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1. Introduction. In this paper we investigate the large-scale limit of the equilib-
rium state of Dyson’s hierarchical vector valued p dimensional, p ≥ 2, model with
parameter c, 1 < c <

√
2, at low temperatures. More precisely, in Theorem 1 we

construct a probability measure µ̄ = µ̄(T ) on (Rp)
Z

with Z = { 1, 2, ... } which is
an equilibrium state of the model. In Theorem 2 we determine the large-scale limit
of a µ̄ distributed random field together with the right scaling, i.e. we prove that if

σ =
{

σ(j) =
(

σ(1)(j), . . . , σ(p)(j)
)

∈ Rp, j ∈ Z
}

is a µ̄ distributed random field then the finite dimensional distributions of the
random fields

Rnσ =
{(

Rnσ(1)(j), . . . ,Rnσ(p)(j)
)

∈ Rp, j ∈ Z
}

,(1.1)

Rnσ(1)(j) = cn 2−n

j2n

∑

k=(j−1)2n+1

[

σ(1)(k) − Eσ(1)(k)
]

, j ∈ Z ,

(1.2)

Rnσ(s)(j) = cn/22−n

j2n

∑

k=(j−1)2n+1

σ(s)(k) , j ∈ Z, s = 2, . . . , p

(1.3)

tend to those of a limit random field, and describe the finite dimensional distribu-
tions of this limit field.

The distributions of the fields Rnσ defined in (1.1)–(1.3) are called the renor-
malizations of the distribution µ̄ of the underlying field σ. More precisely, they
are its renormalization with parameters α = 1 − log c

log 2 in the first coordinate and

ᾱ = 1 − 1
2

log c
log 2 in the coordinates s = 2, . . . , p, because we multiplied by 2−nα in
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(1.2), by 2−nᾱ in (1.3), and the number of summands is 2n in these formulas. If the
finite dimensional distributions of the fields Rnσ converge to those of a limit field
then this limit field, more precisely its distribution, is called the large-scale limit of
the measure µ̄.

Given some h ∈ R1, h ≥ 0, and positive integer N let the Gibbs measure

µh
N = µh

N (T, t) be defined on (Rp)2
N

with density function

ph
N (x1, . . . , x2N ) = ph

N (x1, . . . , x2N , t, T ) ,

xj = (x
(1)
j , . . . , x

(p)
j ) ∈ Rp , j = 1, . . . , 2N ,

(1.4)
ph

N (x1, . . . , x2N )

= Z−1
N (T, t, h) exp

{

− 1

T

(

−
2N−1
∑

i=1

2N
∑

j=i+1

U(i, j)xixj − h

2N
∑

j=1

x
(1)
j

)} 2N
∏

j=1

p(xj , t) ,

where

ZN =

∫

exp

{

− 1

T

(

−
2N−1
∑

i=1

2N
∑

j=i+1

U(i, j)xixj − h
2N
∑

j=1

x
(1)
j

)} 2N
∏

j=1

p(xj , t) dxj

is the grand partition function, and p(x, t) is defined in (1.3) of Part I. Let ph
N (x)

denote the density function of the average 2−N
∑2N

j=1 σ(j) of the µh
N distributed

random vector (σ(1), . . . , σ(2n)). Put µN = µh
N , p(x1, . . . , x2N ) = ph

N (x1, . . . , x2N )
and pN (x) = ph

N (x) in the case h = 0.
In Part I we have described the asymptotic behaviour of the above defined den-

sity function pN (x). The result of Theorem A formulated below are contained in
Theorems 1, 2 and Lemma 13 of Part I. Let us consider the integral equation

g(x) =

(

2

c
√

π

)p−1 ∫

Rp

exp(−v2)g

(

x

c
+ u +

v2

2

)

g

(

x

c
− u +

v2

2

)

dudv ,

(1.5)

x, u ∈ R1 , v ∈ Rp−1 ,

where v2 denotes scalar product. In Part I we have proved that equation (1.5)
has a unique non-trivial (i.e. not identically zero) solution in the class of functions
A =

{

g,
∫

etx|g(x)|dx < ∞ if t < t0(g), t0(g) > 0
}

. In this work we consider this
function as the solution of equation (1.5). It is a density function which is positive
for all x. Since the function pn(x, t) depends on x only through |x| we can define
a function p̄n(z) = p̄n(z, t, T ), z ∈ R1, such that pn(x) = p̄n(|x|) for all x ∈ Rp.
Now we formulate the following

Theorem A. If 1 < c <
√

2 then there exist some thresholds T0 = T0(c) > 0 such
that for all 0 < T < T0, 0 < t < t0, t0 = t0(c), (t is the parameter of p(x, t) in
formula (1.3) of Part I) the following relations hold:
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There are some M = M(c, T, t) > 0 and n0 = n0(c, T, t) > 0 such that for
n > n0

c−npn(x, T ) = c−np̄n(|x|, T )

(1.6)

= B exp

{

−a0c
n

T
M(|x| − M)

}

g

(

a1c
n

T
M(|x| − M)

)

(1 + rn(x))

for −ηnc−n < |x|−M < ηn1/αc−n with some B = B(c, T, t) > 0, η = η(c, T, t) > 0,
and the error term rn(x) satisfies the inequality

(1.7) |rn(x)| ≤ Kqn

with some K > 0 and 0 < q < 1 depending on c, T and t. In formula (1.6) g(x)

is the solution of the equation (1.5), a0 = 2
2−c , a1 = a0 + 1 and α = log 2

log c .

(1.8) c−np̄n(x, T ) ≤ Kqn exp
{

−L(cn|x − M |)2+δ
}

if x > M + ηn1/αc−n

with some δ > 0, K > 0 and L > 0 which depend on c, T and t. The solution of
the equation (1.6) satisfies the inequality

(1.9) 0 < g(x) < C exp(−Axα) for x > 0

with some C > 0, A > 0. We have

(1.10) c−np̄n(x, T ) ≤ C1 exp{−C2c
n|x − M |} for 0 < x < M

with some C1 > 0, C2 > 0 depending on c, T and t. We also have

M2 =
a0 − T

tT
+ R(t, T )

with some |R(t, T )| ≤ const., and such that R(t, T ) → 0 and T → 0.

Given some integers N ≥ k ≥ 0 we define the probability measure µh
k,N as the

projection of the measure µh
N to the first 2k coordinates, i.e. µh

k,N is a probabil-

ity measure on (Rp)2
k

, and for all measurable A ⊂ (Rp)2
k

µh
k,N (A) = µh

N (A) =

µh
N

(

A × (Rp)2
N−2k

)

. Our first result is the following

Theorem 1. Let the conditions of Theorem A be satisfied. Consider an arbitrary
sequence of real numbers hN , N = 0, 1, 2, . . . such that

(1.11)
2

2 − c

M

T

( c

2

)N

≤ hN

T
≤ D

( c

2

)N

with some ∞ > D > 2
2−c

M
T , where M and T are the same as in Theorem A. Then

the measures µhN

N tend to a probability measure µ̄ = µ̄(t, T, c) on (Rp)Z. More

precisely, for all k ≥ 0 the measures µhN

k,N converge to the projection of µ̄ to the first

2k coordinates in variational metric as N → ∞. The measure µ does not depend
on the choice of sequences hN .

Then we prove the following
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Theorem 2. Let σ =
{

σ(n) =
(

σ(1)(n), . . . , σ(p)(n)
)

∈ Rp, n ∈ Z
}

be a µ̄ dis-
tributed random field with the distribution µ̄ defined in Theorem 1. Then the finite
dimensional distributions of the random fields Rnσ defined in (1.1), (1.2), (1.3)
tend to those of a random field Y =

(

Y (n) =
(

Y (1)(n), . . . , Y (p)(n)
)

∈ Rp, n ∈ Z
)

.

For all k ≥ 0 the density function hk (x1, . . . , x2k), xj =
(

x
(1)
j , . . . , x

(p)
j

)

∈ Rp, of

the random vector (Y (1), . . . , Y (2k)) is given by the formula
(1.12)

hk (x1, . . . , x2k) = C(k) exp

{

− 1

T

p
∑

s=2

(

1

2 − c

2k
∑

j=1

x
(s)2
j − 2 − c

c

(

c

4

)k( 2k
∑

j=1

x
(s)
j

)2

+

2k−1
∑

i=1

2k
∑

j=i+1

U(i, j)x
(s)
i x

(s)
j

)} 2k
∏

j=1

g

(

4 − c

(2 − c)T

(

Mx
(1)
j +

1

2

p
∑

s=2

x
(s)2
j

))

,

where the function g is defined in (1.5), the constant M is the same as in Theorem
A, and C(k) is an appropriate norming constant.

In Appendix E we prove the following

Theorem B. The measure µ̄ = µ̄(T, t, c) constructed in Theorem 1 is a Gibbs
state with Hamiltonian H and free measure ν defined in formulas (1.1)–(1.3) of
Part I at temperature T .

Theorem B is very plausible. Its proof depends on a rather standard limiting
procedure in statistical physics literature. Nevertheless, we have found no result
which could have been directly applied in our case. We present the proof of Theorem
B in Appendix E.

Let us discuss the role of condition (1.11) in Theorem 1. The lower bound

(1.11′) hN >
2

2 − c
M

(

2

c

)N

is essential in Theorem 1, it is needed to get a pure state with magnetization in the
direction e1 = (1, 0, . . . , 0) for the limit measure µ̄. If it were violated we would get
a Gibbs state with Hamiltonian H again for the limit, but this Gibbs state would
be a mixture of Gibbs states with different directions of magnetization, and it is not
natural to renormalize such a mixture. On the other hand the upper bound for hN

in (1.11) seems not to be essential. We believe that the same limit measure µ̄ would
be obtained for any sequence hN , hN > 0 satisfying (1.11′) or with the help of the
double limiting procedure µh = limN→∞ µh

N , h > 0, µ̄ = limh→0 µh. This second

way was chosen to construct the equilibrium state in the case
√

2 < c < 2 in paper
[5]. However, to prove these statements we would need a large deviation result on
the behaviour of pn(x) which is stronger than Theorem A. Since we are not able to
prove such a result we have proved Theorem 1 under the condition (1.11), but we
think that this is not an essential restriction.

In formula (1.12) we have a quadratic form inside the exponent. This means
that the random variables Y (`)(j), ` = 2, . . . , p appearing in Theorem 2 are jointly
Gaussian. We describe the structure of this limit field in more detail. The random
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fields {Rnσ(s)(j), j ∈ Z}, s = 2, . . . , p, and {MRnσ(1)(j) + 1
2

p
∑

s=2
Rnσ(s)(j)2, j ∈

Z} tend to independent random fields as n → ∞. The limit of the random fields
{Rn(σ(s)(j)), j ∈ Z} is the (disregarding a multiplying factor) unique Gaussian

self-similar field with self-similarity parameter 1 − 1
2

log c
log 2 , whose distribution is in-

variant under all permutations of the index set Z which preserves the hierarchical
distance d(i, j). The random fields {MRnσ(1)(j) + 1

2

∑p
s=2 Rnσ(s)(j) , j ∈ Z}

tend to a random field consisting of independent random variables with the density
function 2−c

(4−c)T g( 4−c
(2−c)T x). This is a quadratic functional of a Gaussian field (see

Lemma 12 in Part I).
The above result can also be interpreted in the following way: Given a µ̄ dis-

tributed random field σ(n), n ∈ Z, define the absolute value of the appropri-

ately normalized partial sums |Rn|σ(j) = cn2−n
(

|Rn

∑j2n

k=(j−1)2n+1 σ(k)| − M
)

,

j ∈ Z. Then the random fields Rnσ(s)(j), j = 2, . . . , p, and the random fields
|Rn|σ(j) tend in distribution to independent random fields. The limit of Rnσ(s)(j)
j = 2, . . . , p is Gaussian, and the limit of |Rn|σ(j) consists of independent random
variables. This follows immediately from the above description of the limit be-
haviour of the fields Rnσ together with the observation that |Rn|σ(j)−(Rnσ(1)(j)+

1
2M

∑p
s=2 Rnσ(s)(j)2) ⇒ 0 stochastically as n → ∞.

We believe that the above property is a special case of a more general law. Let
us remark that an analogous statement also holds in the case

√
2 < c < 2, but

this is a degenerate case. It follows from the results of [5] that if {σ(j), j ∈ Z}
is a µ̄ = µ̄(c),

√
2 < c < 2 distributed random field with the equilibrium state µ̄

constructed in [5] then the random fields

|Rn|(σ)(j) = 2−n/2

(
∣

∣

∣

∣

j2n

∑

k=(j−1)2n+1

σ(k)

∣

∣

∣

∣

− M

)

, j ∈ Z,

have the same limit as the random fields

Rnσ(1)(j) = 2−n/2

j2n

∑

k=(j−1)2n+1

(

σ(1)(k) − M
)

as n → ∞, since in this case |Rn|σ(j) − Rnσ(1)(j) ⇒ 0. This limit consists of
independent (Gaussian) random variables which is also independent of the limit of
the random fields Rnσ(j), s = 2, . . . , p.

The method of this paper is very similar to that of [5]. The two main steps in
the proofs consist of the description of the limit behaviour of the function pn(x)
done in Part I, and a good asymptotic formula for the Radon–Nikodym derivatives
dµ

hN
n,N

dµn
. Then an appropriate limiting procedure supplies the proof of Theorems 1

and 2. The investigation of the Radon–Nikodym derivatives can be considered as
an adaptation of the method of [5] to the present case. The main difference between
the two cases is that now pn(x) is not asymptotically Gaussian. But although the

Radon–Nikodym derivative
dµ

hN
n,N

dµn
depends on pn(x), its asymptotic behaviour does
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not. As we shall see, in the investigation of the asymptotic behaviour of the above
Radon–Nikodym derivative we only need some estimates on the tail behaviour of
pn(x), but not its explicit form. This is the reason why we can adapt the method
of [5].

2. On the basic estimates needed in the proof. Reduction to integral
equations. We need a good asymptotic formula for the Radon–Nikodym derivative
dµ

hN
n,N

dµn
. It can be expressed exactly with the help of the following formulas:

(2.1)
dµhN

n,N

dµn
(x1, . . . , x2n) = fhN

n,N

(

2−n
2n
∑

j=1

xj

)

, n ≤ N

fhN

N,N (x) = K(N,hN ) exp

(

2NhNx(1)

T

)

(2.2)

fhN

n,N (x) = K(n,N, hN )SnfhN

n+1,N (x)(2.3)

with

(2.3′) Snf(x) =

∫

Rp

exp

(

cn

T
xy

)

f

(

x + y

2

)

pn(y) dy

where K(n,N, hN ) are appropriate norming factors, xy denotes scalar product,
and pn is the density function appearing in Theorem A. For scalar valued models
formulas (2.1)–(2.3′) are proved in the main formula in [4]. The proof for the vector
valued case is the same, but since the proof in [4] is a bit complicated we present
it in Appendix C.

Let us define the sequences gn = gn(N,hN ) and An = An(N,hN ) by the
recursive relations

gN = gN (N,hN ) =
2NhN

T
(2.4)

gn = gn(N,hN ) =
gn+1

2
+

cn

T
M for n < N

(2.4′)

AN = AN (N,hN ) = 0

(2.5)

An = An(N,hN ) =
An+1

4
+

( cn

T + An+1

2 )2

2cn

T + gn+1

M − An+1

for n < N ,

(2.5′)

where M and T are the same as in Theorem A. In Section 7 of [6] we have claimed
that

fn(x) = fh
n,N (x) ∼ Kn exp

{

gn(x(1) − M) + An

p
∑

s=2

x(s)2

}

,
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and have given a heuristic explanation. In the following Proposition 1 we formulate
this result in a more precise form. For the sake of simpler notation we assume that
Rp = R2. From now on C, C1, K, L etc. denote appropriate constants. The
same letter may denote different constants in different formulas. Let us define the
domains

Ω1
n = {x ∈ R2,

∣

∣|x| − M
∣

∣ < c−0.4n , |x(2)| < c−0.4n , x(1) > 0}(2.6)

Ω2
n =

{

x ∈ R2,
∣

∣|x| − M
∣

∣ < c−0.4n
}

− Ω1
n

(2.6′)

Ω3
n =

{

x ∈ R2,
∣

∣|x| − M
∣

∣ ≥ c−0.4n
}

.

(2.6′′)

Clearly Ω1
n ∪ Ω2

n ∪ Ω3
n = R2. Now we formulate the following

Proposition 1. For all q, c−0,2 < q < 1, there is some n0 = n0(T,M, c,D, q)
such that if (1.11) holds and N ≥ n ≥ n0 then the Radon–Nikodym derivative

fn(x) = fhN

n,N (x) appearing in (2.1) satisfies the following relations:

a) In the domain Ω1
n

(2.7) fn(x) = Ln exp
{

gn

(

x(1) − M
)

+ Anx(2)2 + εn(x)
}

with
sup

x∈Ω1
n

|εn(x)| ≤ qn .

b) In the domain Ω2
n

(2.8) 0 ≤ fn(x) ≤ Ln exp

{

gn(|x| − M) −
(

gn

2M
− An

)

c−0,8n + qn

}

.

c) In the domain Ω3
n

(2.9) 0 ≤ fn(x) ≤ Ln exp
{ gn

2M
(|x|2 − M2)

}

,

where the numbers An and gn are defined in (2.4)–(2.5′), and Ln = Ln(N,hN ) is
an appropriate norming constant.

We also prove the following result which is a slight modification of Lemma 1 in
[5].

Lemma 1. Let us choose some integer N and hN > 0. Define the sequences gn and
An, 0 ≤ n ≤ N , by formulas (2.4)–(2.5′) and put ḡn = c−ngn, Ān = c−nAn. If
hN satisfies relation (1.11) then ḡN ≥ ḡN−1 ≥ · · · ≥ ḡ0 ≥ ḡ and 0 = ĀN ≤ ĀN−1 ≤
· · · ≤ Ā0 ≤ Ā with ḡ = 2

2−c
M
T , and Ā = 2−c

cT . If the relations N > N0 and N > nB

also hold with some appropriate N0 = N0(c,M, T,D) and B = B(c,M, T,D) then
|ḡn − ḡ| < 4−n, |Ān − Ā| < 4−n.

Proposition 1 together with the characterization of the asymptotic behaviour of
the sequences gn and An made in Lemma 1 supplies a good asymptotic formula for
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the Radon–Nikodym derivative fn. Here Ω1
n is the typical region, where we have

a good asymptotic formula, in Ω2
n and Ω3

n we have only given an upper bound.
Actually we are interested in the density function

pn

(

2−n
2n
∑

j=1

xj

)

fhN

n,N

(

2−n
2n
∑

j=1

xj

)

of the measure µhN

n,N . The tail behaviour of the functions pn(x) and fn(x) together

show that 2−n
∑2n

j=1 xj is contained in Ω3
n with a negligible small µhN

n,N probability.

It is contained in Ω2
n also with a small probability, since in this domain fn(x) is

small. To see it, let us observe that by Lemma 1

gn

2M
− An ≥ cn

( ḡ

2M
− Ā

)

=
cn

T

(

1

2 − c
− 2 − c

c

)

=
cn

T

(4 − c)(c − 1)

2 − c
> 0 ,

hence the term −
(

gn

2M − An

)

c−0.8n in the exponent of (2.8), makes this upper
bound (2.8) sufficiently small for our purposes.

In Section 7 of [6] we have given a heuristic argument for formula (2.7). The
following remark explains the content of the estimate (2.8).

Remark. If x ∈ Ω1
n then

|x| =
(

x(1)2 + x(2)2
)1/2

= x(1)

(

1 +
x(2)2

x(1)2

)1/2

= x(1) +
x(2)2

2x(1)
+ O(x(2)4)

= x(1) +
x(2)2

2M
+ O

(

x(2)4 + x(2)2|x(1) − M |
)

= x(1) +
x(2)2

2M
+ O(c−1.2n) ,

hence

exp
{

gn(|x| − M) −
( gn

2M
− An

)

x(2)2
}

= exp
{

gn(x(1) − M) + Anx(2)2 + O(c−0.2n)
}

.

The above calculation shows that on the boundary of the domains Ω1
n and Ω2

n

the right-hand side of formulas (2.7) and (2.8) have the same magnitude. The
estimate (2.8) expresses the fact that this is the worst region, where the weakest
upper bound can be given for fn(x) in Ω2

n.

With the help of Proposition 1, Lemma 1 and Theorem A we are able to carry
out a limiting procedure which supplies Theorem 1. Moreover, it yields the follow-
ing Proposition 2. Let µ̄n denote the projection of the measure µ̄ constructed in
Theorem 1 to the first 2n coordinates, i.e. let µ̄n be the measure on (R2)2

n

defined
by the relation µ̄n(A) = µ̄

(

A × (R2)∞
)

for all measurable sets A ⊂ (R2)2
n

. The
following result holds true:
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Proposition 2. For all q, c−0.2 < q < 1, there is some n0 = n0(c, T,M, q) such
that for all n ≥ n0 the measure µ̄n is absolute continuous with respect to the measure
µn, and its Radon–Nikodym derivative satisfies the relations:

(2.10)
dµ̄n

dµn
(x1, . . . , x2n) = f̄n

(

2−n
2n
∑

i=1

xi

)

and
a) For x ∈ Ω1

n

(2.11) f̄n(x) = Ln exp
{

cnḡ(x(1) − M) + cnĀx(2)2 + εn(x)
}

with

(2.11′) sup
x∈Ω1

n

|εn(x)| ≤ qn .

b) For x ∈ Ω2
n

(2.12) 0 ≤ f̄n(x) ≤ Ln exp
{

cnḡ(|x| − M) − c0.2n
( ḡ

2M
− Ā

)

+ qn
}

.

c) For x ∈ Ω3
n

0 ≤ f̄n(x) ≤ Ln exp

{

ḡcn

4M
(x2 − M2)

}

if 0 < x < M − c−0.4n ,

(2.13)

0 ≤ f̄n(x) ≤ Ln exp

{

ḡcn

M
(x2 − M2)

}

if x > M + c−0.4n ,

(2.13′)

with ḡ = 2
2−c

M
T , Ā = 2−c

cT and an appropriate norming constant Ln. This norming
constant satisfies the relation

C1 < c−n/2Ln < C2 with some 0 < C1 < C2 < ∞ .

Theorem 2 can be deduced from Proposition 2 and Theorem A.
Let us finally remark that the function fn(x) = fhN

n,N (x) clearly satisfies Propo-

sition 1 for n = N , since in this case fN (x) = LN exp{gN (x(1) − M)}. Hence
Proposition 1 follows from Lemma 1 and the following

Proposition 1′. For all q, c−0.2 < q < 1, there exists some n0 = n0(T,M, c,D, q)
such that if for n ≥ n0 the function f(x) satisfies the following relations with some
ḡcn+1 < gn+1 ≤ Dcn+1, 0 ≤ An+1 ≤ Ācn+1, ḡ = 2

2−c
M
T , Ā = 2−c

cT , D > ḡ:

a) For x ∈ Ω1
n+1

f(x) = exp
{

gn+1(x
(1) − M) + An+1x

(2)2 + εn+1(x)
}

(2.15)

sup
x∈Ω1

n+1

|εn+1(x)| ≤ qn+1 .(2.15′)
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b) For x ∈ Ω2
n+1

(2.16) 0 ≤ f(x) ≤ exp
{

gn+1(|x| − M) +
(gn+1

2M
− An+1

)

c−0.8(n+1) + qn+1
}

;

c) For x ∈ Ω3
n+1

(2.17) 0 ≤ f(x) ≤ exp
{gn+1

2M
(|x|2 − M2)

}

then the function Snf(x) defined by (2.3′) satisfies, with the constants gn and
An defined by (2.4′) and (2.5′) with the above gn+1 and An+1, the following
relations with some appropriate norming constant Ln:
a) In the domain Ω1

n

(2.18) Snf(x) = Ln exp
{

gn(x(1) − M) + Anx(2)2 + εn(x)
}

with

(2.18′) sup
x∈Ω1

n

|εn(x)| ≤ qn .

b) In the domain Ω2
n

(2.19) 0 ≤ Snf(x) ≤ Ln exp
{

gn(|x| − M) −
( gn

2M
− An

)

c−0.8n + qn
}

.

c) In the domain Ω3
n

(2.20) 0 ≤ Snf(x) ≤ Ln exp
{ gn

2M
(|x|2 − M2)

}

.

3. The proof of Lemma 1. The proof is a modification of that given for Lemma
1 in [5]. Simple calculation shows that ḡn − ḡ = ( c

2 )N−n(ḡN − ḡ). The statements

of Lemma 1 about the sequence gn follow from this identity. To investigate Ān let
us introduce the function

T (x, g) =
c

4
x +

(

1
T + c

2x
)2

2
T + cg

M − cx
, x ∈ R1 , g ∈ R1 .

Clearly, Ān = T (Ān+1, ḡn+1). On the other hand T (Ā, ḡ) = Ā, and some calcula-
tion shows that T has the following monotonicity properties: T (x, g) < T (x, g ′) if
0 < x < Ā and g > g′ > ḡ; and T (x′, g) > T (x, g) if 0 < x < x′ < A and g > ḡ.
(These properties follow e.g. from the relations

∂

∂g
T (x, g) = − c

M

(

1
T + c

2x
)2

(

2
T + c

M g − cx
)2 < 0 ,
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and

∂

∂x
T (x, g) =

c
(

2
T + cg

2M

)2

(

2
T + c

M g − cx
)2 > 0 ,

and the fact that T (x, g) has no singularity in the domain {(x, g), 0 < x < Ā, g >
ḡ}.) We have 0 < ĀN−1 < Ā, since ĀN−1 = T (0, ḡN ) > 0 and ĀN−1 = T (0, ḡN ) <
T (Ā, ḡ) = Ā. Then we get by induction that 0 ≤ Ān+1 < Ān < Ā implies that
0 < Ān < Ān−1 < Ā. Indeed, Ān−1 = T (Ān, ḡn) < T (Ā, ḡ) = Ā, and Ān−1 =
T (Ān, ḡn) > T (Ān+1, ḡn+1) = Ān, as we have claimed.

The conditions N > N0 and N > nB with sufficiently large N0 and B imply that
|ḡ`−ḡ| < 10−n for all 0 < ` ≤

√
N , and Ā−5−n < A∗ < Ā, where A∗ is the smaller

solution of the equation T (x, g∗) = x with g∗ = ḡ√N . Indeed, the last equation is

a small perturbation of the equation T (x, ḡ) = x, which has two solutions A1 = Ā
and A2 = 1

(2−c)T > Ā. Hence the solutions of the equation T (x, g∗) = x are very

close to A1 and A2. We claim that the monotonicity properties of the sequences

ḡn and Ān and the function T (x, g) imply that Ā > Ān ≥ T
√

N−n
g∗ (0), where T k

g∗

denotes the k-th iteration of the function T (x, g∗) with fixed g∗ in the variable
x. Indeed, Ā > Ān, 0 < Ā√

N < Ā, and we get by induction that for all ` ≥ 0

Ā√
N−` ≥ T `

g∗(0), which implies the required statement with ` =
√

N − n.

To complete the proof of Lemma 1 it is enough to show that T n
g∗(0) tends ex-

ponentially fast in n to the smaller solution A∗ of the equation Tg∗(x) = x. Since
T (x, g∗) is a convex increasing function (in the variable x) it is enough to show that
∂T (x,g∗)

∂x ≤ α < 1 for x = A∗ if (A∗, g∗) is in a small neighbourhood of the point

(Ā, ḡ). But this follows from the continuity of the function ∂T (x,g)
∂x , and the fact

that its value in the point (Ā, ḡ) equals c−1 < 1. Lemma 1 is proved.

4. Some preparatory remarks to the proof of Proposition 1′. We shall
prove the following estimates under the conditions of Proposition 1′.

Put

Si
nf(x) =

∫

{y, x+y
2 ∈Ωi

n+1}
exp

(

cn

T
xy

)

f

(

x + y

2

)

pn(y) dy , i = 1, 2, 3 .

Then we have with some appropriate ε′ = ε′(c), ε′ > 0, and the same q as in
Proposition 1′:

In the domain x ∈ Ω1
n

(4.1) S1
nf(x) = Ln exp

{

gn(x(1) − M) + Anx(2)2 + ε̄n(x) + ε̂n(x)
}

with

(4.1′) sup
x∈Ω1

n

|ε̄n(x)| ≤ qn+1 , sup
x∈Ω1

n

|ε̂n(x)| ≤ Kc−0.2n ,
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where K does not depend on n,

Ln ≥ c−n exp

(

cn

T
M2

)

,(4.1′′)

S2
nf(x) ≤ Ln exp

{

gn(x(1) − M) + Anx(2)2 − ε′c0.2n
}

,(4.2)

S3
nf(x) ≤ Ln exp

{

gn(x(1) − M) + Anx(2)2 − 1

6
cn/2

}

.(4.3)

In the domain x ∈ Ω2
n

S1
nf(x) ≤ Ln exp

{

gn(|x| − M) −
( gn

2M
− An

)

c−0.8n + qn+1 + Kc−0.2n
}

,

(4.4)

S2
nf(x) ≤ Ln exp

{

gn(|x| − M) −
( gn

2M
− An

)

c−0.8n − ε′c0.2n
}

,

(4.5)

S3
nf(x) ≤ Ln exp

{

gn(|x| − M) −
( gn

2M
− An

)

c−0.8n − 1

6
cn/2

}

.

(4.6)

In the domain x ∈ Ω3
n

(4.7) Snf(x) ≤ Ln exp
{ gn

2M
(|x|2 − M2)

}

.

We show that these estimates imply Proposition 1′. Indeed, for x ∈ Ω1
n

Snf(x) = S(1)
n f(x)+S(2)

n f(x)+S(3)
n f(x) = Ln exp{gn(x(1)−M)+Anx(2)2 +εn(x)}

with

sup
x∈Ω1

n

|εn(x)| ≤ sup
x∈Ω1

n

|ε̄n(x)| + sup
x∈Ω1

n

|ε̂n(x)| + 2 exp(−ε′c0.2n) + 2 exp

(

−1

6
cn/2

)

.

(Here we have exploited that et < 1 + 2|t| for small t.) Hence

sup
x∈Ω1

n

|εn(x)| ≤ qn+1 + Kc−0.2n + 2 exp(−ε′c0.2n) + 2 exp

(

−1

6
cn/2

)

≤ qn

if c−0.2 < q < 1, and n ≥ n0(q,D, ε′).
For x ∈ Ω2

n we have analogously

Snf(x) = S1
nf(x) + S2

nf(x) + S3
nf(x)

≤ Ln exp

{

gn(|x| − M) −
( gn

2M
− An

)

c−0.8n + qn+1 + Kc−0.2n

+ 2 exp(−ε′c0.2n) + 2 exp

(

−1

6
cn/2

)

}

≤ Ln exp
{

gn(|x| − M) −
( gn

2M
− An

)

c−0.8n + qn
}

,
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as we have claimed in Proposition 1′. For x ∈ Ω3
n (4.7) contains the needed estimate.

The above estimates will be proved in the next Section. In this Section we prove
two lemmas which we need during the proof. Put

(4.8) Sε
nf(x) =

∫

R2−V ε
n (x)

exp

(

cn

T
xy

)

fn

(

x + y

2

)

pn(y) dy

with

(4.8′) V ε
n (x) =

{

y ∈ R2 ,
∣

∣|y| − M
∣

∣ ≤ εc−0.4n , xy ≥ |x||y| − εc−0.4n
}

,

where xy denotes scalar product.

Lemma 2. There is some ε0 = ε0(c) and n0 = n0(T,M,D, c, ε) such that if n ≥
n0, 0 < ε < ε0, 0 ≤ gn+1 < Dcn+1 and

(4.9) 0 ≤ f(x) ≤ exp
{gn+1

2M
(|x|2 − M2)

}

for all x ∈ R2

then

a) 0 ≤ Snf(x) ≤ cn exp

{

cn

T
M2 +

gn

2M
(|x|2 − M2) − cn

3T
(|x| − M)2

}

, x ∈ R2

and

b) 0 ≤ Sε
nf(x) ≤ exp

{

cn

T
M2 + gn(|x| − M) − cn/2

}

if
∣

∣|x| − M
∣

∣ < c−0.4n

with gn = gn+1

2 + cn

T M .

Lemma 3. There is some n0 = n0(T,M,D, c) such that if for n ≥ n0

0 ≤ f(x) ≤ exp{gn+1(|x| − M)} for
∣

∣|x| − M
∣

∣ < c−0.4(n+1)

f(x) = 0 for
∣

∣|x| − M
∣

∣ ≥ c−0.4(n+1)

then

0 ≤ Snf(x) ≤ K exp

{

cn

T
M2 + gn(|x| − M)

}

for ||x| − M | ≤ c−0.4n

with

gn =
gn+1

2
+

cn

T
M

and some K = K(T,M,D, c) > 0.

Proof of Lemma 2.
Part a). We have

0 ≤ Snf(x) ≤
∫

exp

{

cn

T
xy +

gn+1

2M

(

∣

∣

∣

∣

x + y

2

∣

∣

∣

∣

2

− M2

)}

pn(y) dy .
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Clearly, max|y|=r xy is taken in the point y = x
|x|r, and it equals |x|r. Similarly

max|y|=r(x + y)2 = (|x| + r)2. Hence
(4.10)

0 ≤ Snf(x) ≤ 2π

∫ ∞

0

exp

{

cn

T
|x|r +

gn+1

2M

[

( |x| + r

2

)2

− M2

]}

rp̄n(r) dr .

Let us split up the integral into two parts,
∫M

0
and

∫∞
M

. Put

(4.11) fn(t) = c−np̄n(M + c−nt) .

It follows from (1.10) that

(4.11′) fn(t) ≤ C1 exp(−C2|t|) for − cnM < t < 0

and from (1.8), (1.7) and (1.9) that

(4.11′′) fn(t) ≤ C3 exp(−t2) for t > 0

with some appropriate C1 > 0, C2 > 0 and C3 > 0. (Relations (1.7) and (1.9) are
needed in the domain 0 < |x| < ηn1/αc−n.)

First we estimate the integral
∫M

0
. For 0 ≤ r ≤ M we have

cn

T
|x|r +

gn+1

2M

(

( |x| + r

2

)2

− M2

)

≤ cn

T
|x|M +

gn+1

2M

(

( |x| + M

2

)2

− M2

)

.

Hence (4.11) and (4.11′) imply that

∫ M

0

. . . dr ≤ C1 exp

{

cn

T
|x|M +

gn+1

2

[

( |x| + M

2

)2

− M2

]}

∫ 0

−cnM

(M + c−nt)e−C2|t| dt

≤ C4M exp

{

cn

T
|x|M +

gn+1

2M

[

( |x| + M

2

)2

− M2

]}

.

Simple calculation yields the identity

cn

T
|x|M +

gn+1

2M

[

( |x| + M

2

)2

− M2

]

=
cn

T
M2 +

gn

2M
(|x|2 − M2) −

(

cn

2T
+

gn+1

8M

)

(|x| − M)2 .

Then, since C4M < cn/2 we get that
(4.12)
∫ M

0

. . . dr ≤ cn/2 exp

{

cn

T
M2 +

gn

2M
(|x|2 − M2) +

(

cn

2T
+

gn+1

8M

)

(|x| − M)2
}

.
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Let us estimate
∫∞

M
. . . dr. We make the change of variables r = M + c−nt,

introduce fn(t) = c−np̄n(M + c−nt) , ḡn = c−ngn and ḡn+1 = c−(n+1)gn+1.
Since

(4.13)

cn

T
|x|r +

gn+1

2M

[

( |x| + r

2

)2

− M2

]

=
cn

T
|x|M +

gn+1

2M

[

( |x| + M

2

)2

− M2

]

cn

T
|x|(r − M) +

gn+1

8M
(r − M)(2|x| + r + M)

=
cn

T
M2 +

gn

2M
(|x|2 − M2) −

(

cn

2T
+

gn+1

8M

)

(|x| − M)2

+

(

cn

T
+

gn+1

4M

)

|x|(r − M) +
gn+1

4
(r − M) +

gn+1

8M
(r − M)2

hence
(4.14)
∫ ∞

M

. . . dr = exp

{

cn

T
M2 +

gn

2M
(|x|2 − M2) −

(

cn

2T
+

gn+1

8M

)

(|x| − M)2
}

Jn(|x|)

with

(4.14′)

Jn(|x|) =

∫ ∞

0

exp

{(

1

T
+

c

4M
ḡn+1

)

|x|t

+
c

4
ḡn+1t + c

c−n

8M
ḡn+1t

2

}

(M + c−nt)fn(t) dt

=

∫ ∞

0

exp

{(

1

T
+

c

4M
ḡn+1

)

(|x| − M)t

+

(

M

T
+

c

2
ḡn+1

)

t +
c−n+1

8M
ḡn+1t

2

}

(M + c−nt)fn(t) dt .

Relation (4.11′′) implies that

Jn(|x|) ≤ C5

∫ ∞

0

exp

{(

1

T
+

c

4M
ḡn+1

)

(|x| − M)t − t2

2

}

dt

≤ C6{exp C7(|x| − M)2} .

Thus

∫ ∞

M

. . . dr ≤ C6 exp

{

cn

T
M2 +

gn

2M
(|x|2 − M2)

−
(

cn

2T
+

gn+1

8M

)

(|x| − M)2 + C7(|x| − M)2
}

.
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Since cn

2T + gn+1

8M − C7 ≥ cn

3T and C6 ≤ cn/2 for large n, hence
∫ ∞

M

. . . dr ≤ cn/2 exp

{

cn

T
M2 +

gn

2M
(|x|2 − M2) − cn

3T
(|x| − M)2

}

.

This inequality together with (4.12) imply that

Snf(x) ≤ 4πcn/2 exp

{

cn

T
M2 +

gn

2M
(|x|2 − M2) − cn

3T
(|x| − M)2

}

≤

(4.15)

≤ cn exp

{

cn

T
M2 +

gn

2M
(|x|2 − M2) − cn

3T
(|x| − M)2

}

as we have claimed.

Part b). Let us introduce

Rε
nf(x) =

∫

{y, ||y|−M |≥εc−0.4n}
exp

(

cn

T
xy

)

f

(

x + y

2

)

pn(y) dy

and

Qε
nf(x) =

∫

{y, ||y|−M |<εc−0.4n, xy≤|x||y|−εc−0.4n}
. . . dy .

Clearly, Sε
nf(x) = Rε

nf(x) + Qε
nf(x), and by (4.10)

0 ≤ Rε
nf(x) ≤ 2π

[
∫ M−εc−0.4n

0

+

∫ ∞

M+εc−0.4n

]

exp

{

cn

T
|x|r +

gn+1

2M

(( |x| + r

2

)2

− M2

)}

rp̄n(r) dr .

Moreover, similarly to part a), we get by using (4.13) and the observation
(

cn

T
+

gn+1

4M

)

|x|(r − M) +
gn+1

4
(r − M) +

gn+1

8M
(r − M)2

<
gn+1

4
(r − M)

(

1 +
r − M

2M

)

< −2cn/2 if − M < r − M < −c−0.4n

that
(4.16)
∫ M−εc−0.4n

0

. . . dr

≤ C1 exp

{

−2cn/2 +
cn

T
M2 +

gn

2M
(|x|2 − M2) −

(

cn

2T
+

gn+1

8M

)

(|x| − M)2
}

∫ M−εc−0.4n

0

rp̄n(r) dr

≤ c−n/2 exp

{

−2cn/2 +
cn

T
M2 +

gn

2M
(|x|2 − M2)

−
(

cn

2T
+

gn+1

8M

)

(|x| − M)2
}

≤ c−n/2 exp

{

−2cn/2 +
cn

T
M2 +

gn

2M
(|x|2 − M2)

}

,
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and by (4.13) and (4.11′′), similarly to (4.14), (4.14′)
∫ ∞

M+εc−0.4n

. . . dr ≤ exp

{

cn

T
M2+

gn

2M
(|x|2−M2)−

(

cn

2T
+

gn+1

8M

)

(|x|−M)2
}

Jε
n(|x|)

with

Jε
n(|x|) = C5

∫ ∞

εc0.6n

cn exp

{(

1

T
+

c

4M
ḡn+1

)

(|x|−M)t+

(

M

T
+

c

2
ḡn+1

)

t− t2

2

}

dt .

Since ||x| − M | ≤ c−0.4n, and ḡn+1 < D

sup
t≥0

{(

1

T
+

c

4M
ḡn+1

)

(|x| − M)t +

(

M

T
+

c

2
ḡn+1

)

t − t2

6

}

≤ C ′ ,

and therefore

Jε
n(|x|) ≤ C6

∫ ∞

εc0.6n

cn exp
(

− t2

3

)

dt ≤ exp(−ε′c1.2n) ≤ c−n exp(−2cn/2)

with some ε′ = ε′(ε) > 0. Hence

∫ ∞

M+εc−0.4n

. . . dr ≤ c−n exp

{

cn

T
M2 +

gn

2M
(|x|2 − M2) − 2cn/2

}

.

The last inequality together with (4.16) imply that

(4.17) Rε
nf(x) ≤ 4πc−n/2 exp

{

−2cn/2 +
cn

T
M2 +

gn

2M
(|x|2 − M2)

}

.

Now we estimate Qε
nf(x). We have

0 ≤ Qε
nf(x) ≤

∫

{y,||y|−M |≤c−0.4n,

xy≤|x||y|−εc−0.4n }
exp

{

cn

T
xy+

gn+1

2M

[(

x + y

2

)2

−M2

]}

pn(y) dy .

Since for |y| = r xy ≤ r|x| − εc−0.4n and
(

x+y
2

)2 ≤
( |x|+r

2

)2
in the last integral,

hence

Qε
nf(x) ≤ 2π

∫ ∞

0

exp

{

cn

T

(

|x|r − εc−0.4n
)

+
gn+1

2M

[( |x| + r

2

)2

− M2

]}

rp̄n(r) dr

≤ 2π exp

(

−εc0.6n

T

)
∫ ∞

0

exp

{

cn

T
|x|r +

gn+1

2M

[( |x| + r

2

)2

− M2

]}

rp̄n(r) dr .

The last integral has already appeared in (4.10). We have estimated it in Part a),
and bounded it by the right hand side of (4.15). Hence

Qε
nf(x) ≤ 2πcn exp

{

− ε

T
c0.6n +

cn

T
M2 +

gn

2M

(

|x|2 − M2
)

}

≤ 1

2
exp

{

−2cn/2 +
cn

T
M2 +

gn

2M

(

|x|2 − M2
)

}

.
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This inequality together with (4.17) imply that

Sε
nf(x) ≤ exp

{

−2cn/2 +
cn

T
M2 +

gn

2M

(

|x|2 − M2
)

}

.

Since 1
2M (|x|2 − M2) = (|x| − M) + 1

2M (|x| − M)2 and gn

2M (|x| − M)2 ≤ Dc0.2n if

||x| − M | ≤ c−0.4n, hence the last inequality implies that under the conditions of
Part b)

Sε
nf(x) ≤ exp

{

−2cn/2 +
cn

T
M2 +

gn

2M
(|x| − M) + Kc0.2n

}

≤ exp

{

cn

T
M2 + gn(|x| − M) − cn/2

}

,

as we have claimed.

Proof of Lemma 3.

0 ≤ Snf(x) ≤
∫

{y, || x+y
2 |−M |≤c−0.4(n+1)}

exp

{

cn

T
xy + gn+1

(∣

∣

∣

∣

x + y

2

∣

∣

∣

∣

− M

)}

pn(y) dy .

Since

max
|y|=r

{

cn

T
xy + gn+1

(∣

∣

∣

∣

x + y

2

∣

∣

∣

∣

− M

)}

≤ cn

T
|x|r + gn+1

[( |x| + r

2

)

− M

]

,

hence

Snf(x) ≤ 2π

∫ ∞

0

exp

{

cn

T
|x|r + gn+1

( |x| + r

2
− M

)}

rp̄n(r) dr .

Writing cn

T |x|r = cn

T M2 + cn

T M(|x|−M + r−M)+ cn

T (|x|−M)(r−M) we get that

Snf(x) ≤ 2π exp

{

cn

T
M2 + gn(|x| − M)

}

∫ ∞

0

exp

{

gn(r − M) +
cn

T
(|x| − M)(r − M)

}

rp̄n(r) dr .

The change of variables r = M + c−nt and the introduction of ḡn = c−ngn yields
that

Snf(x) ≤ 2π exp

{

cn

T
M2 + gn(|x| − M)

}

∫ ∞

−cnM

exp

{

ḡnt +
(|x| − M)

T
t

}

(M + c−nt)fn(t) dt .
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Since 0 < ḡn < D, and ||x| − M | < c−0.4n relations (4.11′) and (4.11′′) imply that
for large n

∫ ∞

−cnM

exp

{

ḡnt +
1

T
(|x| − M)t

}

(M + c−nt)fn(t) dt < K̄

with some K̄ > 0 independent of n. Hence

Snf(x) ≤ 2πK̄ exp

{

cn

T
M2 + gn(|x| − M)

}

≤ K exp

{

cn

T
M2 + gn(|x| − M)

}

,

as we have claimed.

5. The proof of Proposition 1′. In this Section we prove the estimates (4.1)–
(4.7) which imply Proposition 1′.

a) The estimation of S1
nf(x) for x ∈ Ω1

n.
It follows from (2.15) and (2.15′) that

S1
nf(x) =

∫

{y, x+y
2 ∈Ω1

n+1}
exp

{

cn

T
xy + gn+1

(

x(1) + y(1)

2
− M

)

+ An+1

(

x(2) + y(2)

2

)2

+ εn+1

(

x + y

2

)

}

pn(y) dy .

Hence

S1
nf(x) = exp(ε̄n(x))

∫

{y, x+y
2 ∈Ω1

n+1}
exp

{

cn

T
xy + gn+1

(

x(1) + y(1)

2
− M

)

+ An+1

(

x(2) + y(2)

2

)2
}

pn(y) dy .

with some

(5.1) sup
x∈Ω1

n

|ε̄n(x)| ≤ qn+1 .

Let us rewrite the last expression in polar coordinate system. We get that

(5.2) S1
nf(x) = exp(ε̄n(x))

∫ ∞

0

In(r)p̄n(r) dr

with

In(r) =

∫

{ϕ∈Γn(r,x)}
r exp

{

cn

T

(

x(1)y(1) + x(2)y(2)
)

+ gn+1

(

x(1) + y(1)

2
− M

)

+ An+1

(

x(2) + y(2)

2

)2
}

dϕ
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where y(1) = r cos ϕ, y(2) = r sinϕ, −π < ϕ < π, y = (y(1), y(2)) and Γn(r, x) =
{ϕ, x+y

2 ∈ Ω1
n+1}. We shall express In(r) as an asymptotically Gaussian integral

with respect to ϕ. For this aim we give some bounds on x(1), x(2), y(1) and y(2)

if x ∈ Ω1
n and x+y

2 ∈ Ω1
n+1. We have

(5.3)
|x(2)| < c−0.4n

|x(1) − M | <
3

2
c−0.4n

if x ∈ Ω1
n .

The second relation in (5.3) holds, since

|x(1) − M | =
∣

∣(|x|2 − x(2)2)1/2 − M
∣

∣ =

∣

∣

∣

∣

|x| − x(2)2

2|x| + O(x(2)4) − M

∣

∣

∣

∣

≤
∣

∣|x| − M
∣

∣+

∣

∣

∣

∣

x(2)2

2|x| + O(x(2)4)

∣

∣

∣

∣

≤ c−0.4n + Kc−0.8n ≤ 3

2
c−0.4n .

Similarly, if x+y
2 ∈ Ω1

n+1 then |x(2)+y(2)

2 | < c−0.4n, and |x(1)+y(1)

2 − M | < 2c−0.4n.
Hence

(5.4) |y(2)| ≤ | − x(2)| + |x(2) + y(2)| ≤ 3c−0.4n,

(5.4′) |y(1) − M | = |M − x(1)| + |x(1) + y(1) − 2M | ≤ 6c−0.4n

and

|r − M | = ||y| − M | =
∣

∣

∣
(y(1)2 + y(2)2)1/2 − M

∣

∣

∣

(5.4′′)

=

∣

∣

∣

∣

y(1) +
y(2)2

2y(1)
+ O(y(2)4) − M

∣

∣

∣

∣

≤ 10c−0.4n

if x ∈ Ω1
n and x+y

2 ∈ Ω1
n+1. In particular, (5.4′′) implies that

(5.5) In(r) = 0 if |r − M | > 10c−0.4n, and x ∈ Ω1
n .

Furthermore, |ϕ| ≤ 2| sinϕ| = 2
r |y(2)| = O(c−0.4n) and y(1) = r(1 − cos ϕ)

= r(1−ϕ2/2)+O(c−1.6n), y(2) = r sinϕ = rϕ+O(c−1.2n) and r = M +O(c−0.4n)
if ϕ ∈ Γn(r, x). Hence

In(r) =
(

1 + O(c−0.2n)
)

∫

{ϕ∈Γn(r,x)}
M exp

{

cn

T

(

x(1)r

(

1 − ϕ2

2

)

+ x(2)rϕ

)

+ gn+1

(

x(1) + r(1 − ϕ2

2 )

2
− M

)

+ An+1

(

x(2) + rϕ

2

)2
}

dϕ

=
(

1 + O(c−0.2n)
)

M exp

{

cn

T
rx(1) +

gn+1

2

(

x(1) + r

2
− M

)

+
An+1

4
x(2)2

}

∫

{ϕ∈Γn(r,x)}
exp

{

−
(

cn

2T
x(1) +

gn+1

4
− r

An+1

4

)

rϕ2

+

(

cn

T
+

An+1

2

)

x(2)rϕ

}

dϕ .
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Moreover, since cnx(1)rϕ2 = cnM2ϕ2+O(c−0.2n), gn+1rϕ
2 = gn+1Mϕ2+O(c−0.2n),

An+1r
2ϕ2 = An+1M

2ϕ2 + O(c−0.2n) and ( cn

T + An+1

2 )x(2)rϕ = ( cn

T + An+1

2 )x(2)Mϕ

+ O(c−0.2n) in our case (observe that gn+1 ≤ Dcn+1 and An+1 ≤ Ācn+1), hence
we make an error of order O(c−0.2n) by substituting x(1) and r by M in the last
integral, i.e.

In(r) =
(

1 + O(c−0.2n)
)

M exp

{

cn

T
rx(1) +

gn+1

2

(

x(1) + r

2
− M

)

+
An+1

4
x(2)2

}

∫

{ϕ∈Γn(r,x)}
exp

{

(
cn

2T
+

gn+1

4M
− An+1

4
)M2ϕ2 + (

cn

T
+

An+1

2
)Mx(2)ϕ

}

dϕ ,

or equivalently

In(r) =
(

1 + O(c−0.2n)
)

exp

{

cn

T
rx(1) +

gn+1

2

(

x(1) + r

2
− M

)

+
An+1

4
x(2)2 +

( cn

T + An+1

2 )2x(2)2

4( cn

2T + gn+1

4M − An+1

4 )

}

∫

{ϕ∈Γn(r,x)}
M exp

{

−M2(
cn

2T
+

gn+1

4M
− An+1

4
)(ϕ − γnx(2))2

}

dϕ ,

with

γn =
( cn

T + An+1

2 )

( cn

2T + gn+1

4M − An+1

4 )
.

By (2.5′) we get from this relation that

(5.6)

In(r) =
(

1 + O(c−0.2n)
)

exp

{

cn

T
rx(1) +

gn+1

2

(

x(1) + r

2
− M

)

+ Anx(2)2

}

∫

{ϕ∈Γn(r,x)}
M exp

{

−M2(
cn

2T
+

gn+1

4M
− An+1

4
)
(

ϕ − γnx(2)
)2
}

dϕ .

Since

(5.7) (
cn

2T
+

gn+1

4M
− An+1

4
) ≥ cn

(

1

2T
+ c

ḡ

4M
− c

Ā

4

)

= Kcn

with K = 1
2T + c ḡ

4M − c Ā
4 = c(4−c)

4(2−c)T > 0 relation (5.6) implies that

In(r) ≤ √
π
(

1 + O(c−0.2n)
)

(
cn

2T
+

gn+1

4M
− An+1

4
)−1/2(5.8)

exp

{

cn

T
rx(1) +

gn+1

2

(

x(1) + r

2
− M

)

+ Anx(2)2

}
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Moreover, we claim that
(5.9)

In(r) =
(

1 + O(c−0.2n)
)√

π (
cn

2T
+

gn+1

4M
− An+1

4
)−1/2

exp

{

cn

T
rx(1) +

gn+1

2

(

x(1) + r

2
− M

)

+ Anx(2)2

}

if |r − M | < ε̄c−0.4n

with some approppriate ε̄ > 0. Because of (5.6) and (5.7) to prove (5.9) it is enough
to show that there is some ε = ε0(ε̄) > 0 such that

(5.10)
{

ϕ : |ϕ − γnx(2)| < ε0c
−0.4n

}

⊂ Γn(x, r) if |r − M | < ε̄c−0.4n .

Since An+1 ≤ Ācn+1 and gn+1 ≥ ḡcn+1

γn =
( cn

T + An+1

2 )

2( cn

2T + gn+1

4M − An+1

4 )
≤ 1 + 2−c

2

(1 + c
2−c − 2−c

2 )M
=

2 − c

cM
,

and we prove (5.10) by showing that

(5.10′)

{

x(1) + r cosϕ

2
,

x(2) + r sin ϕ

2

}

∈ Ω1
n+1

if |ϕ − γnx(2)| < ε0c
−0.4n, |r − M | ≤ ε̄c−0.4n and x ∈ Ω1

n. But in this case
∣

∣

∣

∣

x(2) + r sin ϕ

2

∣

∣

∣

∣

≤ 1

2

(

|x(2)| + r|ϕ|
)

≤ 1

2

(

|x(2)| + r(γn|x(2)| + |ϕ − γnx(2)|)
)

≤ 1

2

[

c−0.4n + (M + ε̄c−0.4n)

(

2 − c

cM
c−0.4n + ε0c

−0.4n

)]

≤ 1√
c
c−0.4n ≤ c−0.4(n+1)

if ε0 > 0 and ε̄ > 0 are sufficiently small. We also get with the help of (5.3′) that
∣

∣

∣

∣

x(1) + r cosϕ

2
− M

∣

∣

∣

∣

≤
∣

∣

∣

∣

x(1) − M

2

∣

∣

∣

∣

+
r

2
|cos ϕ − 1| +

∣

∣

∣

∣

r − M

2

∣

∣

∣

∣

≤
∣

∣

∣

∣

x(1) − M

2

∣

∣

∣

∣

+
rϕ2

2
+

∣

∣

∣

∣

r − M

2

∣

∣

∣

∣

≤
∣

∣

∣

∣

x(1) − M

2

∣

∣

∣

∣

+
r

2

(

γn|x(2)| + ε0c
−0.4n

)2

+

∣

∣

∣

∣

r − M

2

∣

∣

∣

∣

≤
(

3

4
+ ε̄

)

c−0.4n + Kc−0.8n ≤ c−0.1c−0.4(n+1)

if ε0 > 0 and ε̄ > 0 are sufficiently small. The above estimates imply (5.10′) hence
also (5.10). Now we can estimate the term

∫∞
0

In(r)p̄n(r) dr. Relation (5.9) yields
that
∫

|r−M |<ε̄c−0.4n

In(r)p̄n(r) dr =
(

1 + O(c−0.2n)
)√

π(
cn

2T
+

gn+1

4M
− An+1

4
)−1/2Jn,ε̄

exp

{

cn

T
x(1)M +

gn+1

4

(

x(1) − M
)

+ Anx(2)2

}
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with

Jn,ε̄ = Jn,ε̄(x
(1)) =

∫

|r−M |<ε̄c−0.4n

exp

{

cn

T
x(1)(r − M) +

gn+1

4
(r − M)

}

p̄n(r) dr

=

∫

|t|<ε̄c0.6n

exp

{

tx(1)

T
+ c

ḡn+1

4
t

}

fn(t) dt

with the function f defined in (4.11). On the other hand, by (5.8) and (5.5)
∫

|r−M |>ε̄c−0.4n

In(r)p̄n(r) dr

≤
(

1 + O(c−0.2n)
)√

π(
cn

2T
+

gn+1

4M
− An+1

4
)−1/2

exp

{

cn

T
x(1)M +

gn+1

4
(x(1) − M) + Anx(2)2

}

J̄n,ε̄

with

J̄n,ε̄ =

∫

10c0.6n>|t|>ε̄c0.6n

exp

{

tx(1)

T
+ c

ḡn+1

4
t

}

fn(t) dt .

Let us remark that Jn,ε̄ = Jn,ε̄(x
(1)) depends on x(1). We show that this depen-

dence is very weak. Namely, since
∣

∣

∣

∣

d

dx(1)
Jn,ε̄(x

(1))

∣

∣

∣

∣

=

∫

|t|<ε̄c0.6n

exp

{

tx(1)

T
+ c

ḡn+1

4
t

} |t|
T

fn(t) dt ≤ C < ∞

by (4.11′) and (4.11′′), and for x(1) = M the expression

Jn,ε̄(M) =

∫

|t|<ε̄c0.6n

exp

{

tM

T
+ c

ḡn+1

4
t

}

fn(t) dt

satisfies the relation

(5.11) 0 < K1 < Jn,ε̄(M) < K2 < ∞
because of (4.11′), (4.11′′), the inequality 0 ≤ ḡn+1 ≤ D and the relation fn(t) ≥
const. > 0 for |t| < 1 that follows from Theorem A. Hence

Jn,ε̄(x
(1)) =

(

1 + O(c−0.4n)
)

Jn,ε̄(M) if x ∈ Ω1
n .

Similarly,
0 ≤ J̄n,ε̄ = O

(

exp(−Kc0.6n)
)

.

The above relations imply that
∫

In(r)p̄n(r) dr =
(

1 + O(c−0.2n)
)√

π(
cn

2T
+

gn+1

4M
− An+1

4
)−1/2Jn,ε̄(M)

exp

{

cn

T
M2 + gn(x(1) − M) + Anx(2)2

}

.

The last formula together with (5.1) and (5.2) imply (4.1) with

Ln =
√

π(
cn

2T
+

gn+1

4M
− An+1

4
)−1/2Jn,ε̄(M) exp

(

cn

T
M2

)

.

Since ( cn

2T + gn+1

4M − An+1

4 ) < const.cn relation (5.11) and the last formula imply
(4.1′′).
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b) The estimation of S1
nf(x) for x ∈ Ω2

n.

We divide Ω2
n to two subsets Ω̄2

n and Ω̂2
n, where we apply different arguments.

Put

Ω1
n,ε =

{

x,
∣

∣|x| − M
∣

∣ ≤ c−0.4n, |x(2)| ≤ (1 + ε)c−0.4n, x(1) > 0
}

, ε > 0,

Ω̄2
n = Ω1

n,ε − Ω1
n ,

and
Ω̂2

n =
{

x,
∣

∣|x| − M
∣

∣ ≤ c−0.4n
}

− Ω1
n,ε .

Clearly, Ω2
n = Ω̄2

n ∪ Ω̂2
n. The domain Ω1

n,ε is a slight enlargement of Ω1
n. It is not

difficult to see by analizing the proof of relation (4.1) that for sufficiently small
ε > 0

S1
nf(x) = Ln exp

{

gn(x(1) − M) + Anx(2)2 + ε̄(x) + ε̂(x)
}

if x ∈ Ω1
n,ε with some |ε̄n(x)| < qn+1 and ε̂n(x) < Kc−0.2n. Since x(1) − M =

|x| − M − x(2)2

2M + O(c−1.2n) and |x(2)| ≥ c−0.4n for x ∈ Ω̄2
n, the above relation

implies that

S1
nf(x) = Ln exp

{

gn(|x| − M) −
(

gn

2M
− An

)

x(2)2

+ ε̄n(x) + ε̂n(x) + O
(

c−0.2n
)

biggr}

≤ Ln exp
{

gn(|x| − M) −
( gn

2M
− An

)

c−0.8n + qn+1 + Kc−0.2n
}

in this case, what we had to show. For x ∈ Ω̂2
n we define

Sε
nf(x) =

∫

R2−V ε
n (x)

exp

(

cn

T
xy

)

f

(

x + y

2

)

pn(y) dy

and

T ε
nf(x) =

∫

{y, x+y
2 ∈Ω1

n+1, y∈V ε
n (x)}

exp

(

cn

T
xy

)

f

(

x + y

2

)

pn(y) dy ,

where V ε
n (x) is defined in (4.8′), and ε > 0 is appropriately chosen. The function

Sε
nf(x) will be bounded with the help of Part b) of Lemma 2, and T ε

nf(x) similarly
to S1

nf(x) in the case x ∈ Ω1
n. To apply Lemma 2 first we show that under the

conditions of Proposition 1′

(5.12) 0 ≤ f(x) ≤ 2 exp
{gn+1

2M

(

|x|2 − M2
)

}

for all x ∈ R2 .

For x ∈ Ω1
n+1

x(1) − M = |x| − M − x(2)2

2|x| + O
(

x(2)4
)

= |x| − x(2)2

2M
− M + O

(

c−1.2n
)

,
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hence

0 ≤ f(x) ≤ exp

{

gn+1(|x| − M) −
(

gn+1

2M
− An+1

)

x(2)2 + εn+1(x) + O(c−0.2n)

}

,

and since gn+1

2M − An+1 > 0 hence

0 ≤ f(x) ≤ 3

2
exp{gn+1(|x| − M)} .

This inequality together with the relation

|x| − M =
1

2M

[

(|x|2 − M2) − (|x| − M)2
]

≤ 1

2M

(

|x|2 − M2
)

imply (5.12) for x ∈ Ω1
n+1. Similarly, for x ∈ Ω2

n+1 the relation

0 ≤ f(x) ≤ exp

{

gn+1(|x| − M) −
(

gn+1

2M
− An+1

)

c−0.8(n+1) + qn+1

}

≤ 3

2
exp{gn(|x| − M)}

implies (5.12), and this relation also holds for x ∈ Ω3
n+1 by relation (2.17).

By (5.12) part b) of Lemma 2 can be applied for 1
2f(x), and it yields that

Sε
nf(x) ≤ 2 exp

{

cn

T
M2 + gn(|x| − M) − cn/2

}

if x ∈ Ω2
n (or x ∈ Ω1

n) .

Since Ln ≥ c−n exp{ cn

T M2}, and ( gn

2M − An)c−0.8n = O(c0.2n) ≤ 1
3cn/2, the last

inequality implies that

Sε
nf(x) ≤ Ln exp

{

gn(|x| − M) −
(

gn

2M
− An

)

c−0.8n − 1

2
cn/2

}

(5.13)

if x ∈ Ω2
n (or x ∈ Ω1

n) .

To estimate T ε
nf(x) first we show that if x ∈ Ω2

n, y ∈ V ε
n (x) and x+y

2 ∈ Ω1
n+1 then

|x(2)| < 2
√

εc−0.2n, |y(2)| < 2
√

εc−0.2n, |x(1) − M | ≤ 2
√

εc−0.2n,

(5.14)

|y(1) − M | ≤ 2
√

εc−0.2n,
∣

∣|y| − M
∣

∣ ≤ εc−0.4n .

Indeed, in this case (x, y) ≥ |x||y| − εc−0.4n, and

0 ≤ |x − y|2 = |x|2 + |y|2 − 2(x, y) ≤ |x|2 + |y|2 − 2|x||y| + εc−0.4n

= (|x| − |y|)2 + εc−0.4n ≤ 2(|x| − M)2 + 2(|y| − M)2 + εc−0.4n

≤ 2(1 + ε)c−0.8n + εc−0.4n ≤ 2εc−0.4n .
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Hence |x(2)−y(2)

2 | ≤ √
εc−0.2n and 1

2 |(x(1) − M) − (y(1) − M)| ≤ √
εc−0.2n. Since

x+y
2 ∈ Ω1

n+1, |x(2)+y(2)

2 | ≤ c−0.4(n+1) ≤ √
εc−0.2n and 1

2 |(x(1) −M) + (y(1) −M)| ≤
3
2c−0.4(n+1) ≤ √

εc−0.2n by (5.3). These relations together with the definition of

V ε
n (x) imply (5.14) that enables us to estimate T ε

nf(x) similarly to S1
nf(x) for

x ∈ Ω1
n.

We get that

(5.15) T ε
nf(x) ≤ (1 + qn+1)

∫ ∞

0

In(r)p̄n(r) dr

with

(5.16)

In(r) =

∫

{ϕ∈Γn(r,x)}
r exp

{

cn

T

(

x(1)y(1) + x(2)y(2)
)

+ gn+1

(

x(1) + y(1)

2
− M

)

An+1

(

x(2) + y(2)

2

)2
}

dϕ ,

where y(1) = r cos ϕ, y(2) = r sinϕ, y = (y(1), y(2)) and

Γn(r, x) = {ϕ :
x + y

2
∈ Ω1

n+1, y ∈ V ε
n (x)}.

Observe that by (5.14) |r−M | < εc−0.4n, |ϕ| ≤ 2| sin ϕ| = 2
r |y(2)| ≤ 2

r

√
εc−0.2n.

Let us make the change of variables z = sin ϕ in the integral In(r). We have

y(2) = rz, y(1) = r(1 − y(2)2

r2 )1/2 = r(1 − y(2)2

2r2 ) + O(y(2)4), z ≤ 2
√

ε
r c−0.2n, hence

|y(1) − r(1 − z2

2 )| ≤ Kε2c−0.8n with some K > 0 independent of ε. These relations
imply that if ϕ ∈ Γn(r, x) then

cn

T

(

x(1)y(1) + x(2)y(2)
)

+ gn+1

(

x(1) + y(1)

2
− M

)

+ An+1

(

x(2) + y(2)

2

)2

≤ cn

T
r

(

x(1)

(

1 − z2

2

)

+ x(2)z

)

+ gn+1

(

x(1) + r(1 − z2

2 )

2
− M

)

+ An+1

(

x(2) + rz

2

)2

+ Kε2c0.2n

with some K > 0. Since dz
dϕ > 1

2 and |r−M | < εc−0.4n if Γn(r, x) is not empty, the

above inequality together with (5.16) imply that

(5.17) In(r) = 0 if |r − M | ≥ εc−0.4n

and

(5.17′) In(r) ≤ 3 exp(Kε2c0.2n)În(r) for |r − M | < εc−0.4n
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with

În(r) =

∫ ∞

−∞
M exp

{

cn

T
r

(

x(1)

(

1 − z2

2

)

+ x(2)z

)

+ gn+1

(

x(1) + r(1 − z2

2 )

2
− M

)

+ An+1

(

x(1) + rz

2

)2
}

dz .

The expression În(r) can be calculated explicitly, and we get that for |r − M | <
εc−0.4n

În =
√

πM

(

cn

2T
rx(1)+

gn+1

4
r − An+1

4
r2

)−1/2

exp

{

cnx(1)r

T
+ gn+1

(

x(1) + r

2
− M

)

+ An(x(1), r)x(2)2

}

with

An(x(1), r) =
An+1

4
+

( cn

T + An+1

2 )2

2( cnx(1)

Tr + gn+1

2r − An+1

2 )
.

Hence

În(r) ≤ Kc−n/2 exp

{

cnx(1)r

T
+ gn+1

(

x(1) + r

2
− M

)

+ An(x(1), r)x(2)2

}

= Kc−n/2 exp

{

cn

T
M2 + gn(x(1) − M) + An(x(1), r)x(2)2

+

(

cnx(1)

T
+

gn+1

2

)

(r − M)

}

.

Observe that An = An(M,M), and if x ∈ Ω̂2
n, y ∈ V ε

n (x) and x+y
2 ∈ Ω1

n then

|An(x(1), r) − An| ≤ K0c
n(|x(1) − M | + |r − M |)

∣

∣

∣

∣

x(1) − M −
(

|x| − M − x(2)2

2M

)∣

∣

∣

∣

≤ K1x
(2)2(x(2)2 + |x(1) − M |) ,

hence (5.17′) implies that
(5.18)

In(r) ≤ K̄c−n/2 exp

{

Kε2c0.2n +
cn

T
M2 + gn(x(1) − M) + Anx(2)2

+ K0c
n(|x(1) − M | + |r − M |)x(2)2 +

(

cnx(1)

T
+

gn+1

2

)

(r − M)

}

≤ K̄c−n/2 exp

{

Kε2c0.2n +
cn

T
M2 + gn(|x| − M) −

( gn

2M
− An

)

x(2)2

+
[

K0c
n(|x(1) − M | + |r − M |) + K1gn(x(2)2 + |x(1) − M |)

]

x(2)2

+

(

cnx(1)

T
+

gn+1

2

)

(r − M)

}
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if |r−M | ≤ εc−0.4n. Since gn

2M −An > αcn with some α > 0 and x(2)2 > (1+ε)c−0.4n

if x ∈ Ω̂2
n

Kε2c0.2n +
[

K0c
n(|x(1) − M | + |r − M |) + K1gn(x(2)2 + |x(1) − M |)

]

x(2)2

−
( gn

2M
− An

)

x(2)2

= Kε2c0.2n −
( gn

2M
− An + O

(

c0.8n
)

)

x(2)2

≤ Kε2c0.2n −
( gn

2M
− An + O

(

c0.8n
)

)

(1 + ε)2c−0.8n

≤ −
( gn

2M
− An

)

(1 + ε)c−0.8n

if ε > 0 is chosen sufficiently small. This relation together with (5.18) imply that

In(r) ≤ Kc−n/2 exp

{

cn

T
M2 + gn(|x| − M) − (1 + ε)

(

gn

2M
− An

)

c−0.8n

+

(

cnx(1)

T
+

gn+1

2

)

(r − M)

}

if |r − M | < εc−0.4n .

With the help of this inequality, the estimate we have on the function p̄n(r) and
(5.17) we can bound the integral in (5.15) from above. We get that

T ε
nf(x) ≤ Ln exp

{

gn(|x| − M) −
(

1 +
ε

2

)(

gn

2M
− An

)

c−0.8n

}

.

Since S1
nf(x) ≤ Sε

nf(x) + T ε
nf(x) the last inequality together with (5.13) imply

(4.4) for x ∈ Ω̂2
n.

c) The estimation of S2
nf(x) for x ∈ Ω1

n and x ∈ Ω2
n.

We have

0 ≤ S2
nf(x) =

∫

{y, x+y
2 ∈Ω2

n+1}
exp

(

cn

T
xy

)

f

(

x + y

2

)

pn(y) dy

≤ exp

{

−
(

gn+1

2M
− An+1

)

c−0.8(n+1) + qn+1

}

∫

{y, x+y
2 ∈Ω2

n+1}
exp

{

cn

T
xy + gn+1

( |x + y|
2

− M

)}

pn(y) dy .

It follows from Lemma 3 that for x ∈ Ω1
n ∪ Ω2

n

0 ≤ S2
nf(x) ≤ K exp

{

−
(

gn+1

2M
− An+1

)

c−0.8(n+1)

+ qn+1 +
cn

T
M2 + gn(|x| − M)

}

.
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By Lemma 1 gn+1c
−(n+1) ≥ gncn, Anc−n ≥ An+1c

−(n+1) i.e. gn+1 ≥ cgn and
cAn ≥ An+1. Hence

(

gn+1

2M
− An+1

)

c−0.8(n+1) ≥
(

gn

2M
− An

)

c−0.8nc0.2 ≥ (1 + ε)

(

gn

2M
− An

)

c−0.8n

if 0 < ε < c0.2 − 1. Since ε( gn

2M − An)c−0.8n > ε′c0.2n with some appropriate
ε′(ε) > 0 we get that

(

gn+1

2M
− An+1

)

c−0.8(n+1) ≥
(

gn

2M
− An

)

c−0.8n + ε′c0.2n

Therefore

(5.19)

S2
nf(x) ≤ K exp

{

cn

T
M2 + gn(|x| − M) −

(

gn

2M
− An

)

c−0.8n + qn+1 − ε′c0.2n

}

≤ Ln exp

{

gn(|x| − M) −
(

gn

2M
− An

)

c−0.8n − ε′

2
c0.2n

}

.

This is estimate (4.5) (with ε′

2 instead of ε′). For x ∈ Ω1
n

gn(x(1) − M) + Anx(2)2 = gn(|x| − M) −
(

gn

2M
− An

)

x(2)2 + O(c−0.2n) ,

hence (5.19) implies that for x ∈ Ω1
n

S2
nf(x) ≤ Ln exp

{

gn(x(1) − M) + Anx(2)2 − ε′

4
c0.2n

}

,

and this is relation (4.2) (with ε′

4 ).

d) The estimation of S3
nf(x) for x ∈ Ω1

n and x ∈ Ω2
n.

Clearly

S3
nf(x) = Sε

nf(x) +

∫

{y, x+y
2 ∈Ω3

n+1}∩V ε
n (x)

exp

(

cn

T
xy

)

f

(

x + y

2

)

pn(y) dy ,

where Sε
nf(x) and V ε

n are defined in (4.8) and (4.8′). The term Sε
nf(x) is bounded

in (5.13). On the other hand, we claim that there is some ε0 = ε0(c) such that if
0 < ε < ε0 and x ∈ Ω1

n ∪ Ω2
n then the set {y, x+y

2 ∈ Ω3
n+1} ∩ V ε

n (x) is empty, hence

the last integral is zero. We have to show that if
∣

∣|x| − M
∣

∣ < c−0.4n, y ∈ V ε
n , i.e.

∣

∣|y| − M
∣

∣ < εc−0.4n and xy > |x||y| − εc−0.4n then x+y
2 /∈ Ω3

n+1, i.e. −c−0.4(n+1)

≤ |x+y
2 | − M ≤ c−0.4(n+1).

Estimation from above:
∣

∣

∣

∣

x + y

2

∣

∣

∣

∣

− M ≤ |x| − M

2
+

|y| − M

2
≤ 1 + ε

2
c−0.4n ≤ c−0.4(n+1)
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if 1+ε
2 ≤ c−0.4, what holds for sufficiently small ε.
Estimation from below:

∣

∣

∣

∣

x + y

2

∣

∣

∣

∣

2

− M2 =
|x|2 + |y|2 + 2xy

4
− M2

≥ |x|2 + |y|2 + 2|x||y| − 2εc−0.4n

4
− M2 =

( |x| + |y|
2

)2

− M2 − ε

2
c−0.4n

≥
(

M − c−0.4n + M − εc−0.4n

2

)2

− M2 − ε

2
c−0.4n

≥ −(1 + ε)Mc−0.4n − ε

2
c−0.4n = −M

(

1 + ε +
ε

2M

)

c−0.4n .

Hence

∣

∣

∣

∣

x + y

2

∣

∣

∣

∣

≥
(

M2 − M

(

1 + ε +
ε

2M

)

c−0.4n

)1/2

≥ M − (1 + ε + ε
2M )

2
c−0.4n − Kc−0.8n

= M −
[(

1

2
+

ε

2

(

1 +
1

2M

))

+ Kc−0.4n

]

c−0.4n ≥ M − c−0.4(n+1)

if 1
2 + ε

2 (1 + 1
2M ) + Kc−0.4n ≤ c−0.4, what we had to show.

Hence S3
nf(x) = Sε

nf(x), and (5.13) implies (4.6). To prove (4.3) we still have
to remark that for x ∈ Ω1

n

gn(|x| − M) −
(

gn

2M
− An

)

c−0.8n − 1

2
cn/2

≤ gn(|x| − M) −
(

gn

2M
− An

)

x(2)2 − 1

2
cn/2 ≤ gn(x(1) − M) + Anx(2)2 − 1

6
cn/2 .

e) The estimation of Snf(x) for x ∈ Ω3
n.

We get from (5.12) and Part a) of Lemma 2 that

0 ≤ Snf(x) ≤ 2cn exp

{

cn

T
M2 +

gn

2M
(|x|2 − M2) − cn

3T
(|x|2 − M2)

}

.

For x ∈ Ω3
n

cn

3T (|x|2 − M2) ≥ c0.2n

3T , hence (4.1′′) implies that

0 ≤ Snf(x) ≤ 2cn exp

{

cn

T
M2 +

gn

2M
(|x|2 − M2) − c0.2n

3T

}

≤ Ln exp
{ gn

2M
(|x|2 − M2)

}

,

i.e. relation (4.7) holds, as we have claimed. Proposition 1′ is proved.
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6. The proof of Theorem 1 and Proposition 2. Existence of the ther-
modinamical limit. First we show with the help of Proposition 1, Lemma 1 and
Theorem A that for all q, c−0.2 < q < 1, there exist some thresholds n0 and N0(n, q)
for n ≥ n0 such that if n ≥ n0 and N ≥ N0(n, q) then

(6.1)
dµhN

n,N

dµn
(x1, . . . , x2n) = fhN

n,N

(

2−n
2n
∑

j=1

xj

)

with

(6.2) fhN

n,N (x) = Ln exp
{

ḡcn(x(1) − M) + Ācnx(2)2 + εn(x)
}

for x ∈ Ω1
n ,

where

(6.2′) sup
x∈Ω1

n

|εn(x)| ≤ qn ,

(6.3) fhN

n,N (x) ≤ Ln exp

{

ḡcn(|x| − M) −
(

ḡ

2M
− Ā

)

c0.2n + qn

}

for x ∈ Ω2
n

(6.4) fhN

n,N (x) ≤ Ln exp

{

ḡcn

M
(|x|2 − M2)

}

if x > M + c−0.4n

(6.4′) fhN

n,N (x) ≤ Ln exp

{

ḡcn

2M
(|x|2 − M2)

}

if 0 < x < M − c−0.4n

with some appropriate norming constant Ln which satisfies the relation

(6.5) C1 < c−n/2Ln < C2 with some 0 < C1 < C2 < ∞ .

Indeed, Proposition 1 and Lemma 1 imply (6.1)–(6.4′) with some norming constant
Ln = Ln(N,hN ). (In the domain Ω3

n we have divided the cases |x|2 − M2 > 0 and
|x|2 − M2 < 0, since here we apply that ḡcn < gn < 2ḡcn. ) It remains to prove
(6.5) and to show that Ln can be chosen independently of N and hN . For this aim
we observe that

(6.6) 1 = µhN

n,N ((R2)2
n

) =

∫

fhN

n,N (x)pn(x) dx =

∫

Ω1
n

+

∫

Ω2
n

+

∫

Ω3
n

.

By applying the change of variables r = M + c−nt and by using the function fn(t)
defined in (4.11) we get that

∫

Ω3
n

fhN

n,N (x)pn(x) dx ≤
∫ M−c−0.4n

0

Ln(N,hN ) exp

{

ḡcn

2M

(

r2 − M2
)

}

rp̄n(r) dr

+

∫ ∞

M+c−0.4n

Ln(N,hN ) exp

{

ḡcn

M

(

r2 − M2
)

}

rp̄n(r) dr

= Ln(N,hN )

[
∫ −c0.6n

−cnM

exp

{

ḡ

2M

(

2Mt +
t2

cn

)}

(

M + c−nt
)

fn(t) dt

+

∫ ∞

c0.6n

exp

{

ḡ

M

(

2Mt +
t2

cn

)}

(

M + c−nt
)

fn(t) dt

]

.
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Relations (4.11′) and (4.11′′) imply that

(6.7)

∫

Ω3
n

= Ln(N,hN )O
(

exp(−Kc0.6n)
)

with some K > 0 .

Similarly,

(6.7′)

∫

Ω2
n

≤ Ln(N,hN ) exp

{

−1

2

(

ḡ

2M
− Ā

)

c0.2n

}

.

(Observe that ḡ
2M − Ā > 0.)

Define the number Tn,

(6.8) Tn =

∫

Ω1
n

exp
{

ḡcn(x(1) − M) + Ācnx(2)2
}

pn(x) dx .

It follows from Theorem A that

(6.9) C1c
−n/2 < Tn < C2c

−n/2 with some 0 < C1 < C2 < ∞ .

Indeed, since the expression in the exponent of (6.8) can be written in the form

ḡcn(x(1) − M) + Ācnx(2)2 = ḡcn(|x| − M) −
(

ḡ

2M
− Ā

)

cnx(2)2 + O
(

c−0.2n
)

,

we get (6.9) by integrating (6.8) first by the variable x(2). Some calculation with
the help of (6.2) and (6.2′) shows that

(6.10)

∣

∣

∣

∣

∣

∫

Ω1
n

fhN

n,N (x)pn(x) dx − Ln(N,hN )Tn

∣

∣

∣

∣

∣

≤ Ln(N,hN )Tnqn .

Relations (6.6), (6.7), (6.7′) and (6.10) imply that

1 = Ln(N,hN )Tn

(

1 + εn + O(exp(−c0.1n))
)

, and εn ≤ qn .

The last relation implies that relations (6.1)–(6.4′) remain valid if we choose Ln =
T−1

n , and this Ln satisfies (6.5) by (6.9).
We prove Theorem 1 with the help of (6.1)–(6.5). Fix some integer k ≥ 0, and

define for all n ≥ k and measurable sets A ⊂ (R2)2
k

the cylindrical set A(n) =

A × (R2)2
n−2k ⊂ (R2)2

n

. Put

µ̃n(A) = Ln

∫

Ã(n)

exp







ḡcn2−n
2n
∑

j=1

(x
(1)
j − M) + Ācn4−n

( 2n
∑

j=1

x
(2)
j

)2






µn( dx1 . . . , dx2n)



The large-scale limit of Dyson’s hierarchical model 33

with Ã(n) = A(n) ∩ {(x1, . . . , x2n), 2−n
∑2n

j=1 xj ∈ Ω1
n}. We claim that if n > n0

and N > N0(n, q) then

(6.11)
∣

∣

∣
µ̃n(A(n)) − µhN

n,N (A(n))
∣

∣

∣
≤ Kqn

with some K > 0 independent of the set A. Indeed,
∣

∣

∣
µ̃n(A(n)) − µhN

n,N (A(n))
∣

∣

∣
≤
∫

Ω2
n∪Ω3

n

fhN

n,N (x)pn(x) dx

+

∫

Ã(n)

µn( dx1 . . . , dx2n)

∣

∣

∣

∣

fhN

n,N

(

2−n
2n
∑

j=1

xj

)

− Ln exp







ḡcn2−n
2n
∑

j=1

(x
(1)
j − M) + Ācn4−n

( 2n
∑

j=1

x
(2)
j

)2






∣

∣

∣

∣

= I1 + I2 .

It follows from (6.5), (6.7) and (6.7′) that

(6.12) I1 ≤ exp
(

−c0.1n
)

.

On the other hand we increase the term I2 by enlarging the domain of integration

to the set {(x1, . . . , x2n), 2−n
∑2n

j=1 xj ∈ Ω1
n}. Hence

I2 ≤
∫

Ω1
n

∣

∣

∣
fhN

n,N (x) − Ln exp
{

ḡcn(x(1) − M) + Ācnx(2)2
}∣

∣

∣
pn(x) dx .

The last inequality together with (6.2) and (6.2′) imply that

I2 ≤ 2qnµhN

n,N

(

(R2)2
n
)

= 2qn .

The last inequality together with (6.12) imply (6.11). Since for all k ≥ 0 and

measurable sets A ∈ (R2)2
k

, k ≤ n ≤ N we have µhN

n,N (A(n)) = µhN

k,N (A), relation

(6.11) implies that for all ε > 0 there is some N0(ε) such that for N > N0(ε) and

N ′ > N0(ε) the relation |µhN

n,N (A)−µ
hN′

k,N ′(A)| < ε holds true. Let us emphasize that

the threshold N(ε) does not depend on the set A. Hence the last relation means

that the limit µ̄k(A) = limN→∞ µhN

k,N (A) exists, and the convergence is uniform in

A. This implies that µhN

k,N → µ̄k in variational metric. To complete the proof of
Theorem 1 we have to show that the measure µ̄k does not depend on the sequence
hN . But it is not difficult to see with the help of (6.11) that this statement holds,
since µ̄k(A) = limn→∞ µ̃(A(n)), and the right hand side of the last expression does
not depend on hN .

Proof of Proposition 2. Let n > n0 and N > N0(n, q). Relations (6.1)–(6.5) hold for

such pairs n and N . By Theorem 1 the measures µhN

n,N converge in variational metric

to the projection µ̄n of the measure µ̄ to (R2)2
n

as N → ∞. Since all measures
are absolute continuous with respect to the measure µn the above convergence is

equivalent to the convergence of the Radon–Nikodym derivatives
dµ

hN
n,N

dµn
= fhN

n,N to
dµ̄n

dµn
= f̄ in L1 norm in the space ((R2)2

n

, µn) as N → ∞. Since all functions

fhN

n,N (x) satisfy (6.1)–(6.5) for N > N0(n, q), their limit f̄ also has this property.
Hence Proposition 2 holds true.
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7. The proof of Theorem 2. Existence of the large-scale limit. First we
need some results about the transformation Qn = Qn(k) of probability measures

on (R2)2
n+k

to probability measures on (R2)2
k

to be defined below. First we define

a transformation Qn = Qn(k), Qn : (R2)2
n+k → (R2)2

k

in the following way: For
all (x1, . . . , x2n+k), xj ∈ R2, j = 1, . . . , 2n+k

Qn(x1, . . . , x2n+k) = (y1, . . . , y2k), yj = 2−n

j2n

∑

l=(j−1)2n+1

xl, j = 1, . . . , 2k.

This transformation induces the transformation Qn of probability measures on

(R2)2
n+k

to probability measures on (R2)2
k

in a natural way. Namely, if ν is a

probability measure on (R2)2
n+k

and (η(1), . . . , η(2n+k)) is a ν distributed vector
then Qnν is the distribution of the random vector Qn(η(1), . . . , η(2n+k)). In Theo-
rem 2 we have to study an appropriately rescaled version of the measure Qnµ̄n+k.
It is not difficult to see that relation (2.10) implies that

(7.1)
dQnµ̄n+k

dQnµn+k
(x1, . . . , x2k) = f̄n+k

(

2−k
2k
∑

j=1

xj

)

.

We formulate below Theorem C which follows from the relatively simple Theorem
1 in [4]. For the sake of completeness we present its proof in Appendix B.

Theorem C. The above defined measure Qnµn+k = Qnµn+k(T, t) has a density
function hk(x1, . . . , x2k) of the form

hk(x1, . . . , x2k) = L(T, t, n, k) exp

{

− 1

T
Hk

(

cn/2x1, . . . , c
n/2x2k

)

} 2k
∏

j=1

pn(xj)

xj ∈ R2, j = 1, . . . , 2k.

Here Hk is the Hamiltonian function defined in (1.2′) of Part I, pn(x) is the function
appearing in Theorem A, and L is an appropriate norming constant.

Formula (7.1) and Theorem C enable us to express the density function of the
random vector {Rnσ(1)(j), Rnσ(2)(j), 1 ≤ j ≤ 2k} with the help of the functions
pn(x) and fn(x), where the sequence {σ(j), j ∈ Z} is µ̄ distributed, and Rnσ(1),
Rnσ(2) are defined in (1.2) and (1.3) of Part II. This density equals to

(7.2)

hn,k(x1, . . . , x2k)

= Ln,kf̄n+k

(

2−k
2k
∑

j=1

x̃j

)

exp

{

− 1

T
Hk

(

cn/2x̃1, . . . , c
n/2x̃2k

)} 2k
∏

j=1

pn(x̃j)

with

(7.2′) x̃ = x̃(x) =
(

M + c−nx(1), c−n/2x(2)
)

for x =
(

x(1), x(2)
)

.
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Let us define the sets Wn ⊂ R2 and W̄n ⊂ R2 by the formulas

W̄n =

{

(x(1), x(2)), M − nη

cn
< |x| < M +

ηn1/α

cn
, |x(2)| < c−0.45n, x(1) > 0

}

Wn =
{

(x(1), x(2)), x̃(x) ∈ W̄
}

,

where η and α are the same constants as in Theorem A, and x̃(x) is defined in
(7.2′). We shall show that there is some n0 > 0 and 0 < q < 1 such that

(7.3) P
(

(

Rnσ(1)(j), Rnσ(2)(j)
)

/∈ Wn

)

≤ qn if n ≥ n0

for a µ̄ distributed random field σ(j), j ∈ Z, and give a good asymptotic formula
for the expression hn,k(x1, . . . , x2k) defined in (7.2) if xj ∈ Wn for all 1 ≤ j ≤ 2k.
First we prove (7.3).

P
(

(

Rnσ(1)(j), Rnσ(2)(j)
)

/∈ Wn

)

= P

(

2−n
2k
∑

l=1

σ(k) /∈ W̄n

)

=

∫

R2−W̄n

f̄n(x)pn(x) dx =

∫

Ω1
n−W̄n

+

∫

Ω2
n

+

∫

Ω3
n

= I1 + I2 + I3 .

We get similarly to the estimates (6.7) and (6.7′) that

I3 ≤ exp
(

−Cc0.6n
)

,

I2 ≤ const. exp

{

−
(

ḡ

2M
− Ā

)

c0.2n

}

≤ exp
(

−Cc0.2n
)

The term I1 has to be estimated a little more carefully.
Define

Ω̃1
n =

{

(x(1), x(2)),
∣

∣|x| − M
∣

∣ < c−0.4n, |x(2)| < c−0.45n, x(1) > 0
}

,

and write

I1 = I1,1 + I1,2 =

∫

Ω1
n−Ω̃1

n

+

∫

Ω̃1
n−W̄n

.

We get, similarly to the estimation of I3 and I2 that I1,1 ≤ exp(−Kc0.1n), and we
can write by (2.11) and (2.11′) that

I1,2 ≤ 2Ln

∫

Ω̃1
n−W̄n

exp
{

ḡcn(x(1) − M) + Ācnx(2)2
}

pn(x) dx

≤ 3Ln

∫

Ω̃1
n−W̄n

exp

{

ḡcn(|x| − M) −
(

ḡn

2M
− A

)

cnx(2)2

}

pn(x) dx .

Then integrating first by x(2) we get that

I1,2 ≤ KLnc−n/2

[
∫ M−ηnc−n

M−c−0.4n

+

∫ M+c−0.4n

M+ηn1/αc−n

]

exp (ḡcn(r − M)) p̄n(r) dr ≤ qn
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with the help of relations (1.8) and (1.10) in Theorem A. Let us emphasize that it
was the multiplying term qn in (1.8) that enabled us to give an exponentially small
bound for the second term in the last integral. The above estimates imply (7.3).

To estimate the expression (7.2) in the case xj ∈ Wn, j = 1, 2, . . . , 2k, we make
some preparatory remarks. Put

`n(x) = cn(|x̃(x)| − M) = cn

{

[

(M + c−nx(1))2 + c−nx(2)2
]1/2

− M

}

We have

`n(x) = x(1) +
x(2)2

2M
+ O

(

c−n
(

x(2)4 + |x(1)|x(2)2
))

(7.4)

= x(1) +
x(2)2

2M
+ O

(

c−0.8n
)

if x ∈ Wn ,

because, as it is not difficult to see, c−n/2|x(2)| < c−0.45n, and M − 2c−0.9n <
M + c−nx(1) < M + 2c−0.9n if x ∈ Wn. We show with the help of Theorem A and
(7.4) that
(7.5)

pn(x̃) = exp

{

−a0

T

(

Mx(1) +
x(2)2

2

)}

g

(

a1

T

(

Mx(1) +
x(2)2

2

))

(1 + O(qn))

with some 0 < q < 1 for x ∈ Wn if η > 0 is chosen sufficiently small in Theorem A.
Indeed, by Theorem A

pn(x̃) = exp

{

−a0M

T
`n(x)

}

g

(

a1M

T
`n(x)

)

(1 + O(qn)) ,

exp

{

−a0M

T
`n(x)

}

= exp

{

−a0

T

(

Mx(1) +
x(2)2

2

)

+ O
(

c−0.8n
)

}

,

and

(7.6)

∣

∣

∣

∣

g

(

a1

T
M`n(x)

)

− g

(

a1

T
(Mx(1) +

x(2)2

2
)

)
∣

∣

∣

∣

= O(c−0.8n)

by (7.4) and the boundedness of the function d
dxg(x). (See Lemma 13 in Part I.) On

the other hand, by Lemma 17 of Part I the relation −2ηn < x(1) + x(2)2

2M < 2ηn1/α

if x ∈ Wn, which holds because of the definition of Wn, and the inequality

∣

∣

∣

∣

cn
(

|x̃(x)| − M
)

−
(

x(1) +
x(2)2

2M

)∣

∣

∣

∣

≤ Kc−0.8n

we have

g

(

a1

T

(

Mx(1) +
x(2)2

2

))

> c−0.3n
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if x ∈ Wn, and η is chosen in Theorem A sufficiently small. Hence (7.6) can be
rewritten as

g
(a1

T
M`n(x)

)

= g

(

a1

T

(

Mx(1) +
x(2)2

2
)

)(

1 + O(c−n/2

))

.

The above relations imply (7.5).
We also claim that

Hk

(

cn/2x̃1, . . . , c
n/2x̃2k

)

(7.7)

= −
2k−1
∑

i=1

2k
∑

j=i+1

U(i, j)
[

M(x
(1)
i + x

(1)
j ) + x

(2)
i x

(2)
j + cnM2

]

+ O(qn)

and

(7.8) f̄n+k

(

2−k
2k
∑

j=1

x̃j

)

= Ln+k exp







ck

2k
ḡ

2k
∑

j=1

x
(1)
j +

ck

4k
Ā

( 2k
∑

j=1

x
(2)
j

)2

+ O(qn)







if xj ∈ Wn, j = 1, . . . , 2k.
Indeed,

Hk

(

cn/2x̃1, . . . , c
n/2x̃2k

)

= −
2k−1
∑

i=1

2k
∑

j=i+1

U(i, j)
[

cn(M + c−nx
(1)
i )(M + c−nx

(1)
j ) + x

(2)
i x

(2)
j

]

,

hence to prove (7.7) it is enough to remark that in the last expression the terms

c−nx
(1)
i x

(1)
j are negligibly small, since c−nx

(1)
i x

(1)
j = O(c−0.8n) if xi ∈ Wn and

xj ∈ Wn.

To prove (7.8) we have to show that 2−k
∑2k

j=1 x̃j ∈ Ω1
n+k if x̃j ∈ W̄n for all

j = 1, . . . , 2k and then apply Proposition 2. We can write with the notation x̃j =

(x̃
(1)
j , x̃

(2)
j ) that |2−k

∑2k

j=1 x̃
(2)
j | < c−0.45n ≤ c−0.4n4−k, and |2−k

∑2k

j=1 x̃
(1)
j −M | ≤

2c−0.45n ≤ 4−kc−0.4n if n is sufficiently large (k is fixed, n → ∞) and x̃j ∈ Wn for

j = 1, . . . , 2k. These relations imply that 2−k
∑2k

j=1 x̃j ∈ Ω1
n+k. We get, by putting

(7.5), (7.7) and (7.8) into (7.2) that

hn,k(x1, . . . , x2k) = L̄n,k exp

{

ck

2k
ḡ

2k
∑

j=1

x
(j)
1 +

ck

4k
Ā

( 2k
∑

j=1

x
(2)
j

)2

− 1

T

2k−1
∑

i=1

2k
∑

j=i+1

U(i, j)
(

Mx
(1)
i + Mx

(1)
j + x

(2)
i x

(2)
j

)

−
2k
∑

j=1

a0

T

(

Mx
(1)
j +

x
(2)2
j

2

)

}

2k
∏

j=1

g

(

a1

T

(

Mx
(1)
j +

x
(2)2
j

2

))

(1 + O(qn))
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with some 0 < q < 1 if xj ∈ Wn, j = 1, 2, . . . , 2k.

Simple calculation shows that −∑2k

i=1 U(i, j) = 1−(c/2)k

1−c/2 , hence the coefficient of

x
(1)
j , (c/2)kḡ + M

T

∑2k

j=1 U(i, j) − a0M
T equals zero, and

(7.9) hn,k(x1, . . . , x2k) = hk(x1, . . . , x2k)
(

1 + O(qn)
)

if xj ∈ Wn, j = 1, 2, . . . , 2k, where hk is defined in (1.12) (with p = 2). It is not
difficult to see that (7.3) also holds with a random vector with density function
(1.12). Hence (7.3) and (7.9) imply Theorem 2.

8. Some open problems and conjectures. Dyson [12] has defined a more
general class of models than that considered in this work. He defined, with the help
of a real function ϕ : Z → R1, models with the Hamiltonian function

(8.1) H(σ) = −
∑

i∈Z

∑

j∈Z

j>i

ϕ(d(i, j))S(
nf(x)i)σ(j), σ = {σ(i), i ∈ Z} ,

where d(·, ·) denotes the hierarchical distance on Z given in formula (1.1) of Part I.
In this work we have considered models in the special case ϕ(x) = |x|−a with a =

2− log c
log 2 . One question we are going to discuss here is that which are the functions

ϕ for which Dyson’s model with the Hamiltonian (8.1) has a phase transition at
low temperatures. In the boundary case some more delicate phenomena appear
which we also want to discuss. The behaviour of vector and scalar-valued models
is different. First we discuss the vector-valued case.

The quantities Mn = Mn(T ) considered in Part I can be defined in a natural
way in the general case. The arguments of Part I suggest that the relation

(8.2) Mn+1 = Mn − 1

4nMnϕ(2n)

holds true. The existence or non-existence of phase transition depends on whether
M = limn→∞ Mn equals to zero or not if T is small, i.e. if M0 is large. Hence
formula (8.2) suggests that a phase transition at low temperatures occurs if and
only if

∑

1
4nϕ(2n) is convergent. Dyson has formulated the same conjecture in [13]

and proved its convergent part in the special case when σ(i) ∈ R3. He has also
solved the problem for scalar-valued models. He proved that there is a phase tran-
sition at low temperatures if ϕ(n) ≥ C log log n

n2 with some C > 0, and there is

none if ϕ(n) log log n
n2 → 0. Moreover, in the boundary case ϕ(n) = C log log n

n2 the
following Thouless effect occurs: There is some critical parameter Tcr. such that
M(T ) = limn→∞ Mn(T ) > 0 for T ≤ Tcr. and M(T ) = 0 for T > Tcr.. The quan-
tity M(T ) has a physical content, it is called the spontaneous magnetization. The
interesting feature of the above result is that it states that the function M(T ) has
a discontinuity at T = Tcr.. This particular behaviour of the spontaneous magneti-
zation appears only in the boundary case ϕ(n) = C log log n

n2 . On the other hand, the
Thouless effect occurs in some other models too, like in the one-dimensional Ising
model with 1

|x−y|2 interaction, in one-dimensional percolation models if the proba-

bility of the event that the points i and j are connected has the order C(T )|i−j|−2,
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e.t.c.. In recent time several interesting papers appeared on this subject, (see e.g.
[1], [2], [17]). On the other hand, there are some other interesting phenomena
connected with the Thouless effect, like the irregular behaviour of the correlation
function, whose investigation requires essentially new ideas.

The appearance of phase transitions and the Thouless effect in scalar-valued
models are connected with the behaviour of the sequence Mn. The quantity Mn+1

can be expressed asymptotically in a simple way with the help of Mn and the
function ϕ in scalar-valued models too. But this formula is essentially different
from his vector-valued counterpart, namely

(8.3) Mn+1 ∼ Mn

[

1 − exp

{

− 1

T
M2

n4nϕ(2n)

}]

.

In the particular case ϕ(n) = log log n
n2 we have

(8.3′) n+1 ∼ Mn

[

1 − exp

{

− 1

T
M2

n log n

}]

.

Formula (8.3′) may help us to understand the cause of the Thouless effect, at least

at a heuristic level. If Mn(T ) <
√

T for some n then relation (8.3) implies that

M(T ) = limn→∞ Mn(T ) = 0, hence either M(T ) ≥
√

T or M(T ) = 0. Since
M(T ) 6= 0 for small T , this relation implies the discontinuity of the function M(T ).
In vector-valued models relation (8.2) does not suggest such a behaviour. We expect
however that some delicate effects appear in this case too, and we are going to study
them in the future.

Let us remark that the study of existence or non-existence of phase transitions
at low temperatures seems to be an essentially simpler problem than the study
of the Thouless effect and related questions. In the first problem it is enough to
consider sufficiently low temperatures, and in the case of vector-valued models with
Hamiltonian function of the form (8.1) for instance the method of the present paper
works without any essential changes. In the second problem however, one has to
study the behaviour of the model near the critical temperature, and this requires
more work and new ideas.

Another problem we are going to discuss here is the description of the large-scale
limit of vector-valued equilibrium states with translation invariant Hamiltonian
function. We have discussed its scalar-valued counterpart in Section 8 of our paper
[6], and formulated our conjectures about it.

Let us consider vector-valued models on the d-dimensional integer lattice with
Hamiltonian function

H(σ) = −
∑

|i−j|=1

i,j∈Z
d

σ(i)σ(j) −
∑

i∈Zd

p(σ(i))

with

p(x) = − t

4
|x|4 − |x|2

2
, t > 0 ,
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and the Lebesgue measure on Rp with some p ≥ 2 as the free measure of the model.
The expression σ(i)σ(j) in the above formulas denotes scalar product.

Let {X(k) = (X
(1)
k , . . . , X

(p)
k ), k ∈ Zd} be a random field with the distribution

of a (pure) equlibrium state with the above Hamiltonian function at a certain tem-
perature T . If d ≥ 3 then there exists a spontaneous magnetization at sufficiently
low temperatures. This is proved with the help of the infrared bounds (see e.g.
[14]). In case of phase transition we consider that pure state for which the direction

of the spontaneous magnetization is e1 = (1, 0, . . . , 0), i.e. E X
(1)
k = M > 0, and

E X
(s)
k = 0 for s = 2, . . . , p.

Define the “renormalized” random fields {Yk(N) = (Yk(N)1, . . . , Yk(N)p )},
N = 1, 2, . . . by the formulas

(8.4) Yk(N)1 = A(N)−1
∑

j∈Dk(N)

(X
(1)
j − EX

(1)
j )

(8.4′) Yk(N)s = B(N)−1
∑

j∈Dk(N)

X
(s)
j , s = 2, . . . , p,

with

Dk(N) =
{

j = (j(1), . . . , j(d)) ∈ Zd, k(r)N + 1 ≤ j(r) ≤ (k(r) + 1)N,

r = 1 . . . , d
}

.

We are interested in the question that for which choice of A(N) and B(N) the fields
Yk(N) have a non-trivial limit, i.e. a limit which is not concentrated on a single
configuration. We also want to describe the distribution of the limit field.

Dyson’s hierarchical model with parameter c, 1 < c < 2 can be considered as an
approximation of translation invariant models with nearest neighbour interaction
on the d-dimensional lattice Zd with d = 2

1−log2 c . (See paper [21] for a discussion

of this approximation.) It must be admitted that the above approximation is made
only at a heuristic level, but it helps us to get a better understanding about the
behaviour of the large-scale limit. On the basis of the present work and [5] we
can formulate the following conjectures about the large-scale limit of translation
invariant models at low temperatures.

The behaviour of the large-scale limit is different in the cases d > 4, d = 4 and
d < 4, and they correspond to the cases c >

√
2, c =

√
2 and c <

√
2 in Dyson’s

hierarchical model. In accordance with [5] we expect that for d > 4 the large-scale
limit exists at low temperatures with A(N) = N d/2 and B(N) = N (d+2)/2. The

limit field {Yk = (Y
(1)
k , . . . , Y

(p)
k ), k ∈ Zd} is such that the fields {Y (j)

k , k ∈ Zd},
j = 1, 2, . . . , p are independent, {Y (1)

k , k ∈ Zd} consists of independent identically

distributed Gaussian random variables with zero mean, {Y (s)
k , k ∈ Zd}, s =

2, . . . , p, are massless free Gaussian fields, i.e. they have the same distribution as
the field

Yk = C

∫

exp(ikx)

|x|

d
∏

j=1

{

exp(ix(j)) − 1

ix(j)

}

W ( dx), k ∈ Zd,
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with some C > 0, where W ( dx) is a complex-valued white noise field on Rd with

the conjugation property W (x) = W (−x). (For the definition of W (x) see e.g.
[16].) The situation is similar in the case d = 4, i.e. the investigation of Dyson’s
model suggests a similar behaviour with the only difference that a logarithmic factor

appears in the normalizing term A(n). More precisely, for d = 4 the fields Y
(N)
k

defined in (8.4) and (8.4′ ) with A(N) = N2
√

log N and B(N) = N (d+2)/2 = N3

have a Gaussian limit as N → ∞ which consists of independent components s =

1, . . . , p, similarly to the case d > 4. The limit of the fields Y
(s)
k , s = 2, . . . , p, is a

massless free field.

The result of the present work motivates the following conjecture for d = 3.

Conjecture. For d = 3 the large-scale limit exists at low temperatures with the
normalizations A(N) = N2 and B(N) = N5/2. The large-scale limit has the same

distribution as the random field {Yk = (Y
(1)
k , . . . , Y

(p)
k ), k ∈ Z3} defined by the

formulas

(8.5) Y
(s)
k = C

∫

exp(ikx)

|x|

3
∏

j=1

exp(ix(j)) − 1

ix(j)
Ws( dx), k ∈ Z3 , s = 2, . . . , p

and

(8.6)

Y
(s)
1 = − C2

2M

p
∑

s=2

∫∫

exp(ik(x + y))

|x||y|

3
∏

j=1

{

exp[i(x(j) + y(j))] − 1

i(x(j) + y(j))

}

Ws( dx)Ws( dy),

k ∈ Z3 ,

where C > 0 is an appropriate positive constant, and Ws( dx), s = 1, . . . , p are
independent complex valued white noise fields on R3 with the conjugation property
W (x) = W (−x). (For the definition of two-fold stochastic integrals with respect to

a Gaussian field see e.g. [16]. Such an integral appears in the definition of Y
(s)
1 .)

The fields Y
(k)
s , s = 2, . . . , p defined in (8.5) are massless free fields, the field

defined in (8.6) belongs to the class of self-similar fields constructed in Dobrushin’s
paper [11]. It is a quadratic functional of a Gaussian field, just as the corresponding

field in Dyson’s model for 1 < c <
√

2.

The large-scale limit of the equilibrium state in Dyson’s model described in The-
orem 2 of Part II has the following independence property: The random variables

Y
(1)
k + 1

2M

∑p
s=2 Y

(s)2
k are independent for different k. This independence property

does not hold for their translation invariant counterpart defined in (8.5) and (8.6).
It cannot be preserved, because translation invariant models have less symmetry.
Nevertheless, the following non-rigorous argument shows some analogy between the
behaviour of the fields defined in (8.5) and (8.6) and the above mentioned indepen-
dence property. In this non-rigorous argument we consider the limit field appearing
in the Conjecture as the discretization of a generalized field.
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Let δ(t) denote the Dirac-delta function in the point t, and consider the gener-
alized field which at δ(t) takes the value Y (δ(t)) =

(

Y (1)(δ(t)), . . . , Y (s)(δ(t))
)

,

Y (s)(δ(t)) = C

∫

exp(itx)

|x| W (s)( dx) , s = 2, . . . , p ,

Y (1)(δ(t)) = − C2

2M

p
∑

s=2

∫∫

exp(it(x + y))

|x||y| W (s)( dx)W (s)( dy) .

Actually this definition is not correct, since the above stochactic integrals are mean-
ingless because of the divergence of the integrals

∫

R3
dx
|x|2 and

∫

R3

∫

R3
dx dy

|x|2|y|2 . But

the integral

Y (1)(ϕ) =

∫

Y (1)(δ(t))ϕ(t) dt = − C2

2M

p
∑

s=2

∫∫

ϕ̃(x + y)

|x||y| W (s)( dx)W (s)( dy) .

and

Y (s)(ϕ) =

∫

Y (s)(δ(t))ϕ(t) dt = C

∫

ϕ̃(x)

|x| W (s)( dx), 2 ≤ s ≤ p ,

are meaningful for nice funtions ϕ. In particular, they are meaningful for the

indicator functions of the unit cubes
3
∏

i=1

[ki, ki + 1) which we denote by ϕk if k =

(k1, k2, k3). The random field appearing in the Conjecture can be considered as the
discretization of the above defined generalized field if we identify Yk with Y (ϕ(k)).

A formal application of Itô’s formula (see e.g. [16]) would supply the relation
Y (1)(δ(t)) − 1

2M

∑p
s=2 Y (s)(δ(t))2 = const., and this can be considered as the ana-

logue of the independence property of the large-scale limit of Dyson’s model for the
above defined generalized field Y (δ(·)). On the other hand by our Conjecture the
discretization of this generalized field is the large-scale limit of the three-dimensional
translation invariant vector-valued model at low temperatures.

Let us finally discuss the cases d = 1 and d = 2. The case d = 1 is rather
simple. In this case there is no phase transition, and if {Xk, k ∈ Z1} is a random
field with the distribution function of an equilibrium state at any temperature
then it satisfies the central limit theorem with the usual normalization. The case
d = 2 is more delicate. In this case the dimension p, (σ(i) ∈ Rp), also plays an
important role. In this case there is no symmetry breaking, but for d = 2, p = 2
a more delicate phenomenon, the so-called Kosterlitz–Thouless effect occurs. (See
[15]). This means that at low temperatures the correlation function decreases rather
slowly, only power-like. Hence a non-trivial large-scale limit should appear in this
case. For d = 2, p ≥ 3 it is expected that the Kosterlitz–Thouless effect does not
occur, but for the time being it is proved only at a physical level (see[18]). Hence,
it is expected that for d = 2, p > 2 the large-scale limit has the same (trivial)
behaviour as for d = 1.

When typing the final version of this work the authors learned about some recent
results about the Kosterlitz–Thouless effect (see [22], [23]). The arguments of these
works, also supported by computer simulation, suggest that the situation in two-
dimensional translation invariant models is essentially different from what we had
expected. In particular, the difference between the cases p = 2 and p > 2 in the
models we have discussed at the end of this Section does nevertheless not occur.
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Appendix

Appendix A. The proof of the basic recursive relations (2.1) and (2.1′)
in Part I. Formula (2.1′) immediately follows from (1.4) in Part I with n = 0. To
prove (2.1) let us first observe that the recursive relation

Hn+1 (x1, . . . , x2n+1) = Hn (x1, . . . , x2n) + Hn (x2n+1, . . . , x2n+1)
(A1)

− cn

(

2−n
2n
∑

i=1

xi

)(

2−n
2n+1
∑

j=2n+1

xj

)

holds for n ≥ 0, where

Hn(x1, . . . , x2n) = −
2n
∑

i=1

2n
∑

j=i+1

U(i, j)xixj ,

and U(i, j) is defined by (1.1) and (1.2′) in Part I. By relation (1.4) in Part I

pn+1(x, T ) =
1

Zn+1(T, t)

∫

exp

{

− 1

T
Hn(x1, . . . , x2n+1)

}

(A2)

δ

(

2−(n+1)
2n+1
∑

i=1

xi − x

) 2n+1
∏

i=1

p(xi) dxi ,

where Zn+1(T, t) is an appropriate norming constant, and δ
(

2−(n+1)
∑2n+1

i=1 xi − x
)

means that integration in (A2) is taken on the hyperplane 2−(n+1)
∑2n+1

i=1 xi = x
with respect to the Lebesgue measure. Let us fix some number u, and calculate
the integral on the right-hand side of (A2) by integrating first on the hyperplane

defined by the relations 2−n
∑2n

i=1 xi = x+u and 2−n
∑2n+1

i=2n+1 xi = x−u and then
by integrating by u. We get with the help of relations (A1) and (A2) that

pn(x, T ) =
1

Zn+1(T, t)

∫

exp

{

cn

T
(x + u)(x − u)

}

[

∫

exp

{

− 1

T
Hn(x1, . . . , x2n)

}

δ

(

2−n
2n
∑

i=1

xi − (x + u)

)

2n
∏

i=1

p(xi) dxi

]

[
∫

exp

{

− 1

T
Hn(x2n+1, . . . , x2n+1)

}

δ

(

2−n
2n+1
∑

i=2n+1

xi − (x − u)

)

2n+1
∏

i=2n+1

p(xi) dxi

]

du

= Cn

∫

exp

{

cn

T
(x2 − u2)

}

pn(x + u)pn(x − u) du ,

as we have claimed.
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Appendix B. The proof of Theorem C. Since the measure µn+k has the
density function

1

Z n+k
exp

{

− 1

T
Hn+k(z1, . . . , z2n+k)

} 2n+k
∏

i=1

p(zi) ,

the density function of the measure Qnµn+k, the function hk(x1, . . . , x2k) equals to

hk(x1, . . . , x2k) =
1

Z n+k

∫

exp

{

− 1

T
Hn+k(z1, . . . , z2n+k)

}

(B1)

2k
∏

l=1

δ

(

2−n
l2n
∑

j=(l−1)2n+1

zj − xl

) 2n+k
∏

i=1

p(zi) dzi ,

where
∏2k

l=1 δ(2−n
∑l2n

j=(l−1)2n+1 zj − xl) in the integral (B1) means that integra-

tion is taken on the hyperplane defined by the relations 2−n
∑l2n

j=(l−1)2n+1 zj = xl,

l = 1, . . . , 2k, with respect to the Lebesgue measure. The special structure of the
hierarchical distance implies that

Hn+k(z1, . . . , z2n+k) =

2k
∑

l=1

Hn(z(l−1)2n+1, . . . , zl2n) −
2k
∑

i=1

2k
∑

j=i+1

cnU(i, j)z̄iz̄j ,

with z̄i = 2−n
∑i2n

p=(i−1)2n+1 zp, i = 1 . . . , 2k.

Hence relation (B1) can be rewritten as

hk(x1, . . . , x2k) =
1

Z n+k
exp







1

T

2k
∑

i=1

2k
∑

j=i+1

cnU(i, j)xixj







·
2k
∏

l=1

∫

exp

{

− 1

T
Hn(z(l−1)2n+1, . . . , zl2n)

}

δ

(

2−n
l2n
∑

j=(l−1)2n+1

zj − xl

) l2n
∏

j=(l−1)2n+1

p(zj) dzj

= Ck,n exp

{

− 1

T
Hk(cn/2x1, . . . , c

n/2x2k)

} 2k
∏

l=1

pn(xl, T ) ,

as we have claimed.

Appendix C. The calculation of the Radon–Nikodym derivatives. The
proof of formulas (2.1)—(2.3′) in Part II. For n = N relations (2.1) and (2.2)



The large-scale limit of Dyson’s hierarchical model 45

of Part II immediately follow from formula (1.4) in Part II. Hence it is enough to
prove our relations by induction from n + 1 to n. Clearly,

Pn+1(x1, . . . , x2n+1) = CnPn(x1, . . . , x2n)Pn(x2n+1, . . . , x2n+1)

exp







cn

T

(

2−n
2n
∑

j=1

xj

)(

2−n
2n+1
∑

j=2n+1

xj

)







with some norming constant Cn. Given some measurable set A ⊂ (Rp)2
n

define

the cylindrical set Ã ⊂ (Rp)2
n+1

as Ã = A × (Rp)2
n

. By our inductive hypothesis
for n + 1

µhN

n,N (A) =

∫

Ã

fhN

n+1,N

(

2−(n+1)
2n+1
∑

j=1

xj

)

Pn+1(x1, . . . , x2n+1) dx1 . . . dx2n+1

= Cn

∫

Ã

fhN

n+1,N

(

2−n

( 2n
∑

j=1

xj

2
+

2n+1
∑

j=2n+1

xj

2

))

Pn(x1, . . . , x2n)Pn(x2n+1, . . . , x2n+1)

exp







cn

T

(

2−n
2n
∑

j=1

xj

)(

2−n
2n+1
∑

j=2n+1

xj

)







dx1 . . . dx2n+1 .

Let us calculate the last integral by first integrating on the hyperplanes where

x1, . . . , x2n and y = 1
2n

∑2n+1

j=2n+1 xj are fixed. Since Pn(x2n+1, . . . , x2n+1) is the
only term in the integrand which is not constant on such a hyperplane, and its
integral equals pn(y) on it, we get that

µhN

n,N (A) = Cn

∫

A×Rp

fhN

n+1,N

(

2−n
(

2n
∑

j=1

xj

2
+

y

2

)

Pn(x1, . . . , x2n)

)

pn(y)

exp

{

cn

T
2−n(

2n
∑

j=1

xj)y

}

dx1 . . . dx2ndy .

Hence we get, by integrating first by the variable y that

µhN

n,N (A) = C ′
n

∫

A

SnfhN

n+1,N

(

2−n
2n
∑

j=1

xj

)

Pn(x1, . . . , x2n) dx1 . . . dx2n .

Since this relation holds for all measurable sets A ⊂ (Rp)2
n

, it implies our inductive
hypothesis for n.

Appendix D. On limit Gibbs states. Here we briefly describe the definition
of limit Gibbs states (also called equilibrium states in the literature,) and discuss
some important questions related to this definition. Limit Gibbs states are defined



46 P. M. Bleher and P. Major

with the help of a Hamiltonian (often called energy) function, a free measure and
a physical parameter, the temperature T. The Hamiltonian function is a formal
series. Let us have a subset Z ⊂ Zd of the d-dimensional integer lattice and a closed
set K ⊂ Rp in the p-dimensional Euclidedan space. We consider a Hamiltonian
function H(σ) of the form

H(σ) = −
∑

i,j∈Z

U(i, j)σ(i)σ(j), σ = {σ(j), σ(j) ∈ K, j ∈ Z},

where U(·, ·) is a given function, U : Z × Z → R1, and σ(i)σ(j) denotes scalar
product. (There is a more general definition of Hamiltonian functions, but this
special class is sufficiently large for our purposes.) Given some finite set V ⊂ Z, we
define the energy function HV (σ) as

(D1) HV (σ) = −
∑

i,j∈V

U(i, j)σ(i)σ(j) , σ = {σ(i), i ∈ V },

and the conditional energy in V with respect to a configuration σ̄ in Z − V as

HV (σ|σ̄) = HV (σ) −
∑

i∈V

∑

j∈Z−V

U(i, j)σ(i)σ̄(j),(D2)

σ = {σ(i), i ∈ V }, σ̄ = {σ̄(i), i ∈ Z − V },

provided that the last sum is convergent. Given some h ∈ Rp, we also introduce
the energy of a configuration σ in the volume V with respect to the external field
h as

(D3) Hh
V (σ) = HV (σ) − h

∑

i∈V

σ(i).

Given some finite set V ⊂ Z, a configuration σ̄ = {σ̄(j), j ∈ Z−V } outside V , a
Hamiltonian function H(σ)) and a free measure P ( dx) on K, we define the Gibbs
measure in volume V with respect to the external field σ̄ at temperature T as the
probability measure µV,T ( · |σ̄) on KV given by the formula

(D4) µV,T (σ ∈ A|σ̄) =
1

Z(V, T, σ̄)

∫

A

exp

{

− 1

T
HV (σ|σ̄)

}

∏

j∈V

P ( dσ(j)),

where A ∈ KV is an arbitrary measurable set, σ = {σ(j), j ∈ V } and Z(V, T, σ̄) is
an appropriate norming constant, provided that the above expression is meaningful.
Now we formulate the following

Definition of Gibbs states. A probability measure µ̄ is a Gibbs state with Hamil-
tonian function H and free measure P at temperature T if a µ̄ distributed random
field σ(j), j ∈ Z satisfies the following relation: For any finite set V and measurable
set A ⊂ KV the conditional probability of the event σ ∈ A, σ = {σ(j), j ∈ V } with
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respect to the condition {σ(j) = σ̄, j ∈ Z− V } with a configuration σ̄ = {σ̄(j), j ∈
Z − V } equals to

µ̄(σ ∈ A | {σ(j), j ∈ Z − V } = σ̄) = µV,T (A | σ̄)

with µ̄ probability one, where µV,T is defined in (D4).

The question arises whether Gibbs states on KZ exist, and whether they are
unique. A natural way to construct Gibbs states is to carry out the following pro-
cedure. Choose an increasing family of sets Vn ⊂ Z, ∪Vn = Z, fix a configuration
σ̄ = σ̄(n) = {σ̄(j), j ∈ Z − Vn} for each Vn, and consider the measures µVn,T ( · |σ̄)
defined in (D4). Prove that under some mild restrictions there is a convergent
subsequence of this sequence, and the limit of this subsequence is a Gibbs state.
The problem about the uniqueness of Gibbs states is closely related to the question
whether, in dependence of the choice of the external configuration σ̄(n), different
limits can appear in the above construction. A slightly different, and often useful
approach is to choose a sequence hn ∈ Rn, hn → 0, and try to construct Gibbs
states as the limit of a sequence of measures of the form µhn

Vn,T , where we define the

probability measure µh
V,T as

(D5)

µh
V,T (A) =

1

Z(V, T, h)

∫

A

exp

{

− 1

T

(

∑

i∈V

∑

j∈V

U(i, j)xixj − h
∑

i∈V

xi

)}

∏

i∈V

P (dxi) .

If K is a compact subset of Rp then standard results in probability theory imply
the compactness of the measures µVn,T ( · |σ̄) or of µhn

Vn,T in weak topology, i.e. the

existence of a convergent subsequence in this topology. (See e.g. [3].) Nevertheless,
there are many interesting models, where the set K is non-compact (e.g. K =
Rp,) and in such cases a hard analysis is needed to prove the existence of such a
convergent subsequence. (See e.g. [10] or [20] as an example.) In order to prove that

the limit of the sequence of measures µVn,T ( · |σ̄) (or µhn

Vn,T ) is really a Gibbs state
it is worth while to rewrite the definition of Gibbs states in an equivalent integral
form. Let f = f(xj1 , . . . , xjk

) and g = g(xl1 , . . . , xlk), xji ∈ Rp, xli ∈ Rp, be two
bounded and continuous functions with finitely many arguments, V = {j1, . . . , jk},
W = {l1, . . . , lk}, V ⊂ Z, W ⊂ Z such that V ∩ W = ∅.

The measure µ̄ on KZ is a Gibbs state if and only if

(D6)

∫

KZ

fg dµ̄ =

∫

KZ−V

µ(f)g dµ̄

for all functions f and g with the above properties, where

µ(f) = µ(f)(σ̄) =

∫

KV

f(σ(j1), . . . , σ(jk)) µV,T ( dσ|σ̄)

(D7)

σ = {σ(j), j ∈ V }, σ̄ = {σ(j), j ∈ Z − V },

and µV,T is defined in (D4).
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Let us consider an arbitrary sequence of sets Vn ⊂ Z, ∪Vn = Z, and numbers
hn ∈ Rp, hn → 0. Some calculation shows that for sufficiently large n (if V ⊂ Vn,
W ⊂ Vn)

(D8)

∫

KVn

fg dµhn

Vn,T =

∫

KVn−V

µhn(f)g dµhn

Vn,T

with

µhn(f) = µhn

V,Vn,T (f ;σ(j), j ∈ Vn − V )

=

∫

f(σ(j1), . . . , σ(jk)) exp
{

− 1
T (HV,Vn(σ) − hn

∑

i∈V

σ(i))
}
∏

i∈V

P ( dσ(i))

∫

exp
{

− 1
T (HV,Vn(σ) − hn

∑

i∈V

σ(i))
}
∏

i∈V

P ( dσ(i))
,

where
HV,Vn(σ) =

∑

i∈V

∑

j∈Vn

σ(i)σ(j) .

If the sequence µhn

Vn,T tends weakly to the measure µ̄ then the left-hand side of

(D8) converges to that of (D6). Hence to prove that the limit measure µ̄ is a Gibbs
state it suffices to establish the convergence of the right-hand side of (D8) to that
of (D6). If the Hamiltonian function has a finite range interaction, i.e. there is
some number r > 0 such that U(i, j) = 0 if |i − j| ≥ r then it is not difficult to
see that µhn(f)(σ̄) → µ(f)(σ̄), and the required convergence can be proved with
the help of this relation. In case of infinite range interaction one must be more
careful, especially if the state space K is non-compact. Dyson’s model which we
are investigating is such a model. In Theorem 1 of Part II we have proved the weak
convergence of the measures µhn

N to µ̄. (Actually, we have proved a stronger form
of convergence.) In Appendix E we prove Theorem B, i.e. we show that the limit
measure is a Gibbs state. In the proof we approximate Dyson’s model with a model
with finite range interaction, and this enables us to carry out the required limiting
procedure. In Appendix E we restrict ourselves to Dyson’s model, although the
argument also works in more general cases.

Appendix E. The proof of Theorem B. We apply the argument of Appendix
D. The proof of Theorem B can be completed by showing that also in the case of
Dyson’s model the right-hand side of (D8) tends to that of (D6). We formulate this
statement in more detail.

It suffices to consider the case when V = {1, 2, . . . , 2k}, W = {2k + 1, 2, . . . , 2m}
with some 0 ≤ k < m, i.e. f = f(x1, . . . , x2k), g = g(x2k+1, . . . , x2m) and VN =
{1, 2, . . . , 2N}. (We apply the notation of Appendix D.) Introduce the functions

ph
k,N (x1, . . . , x2k |x2k+1, . . . , x2N )

(E1)

=
exp
{

− 1
T (
∑2k

i=1

∑2N

j=i+1 U(i, j)xixj − h
∑2k

i=1 xi)
}

∫

exp
{

− 1
T (
∑2k

i=1

∑2N

j=i+1 U(i, j)xixj − h
∑2k

i=1 xi)
}
∏2k

i=1 p(xi) dxi

,

xj ∈ Rp, j = 1, . . . , 2N
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and

pk(x1, . . . , x2k |x2k+1, . . . )(E1′)

=
exp
{

− 1
T

∑2k

i=1

∑∞
j=i+1 U(i, j)xixj

}

∫

exp
{

− 1
T

∑2k

i=1

∑∞
j=i+1 U(i, j)xixj

}
∏2k

i=1 p(xi) dxi

,

xj ∈ Rp, j = 1, . . . ,

where the function U(·, ·) is defined in (1.2) and p(x) in (1.3) of Part I. Put

µh
k,N (f)(x2k+1, . . . , x2N ) =

∫

f(x1, . . . , x2k)

(E2)

ph
k,N (x1, . . . , x2k |x2k+1, . . . , x2N )

2k
∏

i=1

p(xi) dxi

and

(E2′) µk(f)(x2k+1, . . . ) =

∫

f(x1, . . . , x2k)pk(x1, . . . , x2k |x2k+1, . . . )

2k
∏

i=1

p(xi) dxi.

The convergence of the right hand side of (D8) to that of (D6) is equivalent to
the relation

(E3) lim
N→∞

∫

gµhN

k,n(f) dµhN

N =

∫

gµk(f) dµ̄

in our case, where µhN

N and µ̄ are the same probability measures on (Rp)2
N

and
(Rp)Z as in Theorem 1 of Part I.

To prove this relation let us introduce the sets A(K, k, n,N) and A(K, k, n),where
K ∈ R1, K > 0, k, n,N ∈ Z and k < n < N , defined by the formulas

A(K, k, n,N) =
{

(x2k+1, . . . , x2N ), xj ∈ Rp, j = 2k + 1, . . . 2N , |xj | < K

if 2k < j ≤ 2n, and |xj | < 2lα if 2l < j ≤ 2l+1, l = n, . . . , N − 1
}

and

A(K, k, n) =
{

(x2k+1, . . . ), xj ∈ Rp, j = 2k + 1, . . . , |xj | < K

if 2k < j ≤ 2n, and |xj | < 2lα if 2l < j ≤ 2l+1, l = n, n + 1, . . .
}

,

where α = 3
4 − 1

2
log c
log 2 .

We claim that for all ε > 0 some n = n(ε) and K = K(ε, n) can be chosen in
such a way that

(E4) µhN

N

(

(x2k+1, . . . , x2N ) /∈ A(K, k, n,N)
)

< ε
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and

(E4′) µ̄
(

(x2k+1, . . . , ) /∈ A(K, k, n, )
)

< ε .

To prove relations (E4) and (E4′) let us first observe that there is a universal

constant C, C > 0, such that if S
(
nf(x)j) is the j-th coordinate of a µhN

N or µ̄
distributed random variable then the inequality Eσ2(j) < C holds for all j ∈ Z

and measures µhN

N and µ̄. This can be seen by observing that the argument of
Section 6 in Part II actually implies that all moments of the j-th coordinate σ(j)

of a µhN

N distributed random vector σ converge to the corresponding moment of
the j-th coordinate of a µ̄ distributed random vector as N → ∞. Then we get,by
exploiting that 1 − 2α > 0 that

µhN

N {(x2k+1, . . . , x2N ) /∈ A(K, k, n,N)} ≤ C

(

2n − 2k

K2
+

N
∑

j=n

2j(1−2α)

)

< ε

if first n and then K is chosen sufficiently large. The proof of (E4′) is the same. (We
remark that relations (E4) and (E4′) hold with arbitrary α > 0 in the definition of
the sets A(·, ·, ·). To prove it we have to apply the stronger statement Eσ2k < Ck

for all k ≥ 1. This observation is needed if we want to prove Theorem B in the case√
2 < c < 2 too.)
We claim that for all ε > 0 there is some N0 = N0(ε,K, n) such that for N > N0

∣

∣

∣

∣

phn

k,N (x1, . . . , x2k |x2k+1 . . . , x2N ) − phn

k,N0
(x1, . . . , x2k |x2k+1 . . . , x2N0 )

∣

∣

∣

∣

(E5)

< ε

( 2k
∑

i=1

|xi|
)

exp

{

(2Kn + 1)
2k
∑

i=1

|xi|
}

and

∣

∣

∣

∣

pk(x1, . . . , x2k |x2k+1 . . . ) − p0
k,N0

(x1, . . . , x2k |x2k+1 . . . , x2N0 )

∣

∣

∣

∣

(E5′)

< ε

( 2k
∑

i=1

|xi|
)

exp

{

(2Kn + 1)

2k
∑

i=1

|xi|
}

if (x2k+1, . . . , x2N ) ∈ A(K, k, n,N) and (x2k+1, . . . ) ∈ A(K, k, n). (The constants
K and n in formulas (E5) and (E5′) are the same as in the definition of the sets
A(K, k, n,N).) First we show that (E5) and (E5′) together with (E4) and (E4′)
imply (E3), hence also Theorem B. Indeed, since pn(x) decreases at infinity faster
than exp(−x2/2) hence (E5) and (E5′) imply that

∣

∣

∣
µhN

k,N (f)(x2k+1, . . . , x2N ) − µ0
k,N0

(f)(x2k+1, . . . , x2N0 )
∣

∣

∣
< const.ε
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and
∣

∣µk(f)(x2k+1, . . . ) − µ0
k,N0

(f)(x2k+1, . . . , x2N0 )
∣

∣ < const.ε .

if (x2k+1, . . . ) ∈ A(K, k, n). This implies that (x2k+1, . . . , x2N ) ∈ A(K, k, n,N).

Since this relation holds on a set of 1 − ε µhN

N resp. µ̄ probability by (E4) and

(E4′), the functions f , g, µhN

k,N (f) and µ(f) are bounded, hence an error less than

const.ε is committed if µhN

k,N and µk(f) is replaced by µ0
k,N0

in formula (E3). After

this replacement relation (E3) holds, because the projections of the measures µhN

N

to (Rp)2
N

converge to the projection of µ̄ to the same subspace. Since ε > 0 can
be chosen arbitrary small, relation (E3) holds in its original form.

We prove only (E5) the proof of (E5′) being the same. Let us first observe
that for any η > 0 there is some N0 = N0(K,n, η) such that for N ≥ N0 and
(x2k+1, . . . , x2N ) ∈ A(K, k, n,N)

(E6)

∣

∣

∣

∣

∣

∣

exp

{

− 1

T
(

2k
∑

i=1

2N
∑

j=i+1

U(i, j)xixj − hN

2k
∑

i=1

xi)

}

− exp

{

− 1

T

2k
∑

i=1

2N0
∑

j=i+1

U(i, j)xixj

}

∣

∣

∣

∣

∣

∣

= exp

{

− 1

T

2k
∑

i=1

2N
∑

j=i+1

U(i, j)xixj

}

∣

∣

∣

∣

∣

∣

exp







− 1

T

( 2k
∑

i=1

2N
∑

j=2N0+1

U(i, j)xixj − hN

2k
∑

i=1

xi

)







− 1

∣

∣

∣

∣

∣

∣

≤ η

∑2k

i=1 |xi|
T

exp







2Kn + η

T

2k
∑

i=1

|xi|







.

In the last relation we have applied the inequality |ex − 1| ≤ |x|e|x| together with

the relations hN < η/2, |∑2N

j=2N0+1 U(i, j)xj | ≤ |∑∞
j=N0

2j(α−1)
(

c
4

)j | < η/2 and

|∑2N

j=i+1 U(i, j)xj | ≤ 2Kn if N > N0, j > 2k, (x2k+1, . . . , x2N ) ∈ A(K, k, n,N)

and N0 is sufficently large. Integrating inequality (E6) with respect to the measure
∏2k

i=1 p(xi) dxi we get that

∣

∣

∣

∣

∫

exp

{

− 1

T

( 2k
∑

i=1

2N
∑

j=i+1

U(i, j)xixj − hN

2k
∑

i=1

xi

)} 2k
∏

i=1

p(xi) dxi

(E7)

−
∫

exp

{

− 1

T

2k
∑

i=1

2N0
∑

j=i+1

U(i, j)xixj

} 2k
∏

i=1

p(xi) dxi

∣

∣

∣

∣

< const.η ,

where the const. may depend on K and n. In formulas (E6) and (E7) we have

shown that both the numerators and the denominators of the functions phN

k,N and
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p0
k,N0

defined in (E1) are close to each other. The number η can be chosen arbitrary

small in these estimates by fixing first n then K = K(n) and finally N0 = N0(K,n)
in an appropriate way. Moreover, given some appropriately chosen n and K the
number η > 0 can be taken arbitrary small if N0 = N0(K,n, η) is sufficiently large.
Hence we prove (E5) by showing that

(E8)

∫

exp
{

− 1

T

2k
∑

i=1

2N0
∑

j=i+1

U(i, j)xixj

}

2k
∏

i=1

p(xi) dxi > D

with some D > 0 on the set A(K, k, n,N0), i.e. the integral in (E8) is separated
from zero. Here the constant D may depend on K and n but not on N0. Relation
(E8) holds, since if |xj | < 1, j = 1, 2, . . . , 2k and (x2k+1, . . . , x2N ) ∈ A(K, k, n,N0)
then the integrand in (E8) is separated from zero.
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