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Summary. Let F, (u) denote the empirical distribution function of  a sample 
of i.i.d, random variables with uniform distribution on [O, 1]. Define 

t 1 1 

fi* (u) = ]fn [F, (u) - u], and consider the integrals I ( t )  = ~ ~. . .  S f ( u l  . . . . .  us) 
o 0  o 

�9 fi* (dul) . . .  kt* (dus), where f is a bounded measurable function. We give a 
/ \ 

bound on the probability P (  sup [I(t)l ~ x ) .  An analogous good upper 
\o_<t_<l / 

estimate is given for multiple integrals with respect to a Poisson process. 

Introduction 

The main results of  this paper are the following two theorems: Let ~-a, ~2,''" be 
a sequence of  i.i.d, random variables with uniform distribution on the interval 

1 
? l  

I({i  < u) and its [0, 1], define the empirical distribution function F , ( u ) = n  i= 1 

standardization fi* (u) = ]fn (/7, (u) - u). We shall prove the following. 

Theorem 1. I f  f (u l , . . . ,  us) is a bounded measurable fimction, If(u 1 . . . .  , us)l < K 
then there exist some universal constants C s > 0 and c~ s > 0 depending only on the 
dimension s such that 

 (:up i io .... i 
( < Cs exp - o: s K2/S  J ( 1 . ] )  

for all x > O. 

Let P,(u) denote a Poisson process on [0, 1] with parameter n, i.e. let P,(u), 
0 < u < 1, be a process with independent increments such that P, (0)=  0 and 
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P,, (v) - P, (u), 0 < u < v _-< 1, is Poisson distributed with parameter n (v - u). Set 
1 

/~* (u) = ~ n  (P" (u) - nu). We shall prove the following. 
F 

Theorem 2. Let  f (ul . . . .  , us) be a bounded measurable function I f ( u 1 , . . . ,  Us) [ < K. 
There exist some universal constants Cs > 0 and ~s > 0 depending only on the 
dimension s such that 

t 1 1 

�9 (dus) ) r(0s__<utPl ! ! ... ! f (u  1 . . . . .  Us)/An ~(dul). .  > x  

_-< Cs exp -- a S Kz/s ] (1.2) 

f o r  all 0 < x < K n  s/2 . 

The investigations leading to the proof of Theorem 1 were motivated by paper 
[1]. Here an estimate of this type was needed to bound an error term. We could 
prove Theorem 1 only by first proving Theorem 2 and then applying a Poisson 
approximation. 

We wrote sup in formulas (1.1) and (1.2) because we needed such an 
0_<t_~l  

estimate in [1]. It is natural to expect that the estimates would not improve 
considerably if the sup were dropped in formulas (1.1) and (1.2). This is really so, 
but we had to overcome several technical difficulties when we proved that the sup 
can be inserted into formulas (1.1) and (1.2). Actually the greatest part of the paper 
deals with this problem. 

The need for a sup in formulas (1.1) and (1.2) arose in [1] in a natural way. 
0__<t<l 

We had to show that a process defined by a multiple stochastic integral of the same 
type as in (1.1), and multiplied by a small number can be considered as a small 
error term. The sup in Theorems i and 2 guarantees that also this process is small, 
and not only its values at a fixed time t. We expect that similar problems arise in 
other investigations. It seems very likely that the sup could be taken in a more 
general way. But since this would make the paper more complicated we do not 
investigate this question. 

The following simple example gives some information about the sharpness of s 
Theorems 1 and 2. Choose f ( u l , . . . ,  us) = 1-[ I (u i  < I).  In this case 

j=l 

P . . . S f ( u l , . . . , u s )  f i * ( d u t ) . . . f i * ( d u s ) > x  =P(f i*([O,  a l ) > x l / S ) ,  (1.3) 
0 

th oxp ossio  s ide oforde;ex (- 
central limit theorem. This means that in this case Theorem 1 gives a good 
estimate. The same can be told about Theorem 2. Moreover, one can understand 
with the help of this example that the condition x < K n  S/2 in Theorem 2 is 
essential. Indeed, since P(~* ([0,1]) > x]//n) > exp ( -  c n x l o g x )  >> exp ( -  c n  x 2) 
if x >> 1, the same choice of the function f as in (1.3) and a simple calculation show 
that for x = x ,  >> n S/2 relation (1.2) does not hold any longer. 
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It is natural to ask whether in (1.1) and (1.2) the constant K =  sup I f (u~, . . . ,  u~)] 

can be replaced by Kp=/ i~  . . . "  - i , f ( u x , . . . , u ~ , l P d U l . . . d u ~ i  ~/p with some 
ko 0 A 

oo > p > 0. The norm /(2 would be a natural candidate. The following simple 
example shows that the answer to this question is in the negative. Set s = 1 and 

f ( u )  = I(U<an)- 2 x ~ n  with e, = n-~, where/7 > I is appropriately chosen. Then 

(i ) P f ( u )  fi* (du) > x = P (one of the sample points ~i, 1 _< i_< n, 

belongs to the interval [0, an] ) > an = n-r (1.4) 

O n t h e ~  ( ~ 1 - 2 ~ )  = e e x p  - n , and  
this expression does not bound (1.4) if fl > p.  \ K~ ] 

We shall prove Theorems i and 2 in a slightly different fornmlation. Let us 
introduce the measures 

and 

We formulate the following 

Pn (u)  = n (Fn (u)  - u) 

(u)  = t'n (u)  - n u .  

Theorem 1'. Let  [ f (u  1 . . . .  , us)] =< 1. There exist some universal constants cl > 0, 
c 2 > O, C > 0 and c~ > 0 depending only on the dimension s such that 

P sup ~ . . . ~ f ( u l , . . . , u s )  f i , (dul) . . . f i , (dus)  > x  < C e x p  - ~  
\ 0 < _ t < l  0 0 0 

(1.6) 
f o r  c 1 n s/2 ~ x ~ c 2 n s . 

and 

Theorem 2'. Let  I f ( u~ , . . . ,  us)l =< 1. There exist  some universal constants Cl > O, 
c z > O, C > 0 and ~ > 0 depending only on the dimension s such that 

(1.7) 
f o r  e i n  s/2 ~ x ~ e 2 n s ,  

Theorems 1' and 2' imply Theorems i and 2. This can be seen with the help of a 
natural rescaling and the following two observations: 1) The condition x > cx n s/2 
can be dropped if C is chosen sufficiently large. Indeed, if C is chosen sufficiently 
large in Theorems 1' and 2' then the right-hand side of the inequalities will be 
larger than 1 for x <= c I n ~/2, and the inequalities hold in this case trivially. 2) The 
condition x < c 2 n ~ can be dropped from Theorem 1' ifc~ > 0 is chosen sufficiently 
small. Indeed, since fin is the difference of two measures with total volume n, hence 

i io'''if(u~'''''us)o f in(dUl) . . . f in(du~) < 2 S n  ~ 
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with probability 1, and Theorem 1' holds for x >  2Sn s. Since it holds for 
x = c2 n s, it also holds for c2 n ~ < x < 2 s n s if ~ is chosen in (1.6) sufficiently small. 

The paper consists of four sections. In Sect. 2 we prove an inequality which is 
important in the proof of  Theorem 2'. This inequality implies immediately a 
weakened version of Theorem 2', where the sup is omitted from (1.7). Section 3 
contains the proof of Theorem 2' and Sect. 4 the proof of Theorem 1'. 

R e m a r k .  We define the integrals with respect to /2 , , /2 , ,  etc. as usual Lebesgue 
integrals with respect to the product measure induced by the processes/2, (t) and 
/2, (t). There is no problem with this definition, since/2, (t) and/2, (t) have finite 
total variation with probability 1. In probability literature one often defines 
integrals with respect to Poisson processes differently, namely the diagonals 
u~ = u3 are deleted from the domain of integration. Our results easily follow for 
such integrals if we consider such functions which vanish at the diagonals. 

2. Some Estimates 

Let us introduce the random variables 

t 1 J. 

t / :(t)  = ~ ~ ... ~ f ( u l , . . . , u s ) / 2 , ( d u l ) . : . / 2 , ( d u , )  , (2.1) 
0 0 0 

where/2, is the same as in (1.5)'. 
Our main task in this section is to give a good upper bound on the probabilities 

P (]/'If (t + v) - r/: (v) I > z). Obviously 

P (I t/j~ (t + v) - t/f (t)[ > z) < E ([t/s (t + v) -- t/I (v)] 2 k) (2.2) 
= z 2 k  

for arbitrary z > 0 and positive integer k. Inequality (2.2) gives us a good estimate, 
if we can make a good estimate on the moments of r/r (t + v) - t/i (v), and choose 
the number k in (2.2) appropriately. For this sake first we prove the following two 
lemmas. In the sequel we use the letters C, C1, ~, etc. for some appropriate 
constant. The same letter may denote different constants in different formulas. 

Lemma 1. L e t  ~ be a Po i s son  d i s t r ibu ted  random variable wi th  p a r a m e t e r  ,~. Then 

a )  E ( ~ - - E ~ )  k > O  f o r  al l  k = O , l , 2  . . . .  
b )  There  ex i s t s  s o m e  C > 0 such that  E (~ - E ~ )  ~ < C k (k).) k/2 . for all  k < 2 .  

Lemma 2. L e t  f (u I . . . .  , us) and g (ul  , . . . , us) be two bounded  measurab le  f u n c t i o n s  
such that  [g ( u l , . . . ,  u~)l < f ( u l , . . . ,  u~) f o r  all  u 1 . . . .  , u~. Then 

E ... ~ g (u I . . . .  , us ) /2 ,  ( d u l ) . . . / 2 ,  (du~) 
0 

< E . . .  u l ,  . . . , u~ )  / 2 , ( d u l )  . . . / 2 , (dus  (2.3) 

f o r  all  k = O ,  1 , 2 , . . .  . 
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Remark 2. Lemma 2 enables us to estimate the moments of  t/f ( t+  u ) -  t/f (u). 
Actually it is Lemma 2 which makes the proof  of  Theorem 2' simpler than that of  
Theorem 1'. If  the measure/~, is replaced by/2, in (2.3) then Lemma 2 does not 
hold any longer. This can be seen with the help of  the following observation: For  
f ( U l , . . . ,  Us) ~ 1 

1 1 

S --- S f ( "~ ,  ..., ~s) ~,(du~).../2,,(du~) = 0 
0 0 

with probability 1. 

Proof of  Lemma 1. The moment  generating function of  ~ - E~ is 

f ( t )  = E exp [t (~ - E~)] = exp {2 (e t -  t -  1)} 

d k 
and E(~ - E~) k = ~ f ( t )  i~=o. (2.4) 

d k 
Since ~/~ (2(e ~ -  t - 1 ) ) >  0 for all k = 0, 1 ,2 , . . . ,  it is not difficult to see that 

d g 
dt k f(t)]~= 0 > 0. This implies part  a) of  Lemma 1. 

Let us consider f ( t )  as a complex valued analytic function. Then we get by 
Cauchy's formula that 

d~tkf(t)l~= ~ k~ i ~ f(O d~l 1 = ~ ~ [ < k ! .  sup i f ( ( ) [  ~ (2.5) 

for all r > 0. 
We have 

sup Pf(()l = exp (2 (e r -  r -  1)) < exp 2 ~  e r (2.6) 
ir = r  

choose r = < 1. Then (2.4), (2.5) and (2.6) imply that 

k k 

E ( ~ - E ~ ) k < k !  exp ~ - e  ~ < C k k  k exp ~ k  < . (k2)  g. 

Lemma I is proved. 

Remark 3. Part b) of  Lemma 1 can be interpreted in the following way. The k-th 
moment  of ~ - E l  is smaller than the k-th absolute moment  of a normal random 
variable with expectation zero and variance const. 2. Some calculation would 
show that for k ~> 2 this relation does not hold, i.e. the restriction k < 2 in part b) of 
Lemma 1 is essential. 

Proof of  Lemma 2. First we restrict ourselves to the special case when f and g are 
step functions. More  precisely we assume that there are some constants 
0 = a ( l )  < a(2) < ... < a(p)  = 1 such that both f and g are constants on all 

s 

rectangles l-[ [a (ij), a ( i ;+ 1)]. Then 
j = l  

If(,1, ...,Us) ~,(d,O...m(d,s)= Z A{ f l  m([a(ij),  a(i~+j)]) 
j = l  
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with 
A{  = f ( u  i . . . . . .  ui,), uij ~ [a (ij), a (ij + 1)], j = 1, ..., s, 

and 

E [ ~ f ( u l , . . . ,  u~) kt, (dul) . . .  kt, (dus)] k (2.7) 

= ~, A~ . . . A f E  ( I  /~,([a(ilj), a( i l j+l )] )" .P , ([a( ik j ) ,  a(ikj+l)])" 
i l  . . . . .  i k  j = l  

A similar formula can be written for the k-th moment  of the integral of  g, only A[  
must be replaced by A~. Observe that the terms E ( ) on the right-hand side of(2.7) 
are non-negative because of part a) of  Lemma 1 and the independence of the 
random variables tt,([a(i), a( i+ l ) ] ) ,  i = l , . . . , p - 1 .  Since ]A~l <Ai  f by the 
conditions of Lemma 2, the above fact together with formula (2.7) and its version 
for the integral of  the function g imply Lemma 2 in this special case. Then a simple 
limiting procedure supplies the proof  in the general case. 

The main result of  this section is the following 

Proposition 3. Let f be a measurable function such that I f (u1, . . . ,  u~)l -<_ 1, and 
s + l  

define tl f ( t) by formula (2.1). I f  O <= v < t + v < 1, d 1 t 1/2 n s/2 < z < d 2 t 2 n s with 
appropriate d 1 > O, d 2 > 0 then there exist some ~ > 0 and cq > 0 such that 

/ z21 ~ ,~ 
a) P ( I w ( t + 0  - r/: (v)l > z) < e x p t -  C ~ n ~ )  

( b) P (I t/f (t + v) - r/f (v) I > Bz) < exp - (c~ + c~ 1 log B) n~S~ ) 

for arbitrary B > 1. 
The constants dl ,  dz, cq and ~ depend only on the dimension s. 

Proof of  Proposition 3. We prove part a) with the help of (2.2). We want to 
estimate E[t l z ( t+v) -r l s (v )]  z~. To this end let us introduce the function 
h ( u l ,  . . . ,  us) = h,.v ( u l ,  . . . ,  us) 

J'l if v < U l < t + V  
h,,v(Ul , . . . ,us)  = otherwise 

Then because of Lemma 2 and the Schwarz inequality 

E [ ~ s ( t + v ) - ~ s ( v ) l ~ < _ _ E  ... h(u~ . . . .  , u ~ ) s ~ , ( d u J . . . ~ , ( d u D  
0 

= E {it, ([0, 1])2k(~- 1) #, ([v, t+v])  2k} 

< E(tt ,  ([0, 1])4k(s- 1))a/2 E(/~, ([v, t+v])4k) 1/2 (2.8) 

Choose k = / f i n t ~ / ,  where fl > 0 is a sufficiently small fixed number, and [ ] 
L -J 

denotes integer part. If  the constants d 1 > 0, d 2 > 0 and fl > 0 are appropriately 
nt 

chosen then 1 _< k < 4ss for sufficiently large n, 
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On the other hand ~tn ([V, t + V]) = P, ([v, v + t]) -- EP,, ([v, t + v]), and Pn ([v, t + v]) 
is Poisson distributed with parameter n t. A similar statement holds for/~, ([0, 1]). 
Hence we can apply part b) of Lemma 1 to estimate the right-hand side of (2.8). In 
this way we get that 

E[tl f (t + v) - q f (v)] 2k < C k t k (kn) ks (2.9) 

with our choice of k. Since 

C t k" n ~ i C t zZ fl~ n ~ 1 
z 2 < 2 z 2 n ~ t 2 Cfl~' 

formula (2.2) and (2.9) imply that if/? > 0 is chosen so small that�89 C/? ~ < 1 (first we 
choose/? then d 1 and d2 during the proof) then 

P ( l ~ l ( t + v ) - r l ( V ) f > z ) <  C/? ~ <exp  -~n~q~s) .  

Part a) is proved. 
The proof of part b) is the same. In this case we get with the same choice of k 

that 
E ( ~ ( t + v ) - ~ ( v ) )  ~ 

P ( l t l ( t + v ) - l T ( v ) l  > B z )  <= B2kzZk 

__<exp - ~ n t l / ~ - 2 k l o g B  = e x p  - ( ~ + ~ , l o g B ) ~ ] .  

Remark  4. Part a) of Proposition 3 with t = 1 and v = 0 implies that P (Ir/y (1)1 > z) 

( < exp - c~ n~a~- ] if d 1 n ~/2 < z < d 2 n s, i.e. Theorem 2' hold if the sup in (1.7) is 

dropped. Theorem 1' without the sup in (1.6) can also be deduced from this result. 
It is enough to apply the same Poisson approximation of an empirical process as in 
Sect. 4, only the argument of the proof  becomes much simpler. 

3. The Proof of Theorem 2" 

First we formulate the following 

Proposition 4. Le t  I f  (uj . . . .  , u~)l < 1 be a measurable function, and define tl f (t) by 
formula  (2.1). Let  c~n~/2 < x <  c2n ~ with some appropriate c 1 > O, c 2 > 0 which 
depend only on the dimension d, and define the number t o = t o (x, n) by the relations 

2s  2 2s  

s+l < t o < 2 X , + l  n ~+1 The fol lowing ine- 

1 2 

t o = 27, j is integer, and x s+I n 

qualities hold true." 

a) P max ]Tf(/to)] > <exp  - 
\o=<t<,~ 

b) P ( m a x  sup n i i ' "  i f ( u i  . . . . .  u,) 
\0</<~ lto<_t<(l+1)to lto 0 0 

dul/1,  (du2). . . l~,  (dus) > < exp - 
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c ,(ma  . . . .  

0 < / < ~  l t o < t < ( l + t ) t  o 0 0 

p,(duz)...~t, (du~) > < exp - 

The constants cl and cz are the same as in Theorem 2 (we shall choose c2 < 1, so that 
to < 1). 

Let us observe that Theorem 2' follows from Proposition 4. Indeed, part a) 
reduces the proof  of  Theorem 2' to the estimation of 

P (  sup sup ' r ly( t)- t /s( l t~ 2 ) '  
\ 0 < l < ~  l t o < l < ( l + l ) t  o 

and this is done in parts b) and c) with the decomposition 
Iz, (dul) = P, (dut) - n dul. Part a) of Proposition 4 will be proved with the help of  
part a) of Proposition 3 with the same halving procedure, as it is done e.g. is the 
proof  of  Kolmogorov 's  continuity theorem. 

But in this way we can give a good bound on the tail behaviour of  
sup I t/f (lto)[ only if to is not to small. This is the reason why part  a) had to be 

/ -  1,2,... 

treated separately. On the other hand, when we want to bound I t/s (t) - t/s ( t ' )] ,  
It - t'] < to, then we can make the decomposition/~n (dul) = Pn (du 1) - n dul, as it 
is done in the formulation of  parts b) and c), i.e. we do not have to exploit the 
cancellation which is caused by the fact that/~, is a signed measure. 

Proof of Proposition 4 

Part a). 

P (  sup t / s ( / ) > 2 ) <  
\ 0_< l<2J  p = l  

2 p 

(3.1) 

where A > 1 is arbitrary. To see why relation (3.1) holds one has to observe that if 

t / y ( 1 ) _ t / y  ( l ~ _ )  =<x(A-I)2A p+I for all pairs (l,p) such that p < j ,  l< 2V 

t/s < ~ for all k = 0, 1, . . , ,  2 j. Indeed, in this case We can write 

< ~ sup --t/f < x ( A - 1 )  2, 1 < x  
p=ol-<2" = 2A = A p = 2  

We shall estimate the terms at the right-hand side of(3.1) with the help of  part  a) of 
Proposition 3. First we have to check that the conditions of  Proposition 3 are 

l ( A - 1 ) x  
satisfied with t = ~-~ and z -  ~ - ~ w r  , i.e. we have to show that 

p s ( A - - l ) x  v s+l 
d12 2 n 2 <  ~A~T; < d 2 2 -  2 n ~. (3.2) 
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The left hand side of (3.2) holds if we choose A < ] /2  and cl > 2 d 1 ~ .  On the other 
2 2s  

hand, since 2 - P >  2 - i  > x s+1 n 5+ 1 the right hand side of  (3.2) holds if A is 
chosen so that A - 1 < d 2 . Hence relations (3.1), (3.2) and Proposition 3 imply 
that 

P sup > =< ~ 2 pexp  -cr -----~(p_-Ur ) -  ] 
\0</<2 J p=l 2/sA s n - 

(~2n_X2 /~ )  ( g ~ / s )  (3.3) = Y' 2 f e x p  - < e x p  
p = l  

A - 1 ~ 2/s 2 
with~=\ 2A ] a n d 2 = 2 1 / ~ A - Z > l ( b e c a u s e ~  i fx>c~n~/2 'and 

c 1 > 0  is chosen sufficiently large. The last inequality in (3.3) holds since 

2Pexp 2 - < 2 -p if c 1 is sufficiently large. Part a) is proved. 

Part b). We apply a halving procedure similarly to the proof  of  part a). But this 
method works only when/1, (dUl) is replaced by ndUl, as it is done in part b). 
Similarly to the proof  of  (3.1) one gets that 

I = P (  sup sup n l i o 0 " ' o  \o__<t< 2, to__<t < (z+l),o i i f ( u l '  

/ = 0  r = 0  p = 0  l t o + P t 0 2  - r  0 

x A -- 1) (3.4) " dul/J" (du2)"/~" (dus) > -8 

with arbitrary A > 1. Let us introduce the function G (u2, ..., us) = Gl, r,p ( u 2 ,  . . . ,  Us) 

2" l t o + ( p + l ) t o "  2 v 

G(u2, . . .  ,us) ---- - -  ~ f ( u l , . . .  ,us) du 1 . 
gO l to  + p t o  " 2 r 

"'us) dUlPn(du2)'"/An(dus) > 4 )  

1 

, f  ( u l  . . . .  , .s) 
0 

Then we have I G (u2, . . . ,  us)] < 1, and a general term in (3.4) can be written in the 
form 

I I = P  S "  ~ a(u2, . . . ,us )  ,u,,(du2) > x 1 2" 
o o "" 8 r nt ~ �9 

We estimate the expression in (3.4) with the help of  part  b) of  Proposition 3 with 

z - (A - 1) x and B = ,1 < A < 2. First we have to check that the conditions 
8 Anto 

of  Proposition 3 are satisfied. A simple calculation shows that 

5-1 ( A _ l ) X  <=dznS_l 
dl n 2 < 8Anto 
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if c a > 0 is sufficiently large, and c 2 > 0 is sufficiently small in the condition 

cl n S/2 < x < c2n S. Since 1 < A < 2, hence B = > 1. Thus we get that 

H__<exp ( - ( c ~ + ~ t r ) ! (  x ~a - -~ l<exp( - ( c~+~ar )  Xs2+ln :-+11) 

and the expression in (3.4) can be bounded as 
2 s - a )  

I S  ~ 2 J + r e x p ( - - ( e + ~ l r )  x ' + l n  ~ �9 (3.5) 
r=0 

We estimate (3.5) with the help of  the following inequalities: 

U e x p  - c q r x s + l n  Zz]- =< 2~exp _ nS#~ =<B1, 
r=O r=O 

c~ ~+a 7 ~  < CnSZ-1 exp 2 i e x p  - ~ x  n = - < B z .  

These inequalities together with (3.5) imply that 

I<=BaB 2exp - x ~+an ~+T __<exp -c~ 

if ca n s/2 < x < c2 n s. Part b) of  Proposition 4 is proved. 

Part c). Let us first observe that if ~. is a Poisson distributed random variable 
with parameter  2, )~ > 1, then 

P ( ~  > 22) < exp ( -  ~2) 

with some c~ > 0. Since P, (( l+ 1 ) t o ) -  P, (lto) is Poisson distributed with para- 
meter n to, n to > 1, the above inequality implies that 

p(p,((l+l)to)--p~(lto)>2nto)<exp(-~nto)<~exp= = -c~ n " 

The last inequality enables us to reduce the p roof  of  part  c) to the verification of  
the inequality 

t 1 1 
P sup ~ ~ ... ~f(u~, ...,us) P,,(du~) (3.6) 

\ l t o  <=t(l+l)to Ito 0 0 

l~,(du2)...lz,(dus) > ~ P , ( ( l + l ) t o ) - P ~ ( l t o ) < 2 n t o  < exp -c~ 

1 
for arbitrary l = 0, 1, ..., to 1. 

The main point in (3.6) is that we can assume that the P, measure of  the interval 
[lt o (t+ 1) to] is less than const, nt o when investigating the integral in (3.6). Hence 
we can expect that the probability in (3.6) has the same order as in the case w h e n  
P,(dua) is replaced by ndu , ,  and this was investigated in part  b). The main 
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difficulty in the proof of (3.6) is that P, (du) is a random measure�9 We shall 
overcome this difficulty by exploiting that the random measure P,(du) in 
[lto, ( l+  1) to] is independent of this measure outside this interval�9 We exploit this 
independence with the help of some conditioning. We also make a decomposition 
of the measure /6(du), which appears naturally when carrying out this 
conditioning. 

Let us introduce the event A m (y~ ..... y,,) = A,,t . . . .  (Yl .... , Ym) A,, (Yl .... , Ym) 
= {the Poisson process P, has exactly m jumps in the interval [lto (l+ 1) to] and 
they are in the points yl  < Y2 < ... < Y,,}. 

We claim that 

t 1 1 

P sup S ~ "'" ~ f (u l , ' " ,us )P~(dUl)  16(du2)'"l~,(dus) 
\ l t o  <=t<(l+l)to lto 0 0 

> 4 A~(ya, . . . ,ym))  <= t~ exp( -ex~ /~- )  (3.7, 

for all m < 2nt o and t o < Yl < -.. <Y,~ < ( l+ 1)t o . Relation (3.7) implies (3.6). 
Let us write 

12, (du) =/~(1) (du) + P, (du) - n2 (du) , (3.8) 

where//,1) denotes the restriction of/~, to the complementary set of the interval 
[lto, (l+ 1)to] , 15 and J( the restriction of the Poisson measure P, resp. the 
Lebesgue measure to the interval [lto, (l+ 1) to]. Let us decompose the measure 
/~,(dui) in the integral (3.7) for all 2 < i <  s by formula (3.8)�9 In this way we 
decompose the integral in (3.7) as the sum of 3 ~- 1 integrals�9 To prove (3.7) we are 
going to estimate for each such integral the conditional probability that it is larger 

x 1 -~ under the condition Am (y~,. . . ,ym). Let us observe that the measure than ~- 3 

/~(1) is independent of Am ( ' ,  . . . .  .), and P, is measurable with respect to it. This 
enables us after the above decomposition of  the integral in (3�9 to rewrite the 

conditional probability that a term is larger than 4 31-~ in the form of an 

unconditional distribution. After rewriting these conditional probabilities we 
have to prove inequalities of the following type to prove (3.7)�9 

P sup I f "" I f ( u l , ' " , u ~ )  f i . ( du l ) ' "E (duk , )  
l to<t<( l+l ) to  lto 0 0 

�9 Y l k 2 ~ ( d N k l + l ) ' " ~ ( d U k l + k 2 '  / g ( n l ) ( d N k l  ] '"l)(dus) > 4 31-s) + k 2 + l ]  ' '  � 9  

< 2 �9 3 ~ exp (3.9) 

for all m < 2 n t o ,  ltoyl < . . . < y m < ( l + l ) t o ,  k l > l ,  k z ~ 0 ,  [C=kl + k 2 ~ s  , 
m 

where P, (du) = ~ 6 (Yr), and 6 (x) denotes the point mass concentrated in the 
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point x. A general term which we have to bound is similar. We have to bound the 
distribution function of  the integral of the function f with respect to a (random) 
product measure, where the first component of this product is P, (du), and the 
other components can be either P, or/~1) or ~. All such terms can be estimated in 
the same way as we shall estimate the left hand side of  (3.9), and the same upper 
bound can be obtained. Only the notation would become more complicated in the 
general case. 

In the integral in (3.9) let us first integrate with respect to the coordinates 
Ul , . . . ,  Uk~ (in this case this means summation). We get that (3.9) would follow 
from the following inequality: 

2 1 " ' "  2 P "'" Y P l ' ' ' ' ' Y P k l ' U k l + I ' ' ' ' ' U s )  
Pl = p< = 1 0 0 

�9 7, (dUk~ + 1) . . .  7, (dUk)/~(1) (dUk + 1).../~(1) (du,) > 

x ) ( f )  
> 4 - 3 ~ - l m k l n  ki < 2 . 3  * - l e x p  - -a  (3.10) 

under the same conditions as in (3.9). We shall bound each term at the left-hand 
side of (3.10) by first integrating with respect to the k s + l-th, kl + 2-th.. .  and k-th 
coordinates, and then estimating the integral arising in this way with the help of 
Proposition 3. Introduce the functions 

F ( u l , . . . ,  Us-k) = f ( u l  . . . .  ' Us-k' YP* ' ' ' "  Ypk~' l, to) 

F(u l  , . . . ,  us-O 
(l+ l)to (t+ 1)to 

= I "'" S f ( Y m  . . . .  ,Yp<'v<+I  . . . .  ,Vk, Ul , ' " ,U*-k )  dVk,+l '"dVk 
lto lto 

and s - k 

F(U~ . . . . .  Us-k) = to k2 F ( u ~ , . . . ,  us-k) [ I  I(u~ < lto or u~ > ( l+ 1) to), 
i = l  

where I (A)  denotes the indicator function of  the set A. 
Then we have 

[F(ul ,  . . . ,  us-k)l < 1, 

and a general term at the left hand side of (3.10) can be rewritten in the form 

P I - - - I F ( u ~ , - - , U s - k )  l Z , ( d u l ) - l t ,  > 4 .  3 S - l m < ( n t o )  k; " (3.11) 
0 0 

In the case s = k the integral in (3.11) is defined as the number 1. In this case the 
probability in (3.11) equals zero if c2 in the conditions of Proposit ion4 is 
sufficiently small, since the relation m < 2nto in this case implies that 

8--1 

2 = 4 . 3 S _ l r n k ~ ( n t o ) k 2 > C x ( n t o ) - s > c  ' - -  > 1 .  
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To  b o u n d  (3.11) in the case 1 _< k _< s - i let us in t roduce  the n u m b e r  z = z (k, x, n), 
s - k  

s-k 2~(s+1) Some calcula t ion shows tha t  d i n  2 < z < d 2 n  ~-k ,  and Z = X  s 

since m < 2 n t o ,  s > z if cl  n ~/2 < x < c2 ns, and c~ > 0 is sufficiently large, c 2 > 0 is 
sufficiently small. This  implies tha t  we increase the p robab i l i ty  in (3.11) by 
replacing ~ with z in it, and the lat ter  p robab i l i ty  can be es t imated  with the 
help o f  pa r t  a) o f  P ropos i t ion  3. This es t imat ion  gives the uppe r  b o u n d  

z k x 2/~ ~(,+1~ for  the expression in (3.11). Since exp -c~ - = e x p  -c~  �9 
n 

the lef t -hand side of  (3.10) consists o f  r n ~ <  (2n to )  s such terms we get the 

uppe r  bound  C ( n t o )  ~ e x p - c ~ x Z / " _ n ~ _  ~ for  it. Observe  tha t  

O~ X 2/s 
- �9 - -  < n  K for  a rb i t r a ry  K >  0 if c l n  ~/2 < x <  c2 n~, and  exp 2 n 

n > n o ( K ) ,  since ~ ( n S )  ~(~+1) x2/~ ~(~TTf - -  - - <  - - e  + - -  < - - K  logn .  
2 \ x J  n 

Thus  we get tha t  the left hand  side of  (3.10) can be b o u n d e d  by 

O~ X 2/s s(s+ l~ < t o O~ 
1 exp - - -  2 n n n = 2 7 ~  exp - -  ' 

Thus  we verified (3.9), which implies (3.7) and  hence also (3.6). Par t  c) is proved.  

4.  T h e  P r o o f  o f  T h e o r e m  1' 

Our  a im in this section is to cons t ruc t  a Poisson  process  and  an empir ical  process  
s imul taneous ly  which are close to each other.  M o r e  precisely we wan t  to cons t ruc t  
the measu re s / z ,  and  ft, in such a way  tha t  the re la t ion 

io 
--  ~ ~ . . .  ~ f ( u l  . . . . .  Us) f i , ( d u l ) . . . f i , ( d u ~ )  > x  < C  exp - e  

O 0  0 

hold  for  all I f ( u 1 , . . . ,  us) l < 1, c l  n ~/2 < x < c2n ~, where C > 0, Cl > 0, c2 > 0 and  
> 0 depend  only on the d imens ion  s. We m a k e  the fol lowing construct ion:  Let  

~'1,72, -.. be a sequence o f  independen t  un i fo rmly  dis t r ibuted r a n d o m  var iables  on  
the interval  [0, 1], and  let q, be a Poisson dis t r ibuted r a n d o m  var iable  with 
p a r a m e t e r  n, which is independen t  o f  the sequence {~}F= 1. 

Set 
n 

/2.= 
/ = 1  
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and 
tin 

m = ~ ,~ (73 - n;~, 
i=1 

where 2 denotes the Lebesgue measure on [0, 1] and ~ (x) the point mass measure 
concentrated in the point x. Then ft, and/J," have the prescibed distributions. 
Moreover, we claim that they satisfy relation (4.1). It is clear that relation (4.1) and 
Theorem 2' together imply Theorem 1 '. Let us first observe that there exists some 
A > 0 such that 

P I r / , - - n l > ~ x  )_<_2exp - - A - ~ - ) .  (4.2) 

Because of  (4.2) it is enough to show that 

P B , c ~ { [ r / , - n [ <  x a/" < C e x p  -c~ (4.3) 

with 

i t 1 1 
B,'= sup ~ I "'" ~ f ( u l , ' " , u ~ )  # , ' (du~) . . . / 2 , ' (du , )  

kO_<t~<l 0 0 0 

- S ~ ... ~ f ( u l , . . . , U s )  f i , ' (du t ) . . . f i , ' (du~)  > x  (4.4) 
O 0  0 

in order to prove (4.1). 
For  s = 1 the condition It/, - n] < �89 x implies that the difference of the integrals 

in (4.4) is less than It/, - n[ < �89 x hence the left hand side of (4.3) equals zero. For 
s > 2 we shall prove (4.3) by induction. Our inductive hypothesis is that for s' < s 
Theorem 1' holds. Moreover, as the argument at the end o f  Sect. I shows, the 
condition c1 n s/2 < X < C 2 tt s can be dropped from Theorem 1'. Then if we prove 
(4.3) with the help of our inductive hypothesis then we we also prove (4.1) and 
hence Theorem 1' for s. We shall prove (4.3) by applying a conditioning argument. 
Namely, we are going to prove that 

P ( B , ' l ~ l , ' = i t + l ,  7, '+1=yl  . . . . .  7 , ' + z = y l ) < C e x p  -c~ , (4.5) 

and 

P(B,'I~," - - n - l ,  7,, l+l =Yl . . . . .  7," =Yl) < C exp -c~ (4.5)' 

for all 0 _< l < i x  l/s and 0 =< yj __< 1, I =<j __< l. Relations (4.5) and (4.5)' imply (4.3). 
First we prove (4.5). Let us introduce the measure v~ = v," (l) 

l 

v," = 2 c~(ya), (4.6) 
j = l  

where Yl . . . . .  Yt are the same as in (4.5). Then under the conditions appearing at 
the left-hand side of (4.5)/z," = fi," + v,, and the conditional distribution of ft, under 
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this condition agrees with its unconditional distribution. Hence, by applying the 
decomposition/z, = ft, + vn we can write 

P(B,[  G = n + l, 7,,+ 1 = Y l ,  ---, G+~ =Y~) 
t 1 1 X )  

< Z ' P  sup ~ . . . ~ f ( u  I . . . . .  u~)v , , (dul)m~(z)(du2) . . .m~(s)(du~)  > ~  
\O<--t~<l 0 0 0 

t 1 1 X )  

+ E " P  sup ~ ~ ... ~f (u~ ,  . . . ,us)  f i , , (du~)m~(2)(du2) . . .m,m(dus)  > ~7 
\O~<t-<l 0 0 0 

= X 1 ~- X 2 ,  (4.7) 

where e (j) = 0 or 1, j = 2 , . . . ,  s, m o (du) = v, (du), m I (du) = ft, (du) in 2", the 
summation is taken for all possible sequences e (j) = 0 or 1, j = 2 . . . .  , s, and in 2 "  
again it is taken for all such sequences with the exception of  the term where e (/) = 1 
for all j - - 2  . . . . .  s. The terms in Z1 and 22 were separated, because their 
estimations require a slightly different argument. 

Z~ contains the term where f is integrated with respect to the measure 

I v ,  (dul) .  This integral is less than P <  3-~x, hence this term equals zero. To 
i = l  
estimate the other terms in Z 1 we define a partition Ij, k=[tj ,  k, tj, k+l), 

k = O ,  1 , . . . , k ( j ) = [ l T y l ] , o f t h e i n t e r v a l [ O , ] ] f o r a l l j < = l o g 2 l i n t h e f o l l o w i n g  

way: tj,0 = 0 ,  Yk.2J< tj, k<Yk .2J+l  for 1 < k < l T ( j ) ,  Y~j>I = 1. We made this 
partition in such a way that for fixedj all intervals It, k, with the possible exception 
of the last one, contains exactly 2 j points y (the last interval may contain less 
points), Then, by using a halving procedure similarly to the start of the proof part 
a) of Proposition 4 we get the following estimate for a general term of Z I '  

I R = P  sup 5 . . . ! f ( u l , . . . , G )  v,(dUl)...v,,(duk)fi,,(dUk+,)...fi,,(dG) > ~  
\O-<t-<l lO 0 

i <-_ ~ ~ P ... f ( u l , . . . , U s )  Vn(dUl) . . .vn(dUk)f in(duk+i) . . . f in  
j =  1 m = 1 . . ,  0 

x ] f 2 - 1  

We get, by integrating with respect to the first k coordinates that 

i 1 2j �9 .. ~ f ( u a , . . . , u s )  v , ( d u l ) . . . v , ( d U k )  < 2 J l  k - l < - - x k / ~  
:j,.o o = = l  " 

Now we can estimate (4.8) with the help of Theorem 1' for s ' =  s - k  in the 
following way: 

l~ (' X2/s (L~slk~ 
I k < 2  ~ / exp~--c~ T :=, \2J/ / 

< C ~  ~-exp - O~x2/s( l~ s-k O: 
i=~ l 2 n \ U ]  / < 2 C e x p  - n  x2/s , 
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if x > c 1 n ~/2 with a sufficiently large cl > 0 and 1 < k < s, since in this case 

~x x a/S ~ < All other terms of  Z~ can be estimated in the exp n n \2 I J  J = 

same way, and one gets that 

Z~ <= C e x p ( - ~ x 2 / ~ ) .  (4.9) 

Let us estimate a term of  the following type in -r z" 

I ; , = P  sup ... ~ f ( u a , . . . , u s )  f i , (du l )v , (duz ) . . . v , (dUk+l) /2n(db lk+2)  
\O=<t_<l 0 0 

By integrating first with respect to the coordinates u2 , . . . ,  uk + 1 we get with the 
function 

k l  1 

F(Ul ,  uk+2 . . . . .  us) = x ~ 5 " "  ~ f ( u l ' " "  u,) v, (du2).. .  v. (dUk+ 1) 
0 0 

that k 

[F(ul ,Uk+2,. . . ,U~)[ <lkx-~<=  1, and 

I ; , = P  sup ... S f ( u , , u k + 2  . . . .  ,us ) /2 , (dua) /2 , (duk+z) . . . /2 , (du~)  > 
\o~,<_1 o o o 2s J"  

The term If can be estimated with the help of  Theorem 1' for s' = s - k. One gets 

I~<=C exp ( -  c~-x2~/*). 

The general terms in Z ;  can be estimated in the same way, and one gets that 

Z 2 _-< C exp - ~ . (4.9)' 

Relations (4.9) and (4.9)' imply (4.5). The proof  of  (4.5)' is similar. In this case we 
define v, again by (4.6), only Yl,.. . ,Yz are the Yi - s appearing in (4.5)'. Then we 
get that under the conditions in formula (4.5)'/2, = / , ,  + v,, and the conditional 
distribution o f / t ,  agrees with the unconditional distribution of/2"_,,  

/2,_, = / 2 , _ , -  l .  2, (4.10) 

where/2,_, is defined by (1.5), only n is substituted by n - l ,  and 2 is the Lebesgue 
measure. Then (4.5)' can be proved in the same way as (4.5), only one has to prove 

, _2r/ that Theorem 1 remains valid for s' < s if ft, is replaced by/2"_,. Since n -  l > 3 , 
we prove this statement if we show that for all I f ( u 1 , . . . ,  Us)l <= 1 

t 1 1 

P s u p  I ~ " '" ~ f ( u x ' " " U s ) / 2 ' - ' ( d u a )  " " / 2 ' - ' ( d u s ' )  ( 4 . 1 1 )  
kO-<t_<l 0 0 0 

- ~ I . . . f f ( u l  . . . .  ,Us)ta,,_,(dUl).. . /2,,- ,(dus,) > < C e x p  - 
0 0 0 
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for all x > 0, l < x x 1/s s' < s - 1, where C and ~ are universal constants depending 3 , 

only on s. 
By applying the decomposition (4.10) of p,_~ we get that (4.11) follows from 

the following type of inequalities: 

P sup p ' - k  ~ . . . ~ f ( u ~  . . . .  , u ~ , ) f i , _ , ( d u t ) . . . f i , _ z ( d u k ) d U k + ~ . . .  > ~  
\ O - - < t - <  1 0 0 0 ( x2Js,  
< C e x p  - ~  n J '  (4.12) 

and 

- k  t 1 1 

P sup P" ~ . . . ~ f ( u ~ , . . . , u ~ , ) d u a f i , _ , ( d u 2 ) . . . f i , _ ~ ( d U k + x )  
\ O - < t - < l  0 0 0 

�9 dUk+2... > x < C e x p  -c~ . (4.12)' 
= H 

By integrating first with respect to the coordinates Uk + 1 . . . .  , U s, and exploiting 
that l < • , we get (4.12) from Theorem 1' for the dimension s' - k. The proof 
of (4.12)' is similar, first we integrate with respect to the coordinates where 
Lebesgue measure stands, and then apply Theorem 1'. But here we must apply, 
because of the sup in (4.12)' a halving procedure in the first coordinate in the same 
way as it is done at the beginning of the proof of part b) in Proposition 4. We have 
to estimate the probability of  the event that the integral in (4.12)' is larger than 

x . ] /2 - 1 . 2_i/2 if we integrate with respect to the first coordinate only in 2 s' p ' -k  ]//~ 

the interval [k2 -~, ( k +  1) 2-~). Then the same argument which is done in formula 
(3.4) leads to the proof  of (4.12)'. We get in this way that formula (4.11) and hence 
also (4.5)' holds true. Theorem 1' is proved. 
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