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Approximation of Partial Sums of i.i.d.r.v.s
when the Summands Have Only Two Moments

Péter Major

Mathematical Institute of the Hungarian Academy of Sciences
Realtanoda u. 13-15, H-1053 Budapest, Hungary

Given a sequence of partial sums S;, S,, ... of i.i.d.r.v.s; we approximate them by
the partial sums of independent normal variables. We show that our construction
is optimal if nothing more than the existence of the first two moments of the sum-
mands is assumed. We generalize the construction to the case when the time param-
eter set is multi-dimensional.

1. Introduction

An essential part in the proof of Strassen’s law of iterated logarithm is the following

Theorem 1. Given a d.f. F(x), [ xdF(x)=0, [ x*dF(x)=1 one can construct two
infinite sequences of i.idrvs X, X,,... and Y,,Y,, ... with distribution F(x) resp.

®(x) in such a way that the partial sums S,= Y X;, T,=Y,n=1,2... satisfy

i=1
|S,— T, =o0()/nloglogn) with pr.1.

{@(x) denotes the standard normal distribution function).

Strassen [5] proved this result by applying the so-called Skorohod embedding.
In the present paper we give a direct proof to Theorem 1. Then we show that this
result cannot be improved. More precisely the following statement holds.

Theorem 2. Let f(n) be any positive function tending to infinity. Then there exists
a distribution function F(x), [ xdF(x)=0, [ x*dF(x)=1 with the following property:
for any pair of sequences of i.idrvs X, X,,... and Y, Y,,... with df. F(x) resp.
®(x) one has

1S, — Tl
—oo) =1

Vnloglogn B

where S,= Y X;, T,= > Y,.
i=1 P=

i=1

P (lim sup f(n)
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Theorem 1 can be slightly generalized. Let the time-parameter set T¢ consist
of all the lattice points with positive coordinates in the d-dimensional Euclidian
space R% We say that m<n, m=(m,, ... mp), n=(n,, ... ny) if m;<n, for i=1, ... d.

d

We define |n|= [] n;.
i=1

We state the following

Theorem 1. Given a distribution function F(x), [ xdF(x)=0, [ x*dF(x)=1 and a
monotone sequence n, <n,<---, n;e T%. One can then construct two sets of i.id.r.v.s
X,, Y,, ne T? with distribution F(x) and ®(x) in such a way that the variables S, =

ny “n>

S X, T,= Y. Y, satisfy

sup |S;— Ti|=0(}/ Imloglogn|) ~ with pr. L.

Theorem 1’ implies that the set of variables S,, ne T satisfies similar laws of
iterated logarithm as the Wiener process with d-dimensional parameter set.
Thus using Theorem 1’ we can reduce some proofs of Wichura [7] to the investiga-
tion of the Wiener process with d-dimensional parameter set.

Finally we make some remarks about the approximation of sums of i.1.d.r.v.s,
comparing the cases when the summands have only two moments, and when they
have more.

Denote the set of distributions F(x): [ xdF(x)=0, { x*dF(x)=1 and

fIx[dF(x)<o by K,, rz2.

If F(x)eK,, then two sequences X, X,,... X, and ¥, Y,,..., Y, of iid.r.vss can
be constructed so that

p (i_ sup 1S, — Tl >s) -0 as n—oo forevery g>0.
npsn

(This statement is equivalent to the functional central limit theorem for sums of

iid.rv.s.)

This means that by approximating the partial sums in K, a better rate can be
achieved if we only want stochastic convergence instead of convergence with
probability 1.

In K,, r>2 the situation is somewhat different. Here an approximation with
the property

-1
limn "(S,—T,)=0 with pr.1
can be reached, see [2] and [3]. On the other hand for any f(n) — oo a distribution
F(x)eK, and a sequence n,, k=1,2, ... n, » co can be found so that

P(f(nk)nk_%sup IS;— T|>1)~1.

JEnme

In fact, choosing a distribution F(x)e K, and a sequence »n, in such a way that

1—F@nl/f (n)> f (n)/n,
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the relation

1 1
P(sup f(n) " |S;— T[> 1= P(sup |X;— Y| >m [2f () - 1

jEne jZn

holds.

2. Proofs

Our proofs are based on the following theorem of Heyde (see [1]).
Theorem A (Heyde). Consider a sequence X, X ,, ... of i.idrv.s and its partial sums

S.= 2 X;. Let EX,=0, EX{=1, F(x)=P(X,<x) and F(x)=P(S,<xc,)/n)

i=1
where
o;= | x*dF(x)—[ | xdF(x)]*
jx|<yn x| < yn

Then if K>0, C>1 and n,, K 21 is a sequence of integers with n,~ K C** as k — oo,
we have

Y sup |F, (x)— ®(x)| < 0.

Proof of Theorem 1. Let us first remark that it is enough to prove the following
somewhat weaker statement:
For any ¢>0 there is a construction satisfying the relation:

. S,—T,
P(hm Sup—L__:|§8) =1. (21)
Vnloglogn
To prove this remark we make the following construction. Let the sequences
. . 1 :
S® T® n=1,2, ... satisfy (2.1) with E=1 We may assume that the pairs S® T®

for different k-s are independent. Let us now consider a sequence of integers
ny<n,<--- with the following properties:

k . . . .
m~2%, m is of the form 2™ where m, is a positive integer and

SE_T® 2 1
P L " N R
(fgﬁ V/nloglogn k) e

Let the sequence S, and T, be such that §,— S, =S¥ —8§® T — T, =T®_T®

if n,<n=n, . These relations define the S,’s and T,’s and we claim that these
S,s and T,’s satisfy Theorem 1.
First we state that

1S, — T, |=0(/m, log log n,.).

Since the sequence n, is very rare, we even have

Sw.=0()/m loglogn,) and T, =o(y/n, loglog n, ). (2.2)
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In fact, applying Theorem A, we have for any ¢>0
P(1S,,|>)/m, TogTog )
< 3 sup I, (- 00+ 23 (1 vt/ ogTogn) <

and the Borel-Cantelli lemma proves (2.2) for the sequence S, . The proof for T,
is similar. '
The Borel-Cantelli lemma also implies that

. S$.—S,)—(T,—T
lim sup IS, M ”")|=0 with pr. 1.

k msngmes  /nloglogn

This formula together with (2.2) proves our remark.
Let us now turn to the proof of (2 1).

Set C=1+- , n,=[C"] and r,= an. Let ay,®,,... be iid.rv.s uniformly

8’ v
distributed in [0, 1].
Define
S, —S

tr T~ ‘-——F l(ak)

O-nk l/nk
and

T.—1T,
e CA)

V”k

(Here F~'(z)is defined as F~* (f)=sup (x: F(x)<1), F, (x)and g, asin Theorem A.)
The sequences S, ,T,,, k=1,2... have the required distribution. We can

rrd Tre’

complete them into sequences Sy, Sz, s, T,,...so that §;,S,,... beiidrvs
with distribution F(x), T;, T,, ... iid.r.v.s with distribution @(x). We claim that
these sequences satisfy (2.1).

First we show that

S,.—T, 0]/rkloglogrk (2.3)

According to the Borel-Cantelli lemma it is enough to prove that

Y. P((S,, = Sn_ )= (T, — T, _)|>3V/n loglog n )< o0

for any >0, since then

k
T, <K(w)+ Y, 0)/n;loglogn;
j=1
Vnloglogn  with pr. 1.

<K(w)+

26
Y C—1
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But the convergence of the above sum is a direct consequence of the following
estimation '

P, =S, — (T, — T, _)I>0V/n,loglog n,)

1
<— 4 F —@(x)]. 24
=Tog? n, 8 Sup |F () — D(x)] (2.4)

Now we need to prove only (2.4).

P((Sp=Sn_)=(T,,~ T,,_)I>5)/m TogTog
é
<P (0 By ()= 0 ()|  Tog og
+p (|<15—1(ka)|>“—(SL log log "")

2(1-a,)

r . .
The second term is obviously less than Iog? if k is sufficiently large. Now we
g
estimate the first term. Denoting ® ~!(a,) by y, a simple calculation shows that

o
P (6, 1By ()~ @ o0l > 5 Tog Tog
<P(E, @)~ yI>1)
<P( @+ 1)=@()| Ssup |, () 203

+P(190) =00y~ DISsup [F, (x)— 2()))

Now 1-&(y)>2(1—-®(y+1)) if y is large enough, so we have

P (a0 )~ @ (w13 TogTog )
S4P(0(y)<sup |F, (x)— D(x)])
+4P(1 - B(y) Ssup |, (x)— B(x))
=8sup |F,, (x)— D(x)|.
Thus (2.4) holds true.
Finally we show that

sup |S,—S
P/ lim syp 2=2r2mn

Vi loglogr,

and a similar estimation holds for the T’s. These relations together with (2.3)
imply (2.1). Applying a well-known estimation about the partial sums of inde-

el

A

&
3]=1 2.5)
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pendent summends see e.g. [4] p. 248. We get

P( sup |S,-S,|>3yn]doglogn)

PeEn<riri

<23 P(S,..,—S.|>2ynloglogn)
<2Y (1—®(2y/loglog n,))+2Y sup |F,, (x) — &(x)| < o0

which implies (2.5).

To prove Theorem 1" we need a Theorem which states that the variable
max S, is not essentially larger than §,,.
Theorem B (Wichura [6]). Let ne T¢ and let (X,) m<n be a d-dimensional array
of independent random variables with O mean and finite variances. Put S,,= Y X,
and set Mn——-r'ilili( [S,,|- Then ksm

P, 22 <1~ (%)] Cp(s,iza)

if a>=0*=ES2.

Proof of Theorem 1'. As in the proof of Theorem 1, the proof can be reduced to the
construction of two sets of random variables S,, T,, ne T? satisfying the relation

sup [S;—T| -
Pllimsup 2% _>¢|=0.

V/ 1n| log log |my|

Fix a number C>1, and consider the set H of points of the form

(C™, 1™, .. [C™))

- where the numbers m; range over all positive integers. For any n, consider its
smallest upper bound in H. We get a new monotone sequence. Let us consider
every point of the sequence with multiplicity 1. Let us embed this sequence
into a new sequence r, k=1,2,... in such a way that the subsequent members
of the new sequence differ only in one coordinate, and the exponent of C in this
coordinate grows with one. It is sufficient to make such a construction that

sup |S;—Tj|
Pllimsup 2% > C(e)|=0 2.6
P ogtorr, O =0

where C(g) >0 as C— 1.

We may assume that every coordinate of r, tends to infinity. Otherwise the
dimension of T* in Theorem 1’ can be decreased.

The idea of the construction is the following, We want to divide T¢ into a
sequence K, K,, ... of d-dimensional disjoint rectangles having some nice pro-

perties. By the increment of S, and T, on a set A, AeT? we mean the r.v. Y X,
icd
and ) Y,. First we define the variables U; and ¥, the increment of S and T on
icA
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the rectangles K; in the same way as in the proof of Theorem 1:

U; -1 Vi -1
s Fo (&), o ?(&)
where m; is the volume of K; and &, &,, ... are i.i.d.rv.s uniformly distributed in
[o, 1].

Then we construct the r.v.s X;, Y, ie T in such a way that the increment of
S; and T; on K, be identical with the previously defined U, and V.

We want the K;’s to have the following properties:

(i) if x is a vertex of K, then the rectangular A=(y: y<x) is the union of some
K/s, r, is the vertex of some K; if nzn,.

(i) U,—Vi=o( ]/Wg]oﬁ) and moreover S, — T, =o( ]/]x|loglog|x| ifxisa
vertex of some K’s.

(iii) The vertices of the K;’s are dense enough in T?, so that Theorem B implies
(2.6).

We will construct a sequence K; which satisfies (i)-(iii). Set r,=(", ... r®).
Let the j(n)-th be the coordinate where r, and r, ., differ. Denote by H, the set

Gerx=0xg .. X0 %, Sr if i), 10y <X STV

We fix an integer L.>0 and a number 0 <o < 1. First we choose a sufficiently
large n, and we divide the rectangle A, =(x:x=r,) into smaller ones by the

k
hyperplanes x;= T 1™ k=1,2, ..., L. These rectangles will be our first K;’s. Then

we split the rectangles H,,O, H, 1, ... successively with some hyperplanes of the
form x;=a;,, i=1,2...d, i+jmn), k=1,2...f(i,n), o ;op=r". In order to
satisfy (i) a hyperplane xizcxi, « 1s allowed to be one of the hyperplanes dividing

H, only if it contains a lateral face of some previously defined K. Another require-
1 . P
ment is that — I r(")<ocl e %k < ™. These requirements can be satisfied if o

and L are chosen appropriately. Thus (i) is satisfied.

Theorem A remains valid if the sequence n, need not satisfy the condition
m,~KC?*, only the following weaker condition: 4C*<n,<BC* with some
A>B>0, C>1. Using the same argument as in the proof of Theorem 1, this
version of Theorem A enables us to prove (ii).

Let us remark that we may choose L in such a way that L—co as C— 1.
Now given the rectangle 4,=(x,x=r,), we may choose hyperplanes x,=8, ,
i=1,2,...,d so that fr(")<ﬁ = Bi k- 1__—11:;""’ B <r and any point x=
(X1 o X)Xy =Py > ---» Xg= By ;, 1S @ vertex of some K;, and therefore |S, — T,|=
o(y/Ir,l loglog|r,|). Consider a rectangle B contained in some 4, U, , where
Upe=0=0xy ... xg); Biw_y<x;=P; ). Then applying Theorem B, the above
mentioned version of Theorem A and the Borel-Cantelli lemma, one obtains an

. L A .
increment of S and T on B which is less than T V. loglog |r,| if n>n(w) with
probability 1. This estimation implies (2.6} and thus Theorem 1’ is proved.
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Proof of Theorem 2. Let us choose a monotone sequence f(n) such that f(1n) — oo

and f(n)/f(n)— 0.

There exists a distribution function F(x) such that

[xdF(x)=0, [x*dF(x)=1,

2 2
di.Z(1- )10n0n+lolon
3 ( D Llog n/log glogn]

where o, is as in Theorem A. We claim that such a distribution satisfies Theorem 2.
It is enough to prove that

Y. P(Syns1—S3n>X,) < 00,
; P(Tyni1— Tyu>y,)= 0
where
eV ETeE (1)
and y,=1/2"*logn. In fact, these inequalities and the Borel-Cantelli lemma

imply that
21/2"* logn

(Tonss = Tyn) = (Spnr1 = Spn) > Yy — X = f—(2n+1)

i.0. with pr. 1.

Thus, either ‘
RS
Of Tyner—Sym+1>1/2"F log n/f(2"*') which proves Theorem 2. The second sum
S P(Tynss— Tyn>y) =Y. (1—@ (Vyf))

is equiconvergent with

Ty —

s V2 V2" A I
n]/Zlogn

By Theorem A the first sum is equiconvergent with

22 ()

But

A

" Gon 2 C
45( il )g L V2o exp( xl,,z) o
T on) SY3E % 7 n(log )

Therefore, the first sum is convergent.

The author would like to thank Mr. Tusnady for many useful discussions.
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