. Let us throw M balls to these urns independently of each
other in such a way that every ball falls with the same probability 1

4 in each urn.
Let Xj = Xj(M), j = 1, 2, 3, 4, denote the number of balls falling in the j-th urn.
Let us prove the identity which tells the conditional probability of the event that
a prescribed number of balls fall into the first urn, under the condition that the
number of balls falling in the first and second urn and the number of the balls
falling in the first or third urn is prescribed. (This condition can be rewritten in
an equivalent form by prescribing the number of balls falling in the third or fourth
urns and the number of balls falling in the second and fourth urns.) Let us prove
the following identity:

P (X1 = k|X1 +X2 = U,X1 +X3 = V ) =

(

U
k

)(

M−U
V−k

)

(

M
V

)

under the condition that 0 ≤ U ≤M , 0 ≤ V ≤M , 0 ≤ k ≤ min(U, V ).
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Solutions.

4. To prove relation (13a) let us first make the following observation. If (X,Y ) are
two random variables whose joint distribution has a density function g(x, y), then
the conditional distribution G(x|y) = P (2−1/2(Y − X) < x|2−1/2(Y + X) = y)

has a density function for all parameters y, and it equals g(x|y) =
g
(

y−x√
2
, y+x√

2

)

√
2h(

√
2y)

,

where h(y) =
∫∞
−∞ h(u, y − u) du is the density function of the random variable

X + Y . We get formula (13a) by applying this relation with the choice X =
n−1/2Sn, Y = n−1/2(S2n − Sn). Indeed, since X and Y are independent random
variables with density function fn(x), hence their joint density exists, and it equals

g(x, y) = fn(x)fn(y). Beside this, hn(y) = 1√
2
f2n

(

y√
2

)

. (Let us remark that if the

k-th power of the Fourier transform is integrable, then the partial sums Sn have a
density function for n ≥ k.)

Formulas (12a) and (13a) imply that

fn(x|y) =
ϕ
(

y+x√
2

)

ϕ
(

y−x√
2

)

ϕ(y)
exp

{

n

((

x+ y√
2n

)3

λ

(

x+ y√
2n

)

+

(

y − x√
2n

)3

λ

(

x− y√
2n

)

− 2

(

y√
2n

)3

λ

(

y√
2n

))}

exp

{

O

(

1 + |x| + |y|√
n

)}

(A1)

if |x| ≤ ε
√
n and |y| ≤ ε

√
n with a sufficiently small ε > 0. To get a good

asymptotic on the right-hand side of formula (A1) introduce the function λ̄(u) =
u3λ(u). This function is, together with the function λ(u), analytic in a small
neighbourhood of zero. Hence a Taylor expansion around the point v yields that
λ̄(v + u) + λ̄(v − u) − 2λ̄(u) = λ̄′′(v)u2 + O(u4) = O(|v|u2 + u4) if |u| ≤ ε, |v| ≤ ε
with some sufficiently small ε > 0, and the O(·) is uniform in both variables u and
v. At the end of the above estimate we have exploited that |λ̄′′(v)| ≤ const. |v| in
a small neighbourhood of zero. By applying the above formula with u = x√

2n
and

v = u√
2n

we get that

n

(

(

x+ y√
2n

)3

λ

(

x+ y√
2n

)

+

(

y − x√
2n

)3

λ

(

x− y√
2n

)

− 2

(

y√
2n

)3

λ

(

y√
2n

)

)

= O

(

x2|y|√
n

+
x4

n

)

= O

(

x2|y| + |x|3√
n

)

if |x| ≤ ε
√
n and |y| ≤ ε

√
n.

23



Hence relation (A1) yields that

fn(x|y) = ϕ(x) exp

{

O

(

x2|y| + |x|3 + 1 + |x| + |y|√
n

)}

= ϕ(x) exp

{

O

(

x2|y| + |x|3 + 1 + |y|√
n

)}

if |x| ≤ ε
√
n, |y| ≤ ε

√
n with a sufficiently small ε > 0, as we claimed.

5.) Because of formula (13b) there exists such constant K > 0 such that

(

1 − K(|y| + 1)√
n

)
∫ ε

√
n

x

1√
2π

exp

{

−s
2

2

(

1 +K
s+ |y|√

n

)}

ds

≤ Fn(
√
nε|y) − Fn(x|y) =

∫

√
nε

x

fn(s|y) ds

≤
(

1 +
K(|y| + 1)√

n

)
∫ ε

√
n

x

1√
2π

exp

{

−s
2

2

(

1 −K
s+ |y|√

n

)}

ds

(A2)

if 0 ≤ x ≤ ε
4

√
n, |y| ≤ ε

4

√
n.

To get a good estimate for the upper and lower bound in formula (A2) let us take

the change of variable v2(s) = s2
(

1 +K s+|y|√
n

)

to bound the integral in the lower

bound and the change of variable u2(s) = s2
(

1 −K s+|y|√
n

)

to bound the integral in

the upper bound. In the next calculations I show that
ds

du
− 1 and

ds

dv
− 1 are very

small, hence their contribution to the integrals we get after the change of variables
can be considered as part of the error term. In the following calculations I shall
assume that n ≥ n0 with some appropriate threshold index n0. In this case all
steps we shall do is legitime.

The inequality u(s) ≤ s holds, beside this u(s) ≥ 3
4s if ε ≥ 0 is sufficiently small,

and x ≤ s ≤ √
nε. Hence we can write ds

du = u

s
(

1−K|y|√
n

− 3Ks
2
√

n

) ≤ 1
(

1−K|y|√
n

− 3Ks
2
√

n

) ≤

1 + 4K√
n
(u+ |y|). Similarly, we can write ds

dv ≥ 1 − 4K√
n
(v + |y|), x ≤ s ≤ ε

√
n. Thus

we get from relation (A2) that

(

1 − K(|y| + 1)√
n

)
∫ ε

√
n

v(x)

1√
2π
e−v

2/2

(

1 − 4K√
n

(v + |y|)
)

dv

≤ Fn(
√
nε|y) − Fn(x|y)

≤
(

1 +
K(|y| + 1)√

n

)
∫ ε

√
n

u(x)

1√
2π
e−u

2/2

(

1 +
4K√
n

(u+ |y|)
)

du

(A3)

with v(x) = x
(

1 + K√
n
(x+ |y|)

)1/2

and u(x) = x
(

1 − K√
n
(x+ |y|)

)1/2

. (Since

v(x) ≥ x and u(x) ≤ x, we have decreased the lower bound and increased the
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upper bound in (A3) by writing ε
√
n as the upper bound in the integral, and this

is allowed.)

To estimate the expressions in formula (A3) let us observe that the primitive func-

tion of ue−u
2/2 is −e−u2/2, and the standard normal distribution and density func-

tions can be well compared. The following calculation is useful for us if we want
to rewrite formula (A3) in a form more appropriate for us: K(x + 1)[Φ(v(x) −
Φ(ε

√
n)] ≤ ϕ(v(x) − ϕ(ε

√
n) ≤ ϕ(u(x) − ϕ(ε

√
n) ≤ K(x + 1)[Φ(u(x) − Φ(ε

√
n)]

with some appropriate K > 0, where ϕ(·) denotes the standard normal density and
Φ(·) the standard normal distribution function. In the proof of this relation we can
exploit that x

2 ≤ v(x) ≤ u(x) ≤ 2x ≤ e
2

√
n. In particular, the contribution of the

term Φ(ε
√
n) is negligible in the above estimates. Some calculation with the help

of the above bound and relation (A3) yield the following estimate. There exists
some constant K̄ > 0 depending only on the distribution function F such that

(

1 − K̄(|y| + x+ 1)√
n

)

[Φ(ε
√
n) − Φ(v(x))] ≤ Fn(

√
nε|y) − Fn(x|y)

≤
(

1 +
K̄(|y| + x+ 1)√

n

)

[Φ(ε
√
n) − Φ(u(x))]

(A4)

with the above defined functions v(x) and u(x) if 0 ≤ x ≤ ε
4

√
n and |y| ≤ ε

4

√
n.

Moreover, the inequality

(

1 − K̄(|y| + x+ 1)√
n

)

[1 − Φ(v(x))] ≤ Fn(
√
nε|y) − Fn(x|y)

≤
(

1 +
K̄(|y| + x+ 1)√

n

)

[1 − Φ(u(x))]

(A4′)

holds with possibly different constant K̄ > 0. To see this, it is enough to observe
that 1 − Φ(ε

√
n) is much smaller 1 − Φ(v(x)). Hence the increase we commit by

writing 1 − Φ(v(x)) instead of Φ(ε
√
n) − Φ(v(x)) can be compensated by writing

a larger constant K̄ at the left-hand side of (A4). It is enough to observe that
1−Φ(ε

√
n) ≤ 1√

n
[1−Φ((v(x))], since v(x) ≤ ε

2

√
n. The replacement of Φ(ε

√
n))−

Φ(u(x)) by 1 − Φ(u(x)) at the right-hand side of (A4) is clearly allowed.

To prove formula (14) with the help of relation (A4′) we have to compare 1−Φ(v(x))
and 1 − Φ(u(x)) with 1 − Φ(x). We can write, by exploiting that the derivative of

log[1 − Φ(x)] is −ϕ(x)
1−Φ(x) which can be well bounded that

0 ≤ log
1 − Φ((u(x))

1 − Φ(x)
= (x− u(x))

ϕ(ū)

1 − Φ(ū)

≤ (x− u(x))(Ax+B) ≤ C
x3 + x2y + x|y| + x2

√
n

≤ C̄
x3 + x2|y| + |y| + 1√

n
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with some u(x) ≤ ū ≤ x and appropriate constants A > 0, B > 0, C > 0 and

C̄ > 0. A similar estimation holds for log 1−Φ((v(x))
1−Φ(x)) . These estimates imply that

[1 − Φ(x)] exp

{−C(x3 + x2|y| + |y| + 1√
n

}

≤ 1 − Φ(v(x))

≤ 1 − Φ((u(x)) ≤ [1 − Φ(x)] exp

{

C(x3 + x2|y| + |y| + 1√
n

}

with some appropriate constant C > 0. The last estimate together with relation
(A4′) imply formula (14).

5b) We can write by formula (13a) and estimates (12c) and (12b)

fn(ε
√
n+ u|y) ≤ K

fn

(

ε
√
n+u+|y|√

2

)

f2n(y)
≤ K

fn

(

ε
√
n√
2

)

f2n(y)
e−t

√
n(u+|y|) (A5)

with some appropriate constant K > 0 for all u ≥ 0, where t is the solution of the
R′(s)
R(s) = 2−1/2ε, with R(s) =

∫

esxF ( dx). Let us also assume that |y| ≤ ε
4 . In this

case the density functions in formula (A5) can be well bounded by means of the
result formulated under the name Sharp form of the local central limit theorem. For
the solution of the present problem it is enough to have the fairly weak estimate
fn(ε

√
n + u|y) ≤ Ke−ε

2n/8e−
√
nu if ε > 0 is chosen sufficiently small with an

appropriate constant K > 0, and the constant t = t(ε) in formula (A5) is strictly
positive. This implies that

0 ≤ 1 − Fn(ε
√
n|y) =

∫ ∞

0

fn(ε
√
n+ u|y) dy ≤ Ke−ε

2n/8 ≤ [1 − Φ(x)]e−ε
2n/20.

This estimate together with formula (14) imply the first relation in formula (10)
if 0 ≤ x ≤ ε

4

√
n, |y| ≤ ε

4

√
n, since it means that the quantity 1 − Fn(ε

√
n|y) is

negligibly small in comparison with Fn(ε
√
n|y) − Fn(x|y). The second relation in

(10) can be proved similarly, or it follows from the first one if we apply it for the
appropriate conditional distributions of the partial sums of the independent and
identically distributed random variables −X1,−X2, . . . , instead of the partial sum
of the original sequence X1, X2, . . . , with distribution F .
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Appendix. The proof of the sharp form of the local central limit theorem.

Let us introduce the functions ϕ(t) = EeitX1 , the characteristic function, and R(s) =
ϕ(−is) = EesX1 , the moment generating function of the random variable X1. Then the

characteristic function of Sn = 1√
n

n
∑

k=1

Xk equals ϕ
(

t√
n

)n

, and its moment generating

function equals R
(

s√
n

)n

. Put ψ(s) = logR(s), and let ψ(z) denote its analytic continu-

ation to the plane of the complex numbers in a small neighbourhood of the origin. Such
an extension really exists. By the conditions of the result the characteristic function

ϕ
(

t√
n

)n

is integrable for n ≥ n0. Hence the inverse Fourier transform can be applied,

and it expresses (the existing) density function fn(x) of Sn. Moreover, the integral
expressing the inverse Fourier transform can be replaced to the line z = t− is√n on the
plane of complex numbers with a (small) fixed number s. In such a way we can express
the density function fn(x) of Sn by the formula

fn(x) =
1

2π

∫ ∞

−∞
e−itxϕ

(

t√
n

)n

dt =
1

2π

∫ ∞

−∞
e−itx−s

√
nxϕ

(

t√
n
− is

)n

dt (B1)

for all |s| ≤ ε if n ≥ k with some sufficiently small ε > 0. (Let us remark that because
of the existence of the density function lim

|t|→∞
ϕ(t) = 0 by Riemann’s lemma. Moreover,

the relation lim
|t|→∞

ϕ(t+is) = 0 also holds if |s| ≤ ε, and the convergence is uniform in the

variable s. This observation helps us to justify the above replacement of the integral.)

We want to show that if the parameter s in the integral at the right-hand side of
(B1) is appropriately chosen (by means of the saddle point method), then this integral
is essentially concentrated in a small neighbourhood of the origin, and this enables us
to give a good estimate of the function on the value of fn(x).

To show this let us observe that
∣

∣

∣
ϕ
(

t√
n
− is

)∣

∣

∣
≤ R(s). Moreover, for all η > 0

there exists some δ = δ(η) > 0 such that
∣

∣

∣
ϕ
(

t√
n
− is

)∣

∣

∣
≤ (1 − δ)R(s) if |t| ≥ η

√
n. To

see the last relation observe that a sum of k independent F distributed random variables
X1 + · · ·+Xk, has an integrable characteristic function ϕk(t), hence it also has a density
function f̄k(x). This implies that |ϕk(t+ is)| < Rk(s) with a strict inequality if |s| ≤ ε
and t 6= 0, and also the relation lim

|t|→∞
ϕ(t+ is) = 0 holds, moreover it holds uniformly in

the parameter s for |s| ≤ ε. This implies the above formulated inequality. By applying
this inequality together with the integrability of the function ϕk(s + it) with a fixed s
in the variable t, (this statement is equivalent with relation (11)) we get for all n ≥ k
that

∣

∣

∣

∣

∣

∫

|t|≤η√n
e−itx−s

√
nxϕn

(

t√
n
− is

)

dt

∣

∣

∣

∣

∣

≤ (1 − δ)n−ke−s
√
nxRn−k(s)

∫
∣

∣

∣

∣

ϕk
(

t√
n
− is

)∣

∣

∣

∣

dt

≤ K̄
√
n(1 − δ)n−ke−s

√
nxRn−k(s) ≤ K(1 − δ)ne−s

√
nxRn(s)

(B2)
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if |s| ≤ ε with an appropriate δ = δ(η) > 0 and K = K(η) > 0 for all η > 0.

The integrand in the integral at the right-hand side of (B1) can be rewritten as

exp

{

−
√
nx

(

s+ i
t√
n

)

+ nψ

(

s+ i
t√
n

)}

. (B3)

Let us consider the function s = h(x), defined by the equation x = ψ′(s), i.e. h(·) is the

inverse function of the function ψ′(s) = R′(s)
R(s) . Since ψ(0) = 0, ψ′(0) = EX2

1 = 1, h(x)

is an analytic function in a small neighbourhood of the origin, h(0) = 0 and h′(0) = 1.

Let us choose s = h
(

x√
n

)

, which function is defined for |x| ≤ ε
√
n with a sufficiently

small ε > 0. (The saddle point method suggests such a choice of the number s. To
explain why the saddle point method suggests such a choice it is useful to introduce
a new variable s̄ = s

√
n and to consider the expression in the exponent of formula

(B3) as an analytical function of the argument z = s̄ + it. The saddle point method
suggests to replace the integral of the analytic function we want to estimate to a new
line which goes through a saddle point, i.e. through a point where the derivative of
the integrand equals zero in the ‘right direction’. If we are looking a saddle point of
the special form z = s̄ of the function in the exponent of (B3), then this leads to the

equation x√
n

= ψ′
(

s̄√
n

)

= ψ′(s).) We want to give a good estimate on the integral of

the function in formula (B3) if we are integrating it in the interval −η√n ≤ t ≤ η
√
n

with a small number η > 0 and a fixed number s = h
(

x√
n

)

. To do this let us first

consider the Taylor expansion of the function in (B3) as a function of the variable t with
a fixed number s. Since the derivative of this function in the origin is zero in the point

t = 0, its second derivative is −ψ′′(s) = −ψ′′
(

h
(

x√
n

))

, (a number close to −1), and

its third derivative is of order O
(

1√
n

)

with an order uniform for |s| ≤ ε, |t| ≤ η
√
n, we

get that

exp

{

−
√
nx

(

s+ i
t√
n

)

+ nψ

(

s+ i
t√
n

)}

= e−
√
nxs+nψ(s)e−ψ

′′(s)t2/2

(

1 +O

(

t3√
n

))

and

∫ η
√
n

−η√n
e−itx−s

√
nxϕ

(

t√
n
− is

)n

dt

= e−
√
nxs+nψ(s)

∫ η
√
n

−η√n
e−ψ

′′(s)t2/2

(

1 +O

(

t3√
n

))

dt

= e−
√
nxs+nψ(s)

√

2π

ψ′′(s)

(

1 +O

(

1√
n

))

. (B4)
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Relations (B1), (B2) and (B4) together with the relation Rn(s) = enψ(s) imply that

fn(x) =
e−n(sx/

√
n−ψ(s))

√

2πψ′′(s)

(

1 +O

(

1√
n

))

(B5)

with s = h
(

x√
n

)

if |x| ≤ ε
√
n with a sufficiently small ε > 0.

Both H1

(

x√
n

)

= sx√
n
− ψ(s)) and H2

(

x√
n

)

= ψ′′(s) are analytic functions of the

variable x√
n

after the substitution s = h
(

x√
n

)

which do not depend on the parameter n.

Beside this, we can write s = x√
n

+ x√
n
A
(

x√
n

)

, and ψ(s) = s2

2 + s3B(s) with some

analytic functions A(·) and B(·). Hence −n(sx/
√
n − ψ(s)) = −x2

2 + x3
√
n
λ
(

x√
n

)

with

some appropriate analytic function λ(·) in a small neighborhood of the origin. Similarly,
ψ′′(s) = 1+sC(s) with an analytic function C(s) in a small neighbourhood of the origin,

hence we can write ψ′′(s) = 1+ x√
n
µ
(

x√
n

)

with an appropriate analytical function µ(x).

The first relation of formula (12a) follows from formula (B5) and the observation made
about the expressions in this formula made after it. The second relation of formula
(12a) is a simple consequence of the first one.

We could prove the asymptotic relation (12a) only for such numbers x for which
the equation x√

n
= ψ′(s) has a solution, and we could guarantee it only for |x| ≤ ε

√
n

with some ε > 0. In the general case we can give a sharp asymptotic formula of the
density function fn(x) only for such arguments x. To get a good upper bound for the
density function fn(x̄) in the case of a general number x̄ let us write this number in
the form x̄ = x + z with some |x| ≤ ε

√
n, and let us express fn(x̄) by formula (B1)

(with the replacement of x by x̄ in it) with the same number s, as before, i.e. let us
choose the parameter s as the solution of the equation x√

n
= ψ′(s). The estimate (B2)

remains valid if we replace x by x̄ everywhere in this formula. To get an appropriate
upper bound in formula (B4) in the new situation let us first give a good upper bound
on the expression in formula (B3). Let us recall that |ez| = eRe z.

We can get, by means of a Taylor expansion that

Re

(

−
√
nx̄

(

s+ i
t√
n

)

+ nψ

(

s+ i
t√
n

))

= −
√
nsx̄+ nψ(s) − ψ′′(s)

t2

2
+O

(

t3√
n

)

if |t| ≤ η
√
n with some appropriately small η > 0. Hence we get the following analog of

relation (B4):

∣

∣

∣

∣

∣

∫ η
√
n

−η√n
e−itx̄−s

√
nx̄ϕ

(

t√
n
− is

)n

dt

∣

∣

∣

∣

∣

≤ e−
√
nx̄s+nψ(s)

√

2π

ψ′′(s)

(

1 +O

(

1√
n

))

. (B4′)
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Relations (B4′) together with the version of relations (B1) and (B3) (for x̄ instead of x
imply that

fn(x̄) ≤ K̄e−
√
nx̄s+nψ(s) 1

√

2πψ′′(s)

with an appropriate constant K̄ > 0. A comparison of this formula with relation (B5)
yields that

fn(x̄) ≤ Ke−
√
ns(x̄−x) e

−√
nxs+nψ(s)

√

2πψ′′(s)
≤ Ke−

√
ns(x̄−x)fn(x) = Ke−

√
nszfn(x)

with some appropriate constant K > 0, as we claimed in formula (12b).

Finally relation (12c) is a simple consequence of relation (12b) with the choice x = 0
if we observe that s = 0 in this case, and fn(0) is bounded by a constant not depending
on n by formula (12a). Actually, a sharper estimate holds. With some extra-work it
can be shown that fn(x) can be approximated by the standard normal density function
ϕ(x) with an error bounded by const.√

n
in the supremum norm. But we do not need such

an estimate, hence its proof will be omitted.
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