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The large-scale limit of Dyson’s hierarchical
vector valued model at low temperatures.
The non-Gaussian case

PART 1. LIMIT THEOREM
FOR THE AVERAGE SPIN

by
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and
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RESUME. — Nous étudions la limite thermodynamique du modéle
hiérarchique de Dyson vectoriel invariant par rotation a basse tempéra-
ture. Ce modele dépend d’un paramétre ¢ qui joue un rdle analogue a la

dimension. Le cas \/5 < ¢ < 2 a été étudié dans [5] et nous considérons

icilecas 1 < ¢ < \/5 qui donne des limites thermodynamiques non gaus-
siennes.

Dans la premicre partie nous étudions l'action de la renormalisation
sur ce modele, et nous établissons la convergence pour des normalisations
non triviales. Dans la seconde partie nous étudions la limite thermodyna-
mique de I’état de Gibbs en imposant un petit champ magnétique que
nous faisons tendre vers zéro avec le volume.
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First we formulate the problem we are investigating. We consider Dyson’s
hierarchical vector valued model which is defined in the following way:

PutZ=1{1,2,...

formula

0 it o=
di,j) = .
(l]) {211(1,})—1 if i#j

} and define the hierarchical distance d(-,-) on Z by the

1.1)
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LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. — PART I 9

with n(i, /)= {minn, there is an integer k such that (k—1)2"<i,j<k2"}.
We call a sequence ¢ = { o(i),ie Z } a configuration, and assume in this
work that o(i) e R? with some p > 2 for all ie Z. In order to define our
model we introduce the following Hamiltonian function J#(c) in the space
of configurations

H(o) = — ZZ UG, ja(i)a()) (1.2)
ieZ Jjez
Jjzi
UG,j) = dG,j)~* if i#j, 1.2y
where g, 1 < a < 2, is a parameter of the model, and o(i)o(j) denotes scalar
product. (In the sequel we shall use ¢ = 227 ¢ instead of the parameter a.)
We also introduce the function

2" 2n

H(0)=— Z ZU(i,J’)G(i)G(i), o={o(1),...,0(2"} (1.2)"
i=1 j=i+1

and a free measure v on R? defined by the formula

Xt
7o = P = plx. 1) = C() exp{ it } (1.3)
where t > 0 is a sufficiently small fixed constant. It is another parameter
of the model. The constant C(¢) is chosen in such a way that p(x) be a density
function.

Dyson has introduced such a model in [12] and [13]. It is a simplified
version of one-dimensional Ising type models with long range interaction.
Many physical phenomenas can be studied more simply in this model.
Dyson introduced it to study phase transitions and Thouless effect. Later
it became clear that this model is also very appropriate to study renorma-
lization type problems (see [6], [8], [9]). The aim of the present work is
also to study a renormalization type problem. We want to understand
the consequences of continuous symmetry in renormalization type pro-
blems.

There is a standard way to define equilibrium states at temperature T
for a model with Hamiltonian # and free measure v (see e. g. [19], [20)).
For the sake of completeness we recall it in Appendix D. In Appendix E
we also prove that the measure constructed in Part II is an equilibrium
state. In this work we are mainly interested in the large-scale limit of the
equilibrium state of Dyson’s model. The notion of large-scale limit is
defined in many places, €. g. in [20] or at the beginning of Part II of this
work. (In Part I this notion does not appear yet.) In Section 7 of [6] it
is pointed out that the large-scale limits in Dyson’s model are essentially
different in the case o(i) € R! and in the vector-valued case o(i) € R?, p>2.

Vol. 49, n° 1-1988.



10 P. M. BLEHER AND P. MAJOR

Moreover, in 7the vector valued case the situations 1 < ¢ < ﬁ and
ﬁ < ¢ < 2 also differ. The large-scale limit in the case \/5 <c<2is
described in [5]. The corresponding result for the case 1 < ¢ < \/5 is

formulated in [6] with a sketch of proof. (The case ¢ = \/5 deserves special
attention, but we are going to investigate it elsewhere.) The aim of the
present work is to give a rigorous proof of the result about the model with

1 < ¢ < /2 on the basis of the ideas of [6]. During the proof we had to
overcome several technical difficulties which we found interesting in
themselves. The proof can be split up into the solution of two analytical
problems which are fairly independent. In the first part of this work we
study the first of them which deals with the behaviour of Gibbs states
without boundary conditions. (See Appendix D for explanation of this
terminology.) The most essential differences between cases 1 < ¢ < \/5

and /2 < ¢ < 2 appear at this point.

The first problem can be formulated directly, and it has a special interest.
For all n, n=0,1,2,... and T > 0 consider the probability measure
e = tor On (RP)?" with the density function

PrlX1, ooy Xan) = pulXq, .. X0, T,t), x;€R?

defined by the formula

p,,(xl,...,xz;.) —m {——Z Z l])x.x }H (x,-,t) (1.4)

i=1 j=i+1
where U(i, ) is defined by formulas (1.1) and (1.2), p(x, t) by (1.3) and
Z,(T,t) is an appropriate norming constant with which p,(xy, ..., x;n) is

a probability density function. Let (6(1), ..., 0(2") be a u,r distributed
random vector, and let p,(x, T) = px,T,t) denote the density function

of the average — Z a(j). We are interested in the asymptotic behaviour
j=1
of p,(x,T)asn — oo. Let us remark that p,(x, T) depends on x only through
|x], i.e. if we define the function p,(y,t), yeR! as p,(y, 1) =pu(»,0),1),
=(0,...,0)eR?"1! then p,(x,t) = p,(| x|, T). Now we formulate Theo-
rem 1, the main result of Part I. Its main content is that for 1 < ¢ < \/5
the density function p,(x, T) satisfies a limit theorem with an unusual
normalization. The limit distribution is not normal, its density is defined
by an integral equation. Theorem 2 also contains some information about
the smoothness of the functions p,(x, T) and their decrease at infinity.

THEOREM 1. — For 1 < ¢ < /2 there exist some To > 0 and to > 0 such

Annales de I'Institut Henri Poincaré - Physique théorique



LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. — PART 1 11

that for all0 < T < Ty and 0 < t < t, there are some M = M(c,t,T) > 0
and ny = ne(c, t, T) such that for n > ng

¢ "pux, T)=c7"py(| x|, T)=

=B(M,T)exp<— —M))g(%wx! —‘M)>+rn(x) (1.5)
with a, = 7 and a, = ao + 1, where- BM, T) > 0 is an appropriate

norming constant, the function g(x) is the solution of the integral equation

p—1 x 1]2 x 2
glx)= <c\/—> Lpexp(.—vz)g<; +u+ -2—>g<z —u+ )dudu (1.6)

where ue R, veRP~1, v? denotes scalar product, and the error term r,(x)
satisfies the inequality

|rix)| £ KM, T)g" forall x>0

with some K(M, T) > 0 and 0 < q < 1, where q depends only on the para-

meter ¢, 1 < c < \/5
The equation (1.6) has a unique solution in the class of functions

oA = { g(x), J e*|g(x)|dx < 0 if |t]| < to(g) to(g) > 0} beside the trivial

one g(x) = 0, and this function appears in formula (1.6). It also satisfies

the relation g(x) > 0 for all x, and exp(— aox)g(alx) < K(a)exp(— a|x])
6c — 4

for all xeR' if o < ¢

2 —c)

The functions p,(x, T) and r,(x) also satisfy the inequalities

&’ "M
—— ¢ "Prx, T) |x—Ml> forall x>0
dx’

< KM, T)exp < _
j=0,1,2, n>ny (1.7)

<cKM,T)q", j=0,1,2 forall x>0, n>ny (1.8)

dx’

with some K(M T)>0, u>0and 0 <q <1, where u and q depend only
on the parameter c.
The number M satisfies the relation

M? = °—T+R(T,t) (1.9)

with some |R(T, t)| < const. such that R(T,t) > 0if T - Oandt — O.

Vol. 49, n° 1-1988.



12 P. M. BLEHER AND P. MAJOR

We shall prove (Lemma 12) that the function g(x) is the density function
of an appropriately defined quadratic form of independent normal variables.
Theorem 1 means in particular that in the case 1 <c < \/5 if(a(1), ...,0(2")
is a p, r distributed random vector then the density functions of the random

S

j=

a
const. exp (— %Mx)g(T1 Mx> as n — .

The behaviour of Dyson’s model in the case \/2 < ¢ < 2 or with scalar
valued spins is essentially different. In these cases the random vectors
2”

Eag)\ — 22M,, tend in distribution to a normal law with zero
i=1 — —

expectation, M, - M with some M if M, = E|a(j)| (expectation is
taken with respect to the measure p,r). (See [5] Appendix, [6] and [9].)
This means that in these two cases we have to normalize differently.

n

. c __ . .
variables 7 —c"M tend to the density function

2

N

In Part II of this work we show that this difference is also inherited in
the behaviour of equilibrium states. Moreover, we describe the large-scale
limit of the equilibrium state, and show that its component in the direction
of the magnetization is a quadratic functional of a Gaussian field.

Let us remark that in our model both the Hamiltonian function (o)
and the free measure v(o) defined in (1.2) and (1.3) remain invariant if
all spins a(j), je Z, are rotated in the same way. Such an invariance is
called an O(p) continuous symmetry in the physics literature. Actually
this continuous symmetry is the cause of the results in our model. The
real problem we are going to study is the consequences of continuous
symmetries. We expect that results analogous to those of this paper also
hold for translation invariant models with a continuous symmetry on the
three dimensional lattice. We formulate this conjecture in a more explicit
form in the second part of this work.

In that part we need some more information about the behaviour of
the function p,(x, T) than that given in Theorem 1. Hence we prove the
following

THEOREM 2. — Under the conditions of Theorem I there exist some inte-
ger ny and positive real numbers ¢, q, B, K, L and 6 depending on the para-
meters ¢, T and t in such a way that for n > n,

< 1 M — )(1+r(x)) (1.10)

¢ "px, T)=B exp<

Annales de I Institut Henri Poincaré - Physique théorique



LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. — PART I 13

‘with some |r,(x)| <Kg", 0<q<1, in the interval —enc "<x—M<en'/*c™"
log 2
, and

where o, =
10 ANA 1\2+0
¢ "pux, T) < Kg"exp (— L(c"|x — M|)*™)
if x> M 4+ en'l*c™"

Relation (1.10) can be considered as the multiplicative version of rela-
tion (1.5). In order to deduce it from (1.5) we have to give a good lower
bound on ¢~ "p,(x,T) in the interval — enc™" < x — M < en'/*¢™". The
main content of formula (1.11) is that for x > M a much sharper upper
bound can be given than that in (1.7). On the other hand for 0 < x < M
the bound in (1.7) cannot be improved considerably, at most a better
constant g can be written in the exponent.

og?2
The appearance of the number o = ——102 has a deeper reason. The
c

(1.11)

decrease of the limit function g(x) at plus infinity is of order exp (— const | x|*).
The size of the typical region where the good asymptotic formula (1.10)
is proved is also connected with the tail behaviour of the limit function.
This typical region is chosen in such a way that the density function p,(x, T),
after an appropriate scaling, is exponentially small outside of this region.
(Observe the term ¢q", g < 1, in formula (1.11).) The typical region is not
symmetric with respect to the origin, because the decrease of the function
Pax, T) is different for positive and negative arguments. For negative x
formula (1.7) gives a good bound on p,(x, T) outside of the typical region.
In Theorems 1 and 2 we have assumed that the free measure v is defined
by (1.3). We could have considered a more general class of free measures.
Theorems 1 and 2 can be proved without any essential change if

2
Z—; = p(x, t) = C(t) exp(— % - %lx |* + R(x, t))
J

. . 'R o
with some function R such that 7| < Ct!*#| x|*~7 with some C > 0,
x

j=0,1,2,3 4.

2. ON THE CONTENT OF THEOREM 1.
CONVERGENCE TO THE SOLUTION
OF THE FIXED POINT EQUATION

It is proved e.g. in Section 4 of [6] that the function p,(x, T) defined
in Section 1 satisfies the recursive relations

n—1
pox, T)= Cn(T)J exp <C—T— (x* — u2)>pn- {x =, T)pp-1(x+u, T)du  (2.1)
Polx, T)=po(x)=C(1) exp{ -5 X“} 2.19

Vol. 49, n° 1-1988.



14 P. M. BLEHER AND P. MAJOR

where C(t) and C,(T) are appropriate norming constants which turn p,
into a density function. (These are formulas (4.2) and (4.2) in [2]. For
the sake of completeness we also present their proof in Appendix A.)
Thus Theorem 1 actually formulates the properties of the function defined
by relations (2.1) and (2.1), and we have to study these formulas. We
can simplify them a little by introducing the functions

ao T 2
WX, T =Bn —"x? n —x, T s = = .
44x,T) exp<2a1cx )p < /alx ) ag 7. ay=ap+1, (2.2

with some constant B, to be defined later.
A straightforward calculation shows that (2.1) and (2.1)’ imply that

an(x, T)=Cy(T) f exp (=" 'u)g,— 1 (x— 1, T)gp-1(x +u, T)du  (2.3)
RP .

_ -T t T?
qo(x, T) = Co(T) exp (ao x? — ——x4> (2.3

2a, 4 a?
with some C,(T) > 0. Observe that g,(x, T) is also rotation invariant, i. e.
g%, T) = q,(| x|, T) for the function gz, T) = gy(z 0), T), zeR,

0=(0,...,00eRP™! Also the relation g,(x, T) = g,(— x, T) holds. Choose
the constant B, in (2.2) in such a way that

Jw gu(x, T)dx = 1. (2.4
o

1
Pux, ) = -exp (- ;—;c"x2>q,,< /%x, T), 2.5)

and (2.3) implies that

Clearly

qn-# l(xa T) =

= K,,f exp(— W+ )G/ (x+ )+ 0, T)Gul/ (x—uP+ v?, T)dudv  (2.6)

Given the function g,(x, T) we define a number M, and a function
Jix) = Sulx, T) by the formulas

0

M, = M,(T) = f xq,(x, T)dx 2.7

0
fiX) = fux,T) = c-"q,,<M" + cf T). Q.77

Annales de I’Institut Henri Poincaré - Physique théorique



LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. — PART I 15

o]

Clearly, fi(x) >0, fix—c"M,) = fi(—x—c"M,), j fix)dx =1,

—c"M,,
Jl y xf(x)dx = 0 and g,(x, T)=c"f;(c"(x — M,), T). The reason for intro-

ducing the function f, and number M, is that we expect that this is the right
rescaling of the function g, for which M, —» M and f(x) — gu(x) with
some appropriate M > 0 and gy as n — o0. (See Section 7 of [6] for a
heuristic argument.) We shall prove the following

THEOREM 1. — Under the conditions of Theorem I the limit lim M, = M

exists, and
_ aj(ao — T)

(T?
with some |R(z, T)| < const.and R(, T) > 0asT — Oandt — 0. More-
over, there is some ng = no(c, t, T) such that for n > no

¢ -n . pmn .. n ’
M”=M+mc +5(n) c |5(n)l§Kc (28)

with some K = K(c). For n > ng there is some 0 < q < 1 and K > 0 depend-
ing on the parameter c such that

& 4 "o n

M? + R(, T) (2.8)

where g(x) is the same function as in Theorem 1. We also have

dJ
ﬁ fn(x’ T)

<KM/*texp(=pM|x), j=0,1,2, x>—c"M, (2.9)

for n > ng with some u > 0 and K > 0 depending only on c.

We shall deduce Theorem 1 from Theorem 1’. In order to study f,
and M, we introduce the integral operators Q,m, n=1,2,...,M >0
defined for functions f € .o/, y,

Aom={f:R' > R, f(x) is continuous, 0 < f(x) < K for all xeR!,
f(x) < Kexp(— ax) with some K = K(f) > 0 and & = o(f) > 0
for x > 0, there is some x > — ¢"M where f(x) >0},

by the formula

e e
4 C c C
f(c”(\/(M + c—x+—1 - g)z + Z—z . M))dudu. 2.10)

Vol. 49, n° 1-1988.



16 P. M. BLEHER AND P. MAJOR

For the sake of simpler notations we shall restrict ourselves from now
on to two-dimensional models, i. e. R? = R2. In this case ue€ R! and ve R}
in (2.10). Observe that Q,.mf(x) depends on the values of f(x) only for
x> =M, and Q,uf(x) = Qumf(— x — 2¢"*'M) what can be seen
by applying the substitution (u,v) » (— u, — v) in the integral defining
Q.mf. Moreover, Q,mf €Ay M for fest,y, since Q,uf(cx)> 0 if
f(x) > 0,0 < Q,mf(x) < c"nsup| f(x)|?, and we get, by splitting up the

domain of integration in (2.10) to < (u,v), |u| < x and < (4,v), |u|> f},
that for x > 0 2 2
2

| Qumf(x)| £ K2c" n(exp(— ix> + exp<— x—>>< K exp (— ax).
Put 2c 4c"

J xQuuf (x)dx

m, = ‘:““ , (2.11)
f Qumf(x)dx
—cntiM
and define the normalization of the operator Q,
S (x + m
Quumf(x) = Quuf ) (2.12)

f Qumf (x)dx
—en+ iy

for f € o/, m (The above formulas are meaningful since Q,mf € Zp+ 1)
Let us define

QUS G M) = (Q.,,Mﬂx), M+ ci> @.13)
for feof,u, M > 0. We claim that the relation
QuUALR. M) = (fo 1) My .13y

holds for the functions f, and numbers M, defined in (2.7) and (2.7),
and f, € o,y This can be seen by observing that by (2.6) and the definition

of f,
X
—qn+1<M + ,,+1>
=anexp<—t_2_v )fn( <\/<M + 55T n+1 +C_L:> +Z—n_Mn>>
s <c" ( \/<M+ - 3>2 + f’i -M,,>>dudv=1<,,6,;,m 709,
C c C

Annales de I’ Institut Henrt Poincaré - Physique théorique




LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. — PART I 17

hence
Jar1(%) = Qum, fulX) (2.14)
and
m,
M,y =My + 57 s (2.14%)

(The constants K, C, K,, C,, etc. will denote appropriate multiplying
factors in the sequel. The same letter may denote different numbers in

different formulas.)
2
x v
If — b and — are much smaller than M then a simple Taylor expan-

sion yields that

2 2
Ao 2
4 c

x u \? v? v?
=eM( /(1 )~ tut ..
c <J< + - "+1M_ "M) +chz ) u+2M( 15)
This relation suggests to approximate the operators Q, y and Q, v by Ty
and Ty defined by the formulas

— 2\ (x o2
Tu/f(x) = Jexp(— vz)f< +u+ 2ﬁ)f<— —u+ ——)dudv (2.16)

and

c
Tuf(x) = chMf< m)- (2.17)

As we shall see later, Ty, maps a density function with zero expectation
to such a function again, hence Ty is the natural approximation of the
operator Q, . By relation (2.14) we can write

Jas1(%) = Ty, fulx) + €a(x) (2.18)

with g,(x) = Q,m, fulx) — Ty, fi(x), and because of (2.15) we expect that
&,(x) is a small error term. We also expect that the limit M = hm M,>0
exists.

Given a number M > 0 we look for the solution of the fixed point equa-
tion f = Tyf and investigate the speed of convergence of the sequence

w/fn =12, ... to this fixed point for a general function f asn — oo.
If this convergence turns out to be sufficiently fast then it is natural to
expect that our sequence f, tends to the fixed point as n — oo.

For our purposes it will be sufficient to investigate the operators Ty
and Ty in the spaces & and &/, = &/

o= {f,fe”‘lf(x)ldx<oo if |s| <s(f) with some s(f)>0} (2.19)

Vol. 49, n° 1-1988.



18 P. M. BLEHER AND P. MAJOR

and

oAy = {f, fed, Jf(x)dx =1, fo(x)dx = 0}.
We can work better with the Fourier transforms fo” and Ty f. (We define
the operator Ty and Ty by the identities Ty / = (T /)~ and Tuf = (T )7

We get, by applymg the change of variables z = — + u+ 2—11)\4— and

x 2
= — — u + — instead of x and u, that
V= c M

T/ = Jexp (iEx — v?)f <— —u+ ”-) f< fus —>dxdudv _
ff (»f(z)exp <15 <Z +y- UM> )dydzdv =
B ol e

r f<§ é>2

(4 .
=3 ﬁ for fest (2.20)
M
and
exp(:—é) 5
TMJ7(€)———4M—f ]”Gé), fed. (2.20)
1+i—=
2M

Since f(0) = J f(x)dx and f/(0) = i f xf (x)dx relation (2.20) implies that

J Ty f (x)dx = [ f f(x)dx]2 (2.21)

and

f xTyf(x)dx = ¢ Jf(x)dx : fo(x)dx . 2.21)

As a consequence, JTM f(x)dx =1 and JxTM f(x)dx =0 if fed,
and this relations explain our scaling in the definition of the operator Ty.

Annales de I Institut Henri Poincaré - Physique théorique



LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. — PART I 19

By (2.20) the fixed point equation f = Tyf can be rewritten in the
space of Fourier transforms as
exp| i ¢ ¢
l—
PUam ~2<c c)

o= —=L7(;

(29
1+i—
| NV
or, by taking logarithm,

- 5 1
10gf(~’3)=210gf<§é)+iﬁi—§log<l+i§cﬁé>. 2.2

We are looking for the solution of the equation (2.22) in the space f € ./,

Q0

in the form log f(é) = Zaké". (Observe that for f e

k=2
~ d ~
log (0) = —log f(0) = 0,

therefore oy = a; = 0 in the above expansion.) Then by (2.22)

Y (1 o(E) =Y b e Ve

and
(— ic)

(-G

In such a way we have defined log 7({) in a small neighbourhood of zero,
and it is analytic there. Then by (2.22) it can be continued analytically
to the whole real line, and this analytic continuation gives the solution of
the fixed point equation.

If log g(&), ge o/, is analytic in a small neighbourhood of zero then

o0

Otk=

it can be written in the form log g(¢) = d, ¥ with some coefficients dj,
k=2 - .
and the same calculation as before supplies that log Tyg(&)= ) Tyu(di)E*
with
k=2

’ c\* 1 ic \¥
Tyxd) = 2| = — =] .
m(d) <2> d+ 2k< 2M>
k
Since 2(-;-) <lfork>2ifl<c< \/5 the coefficients of the Taylor
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20 P. M. BLEHER AND P. MAJOR

series of the function log T5Z(&) TYdy), k = 2,3, ..., tend to o, expo-
nentially fast as n — oo. This means that the convergence to the solution
of the fixed point equation is sufficiently fast.

One has to overcome several technical difficulties when trying to turn
the above heuristic argument into a rigorous proof. In the next section
we explain which are the main difficulties during the proof of Theorem 1’
and how we want to overcome them.

3. ON THE STRATEGY OF THE PROOF:
THE INDUCTIVE PROCEDURE

The main difficulty in the proof of Theorem 1’ consists in the justification
of formula (2. 18) together with a good bound on ¢,(x) in it. Let us remark
that such a relation can be expected only for large n. Indeed, when the

. u?
operator Q, y is approximated by Ty then the kernel exp <— — —v?|in
c

the integral defining Q, \f is changed to exp (— v?), and this change causes
a negligible error only if n is large. For small n we need a different method
to control the behaviour of the function f,(x).

Let us first consider the starting function g¢(x, T) defined in (2.3).
Simple calculation shows that if T < a, then the function gy(x, T) has
two maxima (in the variable x) in the points + M,
ay(ao — T)

o
Mo = T2t

3.1
and

- -T - My)\?
Go(x, T) = Cy(T) exp{ _ o (x — Mo)?(1 + u } (3.1)
a; 2M,
We shall show that if M, is sufficiently large then

folx) = folx, T) = n<x, /2—(61"_—T)> +R,

if x > — Mo, Mg = M, + R; with some negligible error terms R; and R,

1 2
where #(x, 0) denotes the normal density function exp| — _x_2
2na 20

with expectation zero and varianceAai Moreover, we shall see that for
small n (depending on My) M, ~ M, and the operator Q,f, can be
well approximated by

T.fux) = Jexp <— u_j - UZ)f,.(f - u)f,,(f + u)dudv =
c c c
2
= ﬁfexp(— %)f,,(; - u)f,,(% + u>du,
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i.e. a small error is committed even if the argument of f, in the integral
2
v* .
Q..mf» is approximated not by (2.15), but the term M is dropped in

its right-hand side. (But this is not true for large n.) Observe that T, turns
an almost Gaussian density function with variance ¢ to an almost Gaus-

. . . . 4 .
sian density function with variance 5 o2. By refining the above argument

we shall be able to prove the following

PROPOSITION 1. — For all integers N > 1 there is some K = K(N) > 0

. -T
such that if M3 = %—2

%,-I:fn(x) - %<X, (ﬁ)naoﬂb < \];(l\%exp <— 2@)" | x |>,

if j=012 |x|<logM, (3.2)

1
>K,0<T<EthenfornsN

d’ 2\" 2
5 10| < By exp (— (() 2+ )
if x>—-cM,, j=0,1,2 (3.3)
and
B
M, - Mo| £~ (.4
VMo
where ¢ = —i—, and B(n) is some appropriate multiplying factor
2(ao — T)

depending on n but not on M, and c.

Let us now turn to the investigation of Q, y f, in the case of large n. A
calculation of the error in the approximation (2.15) suggests that

| Quafulx) — Tufix)| < const-g"-sup | £(y) | (3.9

with some 0 < g < 1. It is relatively simple to demonstrate formula (3.5),
but it is useful only if we have an additional estimate on sup | f,/(y) | which
shows that the dominating term on the right hand side of-(3.5) is ¢" and
not sup | f;(y)|%. To prove this additional estimate we have to carry out
a much more refined analysis where the function f, is bounded simulta-
neously with its Fourier transform.

More precisely, since f(x — ¢"M,) = f(x + ¢"M,), the function f, has
a peak not only at zero but also at — 2¢"M,,. As a consequence, the Fourier
transform of f, does not behave nicely, and it is useful to make a regula-
rization of f,(x) and to work with its Fourier transform.
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22 P. M. BLEHER AND P. MAJOR

DEFINITION. — Let us choose some fixed function ¢ € C3(R) such that
1> ¢(x) >0 forallxeR, ¢p(x) =1 for | x| < 1and ¢p(x) = 0 for |x| > 2.

Put ¢(x)= qﬁ(ﬁ cm 2x>. Given some function f, f(x)>0, j|x| f(x)dx < o,

we define its n-th regularization ¢,(f) as ¢(f)(x) = ¢,,(x +B,)f(x + B,)

1
with A, = f ¢ux) f(x)dx, and B, = XJx(b,,(x) Sf(x)dx, provided that the

above formula is meaningful, i.e. A, > 0.

(Let us remark that although the Fourier transforms j~”,,(C) and ¢,(£,)0)
are not similar, nevertheless the functions Q,y fy(x) and Q, yd.(f,)(x) are
for typical x (x not very far from the origin) close to each other since the
main contribution to the integrals defining them are in a small neighbour-
hood of zero, where f, and ¢,(f,) are close to each other. This is the reason
why we can use our information about ¢,(f,)({) in the investigation of
f«x).) First we shall prove the following

COROLLARY OF PROPOSITION 1. — Under the conditions of Proposition 1
we have for n < N

| Bt +i5) | < H(ﬁ" 9 <22 teRL,  (.6)

and
@ L 10 L P i x>—c™, (3.7
wf,,(x) =Wexp —ﬁ X oM, if x>—-c"M, (3.7

1 02 n 6‘2 n
with a,, 200<2> and B, <2>

We shall formulate an inductive assumption about the functions f(x)
and ¢,(f,(t + is)) for all n. But first we have to understand their behaviour
better. Formula (3.2) shows that sup fy(x) < C with some bound C inde-

N 2
pendent of My, and for small n sup f,+1(x) ~ fo+1(0) ~ —\[ sup f(x). On
X c X

the other hand it is natural to expect that for large n, f,(x) ~ gu(x), where
gu is the solution of the fixed point equation gy = Tygw. Since

gu(x) = Mg, <M)-C—>, hence sup gum(x) ~ const. M. The above considerations

suggest the following picture: for small n the value of sup f(x) is growing

exponentially fast, first at rate f /c then slower and slower and finally
for large n it gets stabilized at const. M. If sup f,(x) = K, then fy(x) is
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1 . .
negligible small outside a region of size K i.e. as the function f,(x) is

growing it gets more localized. This behaviour of the function f, is reflected
in a slightly hidden way in the properties I(n) and J(n) defined below.

Let us fix some positive integer N, and introduce the sequences o, and $,
(with starting index N) as

1 c2N
=—|= 3.8
“N 200(2) (3-8)
2 _n 10—12
cx,,+1=%(1—c oy + S for 2N, (3.8)
and "
cZN
BN=<5> (3.9)
2 -n 10
ﬁ"+1=5(1+c 2)[},,+W for n>N, 3.9y

where M, is defined in formula (2.7).
Now we define

Property I(n)
Let n > N. The function f, satisfies Property I(n) (with starting index N
and multiplying factor C) if

& C 1 x?
o Jux) ’ = [ ERE €xXp <— _\/E ‘ 2x + oM

for j=0,1,2, x> — "M, (3.10)

with the above defined B,, and the number M, defined in (2.7).
and

Property J(n)

Let n > N. The function f,(x) satisfies Property )(n) (with starting
index N) if

eXp s’ 2
T ol Jor |s|<—=. (3.11)

B

The content of Properties I(n) and J(n) is very similar. As we shall see

| Sl + is)| <

later, C; < & < C, with some appropriate C, > 0 and C, > 0 for all n.

It is natural that the bound on the right-hand of (3. 11) depends on s? and ¢2,
since in the Taylor expansion of ¢,( f,)(z) the first term disappears because
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24 P. M. BLEHER AND P. MAJOR

of the relation iaﬁn( 1)
dx

= fxd),,( S)(x)dx = 0. Formula (3.11) in
=0
a small neighbourhood of zero tells us that the variance of a random variable
with density function ¢,(f,)(x) is between 2a, and 28, hence @,(f,)x) is

. . . . 1
essentially concentrated in a domain of size const. —— . The bound on

du(f)(t + is) in the complex domain tells, roughly speaking, that ¢,(f,)(x)

. 2| x
tends to zero with the rate exp <— L) as |x| —» oo.

VB

Finally we remark that the smoothness of the function ¢,( f,) is connected
with the decrease of its Fourier transform at infinity. Property J(n) states
a decrease of order O(t~ ). This is a weaker property than the second order
differentiability of the function f, imposed in Property I(n), but it is enough

for our purposes.
In the exponent at the right-hand side of (3. 10) the term 2x is essential,

2

and the term could be omitted. In that case the proof could be carried

n
n

out with some small changes, only it would become considerably longer.
The same remark applies for the formulas in Propositions 2 and 3.
The main step of the proof of Theorem 1’ is the following

PROPOSITION 3. — The multiplying factor C in Property I(n) can be chosen
insuch away (e.g.any C2e'°°° is an appropriate choice) that if N>Ny(c, C)
with some appropriate threshold N, depending only on ¢ and C, n > N,
IM, —M,_;| <1, M,>K(c) with some K(c) > 0 independent of n,
fu(x) satisfies Properties I(n) and J(n) (with the above defined multiplying

9
factor C and starting index N) 100 > B, > max M2,4_” , then f,.1(x)

satisfies Properties I(n + 1) and J(n + 1) (with the same parameters C
and N), and

1 ) .
4ch"+1§,'—, 19(m)| < Cre™"/Ba (3.12)

Mn+1 = Mn -

with some absolute constant C,. Moreover,

di
7 Unr 1) = T, bl f)X)] | =
C,c* N , -
R R )

(3.13)
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for x> — "M, ,,j=0,1,2, and

di C,C? 2| x| .
‘ d j Mn¢n(f;')(x) ﬂ(]+ 1)/2 (28Y <_ , XE€ R9 J= 07 1’ 25 3, 4
n+1 (3.14)

with some absolute constant C,.

-T 1
al(a+2u_) is sufficiently large and 0<T < 10
then Properties I(n) and J(n) hold for all f(x), n > N, if the parameters C
and N are appropriately chosen, and in this case relations (3.12), (3.13)
and (3.14) also hold.

We shall prove Proposition 3 with the help of the following Propo-
sition 2 which can be considered as a more refined and elaborated version
of formula (3.5). We recall that the operators Q, y and Q,, y were defined
in Section 2 for f € .o, u.

As a consequence, if M3=

PROPOSITION 2. — Given some positive integer n and real numbers M > 100,

0

¢>0 let us consider some f e,y such that fx)dx =1,
© —c"™

f xf(x)dx = 0, and
—c"™™M

&’f (x) g

2x + —

) j=012 x> —c"M,

(3.15)
with some B and C such that 100 > B >’ max <m,4—n>, and let

n > no(c, C), where the threshold ny(c, C) depends only on ¢ and C. Let

_itt 1
<Cp * exp(——

/B

dx’ M

1 _n
3 > &> 10c *. Then there exists some C(g) > O depending only on & such

that
df
d—xj Qumf(x)
for x> — "M, j=0,1,2
d’ _Jjtt
TM¢n(f Jx) | = CEe)C?B 2 exp <—
for j =0, 1,2, 3,4, xe R, and
&
’F [QamSf ()= Tud(fIX)]| =
X

CleC* _, _ -9,
U2 exp . \/‘

x2
2x "“MD (3.16)

< C(a)Czﬁ—ﬁTlexp< -9

7

4 _8)|x|> (3.17)
7 '

IIA

x2 4(1—8)
mﬁ’)“""( T >
(3.18)
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for x> — "M, j =0, 1,2, where

M=M+ " (3.19)
c
and m, is defined by formula (2.11). We also have
c
My = = s e 17l < CiCT/B (3.19y

with some absolute constant C; > 0.

In formulas (2.10)-(2.13) we have defined Q,(f(x), M)=(Q,mf(x), M),
and in Proposition 2 we have estimated Q,(f(x), M) with the help of f(x)
and M. We would try to deduce Proposition 3 from Proposition 2 with
the choice f = f,, f = B, and M = M,. (The number ¢ > 0 appears in
Proposition 2 for some technical reasons. At a later step of the proof we
need an almost optimal multiplying factor inside the exponent of formulas
(3.16)-(3.18).) The main difficulty which does not allow to deduce Propo-
sition 3 directly from Proposition 2 is that the multiplying factor in (3.16)
is C(e)C? which is too large to deduce Property I(n + 1) with the same
multiplying factor C which appears in Property I(n). We can overcome
this difficulty by investigating the functions f simultaneously with their
Fourier transform. This is the reason why we have formulated both Pro-
perties I(n) and J(n). Our induction procedure works only for large n,
hence we have proved the Corollary of Proposition 1 which allows us to
start the induction from a large starting index. Then the following obser-
vations help us to carry out our induction procedure.

We have a better multiplying constant in the exponent of formula (3. 16)
than we need in Property I(n + 1). Hence we can prove the inequality
appearing in Property I(n + 1) for large x by slightly decreasing the multi-
plying factor in the exponent of (3.16). On the other hand formula (3.18)
(observe that there is a factor ¢~ " on the right hand side) guarantees that
a negligible error arises if f,4; = Quum, /s is changed to Ty, ¢.(f,). Then,
since the operator Ty can be naturally investigated in the space of the
Fourier transforms, we can complete the proof of Property I(n + 1) under
the conditions of Proposition 3 with the help of Property J(n). The impor-
tant point is that the bound we can give on Ty¢,(f,) with the help of Pro-
perty J(n) does not depend on the constant C appearing in Property I(n).

The proof of Property J(n + 1) is similar. With the help of Proposition 2
the problem can be reduced to the bounding of TMnJ),,( )t + is) which can
be done with the help of Property J(n). The remaining statements of Pro-
position 3 can be deduced from Proposition 2 with some work.

Let us remark that we have bounded f,(x) together with its first two
derivatives although only the bound given for f,(x) is interesting for us.
But, since a Taylor expansion is applied in the inductive proof we need
some information about f,(x) in order to bound f,,(x). On the other
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hand, the operators Q, and T, similarly to the convolution operator, have
some smoothing properties, and it helps us to carry out the inductive
procedure without weakening the smoothness conditions during the
subsequent steps of induction. In particular, let us remark that in formulas
(3.14) and (3.17) four derivatives of Ty¢p,(f) could be bounded with the
help of only two derivatives of the function f.

Formula (3.13) in Proposition 3 can be considered as a more exact
version of formula (2. 18). It enables us to carry out the heuristic argument
at the end of Section 2 in a precise form. In such a way we can prove that
& (f)(t) tends to gy(t) exponentially fast if t € D, where D is a small but
fixed neighbourhood of zero, and gy, is the solution of the fixed point equa-
tion gy = Tygm. However, this knowledge is not sufficient to prove Theo-
rem 1. But by exploiting that ¢, 1(f,+1)(t) can be well approximated by
TMqS,,( Jf.Xt) and that formula (2.20) gives us the estimate

2 -1/2
| Tu@ulS)0) — Bu())] = | Trgbul £)(0) — Tt 20a(0) —( 1+

4M2
. e\ L [c\? 2 \-12
: ¢n(fn)<—t> —gM<§t> §2<1+4M2>

an(f.o(f r)—§M<§ t)

we can give a good bound on sup | ¢,,( f)t) — gu(®) | in an exponentially

increasing domain D,. Then by boundmg ¢,,( f)(®) and g\(¢) for large ¢t
and applying inverse Fourier transformation we are able to prove Theo-
rem 1’.

Theorem 1 can be deduced from Theorem 1’ by expressing p,(x, T)
with the help of f(x) and M,. The main difficulty of this deduction is
connected with the following problem: it follows from Theorem 1’ that

a
for large n, q,,< / Tlx, T) is essentially concentrated in the domain

which can be expressed by g,(x, T) with the help of relation (2.5). To show

< const. nc™", and we want to prove the same for p,(x, T)

T
this property we have to prove that for |x| < [— M the decrease of

a
q,,< /Elflx, T) / 3 M, T) (in the variable x) is faster than the increase of

T
exp (— ;-,i“c"x2 + Ea% c"a—le). We can prove this statement by deter-

mining which number y, u > 0 can be written in formula (2.9, i.e. we
need a better understanding about the decrease of the function f, outside
the typical region. The essential technical difficulty after this step is to
give a good asymptotic value for the norming constant B, in formula (2. 5).
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The proof of Theorem 2 requires an even better understanding of the
behaviour of the functions f,(x, T) and the function g(x) defined by for-
mula (1.6) for [ x| — oco. We shall discuss the content of Theorem 2 and
the difficulties arising during its proof in Section 9.

4. THE PROOF OF PROPOSITION 1 AND ITS COROLLARY.
THE FIRST STEP OF THE INDUCTIVE PROCEDURE

First we prove formulas (3.2), (3.3) and (3.4) for n = 0. The function
qo(x, T) can be written in the form given by formulas (3.1) and (3.1Y,
where the norming constant Cy(T) is given by (2.4). We have

1 ® aog — T ~ X — MO 2
= — — M2 1 _ ix =
Co(T) L exp[ P ( oM, >]x

= f R + J‘ = Il + Iz
|x —Mo| <Mo/2 |x— Mol >MO/2
x>0

Mo/2 ao—T ap—T/[ x? x* x*
' —Mo/2 exp< a; )( a, <Mo 4M3 M3 *

M3
Hence T )
_ ag —
T) = + O = ). 4.1
Co(T) an (Mé) 4.1)
Similarly,
= ® N ~T N x—Mo)?
MO—M0=C(T)J (x—Mo)exp[— 2o (x—M0)2<1+ - °> ]dx=
0 a, 2M0
1
=0<A—). 4.2)
M,
Put 63 = L By relations (4.1) and (4.2)

2(aq — T)
w(x, 60)—fo(x)= 2(x, ao)[l — <1 + O<Mi§>>

< 1\\? 1 2
X+OC_>> x+O<—J

M M 2
- 7 11+ 2 i

+ = s
202 M, 202

exp
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hence

x2
- -2 -2
o(xp+y _ P ( 203 "°)

Mo - UM,

exp(—2[x])

N

| 2(x, 30) — fo(X)| < 2(x, 0)"

for |x|<logM,,

IA

and similarly

d’ -2
(.o —fote) | < FRE2D or 1y < tog M, j=0,1,2.
dx’ /M,
We claim that
2
folx) = Cexp(— 2x + Kxfl_ + 1603) for x> — M,.
0

~ N 8007
Indeed, if M, is sufficiently large (MO > 30 is e. g enough> then for

X > MO
1\)\2 1\\?2
o) ol —
folx)=Ce <x+ <M°>> ' 1+x+ <M°> <C : >
X)= X —_ = €X _—— =
0 P 202 M, =~XP\ T 1002

3x? x? 3x?
=Cexp<— m)exp(— 1603>§C6Xp<— m) exp(—2|x|+1603)<

2

§Cexp<— 2x+§4—0 +1603 ).
Similarly
di x?
Ef()(x) _S_Cexp(— 2x+m) if x>—-M, j=012.

The above relations imply formulas (3.2)-(3.4) forn = 0. For0 <n < N
we prove them by induction with the help of the following two lemmas.

LeMMA 1. — Given some integer n, 0 < n < N, and M > 0 such that

2 N
M > 4(;) let us consider some f € .,y which satisfies the inequality

<B(n)exp < (i)n

Vol. 49, n° 1-1988.
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x
2x+ ——

df()
2 fx —

d J

) for j=0,1,x>—c"M (4.3)
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with some B(n) > 0. Then

2 n+.1
<B(n+1)exp <—— <—c->

with some appropriate B(n + 1) which depends only on n and B(n).

2
2+ cf—lMD for j=0,1,2
(4.4)

di _
20 QS )

LEMMA 2. — Let n, M and f(x) satisfy the conditions of Lemma 1. More-

o) 0

fx)dx =1, J xf(x)dx = 0 and

—c"M

over, let f(x) be such that f

—c"™™

£ A < B o)

for j=0,1,2 and | x| < logM, and let M > K(N) with some sufficiently
large K(N) > 0. Then

dj . n+1 2 n+1
IEFI:Qn,Mf(x)—/lnn<x, (ﬁ) 60)]’5%““1,(_2(;) IXI>

4.6)

-1
for j=0,1,2 and | x| < (1 +CT>logM, where

2 n n -1/2
,{n = L i i + _2_ ,
200\ ¢ J\c" c*od

and B(n + 1) depends only on B(n) and n.

Proof of Lemma 1. — Let us introduce the notation

2 2
1,;—tM(x,u,u)=cn<\/<M+zn—’i—lJ_rc—lf,) +%—M>. @4.7)

A simple calculation shows that

lim(x, u,0)? 02 1 2
2z,fM(x,u,v)+M(;‘4—;”)=v +2<§iu>+ch(§i~u> . (4.8)

<l

We claim that

IIM(-xa u, v)2
Mc"

lr:M(x9 u, U)z >

26, u, v) + + | 20mlx, u, v) +

n

Mc
x? 2 u?
2X+ —C”+1M ‘ — M<U2 + C_"> (48)

Indeed, we get from (4. 8) with the help of the inequalities |A| + |B|>A+B

2
>=
“c
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and|A| + | B| > — A — Bthat the left-hand side of (4. 8)’ can be estimated
from below both by

2 5 x? 2 2+u2 and 2l2+x2 2 02+u2
c(x+"M+ﬁv - AT M) ™ )

These estimates imply (4.8)". 2\N 2\n
Relations (4.8), (4.3) and the inequality M > 4- (—) >4 <—> imply
that ¢ ¢

2
exp < - Z_" B Uz>f(lrtM(x, , 0)) f (I, u, V) <

éB(n)%xp{—(%)nH 2x+ "ffM —(Z—i+vz><1—$<-i—>n>}
n+ 2 2
§B(n)2exp<—<%> 1 2x+c—"f1—MD-exp<——%<%;+v2>>. 4.9)

We get formula (4.4) for j = 0 by integrating inequality (4.9) with respect
to the variables u and v. The case j = 1,2 can be investigated similarly.

IIA

d>
The quantltles Q,, mf(x) and — y Q,.mf(x) can be expressed as

d
a Qn,Mf(x) =
2 _
-2 fexp(= 15— Y e ) (e v ) 5]
c c c c c c
S (Lrm(x, w, 0)) £ (1om(x, u, v))dudv (4.10)
and

d u?
anmf(x)——JeXp<—F—v )<M+ X *?)(Mﬁx—‘cﬁ)
u\> ¥ x u\2 p2lvz
KM* »+1+z> *5] [(M* E) *5} |
( (X5 1y 0)) f (L%, w4, v))dudv —

2 27112
g ool e onr e Z (e 2 4

( M(x, 4, 0)) f(lom(x, u, v))dudo . (4.10y
Relations(4.10)and (4. 10)’ can be obtained bydlﬂerentlatmg formula (2.10)

after the change of variable ' = M + ——:i—l - and then (when calculating
c

. . u
the second derivative) u” = M + —— + —. Observe that the second
C

n+1

Vol. 49, n° 1-1988. 2



32 P. M. BLEHER AND P. MAJOR

derivative of Q,mf is expressed in (4.10) with the help of the first deri-
vative of f. This means in particular that for the existence of the. second
derivative of Q, uf it is enough that f is once differentiable. Since

W\2 ]2
<M+ T+l ‘c")l:(M-i_ ntl —E) +;E:|

relations (4.10) and (4.10)" imply that

=1

2
‘ Qumf() | = Jexp(— Z—" —v2>|f’(l,f,M(x, u, v))| | £ (lom(x, u, v))| dudv
.11)
and
2
dsz"Mf(x) Jexp(-— —v >|f( 06w, )| | f (Lo, u, v)) | dudv+

2
+WJ|“|eXP<“ u? —112>|f’(l,f,M(x, u, V)| | £ (Lo, u, v)) | dudv (4.11)'

Formula (4.4) for j = 1,2 follows from (4.3), (4.8), (4.11) and (4.11)
in the same way as it was proved for j = 0.

Proof of Lemma 2. — First we consider the case j = 0. We show that

v? vt xR+t
X, u,0) — | = £ — NS5+ — 4.1
"M(X; U, V) <c u+ 2M> <c"M3 + M ) “4.12)

) 1 1
if | x] < chHM’ luj < Zc"M, v? < ¢"M. Indeed,

+ v?
Lim(x, u, v)— + u+ —

M
=|c" X u 1+ 1)2 1 : <
- At e . x u\? M| T
¢ C”+1i§
< 2 1 | v* <
My X ' VR
C,n+1M—'ch + o5t n+l -—Cn

vt x u 4p? v* x24u?
<7 + <5 .
=M|c"tM T "™ + ™3 =\ "M3 + M
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, » |
Define the set A = AM) = {(u, v),|u| < ¢ logM, |v| < MV4 } First

we prove that

L exp < - Z—j - v2> S (L, u, 0)) f (L6, w, v)dudv— A, n(X, <é>n+ lo—o>

<_\/%)exp< 2<%>,.+1 |x|>. @.13)

For this aim we show that for r3 (x, u, v)= f(I{u(x, u, v))— n<f +u, <—C—> ao>
c

NG

<

_iu

[riE(x, u,0)| < —exp< 2<g>'l X
\/— c

) if (u,v)eA,

—1
lx|<<1+CT>logM. (4.14)

—1
Indeed, it follows from (4. 12) that for | x | < <1 ¥ c—z‘—) log M, (u, v) € A,
Ew(x, u,0) — <f + u)
[

1
< ——. Hence
M

X
_iu
c

< (c t3,¢e- 1>1ogM <log M, | IZy(x,u,0)| < log M,
4c 2¢
and by (4.5)
S(lamx, u,v)) — %( + u, <\c/> ) < T < G) §+ " ) +
%<lr::M(xa u, U), <ﬁ> 0'()) — %(; i‘ u, <ﬁ> O'O>
—tu

o e )+ o (@50 )

+

IIA

. 1 2 nl 2 n
Because of the inequality — — | = fiu +2 g Eiu —4-2"63<0
4\c*/ o5 \c c/) |c
n 2 2 n
exp _1fzy1 x+u <exp —2<—> z-l_-u +4-2na%>,
4\c%) o2 \c ¢) |c :

and the above relations imply (4.14).
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-1
Wehavefor|x|<<1+c—4—>logM
R e R & L A e S Y
— — —v? |l —+u,| —= ) 0¢ || — —u, | — ) 6 Jdudv=
A . c" 4 \/5 ° ¢ \/5 °
B 2n o u2 5 2n X2+ ) dd R
=) 2re?rol p oY o2\ c? " udv -+ Ry(x) =

n+1
=,1,,%<x, <\%> ao>+R,,(x), 4.15)

with
IRX) | =

. 1 c— 1 2 2 n+1
Here weapplied that forlargeMande= — | —— ¢ logzM> | = [x]
205\ 2c¢ c

and exp<— e(log? M) < ——)) Hence to prove (4.13) it is enough to

JM
I = | ri(x,u, v)n<f Fu, <_c_> 00>dudv
JA 4 \/5

r

L = | ry(xu v)r, (x,u, v)dudp .
JA

We get from (4.14), integrating first by the variable v that

B(n) [ 2\" 1/2\"1 [(x 2
< pl — _ _ =) — - - du =
= X 2( ) 2<c2> 0o (c u) \ !

\/ﬁ | c

have a good bound on

and

X

4

B(n)’ [ 2\ 2\"|2
= (n) exp| — %(—2> u? — 2<—> = ]du.
/M | 205 \¢ ¢ | ¢

Because of the evenness of the left hand side (4.13) in the variable x we
may assume that x > 0. We get that

o [ e[ 35 oo (2)

| P exp| —=| =) = +2| - |ul[du-exp| —2-{- x|+

MlJ-w 2\¢?) o3 ¢ c

\/_ 0 10 2 nu2 2 n 2 n+1

eJ e[ 33 (w2 () i
'B(n)” 2N\nt1 1/2\" 4 2

= m["’“’(‘z@ ")* ""“’(" 5<‘> _x"ﬂ
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(The last integral can be bounded by constant times the value of the inte-
grand in 2x/c.)

. 1 2 n4x2 2 n+1 .
Since _§<c—2> CZ—O'(Z)é —2<;> x + 2"}

Ilgj(—nﬁ)exp<—2<%>n“|x|> if |x|<<1+—c——;—1>logM. (4.16)

On the other hand by (4.14)

1, < B/ f exp[— 2(3>"< X
M c

hence

B(n) 2 n+1 —
Izg\/(%exp<—2<;) ]x|> if |x|<(1+c41>logM. 4.17)

Relations (4.15), (4.15Y, (4.16) and (4.17) imply (4.13). On the other
hand we get by integrating (4.9) that

=<

2
J exp <— u_n — vz>f(l,f,M(x, u, ) f (Lo, u, v))dudv
R2—A C

=) 1)

log M>. (Observe that in this case we make a negli-

c—1

for|x|<<1+

2
. - x . .
gible error by omitting the term TIM from the exponent.> This relation

together with (4.13) imply Lemma 2 in the case j = 0.
To investigate the cases j = 1,2 we need the following identities

s )
it % f exp < - ’:—>ﬁ<§ +u, <ﬁ>ao> G —u, <%>”ao>du 4.18)
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where #/(x, o) denotes the first derivative of the normal density (x, o).
They can be obtained by differentiating the identity

)
e onl D M e

Lemma 2 in the case j = 1,2 can be obtained similarly to the case j = 0,
only in this case formulas (4.18) and (4.18)" have to be compared with
formulas (4.10) and (4.10)' in the domain (u,v)e A. In this comparison
the inequality

u x u\? 2|2 <10c"'
M+ n+1icn Mt-mto)+o| ~1sypm

—1
if |x|<<l+cT>logM, (u,v)€A

(4.18)

can be applied.

Proof of Proposition 1. — Let us assume that Proposition 1 holds for n,
n < N. We shall prove it for n + 1. We have

_ -
fn+ 1(X) = Qn,Mn.f;t(x) = K_Qn,Mnfn(x + my,)

© - 1 ©
with A,=J Qum, fu(x)dx, and m,,=A— fx)dx. We apply

—c"*‘M,. n —C"*an

Lemmas 1 and 2 with the choice f = f, and M = M, Then we get

1
|x] < logMp |x| > logM,, A/ M,,

x> —cnt 1M,
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where 4, is defined in Lemma 2, and similarly

1 o ¢ nt+1 1
m,,=A—,l x| Qum, JulX)— An7| x, ——\/—5 oo | [dx+0O E =
=O<B(n+1)>>.
VM,
Then, since M,,; = M, + m,c ™"V, Lemmas 1 and 2 clearly imply
Proposition 1 for n + 1.

Proof of the Corollary.

a) Proof of formula (3.6). < ﬁ)" <10 ( \/5>,, L
) - - 0
C

Let us first consider the case |s| < 2{ —

sufficiently large then so are M,, n < N. In this case relations (3.2) and
(3.3) imply that the functions @,(x) f,(x) and ¢,( f,)(x) are close to each other,
and the relations

di;:f[d’"( fn)(x)—n<x, (\%)naoﬂ’ < 10“502‘"exp<— 2<%>n|xl> (4.19)

for | x| < 50¢"?, j =0,1,2, n < N and
% n<x, (7%)"00) +1073%-27"exp <—2(§>n| x| )
4.20)
for xeR',j =0,1,2, n < N hold true. Since
j [¢n(fn)<x) - n<x, (ﬁ)naoﬂdx -
— | x| dulf)x) — %(x, <i)a )]dx —0
hence ‘[ [ \/5 ’
G fo)t + is) = jeXp (itx — sx)Pul fr)(x)dx =
= J exp (itx — sx)az<x, <ﬁ>noo>dx +
+ f exp (itx — sx)[d),,( Sox) — ﬂ<x, <—c—>nao>]dx =
NG
(5 (5))+ [ e =
= exp — )b )+ exp (itx — sx) — 1 — (it — s)x
2 2
[(p,,( 1)) — %(X, <_\%>"ao>]dx =1, +1,.
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Since
lexp (itx — sx) — 1 — (it — s)x| < (s2 + t?)x%exp (| sx|)
we get from (4.19) and (4.20) (assuming that M, is sufficiently large) that

2 n
I, <(s* + t2)|:10’5°~2‘" sz exp<|sx| - 2<E> |x|>dx +

" 2
* 2J.Ix|>50c"/2x2 xp (15X l)”<x’ <\;§> >dx =10 40<c >(S + %).

Thus we get that

~ 6‘2 n 2 _ t2 6'2
| pu(f)t + is)| < exp << ) >+ 10~ 4°< >(s + 1?).

2 2

1 5 7
Ifo<T <Ethen §< 63 <§, and we can write

4

2
| §uf)t + is)| < exp <5>
ool () < e
if|s|<2<£>", 1o (ﬁ)

ﬁ " . .
In the case |s| < 2(\/ /o | t] > 10 we get, integrating by parts
twice, that

2

1 d
G St + is) = 1 f E‘x_z(¢n(f;x)(x)) exp (itx — sx)dx,

& Y
f exp(itx—sx) 2¢n(fn)(x)dx f exp(lsxlﬂd—;”(x’ (ﬁ) "°>

n 2\n
+10'5°-2’”exp<—2<g> |x|>:|dx§10<%> .
C

~ 10 [c*\" 1 exp B,s?
n nt ] é_ A < é
| G 1)t + i9)] t2<2>_1+a,.t2 1+ of?

2\" 2)\"
also in the case |s| < 2<—{—), [t] > 10<4>.

b) Proof of formula (3.7).

and by formula (4 .20)

+

Hence
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o)

By formula (3.2) we have for | x| < log M,
& B(n) 2)"

- < —_ | =
dxff"(")’=m""p< (&1m1)+

On the other hand

B(n) 2\n 1 1 x?
\/EeXp -2 | x| gwexp<—ﬁ 2x+c,,—M">,

and

A T2
e (A
14 1x0 )exp(- <

1
BYF 2 < BU+D2

IIA

4lx] +802>
N/

)

for j=0,1,2. If | x| > log M,, x > — ¢"M,, we get from (3.3) that

1767

x
5. THE PROOF OF PROPOSITION 2

x2

Ixp —
X+ M.,

9999

1
pITo” °"p<_ N

lIA

<

&’
E} Ju(x)

2

X
2
X+ M

S

NG
r 1
ér"(‘ﬁ

2 -
X+ M

We prove Proposition 2 with the help of a series of Lemmas. Lemmas 3,
4, 5 and 6 enable us to estimate the functions Qumf(x), Tudnu(f )(x) together
with their difference. We can consider their normalization Q.mf(x) and
Tu®a(f)x) with the help of Lemma 7.
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LEMMA 3. — Given some positive integer n and real numbers fp > 0,
M > 10° let f € o, be such that

d’ C 1
Ef(x)l§WeXP< \/B

There exists some threshold no(c, C) such that if n > ne(c, C), and

2

x
2
X+ — M

) for x> —c"™, j=0,1,2.
(5.1

4 1
ﬁ > (IP—W with some E > &> 106‘"/4, ﬂ < 100 (52)
then '
dj o 21 —g) 2\
WQ",Mf(x) < Cl(g) /3(]+ 1)/2 €xXp <— c\/B 2x+cn+1M ’ J=0’ 1a2

for x > — c"*'M with some C,(¢) > O depending only on e.

Proof of Lemma 3. — Let us first consider the case j=0. It follows from
(4.8) and (5.1) that

oxp <_ Z_z _ Uz) (e, 0) f (g 1, 0) <

ol (2o ) o

2
Since 1 — ———>1—./1—e>0 by (5.2) we get by integrating (5.3)

that VM

2 .n/2
|Quuf(x)| =

2 ) e B PO 5.4)
- xp| — . . (5.
ﬂ \/BM p C\/B! X cn+ IM (
For { x|x > —c""'M, | x| > ¢"*\/M } relation (5.4) implies Lemma 3.
2 —
since in this case exp | — s _r < C(e)y/Bc™™2. In order to
\/B cn+ lM

prove Lemma 3 for small | x | we need a different bound on Q,mf(x). We
claim that for | x| < ¢"* /M

2
exp <— (% + 02>> S (B, w, ) f (o mx, u, v)) <
cz 2A1-9), ) |

2
2X+ n+ lM

2x +

<~ exp
ﬁ < C\/_ n+1M
[ (1 2(1 —s))(uz 2>] ( 3|u|s) (5.3
exp| — —'W F"FU €Xp| — \/E . )
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Indeed, by relation (4.8)

Lha(x, u, v)? _ Lo, u, v)?
[2l,tM(x, u, U) + ’MW“ - 2ln,M(x5 u, U) + —%\d_‘ =

=>4u+ > 3|ul

ux
C" +1 M
for | x| < ¢"\/M, and in this case this relation, (4.8) and the inequality

2
exp <_ IZ—” B Uz>f (e, V) f (e, s 0) <

< _Zex { 1 < 21+ (X u l)) (x u, U)
,B p \/ﬁ n,M , + =y
+ Lowm(x, u, v)? .
Al o) ¥ % ) - \/iﬁl[zl:“‘(x u,v )+"M_(cxMuhv)]
— . 2
|:2’;,M(x: u,v) + %:l }

imply (5.3)". For | x| < ¢"?,/M we get Lemma 3 with j = 0 by integrating
relation (5.3)". (In this case the multiplying factor before the exponent

3
will be appropriate for our purposes because of the term exp <— f/lg '))
The cases j = 1,2 are similar, only in these cases formulas (4.11) and
(4.11) have to be applied.

LEMMA 4. — Let f, B, M and n satisfy the conditions of Lemma 3, and

let p>47" ) f(x)dx =1, jw xf(x)dx = 0. Then

— "M —c"™™
dl_ —
Iﬁ |:Qn,Mf(x) - Qn,M¢n(f)(x) jl .
X
_ C2Cy(e) 2(1—¢)
<2 "“BG*_Q—)Z—CXP<_ C\/E

where the regularization ¢,( f)x)is defined in the Definition given in Section 3.
Proof of Lemma 4. — We have
< J S(x¥)dx =
x> —c"M

e[ ) o
jx|>100cn/2

C | x|
< —exp< )d =2™"
Lo 570

[x]>100cm/2

2
2x + —nflM ’) j=0,1,2, x> —c"* M
C
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if n > ne(c, C) is sufficiently large. Similarly,

=

Bl =| [ et - 110

| x| =
< - —= d * n.
B jxmoowﬂlx'exp( \/ﬁ> X<V

x> —c"™M

It follows from the above estimates and relation (5.1) that
x2

C 1 :
ﬂ““”z exp —-—\7/:3 2x+c"—M 5
j=0,1,2, x> —c"M (5.9

2

)

j=0,1,2, x> —cM. (5.6)

—n,

i [f( )= (D) | =

and

2x +

‘ - Gul )‘ s exp( 7

The proof of Lemma 3 with some slight changes yields that relations (5. 5)
and (5.6) imply the inequalities

d W -
d;’[J;xp<_— _Uz>f( n,M xfua ):l[f M(Xaua U))_d)n(f)(lrtM(x, u, U))]dudv
_,CleC? 2(1—¢) ? nt
=2 [g(j+1)/2eXp< c\/ﬁg 2x+c"f1M‘>’ x> — "M

for j=0,1,2, i = 1,2 with fj(x) = f(x), f2(x) = ¢(f)x). Because of the
special quadratlc form of the operator Q, y these estimates imply Lemma 4.

LeMMA 5. — Under the conditions of Lemma 4

di _ _
2 Qb 1)) = T /1)
X

COC? _, [ 2Al-9
lg(jﬂ)/zc exp c\/

=

2
2x + M D 5.7

forx> —c"*'M, j=0,1,2.

Proof of Lemma 5. — Let us first consider the case j = 0. The main
step of the proof is to check (5.7) for small x. The main contribution to
the integrals Q, y®.(f)x) and Tyd.(f)x) is given by small u and v, and
for such values we need a good asymptotics of the integrands. Let us consi-
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der the case |x|<c"?, /M, define the set D(n)= { (u,v),|u]<10c"* /M,
2
vﬁ < 10¢"2 /M }, and give a good bound on

2

J0x, u, )= eXP(‘ P )¢n(f Wl e, 1, 0) @l £ NImm(x, 1, v)) —

2
— exp (- v2)¢,,(f)< fu+ >¢n(f)(—— ut 5"@

We claim that

C.C* (u* +x* v* ub+x° v* )3
< .
‘ J(xa u, U) I = B < " + C"M + c3n + Mcn

2 2 2 2
-exp<-— 7 §+u+ —vZ) (5.8)

v —
JB
if | x| < ¢”2 /M and (u, v) € D(n).

X

P TV

M

2
Indeed, by (5.6) <the term =~ can be drOpped from the exponent in (5. 6)>
and (4.12) M

Dl )i, 1, 0) = ¢n<f)< +u+m>[

vt x*+u >
s 5<—n ) , Sup ¢n(f X$)
CM3 M "f:t <§<l*sM(xuv) dé
cC _ (v 2 |x 2
T Cv Rt - |Ctu+ = 5.9
=Mz <M+x +u>exp< \/Bc_u+2M> (5.9
and
lexp(— u’/c") — 1] < u?[c". (5.10)

First we show that

|J(x,u,v)|§{< 2>[¢..(f)( +u+i> 3‘; "<4+x +u>
exp< Tl: )]'I:d)..(f)(;—u ”) \/_c"( +x2+u2>

exp <_ﬁ Py )] ¢>,.(f)< +uts >¢n(f)<——u+%>}

X but—
exp (— v?). (5.11)

M

2
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Indeed, write

¢n(f)(lt:M(x’ u, U)) ¢n(f)< +u+ i) + &1,

Gu( I (x, u,0)) = ol f )(— —u +ﬁ) + &, exp(—u?/c")=1+¢,

in the definition of J(x, u, v), and carry out all multiplication both in the
expression J(x,u,v) and the right hand side of (5.11). Then the rela-

1 1 . . .
tions W < —=,(5.9) and (5.10) imply that each term in the expression

J(x, u, v) is majorized by the corresponding term at the right hand side

of (§.11). Similar argument shows that the right hand side of (5. 11) increases
2

if ¢n(f )( +u+ ——) is replaced by its upper bound

= >.

CB~2exp <— 2
(This upper bound follows from (5.6).) Hence we get that

\/Ec
2 x o2

x v 2 2}
__ﬁz—_'-M —v

lJ(x,u,v)|§eXp{_% :

)
B +—c; c —M+x +u -

and this estimate implies (5.8).
P

2
Since ——— o — v* < — (1 — /T — )2 by (5.2) relation (5.8) yields that

JBM

c,Cc _, u® + x® vt 12
[T, u,0) | < 3 ¢ <1+u2+x2+ pr 1+—1\Z+—c2"M3

2
exp{—ﬁ< ;+u‘+ ‘;—u -1 -./1 —s)vz} (5.8
if | x| < ¢ /M and (u, v) € D(n).
Integrating this inequality and using the change of variables u

get that

C C2 6 6
f [ J(x, u, v) | dudv < ol c‘”J‘(1+x2+%+ﬁu2+ﬁ3%
Din) \/ﬂ : ¢ c

1.74 012 .
exp < —u >duf<l+ﬁ + W)
exp(— (1 — /T —epddv < (5.12)
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lIA

C(e)C? c_"exp< 41 — 3/3)| |>
VB N

C(E)Czc_"exp<— 21—
J/B /B

Observe that if | x| < ¢¥2/M and (u, v) ¢ D(n) then either

2

IIA

2X + cn+ lM

)if|x|<c"/2M.

x+ N v?
— u [PR—
c 2M

2

x v
> 200c"? or ‘— —u+ —
c

n/2
M > 200c¢

therefore
2

J exp (— 02)¢n(f)< +u+ >¢>n(f)< u+v—>dudv=0
R2-DI[n) 2M
if |x|< /M. (5.13)
2
Indeed, if UM > 10c"2,. /M then

2 2

x . v | x|

-+ o=t 4 n/2 n/2

‘c us1gnu+2M ™M p > 4c"* /M > 200c"#,
and if |u| > 10c"2 /M,
02 2 02
—I\Z < 100"/2 M then + u -+ N > |u| lxl - m > 2000"/2.

On the other hand relation (5.3), for the function ¢,(f), yields that
2
exp <— <Lé—n+ l)2>>¢n(f N6, 4, 0)) @l S Laa(x, 4, v))dudv <
D(n)

2 21—
Cciﬁ)c-"exp<-( 2\ ax + n+1MDIf|xI<C"/2\/ (5.13y

JB JB

Relations (5.12), (5.13) and (5.13)" imply Lemma 5 for | x| < 2 /M,
j=0.
If | x| > ¢"*/M then relation (5.4) for the function ¢,(f) gives that

— C(e)C? 21 —
| Qua NN | < % c'”exp( ! Jﬁs) 2 *?%ZD (5.14)

=

for | x| > "2 /M, x > — "*'M.
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. 2
If x> c">/M then > +u sign u+-2vﬁ >200¢"2 (M>109), hence
C

2
¢n(f)<§ + u sign u + ;—M> =0, and
Tuda(f)X) =0 if x> c"2/M. (5.15)

2
If x < — ¢"? /M then relation (5.6) (dropping the term —fﬁ from the
¢

exponent, what can be done, since ¢,(f)(x) = 0for | x| > 200c" 2) and (5.2)

imply that

))dufexp( Jﬁ)uz)

x++vz+x +2
u - —u+—
M

a0 <5 eXp{ _vz__<
¢ NG

dudv < C—2 exp< \/ﬂ( 8)(

C(s)C2< |x|> < 41 — ¢/3) )
dv= 1+ —=)exp
JB N

C(e)C? < 41 — g/2) )
< xp| — ——|x] ).
VB

X

——u
c

C

Hence

CZC_(s) - < 21—¢)
JB /B

if —c""IM < x < — ¢"2M.

For | x| > c"/z\/ﬁ x> — "M, j = 0 Lemma 5 follows from (5. 14),
(5.15), (5.15).

In the case j = 1,2 we compare formulas (4.10) and (4. 10)’ with the
identities

' 2 2
%TMf(x) - % Jexp(—vZ)f < Fut 2—"M>f<f —ut ;—M>dudv
2

2 2
%Tmf(X)=;5jeXp(— vz)f( +u+ 2”—1\4>f’<f —u+ ;—M>dudv

| Tudn( /)| < 2x "flM D (5.15)
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and apply the inequalities
x u

n+1—cn 2

—1] <50 if |x| < ¢"M, (u,v)eD(n),

u\?  p? M
\/<M+ “n+1 icn> +—c;
u\2 2\ 12
‘<M+ nt1l icn><<M+ “nt1 —Cn> +?>

Forj = 1 almost the same proof works as forj = 0 with some slight modi-

M+ —

IIA
—_

fications. An additional multiplying term — \/_ appears in the estimates when

we have to bound f” instead of f. In the case j = 2 we estimate similarly,
but we have to show that the second term in (4.10)’ is negligible small, it

C(e)C? J— < 21 —¢) x? )
B2 P \/ﬂc .

2X n n+ving M
This follows from the estimate

can be bounded by

2
—ex <_.Z_— v >’f( (X%, 1, 0)) | | f(lawlx, u, 0) | dudv <

VB |
C2C(e) - x?

Wi exp
which can be proved similarly to Lemma 3, by observing that the integrand
on the left hand side of (5.16) can be bounded similarly to (5.3) and (5.3),

Lo exp<_ 3s|u|>by 1exp<_28|u|>
ﬂ1/2 \/B e \/ﬁ
in (5.3) and the right hand side of (5.3) must be multiplied by B~ 1ul
(This multiplying term in (5.3) causes no problem, because we need (5.3)

only to deduce (5.4) for | x| > ¢"% /M, and in this case the pre-exponen-
tial term in (5.4) need not be bounded sharply).

lIA

1
only B must be replaced by

LEMMA 6. — If the functions fi(x) and f(x) satisfy the inequalities

2
‘ f()’ ﬁ(1+1)/2ep< \l/)/;l)a j=012; i=12

2
ﬂ) j=0,1,2

Cé

’ — i) - falx)]| =
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4
for all x e R* with some C > 0,8 >0, > W—)with some & > 0 then
-

al —
o [Tuf1(x) — Tufa(x)]
x

C25 41 — )
<C (8),8”*1)/2 exp( c\/_ |>

for all xeR! and j =0,1,2,3,4. In particular, by choosing fz(x) =0 we
get that

c? 41 — ) )
1(8)W3XP< |>, 7=0,1,23,4.

s

(Observe that we get a bound on the first four derivatives of Ty f;(x)
and Ty f>(x) with the help of the first two derivatives of fi(x) and f5(x).)

‘ T TMfl(x)

Proof of Lemma 6.
We have

d _
i [Trfi(x) — Tufa(x)]
j v? 2 2
N e [ R
2
+ l)<z -u+——>l:f(')< +u+v—> f”’( +u+ %)J}dudu

with [ = B], where [ ] denotes integer part.

Hence

=

- —
}F [Twfi(x) — Tufa(x)]
X

2\ )
§2<Z> Czaﬂ_(ﬁmje P { \/ B <
2\/ ; x
dudv <2 Z Y c255-U+2r02 _ x
udv < 2<c> C op Jexp < \/*E< .

ol
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By calculating the above integrals we get that

i _ -
7 /i) — Tufo(0)] =
x

2 jC25\/7—z< 2 )-1/2< 4|x|> < 4|x|>
<2(=Z) = S a -
= (6‘) puT iz : \/,BM b /B P c\/ﬂ

< Ci(e)C? x (._ 41 — 8)|x|>
= gUFR /B :

IIA

Lemma 6 is proved.

LEMMA 7. — Let f, n and B satisfy the conditions of Lemma 4. Then

Ro= j T QS dx= -"’—{—”- -y

—cnt 1M

© 2/
R, =f xcn,Mf(x)dx= - ‘ \I\{In + 571

—cnt 1M 8

with | y,| < C;C%™" | 8,] < C,C%c"/B.
Proof of Lemma 7. — We can write both for j=0and j = 1

(* o

Ri=|  ¥[Qunf ()= Quuebul N0 x +
(*o —ent 1M
] P Qundn(N0) = Tuu( ) b f —x ol /o) +
+ X T du(/)x)dx =19+ 1P+ 19 + 19 (5.17)

LY

It follows from (2.20) that

1P = j Tm¢n(f)(x)dx=%ﬁ, 1§ = f Ty dul o) = —

L
/n (5.18)
M

1
By applying Lemma 4 and Lemma 5 with ¢ = 1 we get that

—n, 2 o0
|19 = 2—\(/:/1'?[ | x ' exp <_ %)dx < 27"C,C2p1%  (5.19)
—cnt iM

[1¥] < c~"C,C2pi? (5.19y
and by Lemma 6

1 —C"+‘M ] . .
|1¥] < C,C* 7 j | x [ exp (— %)dx < ¢"C,C2p2. (5.19)

Relations (5.17)«(5.19)” imply Lemma 7.
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Proof of Proposition 2. — The relation

1
Qumf(x) = ™= Qumf(x + m,) (5.20)
0
holds with R
(4 . - -
m, = R_; = — gt with %] <CiC% "/B (5.20y

1 .
<observe that 7—5 < M), and this implies (3. 19) and (3. 19Y. Relation (3.16)

follows from (5.20), (5.20) and Lemma 3, relation (3.17) from Lemma 6
and (2.17).
We claim that
di
’d ,[ Tudn( )X + my,) — TMd)n(f)(x)]’
CleCt A1 -9
goron € eXP N/

lIA

x|> (5.21)

forj = 0,‘1, 2. Indeed,

1 2 1\
Tuda ()(x) — R_o Tudn(f)x + m,) = <c\/—7—r - R—O>Tm¢n(f)(x +m,) +

; \/n <TM¢n f )( 4M> Tu¢a(f)x + m,.),

and by Lemma 6 and (5'. 20y

dl
_[TM(;;,,( f)<x _ —) TudaF)x + m,.)]‘

4M
j+1
é m” 4M’ 'd j+1 TMd)n(f)(x) _S_
x=¢
Ce)C* -
= [3(5?1)/2 c‘"exp(— c\/g)pc[) with somefe[x—&ﬁH_mn].
Similarly

1 C(e)C* 41 — ¢
(2—% - E)TM(bn(f)(x'i_mn) = parin exp <— C\/B | x |>

and these relations imply (5.21). Relation (3.18) follows from Lemmas 4, 5
and relations (5.20), (5.21).
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6. THE PROOF OF PROPOSITION 3
AND SOME OF ITS CONSEQUENCES.
THE SECOND STEP OF THE INDUCTIVE PROCEDURE

We prove Proposition 3 with the help of the following two lemmas.

f\j_ﬁ

< CyC* + De"Bs® + 12) (6.1)

LEMMA 8. — Under the conditions of Proposition 2 for|s| <

2) | Gus1(Quuf Nt + is)

= Tu@a(f)t + is) | < Cy(C* 4 l)c‘”% 6.2)
~ o~ C,C?
b) | Tu@a( )t + iS)|.—<_ﬁ—2rr-

LemMMA 9. — If the Fourier transform f of the function f(x) satisfies
the inequality

2
|f(t+ls)|_LﬂS— for |s|< —, teR!

at? ; JB
10 12

9
and f > 2,oz>—M—2withsom.eM> 1,8 > athen

d’ 4)x|) . . :
a) I JTMf( )’ = u+1)/2 exp (— :-\/—/_),]:0, 1,2 with some absolute

constant C; > 0.
2 10
o (50 w)]

1071
1+ = t?
+<2a+9M2)

Proof of Lemma 8.— First we show that it follows from Proposition 2 that

b) | Tuf(t + is)| < for |s|<

4
/B

d’
) [@n+1(Qum S )x) — TM¢n(fXx)]

=

CI(C“ + De" 23/4 .
= BUFD2 exp —c—\/_ﬁux‘ j=0,1,2. (6.3)

If we replace @+ 1(Qumf)(X) bY @t 1(x)Qumf(x) in (6.3) then this modified
version of relation (6.3) holds. Indeed, this follows from (3.18) for
| x| < 100c"?(¢,+1(x) = 1 for | x| < 100¢"?) and from the bounds given
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on Quu(f)x) and Tyé,(f)x) in (3.16) and (3.17) for |x| > 100¢"2.
(Observe that the support of @, 1(x)Q,mf(x) is in the set | x | < 200c"2.)
Since

U¢n+1(X)Qn,Mf (x)dx — 1 ' = f[l = O+ 1(0) QS (¥)dx <

C2 _ < cn/2> ~
S —=JBexp| ——= )< C2"
g/hee (- )=
and
f X+ 1(X)Qumf (x)dx | = fx(¢n+1(x) — DQuuf(0)dx | < C2c7" /B,

simple calculation shows that (6.3) also holds in his original form. Since

~ ~ ~ d ~ -

Fn+ (Quf NO) = Tudn()O) = — [Bns s Quatf XO) — Tu a1 li=0=0,
J2 2

—_— = 2

c \/ﬂ f

| Gus 1(Quaf/ Nt + is) — Tydu(F)t + is)| <

dz . -~ ~

727 [Br1QuuNO-Tudn( O] | <

we have for |s| <

< 2t + s?) sup

lime|<¥2 287"

2
o+ for (22 Y251 2 s Qs N~ T X0
VB 6.4)

Relation (6. 1) follows from (6.3) (with j = 0) and (6.4). To prove (6.2)
we integrate by parts the Fourier transform formula twice. We get that

Bus A Qumf Nt + i) — Tyal )¢ + is) =

1 d?
== NS fexp [(it - S)x] 72 (B 1(Quanf )) — Ty f Yx))dx .

Hence relation (6.3) (with j = 2) yields that

| Gns 1 Qumf Nt + is) — Tuda( /)t + is) | <

Ci(C*+1) _ 234
éltzﬁhmc "Jexp(lsxl—c _ﬂ_|2xl>dx§

Cy(C*+1 22
< l(ﬁﬂ ) e for ls|<\/7_ﬁ\6/§.
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Similarly, integration by parts four times and relation (3.17) yield that

.~ 1 d*
| Tuda(S Nt + is)| = FJeXP(stI) EZTM%(J‘)(x) dx <

C,C? 22 6 .

for Xl <—=
ﬂ2t4 | | C\/
Lemma 8 is proved.

~ 1
Proof of Lemma 9. — First we estimate Ty f. For |s| < —= we have
by (2.20) /B

e < ¢
2 xp| — p ®
.2 .
\/‘1+1N(t+1s)
2 c
exp<2/3s —4_NI )
= 2 2 2 7
c c ¢
<1+zfxt2> </<1“2—I\4—S> +ZW
2
exp (C— ﬂ32> exp(—&s) )
= =
<1+—at2) [ \/1 +— ( ™M s)

5
Sincefor|sl<c\/l_3andB>M2, _2_ﬁ3<§and

<

| T/ + is)| = ‘f(g(t+is)>

(6.5)

we get from (6.5) that under the conditions of Lemma 9

oo (57+ 30)° )
for |s] <

2 2 9c2 2 n
<1+%at2> s 14— — /P

100 M?

. (6.6)

| Tuf(t+is)| <

di
We estimate E—fTM f(x) by applying inverse Fourier transformation and
»9
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4si
integrating on the line — s1gan i+t. We get from (6.6) for j=0, 1, 2 that

C

di 1 4sign x \/
ETMf(X)—%j<t+ c\/ﬁ l>

v . _4signx_>}i ~< 4signx_>d
exp[ zx(t c\/B i) |Tuf t+——c\/ﬁ i)dt

el 9 (e OO (Y]
== e VAl

4
< Csexp <— _c\/[_3>a [t]* + 3 oy 7 dt <

< nCya” U2 exp <— 4l |>,

N

since o/ < 1. Part a) is proved.
We claim that

1+c2 2) 41 4 9¢% t? - +c2 2o 1011 ¢2 . 10-12
— — = —a — i x> —.
2 * 00MZ=""2 9 M2 M2

6.7
Relations (6.6) and (6.7) imply part b) of Lemma 9.
Relation (6.7) is equivalent to
- 9¢% ¢? 1071 ¢ 1 10~ 12
41l 4+————-12 — if o>—. (6.7
TlooMz ' 9 W2 c22‘ o> —pm - 6.7
1+ ?at

Since /x+1—-12 %(1 + x)~ 34 for x > 0 the left hand side of (6.7)’

can be estimated as

9c? > 9¢* 12 <1 9c* )'3/4

1z 1+ 6.8
Tioomz ~ = aomE\ T 100 M2 (6.8)

Observe that (1+ x)>* <1+ x> for x>0, since for f(x)=(1+x)**—x3* -1
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f(0)=0, and f’(x) <0 for x> 0. This estimate together with (6.8) imply
that the left hand side of (6.7)' can be estimated as

9¢% ¢? 9¢* 12 1
NARET v =trrtys) 2 12 \3/4
100 M? 400 M 1+<9c t >/

100 M2

1 . .
and since o > 10712 Z relation (6.7) follows from the inequality

9¢2 2 \¥* 81.10' ¢ £
N < e+ S0 L),
+(100 M2> = 7400 c( 2 MZ)

or equivalently

22\ 81 81c*
s R R THERJE) LN
100 M? 400 8000 M
The last relation follows from the inequalitya + b = 4.3~ 1/4g3/4p1/4 with
. t* 8 .
the choice a = $000 M2 and b = 2000 10'2¢2 — 1. Lemma 9 is proved.
Proof of Proposition 3. — First we show some properties of the num-
bers a,, f, defined in (3.8), (3.8)", (3.9), (3.9). We claim that

1
By > o, > 510‘13ﬂ,, 6.9)
if the starting index N in the definition of o, and B, is larger than some N(c).
1 2
Indeed, let N be so large that ﬂ 1+_cﬁ < 2.
—c

Jj=N

n/2 ’
Ay On+1 —C/ oy

1 n/2 ; .
Since min <&, 1> < @ < max < I e ﬁ— 1013> simple induction
n—1

1 — 2 .
yields that 8, > a, > H <Tc’/2—> 10~ 13B, for all n > N. This implies
c
j=N
(6.9). Under the conditions of Proposition 3

5 1 2 1
fo> iz Ba<lL V2 and Poiy <3P (6.10)

NN

10 5
The last relation follows from the following estimates: f, > Ve > Ve
10 n— n
and f,., < B, + M hence f,+; < 38,. Similarly
Uy 1 < 300,. (6.10y
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Now we prove that Properties I(n), J(n) and the additional conditions
on M,, B, and n in Proposition 3 imply Properties I(n+1) and J(n+1).
In the proof we shall apply Proposition 2 and Lemma 8 with f(x) = f,(x),
M=M,, f=8,and ¢ =1 — 274 and Lemma 9 with f(x) = ¢,(f,)(x),
B = B, a =0a, and M = M,. Observe that M = M, in Proposition 2
with this choice. First we prove I(n + 1).

If | x| > Cz\//?,, logC, x > — ¢"*'M,,,, where C, > 0 will be appro-
priately chosen then by (3.16)

d’ 2p-Gi+1)2 234 x*
— < ) - +2x| | £
E far1lx) | < C,C*B, exp< N ™., ) =
. 1 x?
< CB,U*12 ex (— + 2x )
= P V Br+1 "Mty

for j=0,1,2, x> —c""'"M,4,4,

since
[( 23/4 1 ) X2
exp|| - —=+ — 2x+"4”§
c\/ﬁn ﬂn+1 ¢ +1M"+l
1 1
< exp (—— 2x + > <
10\/E CC,

if x> — "M, and | x| > Cz\/[z log C with a sufficiently large abso-
lute constant C,.

If | x| < CZ\/E log C and n > n(C, ¢) part a) of Lemma 9 and (3.18)
imply that

2

cn+ an+ L

di
‘ ™ [Qum, fu(x) = Ta, P fu)(X) ]

=

fn+ 1) | =

'— Tv, Ou(f)) | +

< Cyo, UH D2 exp<— 4|x|> +
e/ Bn
+ ¢ "C,C*B, Ut D2 [exp <—

X2

cn+ 1Mn+ L

23/4

) ;
Buc

S))
6.11
+exp< \/_clxl (6.11)

C
If nis so large that ¢~ "C,;C* < 3 and for

2x +

x2

_ 1 1
| x| < Cy/B, log C < S CZ(log C)? < 12

\/B" C"+ an+ 1
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. 4|x]| 2.23/4
this allows to replace — —— and — lxl by
c\/ﬂ,, /B
1 2
— 22X+ ——| + 1
vV ﬂn+1 Cn+1M”+1

at the right hand side of (6. 11)> then (6.11) implies that

d’
'd—x’ Jur1(%)
2

2x+
cn+ 1Mn+ L

_S_<3C1a;‘j+”/2+§ ﬂ,,'““)z) exp(— ) (6.12)

n+1

; 1 .
forj=0,1,2,| x| <C2\/[?nlog C.IfCissolarge that 3C; o, VT V2 < EC[)’;‘J“’/Z,

Jj=0, 1, 2, then relation (6.12) implies I(n+1) for | x | < Cz\/ﬁ log C. Such
a choice of C is possible since C, is an absolute constant, and relation 6.9)

holds. ,
Jﬂ_

Now we prove J(n + 1). First we consider the case |t | >
f 2

2
E/Z?I N A f

. Part b) and formula (6.2)

with a

sufficiently large absolute constant C5. Since

we can apply Lemmas 8 and 9 for | s | <

from Part a) of Lemma 8 imply that il

c,C* 10~
"<
= Pt

~ . Cc2
| @t 1(for )t + i) | < fé7+m7c

. 1
if n is so large that C,C*¢ ™" < 3 107'4, and C; is so large that

C,C2 c1 1
ol ~ 10714,
B2 G2
Let C; be so large that also the relation a2 > — 3T 013 CiC*> 5 013 —Ci>

holds for [t]| > C3CB, '/2. (We may assume that C > 1.) Then

< 1 < (29Y) ﬁn+ls2
50262 T 1 4 4ot T 1+ 0y 2

| ulfot + is)| <
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'For|t|<

imply that \/7 N

[<% )]

, n > n(c, C) Part b) of Lemma 9 and (6.1)

| Gus 1 (fur NE + i) | < + C,CHe"(s> +12)B,.

c? 11071
1+ <7oc,, + 5 M >t2 (6.12)
CGC,4 c? _
For |t| < —", n>n(c, C) 1+<3a,, + oM? 10 “>t2 < 2C3C?,
c? 1 _ A
1+ (7% + OM? 10 “>t2 — e 2t2 > 0,

hence

wol(g-2))

2 2
1+ (c—cx,, + ! -10‘“)t2 - %oc,,c_"/ztz

2 9M?
213 L0 10
€Xp Mn oc,,c""/ztz
>

T G N PR ©.19
2% T oMz
and
0 2 2 10 2
eXp( ﬁn Mz)‘S2 + %ﬁnc—nlzsz €xXp <% ﬂn + W) 32
1+ 0yt 14t

Bnc—n/2s2 ,
> W. (6.13)

Relations (6.13) and (6.13)" imply that

czﬂ 10) ] ,
exp||—PBn
exp B+ 15 P 2 M2 > 1

1+ oy 422 _1+ <c2 1 10_11)1?2 = 10C4ic*

c"2B(s?+ %) (6.14)

2%t onme

Relations (6.12)" and (6.14) imply J(n + 1) if n > n(c, C). Relations (3.12),
(3.13) and (3.14) are straightforward consequences of Proposition 2.
Let us choose some C > 0and N, = Ny(c, C) in such a way that forn > N,
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and this C all conditions imposed on them during the proof of Properties
I(n+1) and J(n+1) be satisfied. Let us choose some N >N, and K(N) in

. = 1
such a way that Proposition 1 holdsforn <N ifM3 > K(N)and0 < T < 10
Moreover, let M, be so large that | My — My_; |<1,My > K(c) + ¢,
j=N
where K(c) is the same number which appears in the formulation of Pro-
2

N 9 N
position 3, and fiy = <%> > max <W’4—N>' Such a choice of M, is
N

possible because of relation (3.4). Properties I(N) and J(N) (with the above
constants C and N) hold if we choose M, in the above way, and in this

9
case My > K(c), |[My — My_, | < 1, 100 > By > max (1\—47, 4"N>. Then,

because of the above proof of I(n + 1) and J(n + 1) from I(n) and J(n) and
relation (3.12), a simple induction yields that Properties I(n) and J(n) (with
the parameters C and N) hold for all n > N, and also the relations

0

IM,s;—M,|<c "<l M,,;>K@m+1)> K(c) with K(n)= Zc-f+ K(c),

9 : .. . j=n
Bus1 > max< -—,47@* V) are valid. Proposition 3 is proved.
n+1

The following two lemmas are consequences of Proposition 3.

. ajfao — T 1
LEMMA 10. — If M3 = —1(,;7—)> K,0<T< 10’ with some K then

the limit lim M, = M exists and |M, — M| < 1. For all ¢ > 0 there is

n— o

some K(&) > O such that if My > K() then| M — M, | < . Also the relations

¢ -n P ] K, -n
Mn =M + m(f + 5(}’1) c 7, |5(n)l = K(C)C' (615)

and
1 1 cA\172 ~
B < MT,LLZ with U= 8(1 - 7) if n>nyMp,c) (6.16)

hold with some appropriate K(c) and no(Mo, c).

(Here in the definition of f, we fix some starting index N for which
2\N
w=(5))
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LEMMA 11. — Under the conditions of Theorem 1 there is some
no = no(Mg, ¢) such that for n > nq

& . M
Lol <cMittexp( - ES x) if x> —eM,,  j=0,1,2
dx’ 2

(6.17)

| @t 1(for X)) = Tudu(f)x) | = ¢7"CM eXp<- %IXI) forall xeR!
(6.18)

where C is some absolute constant, and p is the same as in Lemma 10.

Proof of Lemma 10.— It follows from (3. 12) that lim M, =M exists, and if
we choose properly the starting index N in Proposition 3 and also M, is suffi-

ciently large then | My—M, | < % and |My — M| < ; Since M, > K for

all n |M,—M| £ Z M, — M, _;| < Kc™" Substituting this relation

j=n

into (3.12) we get that
Mn+1 - Mn = -

1M + r(n) with |r(n)| < Kc™™.

Summing up this relation for all j > n we get (6.15). To prove (6.16) let

1/c? 15

us introduce the auxiliary sequence f,, =100, B,.;= 5 <E +1 B-|-W )

Then B, > B, for all n > N. On the other hand if f is the solution of the

: _ 1 2 _ 15 B 30 2\-1/2
ﬁxedpointequationﬂ=§<% -+-1>ﬁ-|-W then g, - f = W(l_%) )

N ~ 6
Hence for n > no(My, ¢) f, < B, < 3 B, i.e. relation (6.16) holds.

Proof of Lemma 11.— Relation (6.17) immediately follows from (3.10),
10 9
(6.15) and the inequality 8, > N2 > M
We claim that
n M
| Tu@n(£)(x) — Ta, Pu(fu)X) | < ¢ "CM exp <— | x| ) (6.19)
and

M
| @ns 1(X) fas 1(X) — Pur1(far )X)| = ¢7"CM exp (‘ #—2—| x| )9 (6.20)

for all x. 9
Relation (6. 18) follows from (6.19), (6.20), (6. 16), the inequality f > M2

and relation (3.18) for | x| < 100c”? and relations (3.16), (3.17) for
| x| > 100c"2.
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For | x| > 50c"? relations (6.19) and (6.20) follow from the bounds

given on the terms Ty @n( £,)(x), Ty, Ga( f)(X), Pt 1(far 1)(x) a0 Py 1 ()" o1 ()
in Proposition 3, Lemmas 6 and 10.

M
To prove (6.19) for | x|<50c"? observe that Ty f,,(x)=TMng,,<H x)

with g,(x) = \/% f,,(%x), and
IMWﬂmgfgqﬁ%@

and

=M2

M,
LGWQ—ﬁm

< c‘"MCexp(—%lxl)

Tr_q|x e
M ’ c 1mnce

+

M
-1

n

|x| sup

<y<
xyM”x

d
— T, n
I Mn8 (y)‘

é ‘

M
TM,.gn<M" x> - TM,.gn(x)

relation (6.19) can be proved with the help of Lemma 6.
To prove (6.20) observe that

* _ (7.1
[Apsr — 1| = f (1 = @ur1(X)]" frr1(x)dx | < 7" ‘
— et M,y
and ) .
B,y = J X+ 1(X) s 1(X)dx | S 7"
An+1 —cnt M4y n+1

Then we get relation (6.20) by estimating the expressions
Jar1(x + Bui1) — far1(x) and (Aps1 — Dfusr(x)

with the help of Proposition 3 and Lemma 10.
Let us finally remark that in the same way as we deduced relation (6.17)
we get that

di . uM . .
Fd)n(fn)(x) < CM/"!exp —T|xl , J=0,12 xeR' (6.21)
X

7. ON THE FIXED POINT EQUATION Tyg =g
By formulas (2. 16) and (2. 17) the operator Ty g can be written in the form
2 , [x 1 v? x 1 v?
T =—r g - tut— gl - — s —u— —
mg(x) c\/n Je g(c M u+2M>g<c TV 2M)dudv, ged
(7.1)

where the class of functions .« is defined in (2.19). We prove the following.
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LEMMA 12. — The fixed point equation Tyg = g has a unique solution
in the class o/ beside the trivial one g(x) = 0. It can be written in the form
gum(x) = Mg(Mx), where g(x) is the solution of the equation T, g, = g;.
The function g,(x) is the density function of the random variable

1 2 2 c k+1 5
(= 5 Z Z<5> (1 - nj,k)a (7.2)

k=0 j=1

where 0,k =0,1,2,...,j = 1,2, ...,2% are independent standard normal

random variables. The solution of the equation (1.6) is g1<x ~ 2 ( ¢ 1)>.
c——

‘Remark. — In the case of p dimensional models, p > 2, g,(x) is the den-
sity function of the random variable

o 2k p—1
1 k+1 »
1SS

k=0 j=1 I=1
where 7, ; are independent standard normal variables.

Proof of Lemma 12. — Relation (2.20)’ tells us that
. c
o /e 2exp<lmé>
Tug(d) = g| 5 ¢) ——=
c
1+i—
yItime

2
and this relation also holds if & =t + is, | s| < s(f). If Tygu = gu then
relation (7.3) with £ = 0 implies that 2(0) = gu(0)?, hence either gy(0)=1
or gw(0) = 0. If g\(0) = O then successive differentiation of the equation
~ ~ . ar .
Tugm(€) = gu(é) yields that i aumlt) =0 for all n=0,1,2, ...,
=0

therefore gw(£) = 0, i. e. in this case we get the trivial solution gy(x) = 0.
Iterating the equation (7.3) we get that

k
k \2k : Jj 2i-1
T‘K&é(f)=§<<f) é) ﬂexp M(c/—z)é)_ forallk>1. (7.4)

2 l cJ
=1 I i
j 1+M<2>f

If g = Tugm, gu€ , and gy(0) = 1 then we get differentiating (7.3) that
gm(0) = cgu(0), hence g4(0) = 0. On the other hand

if geo 7.3)

| gm(®)| = sze“lgM(x)ldx <A<
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with some appropriate A > 0 (which may depend on gy) if

| =|s| <&

k 2k
Hence exp (—A[£P) < gu(¢) < exp (A&?) if |€] <, and §M<<§> é) -1
2
ifk — oo for arbitrary €. <Observe that% < 1.) Since §M(£)=klim TE 2m(é)

the above relation together with (7.4) imply that g, must be of the form

. (i/2M)<§>j€
g’M(f) = eXp

Jrrs)s

1 J
variable M <£> (1 — n?), where 7 is a standard normal random variable,

(7.5)

Since is the characteristic function of the random

2
hence the function gy, is the characteristic function of the random varia-

1
ble M {, where { is defined in (7.2). If gy(x) denotes the density function

. 1 . . .
of the random variable MC then gy e .o/, and its Fourier transform is

given in (7.5). Since this function gy satisfies the relation gy = Ty S, as
a simple calculation shows with the help of (7.3), the function gy is the
solution of the fixed point equation g = Tyg. The rest of Lemma 12 follows
from simple calculation.

In the next lemma we prove the properties of the function gy, important
for us

LEMMA13. — For any 1 > & > O the function g(x) defined in Lemma 12
satisfies the relations

Cile)

o 2
a) |git+is)| = : for | s|<(1—¢)'—and arbitrary t, j=1,2, . ..
1+¢ c

d’ 2
b1) 'Egl(x) <Cje) exp[—(l—s)zlx I:I for arbitrary x and j=0, 1,...

d’ ' o log 2 .
b2) Iﬁgl(x) §C,-ex13(—Ax)wttha=@forx>0,]=O, 1.
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with some appropriate positive constants C;(e), C; and A which may depend
on the parameter c.

Proof of Lemma 13. — Proof of Part a). Relation (7.5) with M =1
implies that

sl So({bll- (D
|

N

> 2GS (-Gl

. <E>2kt2
‘ 2
B S (.
c
= 1—(=
2 k
For |s| < (1 —¢) -Kf)s
c|\2
2

= I,(5) I5(s, t). (7.6)

<1 —¢forall k=1, 2, ..., hence the rela-

tion | x — log(l — x)| gl xl Ifor | x| <1 implies that
—|x
1N [ 1 2
Ii(s) S exp§ — - “(£ sPor<exp|———— il [s|<=-(1—¢).
e [/ 44\2 82 —¢) 4
k=1 7.7

On the other hand, since each term in the sum in the expression I,(s, t)
is non-negative
Is, 1) <1 (7.8)

and for any k = 1,2, ...

“Iys,t) S exp{ — 2 3log| 1 +

IIA

I\

Sexps — 2 3log (12 [t]=2 " Aus) (7.8)

wnno={ET (T
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Since Ay(s) < A, with some A, for |s| < = (1 — ¢) relations (7.6), (7.7),
(7.8) and (7.8) imply Part a).

Since
df

g1( J(— it +s)exp{ — it + is)x} g,(t + is)dt

. . 2
Part a) gives with the choice s = — (1 — &)= sign x that
C

2 2\ 1
' 5 81(x )l 1+2(8)CXP|:—(1_8);|3€|:IJ<|t|+ >1_+|—t|’T2dt

S C'U)exp[—(l - S)EIXI]-

IIA

To prove b2) first we give a better estimate on I,(s) for s < 0. Take
2

some integer L > 0 to be defined later. Since x — log(1 + x) < il and
x —log (1 + x) < x we can write for s < 0 2

e ()

- k k
e BEEECIORDIIE
k=L+1 .
1 cL+1—C 1 02 L+1 Z:I}
Z — <
)
2

C2 L
gexp{const.{c“lsl+<2—> sz}}. (7.9)

L L+1
Choose L in such a way that <2> [s|>1 and (;) |s]<1.(Let L=1
if —|s| < 1.) Then relation (7.9) with this L implies that I,(s)< exp (A|s[%)
2 log 2
log2 —log ¢’
Relations (7.8), (7. 8)’ and the inequality A,(s) < A, hold for all s < 0,

for s < 0 with some A > 0 and @ =

. The estimates given for I, and I, together with

exp (A s

1+ |t

hence I,(s, t) < n ||

(7.6) yield that | g(¢ + is)| < C()) for s < 0 and arbitrary j > 0.
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Hence, by applying the inverse Fourier transformation, we get that for
arbitrary s < 0

d’
ax g1(x)

f(ItI+IS|)’e“|g(t+lS)ldt =
(le] + sy

§C(]+2)exp(sx+A|s|E)' —Wdt (7.10)

-1
Given some x > 0 choose s = — <_x—A> . Then
a

1 3
exp(sx + Als[) = exp{ - <1 - %)(aA)_i-_lx’f-_l }

and C(j + 2) J‘_'iil'—)— < XL+ I51) < Cli ) exp { ax® 1} for

1
arbitrary ¢ > 0. Since 1 — — > 0 the above relations together with (7.10)
imply that

< Cjexp (— A“ 1)—Ce:xp(—Ax)

.—gl(x)

Lemma 13 is proved.

8. THE PROOF OF THEOREMS 1 AND 1’

The following lemma can be considered as a rigorous version of the
heuristic argument at the end of Section 2.

N 1
LeMMA 14. — If M, is sufficiently large, 0 < T < 10’ then there exist

some threshold ny = no(Mo) and constant L = L(M,, ¢) such that

|<7>n(f,.)(r)—§M(t>|<L[c-"+<%> }n i ons

3/2

4,/C
where C, C > 0 is an absolute constant, and u, M and the threshold n, are the
same as in Lemmas 10 and 11

and lt] < = Ao, teRY,

Proof of Lemma 14. — First we show that for n > n,

it |t] < Ao 8.1)

’ ; log Gu(f)0)| <

2#3
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and
d? d c
a2 log ¢n+ 1(fa+ () — 103 TM¢n(f;t)(t) MZ ¢ " if [t < A,.
8.2
By relation (6.21)
2
(8.3)

and since ¢n(fn)(0) 0, Gu(/)0) = 1

. 8C|t] _2./C ,
‘E;qﬁn(ﬁ.)(t)léMzLa'éT\/-u*/z if 1] <A 8.3y

and .
1= B0 S s S, i 1< A 8.3
Hence log c]),,( Ja(t) exists for | t| < Ay, and since
- d2 o d - 2
2 ¢n(fn)(t)at_2 oul £ 1) — [5 ¢n(f;l)(t):l
— log $u(f)(0) = TS (8.4)
the estimates (8.3)-(8.3)” imply (8.1).
Similarly, we get with the help of (6.18) and the relations
d ~ ~ o~ ~ ~ o~
I [@n+1(fa+ )O) = Tu@u(fu)O)] = Pns 1(for 1(0) — Ty hu(£,)0) =
that
8C _
e [¢n+1(fn+1)(t) — Tuul £t )]‘ M2 z¢ " 8.5)
[¢n+1(fn+1 )t) — Tuda(£)O)] } M " if t<A, (8.5

| ¢n+1(fn+ () — TM¢n(fn)(t)| = —C-", if |t]<A,. (8.5
2

d
By expressing —- i 5 log TMq’>,,( Ju)t) similarly to (8.4) and applying (8.3)-

(8.3)” (for the function q,’>,,+1( Ja+1)(t)) and (8.5)-(8.5)" we get (8.2).

We claim that
2

a2

9
log gu(t)| = Sk (8.6)
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Indeed, by (7.5)

d2 ~ 1 . c2 J . I J t -2
a7 o8 0 = ‘IWZ(?) () 5]

and
2 1 = 02 J ¢ 2j t2 -1 1 2 cZ Jj
e oe 0|2 5 ) (5)14 () e ] = e, 5)
- 1
_m_z.l _c2
2

as we claimed. Since Ty 2y = Z relation (7.3) yields that
2

d d? ~ ~
log Tudn(f)0)— 72 o aul(t)= e {log Ty ¢a(fu)t) —log Tugm(®) } =

dt?
_<l Jsf)ct]" [1 : cz]' it < MET g
_2 og n(n2 OggM2 4\/—
d d? )
Putd,= sup log d),,( S — —log gM(t) By relations (8. 1)and (8. 6)
It <Ao
30C
5'10 é W . (8.8)
and by (8.2) and (8.7)
c? 500 _, ,
5,,.;.15?5 WC‘ . (88)

The quantity J, can be estimated with the help of (8.8) and the recursive
estimate (8.8)’, and we get

L 6‘2 n
5”§W (3 +c " for n=ng

with some L = L(c). (The multiplying factor n appears only in the case
2
c

1 d - ~ :
5= Z') Since " 10g u( £,)0) = log du(£)0) = — log Pu(0)=1og gu(0)=0

this inequality implies that

2 2\n 2\n
| log Bul o)) — log u(0)] < %[(%) + c"‘:|n < L[(%) + c—”:ln

for t < Ag. As | ¢u(£,)t)| < 1 and | Zy(r)| < 1 for all ¢ and
|e* — eB| < |A — B|max { elAl, e/}
for all A, B € C the last relation implies Lemma 14.
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In the next lemma we enlarge the domain where we can give the same
estimate as in Lemma 14.

N 1
LEMMA 15. — If M, is sufficiently large, 0 < T < 10’ then there exist

some ngy = no(My, ¢), n=nMo,c) and L = L(Mo, ¢) constants such that
SJor all n > n,

2 n n
| Gal 1))~ gM(t)|<Ln[c‘"+<2>] if |t|<n-<§>, teR'. (8.9)

Proof of Lemma 15. — It follows from (6.18) that
| Gur 1 fos ) — Tl £)0)| <
2C
< fl Gns 1(far )X) — T u(f)x) | dx < " c™" (8.10)

for n > ng and all t. On the other hand by (7.3) and the relation Ty, gu=2um
~ c V' . [c\?
—t] — —
) -5
| Jrvisse]
2 2 -1/2 ] c
< — —gml =t )]
e

2 k-1
Define the sets Ik={t,<—> A0<|t|<< )Ao}, k=1,2,. and
¢
Io={t1t] < Ao}, where A, is the same as in Lemma 14, and put

Ben = sup | Gul 1)) — Zu(®) ]

c2 n
Son < Ln[c‘" + <?>] for n>ng

by Lemma 14, and relations (8. 10) and (8.11) imply that

| dul )0 — Bu®)| =

<

(8.11)

Then

2 2C '
5k+ +1§*—5kn+__c-n, n>=>ng. (812)
Lon T
J1+ A0
' 2 2
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k
2CT1 2
Define B;; = — ———  forall 0 <j < k. Since there is
U

21
e
Cc

B 2171-1/2
some [, such that 2|1 + A1<—> ] <
B c

B, < K-27%79 holds for any j, k > 0 with
Hence relation (8.12) implies that
k

5k,n+k é 50,n.B1,k + Zc_(n+j)Bj,k é Kl(2_k50,n + C_(n+k)) .

i=1

if 1 > 1,, the inequality

N | =

w

ome appropriate K = K(c).

The last inequality together with (8.11) imply that
2\n+k
Semsr < L(n + k)[(c ) + c'(”+"):| if n>np, Kk=0.

Observe that the right hand side in the last relation depends on n and k

no
only through n + k. It implies Lemma 15 w1th n = <E> Ay, where A,
is the same as in Lemma 14. 2

The proof of Theorem 1'. — It follows from Lemma 15 and (7.3) that
for n > ny

| Tu@al ) — Em(t) | < 21 Gul 1) — Bn®) | <

=< 2Ln[c‘" + <c_2>'] if [t]< 11(%)" (8.13)
\ 2 c

On the other hand we get by applying (3.17) in Proposition 2 with
4
f=fnB= W—i (this can be done, see (6.17)) the inequality

d4
‘d 7 Tudn(f)(x) | < C*M?® exp <— ——1x I)
Hence integration by parts yields that
~ o~ 1 (] a* C ,
1 Tu@a(fu)0) | = S WTM¢n(fn)(x) dx < A (8.13)
By part a) of Lemma 13 and the relation gy(t) = §1<Kt4—> also
| gu(®)| < Ct™*. (8.13)”
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. . . . 2\"
Relations (8. 13)~(8. 13)” imply that we have with arbitrary 11<—> > B>0
c

d’ A~
‘W [Ty Pa(fa)x) — gm(X)] | = Jl ] Tudal fu)0) — gm(t) | dt =

. 2\n 1
=J +I §C’{B’“n[c'"+<c—>]+ 3_.}forj=0,1,2. (8.14)
le]<B  Jil>B 2 B>/

> and choose B = g~ ". Then (8.14) with this B

Put ¢ = max

implies that <\/_ \/

d’ .
W [TM¢n(fn)(x) - gM(x)] é C,q"’ J=0, 1’23 n > no, lf Zj < q <1.

(8.15)

We get, similarly to the proof of (6.19), the strengthened form

: M
< ¢cT"CM*1T exp <— %lxl).
(8.15)

d’ :
= [Tu@a(f)(x) — T, Pu(fa)(X)]
X

Since gy(x) = Mg <M<x + X ¢ 1))) by Lemma 12, where g is the solu-
c —

tion of the equation (1.6), relations (8.15), (8.15)" and (3.13) imply for-
mula (2.9) in Theorem 1’. The remaining statements of Theorem 1’ are
contained in Lemmas 10 and 11.

In the proof of Theorem 1 we need the following

LEMMA 16. — Ifn > no(My, c), ¢ > O then there exists some C(e)=C(g, ¢)
such that

} g f ,,(X)
for x > — "M, j=0,1,2.
Proof of Lemma 16.— By Property I(n) and the behaviour of the sequence
B, there is some u > 0 and m > 0 such that
2
=)

j=012 x> -M,. (8.16)

We can improve the constant u in (8.16) by successive application of

—eM 2
<C(s)M’“exp< -9 ‘2x+ x

"M,

2x +

d’ )
7m0 | = CM/*! exp ( M

€ .
Proposition 2. Choose n = 3 and the integer k in such a way that

u22 k—1 1—8/2 ﬂ22 k
?[;(1—;1)] =— <?[E(1_")]

Vol. 49, n° 1-1988.




72 P. M. BLEHER AND P. MAJOR

S 2 =1 1—g2
Deﬁneﬁ,% <p<py? sothatﬁz[—(l—n)] = —:—/—.Putm=n—k-—1.
c

Since fu(x) = Quo1 M, - - - Qumm,fm(x) we get Lemma 16 by applying
formula (3.16) successively fpr QmtjMps; Jm+j(X),0 < j< k — 1, withe = 5

1 c J 4
SR (. lly for f,_, with f= ——
and f M2 (2(1 — ’1)) , and finally for f,_, with B 1 = M
and ¢ = #. This is possible since for all 0 < j <k — 1
100> f>—1 I
ZPEyeE\a0 =) T =M

(Since the number of iterations k does not depend on n neither the constant
C(e) does.)

The proof of Theorem 1.— Simple calculation yields that

¢ "Palx, T) = ]—;— exp <— 21,1? c"x2>f,,<c"<\/%x — M,,),T), 8.17)

where the norming constant B, is determined by the equation

f Pulx, T)dx1dx, = Jﬁ,,(\/xf + x3, T)dxydx; =1, x=(xy,x,). (8.17)
R2

By relations (2.9) and (2.8)’

o [H _ n e, ¢ M x) =
Sl e TX_M" , T )=Mg| ™™ Tx—M,,—}—m +rid(x)=

- \/E—Tf_mg<“}rc M(x — ’M)) +rP(x) for x>0 (8.18)

— T
with M = [—M and errors terms r{!)(x), r{?)(x) satisfying the inequality
a;
d’ ;
e rD(x) | £ Kg"c"V with some K >0,0<g<1, j=0,1,2, I=1,2.
X

We claim that

ol ow (-5 a7 ) 1)-
— exp { — (2?;" 2M(x—ﬁ)+ﬁ2>}’\/%Mg(ach'lM(x——M)XH <

< Kg"2c" exp (— Go c"ﬁ2>, j=0,12, |x—M|<dnc™™ (8.19)

2T
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if 8 > 0 is sufficiently small. Indeed, in this case

& e e el f3))-
SCENCV)| P

& “ .
because of (8. 18) and the inequality ‘ 77 P [ %c"(x2 - _1\717):| ‘ <Kg "2cn
x

if | x—M| < dnc™", and 6=0(M, c) > 0 is sufficiently small. On the other
hand

dj dg n
W[exp <— 5T € (x2 — M2)> -

— exp < - aTO c"M(x— M))] \/% Mg <a}c'f M(x— M)) ‘ <

< K@% if |x—M|<dnc", j=0,1,2 (8.20y

since

diyzf [exp (— ;—:}c"(x2 - M2)> — exp <—— %?—c"ﬁ(x—ﬁ))]l =

e (e[ )]

< Kg "?c"(x — M?) < Kg"?cV.
Relation (8.19) follows from (8.20) and (8.20)".
We also claim that

d" aO 2 al
L o[ % M ) T)| <
oo (e ol )=

< Kexp <— ;—;C"M2>C"j exp (— uc"™™ | x—M]|) (8.21)

for j =0, 1,2 with some appropriate K = K(M, ¢) > 0 and u=p(c) > 0.

' [T
For x > |— M, relation (8.21) immediately follows from the inequalities
a
d’ : __ [T
70 exp <— g%c"x2> < Kc" exp <— ;—;C"M2> for x > ZM,, and

dj n a, n.' n a,
—(wf,(c\/%x—M,,,T)‘éKc’exp(—ucM‘ /—]—;x—M,, >§

- . [T
ch"’exp<—yc"M —|x—M|>
a;
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/T L
For 0 < x < [— M, we need the sharper bound given in Lemma 16 for
a

the function f,. In this case the estimates

d’ Qo 2 12
Eexp(—ﬁc(x —M))

sl w7
62"< lﬁx—M )2
(1—eM < a; ) T "
2" |=x—M, |+
c T

(i—;—;_)ao (x> —M2)>

< Kc" exp <—

< Kc"exp

; l-¢ (¢ M — l—¢a
=Kc" —c = -MM <K% -
c exp{ —c <T Mﬂx2 M ,,)} K¢ exp{ . (P Mz)}

1—¢a (1+8)a0>0
c T 2T '
It is not difficult to see with the help of Part b 1) of Lemma 13

d lay — [a;c" — — apc" — —
d—)(;\/%Mg( T M(x — M)> exp <——T—M(x — M)>’ <

<KcWexp(—ac™M|x —M]|), j=0,1,2 (8.22)

imply (8.21), since u =

with some o > 0. We show with the help of (8.19), (8.21) and (8.22) that
exp { 22 et + 5 Lo [2 et + - M) T s =

R2 2T " T
= exp <— ;—; c"Hz)c"‘ﬁ(M)(l + 0(q") (8.23)

BM) = /?T—IMZJ‘ exp (— % Mr)g(% _Mr>dr

and some appropriate 0 < g < 1. Because of (8.17) and (8.17) relation
(8.23) implies that the constant B, defined in (8.17) satisfies the relation

with

B, = B(M) exp ( - % W)(l + 0(q")). (8.23y

To prove (8.23) let us first observe that we make an error of order
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0(g"%c "n) exp<— ;—;C"M_2> by replacing the integrand on the left-hand
side of (8.23) by
a; — apc” 5 R —
J,,(xl,xz)= TMCXp —ﬁ—ZM(\/xl + x5 — M) + M2
a;c" —
g<lT M(\/x}+x3 — M)> .
Indeed, by (8.19) the difference of the two integrals can be bounded by
this error term if we integrate only in the domain D, = { x = (x;, x»),

[|x] — M| < dnc™"}, and by (8.21) and (8.22) both integrals are bounded
by this error term if we integrate outside the domain D,. On the other

hand, we get with the change of variables r = ¢"(\/x} + xj — M) that

1 (= — M\ |/ M
JJ,,(xl, Xy)dx1dx,= = J B <§ + M) exp (— a?r r> % g<afr r)dr =
—c"™M

=BM)(1 +0(c™).

(In the last step we have applied again Part b1) of Lemma 13.) These esti-
mations imply (8- 23).

Relation (1.7) follows from (8.17), (8.23)" and (8.21), relation (1.5)
with the bound (1.8) on the error (and B(M, T) = B(M)~!) follows from
~ (8.17), (8.23) and (8.19) for | x — M| < dnc™" and (8.21), (8.22) instead
of (8.19) for | x — M) > dnc™". The remaining statements of Theorem 1
are easy consequences of Lemmas 10, 12, 13 and the definition of M. Theo-
rem 1 is proved.

9. THE PROOF OF THEOREM 2.
THE BEHAVIOUR OF THE DENSITY
OF THE AVERAGE SPIN AT INFINITY

In this section we prove Theorem 2 with the help of two lemmas whose
proofs are postponed to the next section. First we want to determine the
typical region where the function p,(x, T) is essentially concentrated. More
precisely, we want to define an interval D, in such a way that

Pulx, T) > " sup p,(x, T)

with some 0 < g < 1 if xe D,, and [0, 0] — D, has exponentially small
probability with respect to the probability measure with density func-
tion K,p.(x, T). (Here K, is that norming constant with which K,p,(x, T)
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is a probability density function on [0, o0 ].) To solve this problem we need
the following

LEMMA 17. — Consider the function g(x) defined in Lemma 12. There
exist some A = A(c) > 0 and B = B(c) > 0 such that

log 2
) gy(x)> Bexp (—Ax®) with a=% forallx > 0
c

b) (x) > e 2 Il
81 ﬁexp<—2|xl) Jorallx < 0.

Part b2) of Lemma 13 and Part a) of Lemma 17 imply together that
B;exp (— Aix*) < g1(x) < Byexp (— A,x*) for x>0 9.1)

with some B; > 0, B, > 0 and 0 < A, < A,, and Part b 1) of Lemma 13
together with Part b) of Lemma 17 yield that

for x <

2 2
B,(¢) exp <— 1+ 8);le> < g1(x) < By(e) exp <— (1 - s)zlxlo>
©.1y

with arbitrary ¢ > 0 and appropriate B,(g) > 0, B,(¢) > 0.

" M
Define the function P,(x)= K¢ exp (- ach Mi(x — M)) g<“‘T (x— M))

. 1 © ay — aM . .
with K= exp | — TM‘V g I y |dy. (The last integral is conver-

gent because of Part b 1) of Lemma 13.) Then P,(x) is a density function
and a comparison of the functions P,(x) and p,(x, T) gives with the help
of Theorem 1 and Lemma 13 that

K, =K + 0(¢" 9.2)
. | Pa(x) — K,Bu(x, T)| < Cc"g" for x>0 9.2y
and
f | Pa(x) — K, pu(x, T) | dx < Cg" 9.2y
0

with some 0 < g < 1, where K, is defined so that K, p,(x, T) is a density
function on [0, oo ]. It follows from Part b) of Lemma 13 and the identity

8lx) = g1<x - 4(00_ 1)> that for all &> 0

f P,(x)dx < Cq"
x>M+ec—nnl/x

f P,(x)dx < Cq"
0<x<M-—egc~"n

and
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with some C = C(¢) > 0,and g = ¢(¢), 0 < q < 1. These estimates together
with (9.2)” imply that

I Pa(x, T)dx < Cq" 9.3)
x>M+ec—nnl/x
and

j Pulx, T)dx < Cq". 9.3y
0<x<M-—ec~"n
On the other hand, by the definition of P,(x), Lemma 17 and (9. 2)’ imply that
C
P6T)Z Cie(gh = Cq') > ', 0<g<gq <1 (9.4

forM — ec™"n < x < M + ec™"n'*if ¢ > 0 is a sufficiently small but fixed
(depending only on ¢ and M) constant. Relations (9.2)" and (9.4) imply
(1.10), and (9.3), (9.3) explain why it is natural to consider the above
interval.

We prove Part a) of Lemma 17 in the next section. Here we give a heuristic
explanation for formulas (9.1) and (9.1)" and prove Part b).

It is natural to expect that g,(x) ~ B exp (— Ax*) with some B > 0,
A > 0 for large x, x > 0. If we consider the expression T, g;(x) then for
large x the main contribution to the integral is given when u ~ 0, v ~ 0,

therefore Ty g,(x) ~ B% exp <— 2A<)~C) > Hence the identity T, g,(x)=g(x)
c

* log 2
suggests that 2A 1) - Ax% i.e o = l-o-g—~. In (9.1) we have formulated
c og ¢

a slightly weaker statement, since we have given only an upper and lower
bound on the coefficient A inside the exponent. The above argument does

v . . . . v .
not work for x < 0, since in this case the domain u ~ 0, > ~ — Xx gives

an essential contribution to the integral T, g,(x). This observation in the
basis of the

Proof of Part b) of Lemma 17. — For x < 0 define the set

2
,A=A(x)={(u,u),|u|<1,m+ 1 <”7<'-x—'+2}.
C C

Since g,(z) > C > 0 with some C for 0 < z < 3 (this will be proved in the
proof of Part a)), g,(z) > 0 for all z and g,(x) = T, g,(x) hence

2 2
gl(x)zje'”zgl ThusZ 21 T u+ dudv >
A c 2 C 2

; (o4 2
gCZJ e"’dvg—exp<-—~lxl>.
A |x]+1 ¢
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It is natural to expect that the decrease of the function p,(x, T) outside
the typical region is similar to that of P,(x). For x < M we cannot expect
a considerably better estimate than (1.7), but it is natural to expect that
Pa(x, T) £ Cc" exp { — A(c"| x — M| )* } for x > M and sufficiently large n
with some C > 0, A > 0 and the same « as in Lemma 17. However, this
cannot hold without any further restriction, since the starting function p,
satisfies the inequality po(x, t) > C exp (— Ax*) for large x with p,(x, T).
(This inequality holds for all p,(x, t) if x is sufficiently large depending on n.)
Hence, in the case o > 4 the above formulated conjecture does not hold.
In the next section we prove the following weaker result:

log 2
og ¢
Theorem 1’ there is some ny = ny(c, t, T, @) such that for n > ny

LEMMA 18. — Let a <4 and d < o =

. Under the conditions of

di
) Sa(x)

S CM/*lexp (— AM™), x>0, j=0,1

with some C > 0 and A > 0 which depend only on & and c.

It can be seen with the help of (8.17) and (8.23)" that Lemma 18 implies
the inequality ¢ "p,(x, T) < K exp (— A(c"| x — M |)*) for x > M what
is a considerable improvement of (1.7). However, since & < o, even this
estimate is not strong enough to imply (9.3). With the help of a simple
trick we can prove a strengthened version of Lemma 18 (for j = 0) which
is sharp enough to imply (9. 3).

COROLLARYof LEMMA 18. — Let the conditions of Lemma 18 be satisfied,
and let some ¢ > 0 be given. Then there exists some q = q(¢), 0 < g < 1
and K > 0, L > 0 depending on ¢, T, t and & such that

¢ T"ux, T) S Kg"exp { — L(¢"|x = M|} for x> M +en'l%c™

. log 2
Since
log ¢

thus completes the proof of Theorem 2.

Proof of the Corollary of Lemma 18.
We have

>2 for 1<c< \/5_ this Corollary implies (1.11), and

d o _
,'a;ﬁn(X,T)’éKcz"exp{—AM“Ix—MI“c"“‘} for x>M (9.5)

with some appropriate K > 0 and A > 0. This follows from Lemma 18

— [T
relations (8.17), (8.23)" the definition M = ;-M and (2.8)’. (Observe
1
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d’ c —
— exp (— a—o—(x2 - M2)>
X 2

1 - -
define z = z(x,n) = K c”"exp { AM* | x — M |*¢™ } pu(x, T), where the

< K¢ forx > H.) Given some x > M

constants K and A are the same as in relation (9. 5). Then we have by (9.5)

d
Tz ﬁn(é’ T)

—pn(y’ T) g ﬁn(x’ T) -z sup dﬁ

x<E<x+z

1
> Eﬁ"(x, T)forx <y< x+z.
9.6)
If x > M + en'/%c™" then relations (9.3) and (9.6) imply that

x+z 1 3
Cq" >_[ Py, Dy 2 5 2pa(x, T)
or equivalently
Palx, T)? < 2Kc2"Cq" exp { — AM¥(c" | x — M |)a }.

The last inequality implies the corollary with \/(E instead of q.

10. THE PROOF OF LEMMAS 17 AND 18

Proof of Lemma 17. — We use the fact that g4(x) is the density function
2k

1/c k+1
of therandom variable { defined in (7.2). Introduce 1= : <§> Z( 1—n%y),

j=1
Li=C—m, k=0,12 ... where n;;, are the same as in (7.2).
Let pi(x) denote the density function of n, and Fy(x) the distribution func-
tion of (.
Since

, 1
E{? < EB{2 = A? with A = (1G1>2A) < o forallk,

¢

——— P

2./2—¢?
2A

gi(x) = J}’k(x — y) Fi(dy) ?_j p(x — y)F(dy) 2

-24
Apk(Y)P( | &kl < 2A)

and since

= inf

[x—yl<2
we have 3
gix) =- inf p(y) for arbitrary x and k. (10.1)
4 |x-y|<2a

In order to estimate p;(y) we recall that the local large deviation theorem
for partial sums of independent identically distributed random variables
implies the following estimate: If P,(y) denotes the density function of
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the random variable (1 — n?), where 7; are independent standard nor-

ji=1
mal random variables then there exist some B > 0, y > 0, C > 0 such that

C B ,\ .
P,,(y)>76xp —;y if |yl<ny. (10.2)
n

Let us first consider the case x > 4A, x > 7, and define the integer

k = k(x) by the relation %c"“l <x< %ck, where 7 is the same constant

) k+1 k+1
which appears in (10.2). We have p(y)=2- <—> Py (2 : <—> y>,
Hence for | y — x| < 2A and k = k(x) ¢ ¢

pi(y) > 2\5(%5)“1 exp { - 8B<c£2>k+1y2 } > Cexp <— <62—2>ka2>

with some C > 0. This implies, because of the definition of k(x) that

— - log2
() =Cexp (= Bx®) if |x—y| <24 k=kx), a=%§— (10.3)
c
with some C > 0, B > 0 if x > max (4A, 7). Relation (10.3) also holds
for 0 < x < max (4A, y) with k = 0. Lemma 17 follows from (10.1) and
(10.3).
To prove Lemma 18 first we introduce some notations. Let some «

log 2
be given, 2 < a < 1Zg , and choose some &= &, ) > 0 such that
g C
2\«
207> (1 + ¢)/(1 — &)%, <%> < (1 — g)% (Here we write a instead of the

number denoted by @ in the previous section.) Define the sequence 7y,
n=01,... ‘
yo=KM¥%,  y,0=(1— ¢y, + KM™* (10.4)

with some K > 0 to be defined later. Clearly
1
v, =(1 — &"KM*? + [1 — (1 — ¢']-KM™™ (10.4y
€

(Here M is the same number as in Theorem 1’)) Let us fix some positive
integer N and real number C so that Proposition 3 hold for large M,
with these parameters. Define B, by (3.9) and (3.9) for n > N and let

2\n
Ba = <%> for n < N. We shall prove the following
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LEMMA 18’. — If M, and also (in dependerice on c, & ard ¢) the number K

. log 2
defined in (10.4) are sufficiently large, 2 < o < min (4, %) then

a

C x
Wexp <— 7) for x>0, j=0,1 (10.5)

n

}  uX) | =
where C is the same constant as in Proposition 3.
Lemma 18 is an immediate consequence of Lemma 18’ since by (10.4)
1
Y, > const M™% and also 8, > const M for sufficiently large n. We shall

prove Lemma 18’ with the help of the following

log 2
LEMMA 19. — Let some a, 2 < a < l—g—, be given, and define the
ogc

sequence y, by (10.4). If M is sufficiently large, and the function f, satisfies
the inequality

o

C X .
'B(J+1)/2ep< y-) for x>0, j=0,1

n

fn()

with the same constant C > 0 as in Proposition 3 then

CZ l/a 2xa
[31/2“ exp < W) for x>0, j=0,1, (10.7)

n

d
EQn,Mnf;l(x) =C

where C, is an absolute constant. (Especially, it does not depend on the
number K in the definition of y,.)

Proof of Lemma 18’ with the help of Lemma 19. — Relation (10. 5) holds
for n = 0. Indeed, we have an explicit expression for fy(x) with implies

that fo(x) < exp ( 116 :;) < 3exp <— <——-2\/.\ ) < Cexp <— %) if

d
K > 16. The derivative E—O can be estimated similarly.
X

(29,)!/e~ D
1/2(a—1)
n

If 0 <x< = B, then by Property I(n)

Lol ol 5) g on(
dx’ " =ﬁ£j+1)/2 \/ﬁ ﬁ(1+1)/2 Vn ’

therefore it is enough to prove (10.5) for x > B, with the help of (10.7).
We show at the end of the proof that for arbitrary large L > 0 there is
some K = K(g, a, ¢) such that

B
2y,

< % for all n (10.8)

Vol. 49, n° 1-1988.



82 P. M. BLEHER AND P. MAJOR

if y, is defined with this K. Now we prove Lemma 17 if (10.8) holds with
a sufficiently large L. In that case we have by (3.12)

o ﬂa/fl 1/(a—1) 11(41—1)
M,:1—M,|<Rec™"/Bor1=c¢ "RB,, ;| — <RB,+q| = ,
Mg Mol <R e Ry () < (7)

&
x>Bn+1 |x+Mn+1—Mn!a> 1_5 xa—c(g)an_Mn+lla>(1_8)xa~

Hence by (10.7)

d’ Cy,” 2|x + M,y — M, [
}E Sor1(x) | < C4 W c - &y =
CZ ;/a 2 xm )
§C2#exp{—(1—8)zg’y } if X>Bn+1.
n+1 n+1

1
Here we have exploited that y,,, > (1 — ¢y, and B, > = B,+,. Since
(1 — &?2¢™* > 1 + ¢ the last relation implies that

d’ x*
e far1(X)| < A exp | — for x> B,
dx Yn+1
with
C*yalt B
A,,=ClﬂjT++llexp<~s H).
n+1 Pn+1

Simple calculation shows that

2 1 2 -
A C,C Tnrt \ 2 Ve \& VR C (G| CR-U+1)2
n < ﬁ(j+ 1)/2 Ba/2 « <Ls ﬁ(j+ 1)/2 i < CB.ey
n+1 n+1 n+1 n+1

if L is sufficiently large. Hence it is enough to demonstrate (10. 8) to complete
the proof of Lemma 18’.

C‘2 n 1 _ (,‘2 no/2 1
We have g, < B2<<5) + fvl—2>’ hence p%? < B[(?) + W:I with
2\ a
some B = B(c) and B = B(c). Since <%> < (1 — &)* we have
B¥? < B[l — &" + M7*].

On the other hand by (10.4Y

”n=(1 — "KM + [(1 — (1 — &)")] 311\(4“ = K((l — "+ ML)

and these relations imply (10.8) if K > BL.
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Proof of Lemma 19. — Let us introduce the functions

Pn(-xa u) = e—vzf;l( ;:Mn(x’ u, U))ﬂl(ln_,Mn(x’ u, v))dv

and
P,(x) = Py(x,0),

where the functions I}y are defined in (4.7). Then
) 2
Qum, fulx) = 2J‘ exp <— u—,,>Pn(X, udu, (10.9)
0 4 .
and by the Cauchy- Schwartz inequality
P(x, u) < [Py(x + ct)Py(x — cu)]V/?. (10.10)
On the other hand

Cc? 2x°*
P.(x) = |e 211w (x,0,0)dv < Je'”z— exp <— )dv =
( ) f ( ,Mn( )) ﬁ" Ca,yn
c? 2x%
=—J/mexp| —
Bn Ve < CYn

) for x>0, (10.11)

S x
since in this case I, y(x,0,v) = I y(x,0,0) = =, and
c

c:
P,,(x)§ﬁ—\/n for all x (10.11y

C
since f,(z) < — for all z.
It follows from (10.10), (10.11) and (10.11) that
|x + cul* Ix—cul“}
- - for
Cayn ca'))n

X
O<u<-
C

c: -~
P.(x,u) < B \/n exp {

and c
Pn(x,u)§ﬁ—\/7—£exp{—m_cw} for u>i>0.
n c

CVn

Hence by (10.9)
— C2 - x/c i B .
Qn,M"ﬁ(x)ézﬁ—\/n[f exp<_|x+cu| Cx fu|>du+

0 VuC" YnC

+ F exp <— ,x-'_‘iula)du} =2/ ;;—2(11 +1,) (10.12)

x/c ync

To estimate I, we show that
Ix+eul" +|x—cul*>2|x"+ |cul* if x>0, a>2. (10.13)
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Indeed, (10.13) is equivalent to the inequality
hw)=|1+ulP+|1—ulf—2—|ul*>0,
and this inequality holds, since h(0) = 0, #'(0) = 0 and
W) =oao—){lu+ 1%+ u- 12— |ul*}=0.
By (1.13)

x/c 2a a 2 a
Il§j exp{— x —u—}dugKexp<—g;i>. (10.14)

0 CVn Pn n

On the other hand
I, < J exp (— M—Jrfdul>d" =" J exp (— u’)du <

x/c V€ 2x
Tn 7€

200x* 2 x*
< Kyl® exp (— cfx > < Kyl exp <— — x_) (10.15)
Y cy

n n

Relations (10.12), (10.14) and (10. 15) together imply Lemma 19 for j=0.
The proof for j = 1 is similar. The difference is that in the estimation of

d —
o Q.. fn(x) we have to work beside the function P,(x) also with
x

P,(x) = Je_"z Sl (x, 0, v))%d .

It can be estimated in the same way as P,(x), the only difference is that

1
now a multiplicative factor — appears. Lemma 19 is proved.
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APPENDIX A

THE PROOF OF THE BASIC RECURSIVE
RELATIONS (2.1) AND (2.1') IN PART 1

Formula (2.1)" immediately follows from (1.4) in Part I with n = 0. To prove (2.1) let
us first observe that the recursive relation

(A1) Hpri(xy, oo oy Xgne1) = Hp(xy, o oo Xan) + Hn(Xgnigs oo os Xgnay)

on n+1
- c"(2"" Z xi>(2'" X;
holds for n > 0, where R i=t j=2n+t
Hn(X1s -y Xgn) = — 2 Z UG, jxix;,
i1 5

and U(j, j) is defined by (1.1) and (1.2)" in Part 1. By relation (1.4) in Part L

1 1
(A2) p,,“(x, T) = m jexp { - f f}fn(xl, . -’x2"+1)}

PLEST an+1

5(2‘(7:-* 1) Z X; — x) I_lp(xi)dxi,
1

i= i=

where Z, (T, ¢) is an appropriate norming constant, and §(2~"*Vg2"{' x; — x) means
that integration in (A2) is taken on the hyperplane 2~"*DE2"}' x,=x with respect to
the Lebesgue measure. Let us fix some number u, and calculate the integral on the right-
hand side of (A2) by integrating first on the hyperplane defined by the relations
27"E¥ x; =x +u and 27"S¥%.. x; = x — u and then by integrating by u. We get
with the help of relations (A1) and (A2) that

1 c"
Pulx, T) = Zﬂ(,r—’t)jexp { T(x + u)(x — u)}

2n 2
[Jexp { — % Hn(xy, ..., xz..)}6<2"" in —(x + u)) Hp(x;)dxi]
i 1

i=1 i=

n+1 n

2
[fcxp { - % H(Xpnt 1, ...,xz,.“)}é(f" Z x; — (x — u)) H p(x,-)dxi:ldu =

i=2n+1 i=2n+1
c’l
=C, J exp {T(xz —u?) } Pulx + W)p(x — w)du,

as we have have claimed.

(Manuscrit recu le 20 mars 1988)
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