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Summary: Let a sequence of iid. random variables &1, ...,&, be given on a
space (X,X) with distribution p together with a nice class F of functions
f(xq,...,21) of k variables on the product space (X*, X*). For all f € F
we consider the random integral J,, x(f) of the function f with respect to
the k-fold product of the normalized signed measure /n(u, — u), where pu,
denotes the empirical measure defined by the random variables &1, ..., &, and

investigate the probabilities P (sup | ok ()] > x) for all x > 0. We show
feF

that for nice classes of functions, for instance if F is a Vapnik-Cervonenkis
class, an almost as good bound can be given for these probabilities as in the
case when only the random integral of one function is considered. A similar
result holds for degenerate U-statistics, too.

1. Introduction. Formulation of the main results

In some investigations about non-parametric maximum likelihood estimates (see [10]
or [11]) T met the problem how to give a good estimate about the distribution of the
supremum of appropriate classes of multiple integrals with respect to a normalized
empirical measure. This problem is closely related to the study of the supremum of
good classes of degenerate U-statistics. Hence, it is natural to study these two problems
simultaneously. This will be done in the present paper. To formulate its main results
first I introduce some notations and recall some definitions.

Let a probability measure p be given on a measurable space (X, X'), take a sequence
&1,...,&, of independent, identically distributed (X, X) valued random variables with
distribution y, and define the empirical measure p,,,

1
un(A):E#{jzﬁjEA, 1<j<n}, AeclX, (1.1)

of the sample &1, ...,&,. Let us take a nice set F of measurable functions f(z1,...,xx)
on the k-fold product space (X*, X*) and define the integrals J,, (f) of the functions
f € F with respect to the k-fold product of the normalized empirical measure \/n(ju, —u)
by the formula

nk/2 !
i [ S o) = ) G ) — ),

where the prime in f/ means that the diagonals x; =27, 1 < j <l <k,

Jn,k:(f) =

are omitted from the domain of integration. (1.2)
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I try to give a good estimate on the probabilities P | sup |J, x(f)| > « | for all z > 0.
fer
To formulate the result in this direction first I introduce the following definition.

Definition of L,-dense classes of functions. Let us have a measurable space (Y,))

and a set G of Y-measurable functions on this space. We call G an Ly-dense class with

parameter D and exponent L if for all numbers 1 > ¢ > 0 and probability measures v

on the space (Y,)) there exists a finite e-dense subset G, = {g1,...,9m} C G in the

space L,(Y,Y,v) consisting of m < De~1 elements, i.e. there is such a set G.,, C G for

which 1€%f [ 1g — g;|P dv < €P for all functions g € G. (Here the set G.,, may depend
95€Ge v

on the measure v, but its cardinality is bounded by a number depending only on €.)

In this paper we shall work with such classes of functions F which contain only
functions with absolute value less than or equal to 1. In this case F is an L,-dense
class of functions for all 1 < p < oo (with an exponent and a parameter depending
on p) if there is a number 1 < p < oo for which it is L,-dense. We shall formulate our
statements mainly for L,-dense classes of functions with the parameter p = 2, since this
seems to be the most convenient choice. Our main result is the following

Theorem 1. Let us have a non-atomic measure i on the space (X, X) together with
an Lo-dense class F of functions f = f(x1,...,xk) of k variables with some parameter
D > 0 and exponent L > 1 on the product space (X*, X*) which consists of at most
countably infinite functions, and satisfies the conditions

| flloo = sup |f(z1,...,21)] <1, forall f € F (1.3)
z;€X, 1<5<k

and

£l = Ef*(&,. .., &) = /fQ(xl,...,:ck)u(d:cl)...u(dxk) < g2 forall f € F

(1.4)
with some constant 0 < o < 1. Then there exist some constants C = C(k) > 0,
a=alk) >0 and M = M(k) > 0 depending only on the parameter k such that the
supremum of the random integrals J,, 1 (f), f € F, defined by formula (1.2) satisfies the
mequality

P <sup [T (F)] = ) s CDexp {‘O‘ <§>M}
fer 7

x\ 2/

k 2
if no®> (—) > ]\J(L—kﬁ)g'/2 log —,
o o

(1.5)

log D
logn >’

where B = max ( O), and the numbers D and L in formula (1.5) are the parameter

and exponent of the Ly-dense class F.



Theorem 1 has a natural counterpart about degenerate U-statistics formulated in
Theorem 2 below. Before its formulation I recall the definition of U-statistics and
degenerate U-statistics.

Let us have a sequence of independent and identically distributed random variables
&1,&2, ... with distribution g on a measurable space (X, X) together with a function
f = f(z1,...,2;) on the k-th power (X*, X*) of the space (X, X). We define with their
help the U-statistic I, x(f) of order k, as

Lif)=5 2. fE&) (1.6)

(The function f in this formula will be called the kernel function of the U-statistic.)

A real valued function f = f(x1,...,7;) on the k-th power (X% X*) of a space
(X, X) is called a canonical kernel function (with respect to the probability measure u
on the space (X, X)) if

/f(:z:l,...,acj1,u,mj+1,...,xk),u(du):o forall 1 <j <k and zs€ X, s #j.

I also introduce the notion of canonical functions in a more general case, because this
notion appears later in Proposition 5 of this paper. We call a function f(z1,...,xx)
on the k-fold product (X7 X -+« X Xp, X1 X -+ X Xg, pup X -+ X pg) of k not necessarily
identical probability spaces (X, X}, 15), 1 < j <k, canonical if

/f(xl,...,a:j_l,u,a:j+1,...,xk)uj(du):0 forall1<j <k and z, € Xg, s#J.

A U-statistic with a canonical kernel function is called degenerate. Now I formulate
Theorem 2.

Theorem 2. Let us have a probability measure p on a space (X, X), a sequence of
independent and p distributed random wvariables &1, ...,&, together with an Lo-dense
class F of canonical (with respect to the measure ) kernel functions f = f(x1,...,xk)
with some parameter D > 0 and exponent L > 1 on the product space (X*, X*) which
consists of at most countably infinite functions, and satisfies conditions (1.3) and (1.4)
with some 0 < o < 1. Then there exist some numbers C = C(k) >0, M = M(k) >0
a = a(k) > 0 depending only on the order k of the U-statistics we consider such that
the degenerate U-statistics I, (f), f € F, defined in (1.6) satisfy the inequality

P (sup 20,k (f)] > m) < CDexp {_a <§)2/k}

fer (1.7)
2/k 2
if no?> <£> > M(L —I—ﬁ)?’/2 log —,
o o
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where § = max (ﬁggi) , 0).
To understand the relation between Theorems 1 and 2 let us observe that the
definition of the U-statistics in (1.6) can be rewritten as

nk !
Imk(f):H/ F@1, . o)l dey) - pn( dy) (1.8)

if the distribution p of the random variables &1, ..., &, is non-atomic. (The non-atomic
property is needed to guarantee that the random variables &1,...,&, take different
values with probability 1.) The difference between the random integrals J, x(f) and
the random integral representation (1.8) of U-statistics I, x(f) is (beside the different
norming constant) that in formula (1.8) we integrate with respect to the empirical
measure [, and not with respect to its normalized version u, — p. As a consequence,
we can get a good estimate for U-statistics only under some restriction. In Theorem 2
we had to impose the condition that the functions of the class F are canonical, while
no similar condition was needed in Theorem 1. Hence Theorem 1 can be better applied
in statistical problems. On the other hand, the proof of Theorem 2 is simpler. But
Theorem 1 can be deduced from it by means of a good representation of multiple random
integrals J,, (f) as a linear combination of degenerate U-statistics. In this work the
following approach will be followed. In the main text Theorem 2 will be proved. The
Appendix contains the proof of the above mentioned representation of random integrals
which enables us to deduce Theorem 1 from Theorem 2.

Let us discuss the conditions of Theorems 1 and 2. We have assumed that F
contains at most countably infinite functions. This condition, which is too restrictive
for statistical applications can be weakened. The introduction of the following definition
seems to be useful.

Definition of countable approximability. A class of functions F is countably ap-

prozimable in the space (X%, X% 1*) if there exists a countable subset F' C F such

that for all numbers © > 0 the sets A(x) = {w:sup |Jnx(f)(w)] > 2} and B(z) =
feFx

{w: sup |Jnk(f)(w)| >z} satisfy the identity P(A(z) \ B(x)) = 0.
feF

Clearly, B(x) C A(x). In the above definition we demanded that for all x > 0 the
set B(x) is almost as large as A(z). The following corollary of Theorems 1 and 2 holds.

Corollary of Theorem 1 or 2. Let a class of functions F satisfy the conditions of The-
orem 1 or 2 with the only exception that instead of the condition about the countable car-
dinality of F it is assumed that F is countably approzimable in the space (X*, X%, u*).
Then F satisfies Theorem 1 or 2.

In Theorems 1 and 2 we have imposed the condition that the class of functions
F is countable to avoid some unpleasant measure theoretical difficulties. Otherwise we
should have to work with possibly non-measurable sets. On the other hand, I have the
impression that Corollary 1 can be applied in all statistical problems where we have to
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work with the supremum of multiple random integrals or U-statistics. It is not difficult
to prove that Corollary 1 follows from Theorem 1 or 2. We have to show that if F is an
Ly-dense class with some parameter D and exponent L, and F' C F, then F’ is also an
Lo-dense class with the same exponent L, only with a possibly different parameter D’.

To prove this statement let us choose for all numbers 1 > & > 0 and probability
. . —L
measures v on (Y,))) some functions fi,..., f, € F with m < D (%) elements, such

m
that the sets U; = {f: [1f = filPdv < (%)2} satisfy the relation |J U; =Y. For all
j=1
sets U; for which U; N F’ is non-empty choose a function fJ' € U;NF'. In such a way we
get a collection of functions fj’ from the class F’ containing at most 2’ De~! elements
which satisfy the condition imposed for Lo-dense classes with exponent L and parameter
25D for this number ¢ and measure v.

In Theorems 1 and 2 we have considered the supremum of multiple random integrals
and U-statistics of order £ for a nice class of functions. It was shown that if the variances
of the random integrals or U-statistics we have considered are less than some number
0 < 02 < 1, (formula (1.4) was a condition about these variances in an implicit way)
then under some additional conditions this supremum takes a value larger than x with
a probability less than P(Con® > z), where 7 is a standard normal random variable,
and C' = C(k) > 0 is a universal constant depending only on the multiplicity k of the
random integrals. This is the sharpest estimate we can expect. Moreover, this estimate
seems to be sharp also in that respect that the conditions imposed for its validity cannot
be considerably weakened. If condition (1.3) does not hold or no? < (f)g/ k, then the
estimate of Theorem 1 or 2 may not hold any longer even if the class of functions F
contains only one function. In such cases there exist examples for which the probability
P(Jynk(f) > ) is too large. In [8] I gave such examples (Examples 3.2 and 8.6). Here
I do not discuss them in detail.

If the other inequality is violated in the conditions of formula (1.5) or (1.7), i.e. if
(%)Z/k < Mlog% with a not too large number M > 0, then the estimate of Theorem 1
or 2 may not hold for a different reason. The supremum of many small random variables
may be large, and inequalities (1.5) or (1.7) may loose their validity for this reason. To
understand this let us consider the following analogous problem. Take a Wiener process
Wi(t), 0 <t < 1, and consider the supremum of the expressions W(t) — W(s) =
[ fsi(w)W (du) = J(fs,), with the functions f;:(-) on the interval [0, 1] defined by the
formula fs;(u) =1if s <u <, fo4(u) =0if0<u<sort<u<1l Ifweconsider
the class of functions F, = {fs4: [ f2,(u) du =t —s < 0}, then it is natural to expect

that P ( sup J(fs1) > x) < e~comst- (#/0)*  However, this relation does not hold if
fs,t e]:a'

z=xz(0) < (1—¢)y/2log Lo with some e > 0. In such cases P | sup J(fs,) >z | —
.fs,tej:a

1, as 0 — 0. This can be proved relatively simply with the help of the estimate
P(J(fs) > x(0)) > const.c'~¢ if |t — s| = 0% and the independence of the random
integrals J(fs:) if the functions f,; are indexed by such pairs (s,t) for which the
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intervals (s,t) are disjoint.

Some additional work would show that a similar picture arises if we integrate with
respect to the normalized empirical measure of a sample with uniform distribution on
the interval [0, 1] instead of a Wiener process. This yields an example for an Lo-dense
class of functions in the case £ = 1 for which the estimate of Theorem 1 does not
hold any longer if (%)2/ Y e M log% with some M < /2. Similar example can be
constructed also in the case of Theorem 2. At a heuristic level it is clear that such an
example can be given also for £ > 1, and the number M in condition (1.5) or (1.7) has
to be chosen larger if we want that Theorem 1 or Theorem 2 hold also for an Ly-dense
class of functions F with a large exponent L. (In this paper I did not try to find the best
possible condition of Theorem 1 or 2 in the right-hand side inequality of (1.5) or (1.7).)

One would like to see some interesting examples when Theorem 1 or 2 is applicable
and to have some methods to check their conditions. It is useful to know that if F is a
Vapnik—Cervonenkis class of functions whose absolute values are bounded by 1, then F
is an Lo-dense class.

To formulate the above statement more explicitly let us recall that a class of subsets
D of a set S is a Vapnik—Cervonenkis class if there exist some constants B > 0 and
K > 0 such that for all integers n and sets Syp(n) = {z1,...,z,} C S of cardinality
n the collection of sets of the form Sy(n) N D, D € D, contains no more than Bnf®
subsets of Sp(n). A class of real valued functions F on a space (Y,)) is a Vapnik—
Cervonenkis class if the graphs of these functions is a Vapnik—Cervonenkis class, i.e. if
the sets A(f) = {(y,t):y € Y, min(0, f(y)) < t < max(0, f(y))}, f € F, constitute a
Vapnik-Cervonenkis class of sets on the product space Y x R!.

An important result of Dudley states that a Vapnik-Cervonenkis class of functions
whose absolute values are bounded by 1 is an Lj-dense class. The parameter and
exponent of this Li-dense class can be bounded by means of the constants B and K
appearing in the definition of Vapnik-Cervonenkis classes. Beside this, an Li-dense class
of functions bounded by 1 is also an Lo-dense class (with possibly different exponent
and parameter), since [ |f — g|*dv <2 [|f — g| dv in this case. Dudley’s result, whose
proof can be found e.g. in Chapter II of Pollard’s book [9] (the 25° approximation
lemma contains this result in a slightly more general form) is useful for us, because
there are results which enable us to prove that certain classes of functions constitute a
Vapnik—Cervonenkis class.

I found some results similar to that of this paper in the work of Arcones and Gine [3],
where the tail-behaviour of the supremum of degenerate U-statistics was investigated if
the kernel functions of these U-statistics constitute a Vapnik—Cervonenkis class. But the
bounds of that paper do not give a better estimate if we have the additional information
that the variances of the U-statistics we consider are small. The main goal of the present
paper was to prove such estimates which take into account the bound we have on the
variance of the random integrals J, 1 (f) or U-statistics I,, (f) we consider.

In the investigation of this work Alexander’s paper [1] played an essential role. In
Alexander’s work a similar problem was considered in the special case kK = 1. It was
interesting for me first of all, because I learned some ideas from it which I strongly
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needed in the present work. On the other hand, I also needed some new arguments,
because in the study of multiple stochastic integrals or U-statistics some new difficulties
had to be overcome.

This paper consists of six sections and an Appendix. In Section 2 Theorems 1 and 2
are reduced to two simpler statements formulated in Propositions 2 and 3. Section 3
contains some important results needed in the proof of Proposition 2, and the main ideas
of its proof are explained there. It is shown that Proposition 2 follows from another
statement formulated in Proposition 4. Proposition 4 is proved together with another
result described in Proposition 5. To make the proof more transparent first I explain it in
the special case £ = 1 in Section 4. Sections 5 and 6 contain the proof of Propositions 4
and 5 in the general case. In Section 5 it is shown how a symmetrization argument can
be applied to prove Propositions 4 and 5, and finally the proof is completed in Section 6.
The Appendix contains the proof about a result of an expansion of multiple random
integrals in the form of a linear combination of degenerate U-statistics formulated in
Proposition 3. This result enables us to deduce Theorem 1 from Theorem 2.

2. Reduction of Theorems 1 and 2 to some simpler results

First I prove with the help of a natural argument, called the Chaining argument in the
literature, and the multi-dimensional generalization of Bernstein’s inequality (see [2],
Proposition 2.3(c)) a result that yields a reduction of Theorem 2 we shall need later. I
shall apply the following consequence of this result (which is actually equivalent to it).

If U, x(f) is a degenerate U-statistic of order k with a (canonical) kernel function
f which satisfies relations (1.3) and (1.4) (formally the class of functions F consisting
only of the function f satisfies these relations) with some number 0 < o < 1 and the
distribution p of the iid. sequence of the random variables &1, ..., &, taking part in the
definition of the U-statistic Uy, x(f), then there exist some constants C' = C'(k) > 0 and
a = a(k) > 0 depending only on the order k of this U-statistic such that

Xz

2/k
P (n"‘“/2|ln,k(f)| > x) < Cexp {—a <;> } for 0 < z < nF/2gk+1, (2.1)

Now I formulate the following result.

Proposition 1. Let us fix some number A > 2% and assume that a class of functions F
satisfies the conditions of Theorem 2 with an appropriately chosen number M in these
conditions which may depend also on A. Then a number 6, 0 < ¢ < o < 1, and a
collection of functions F5 = {f1,..., fm} C F with m < D&~F elements can be chosen
in such a way that the sets D; = {f: f € F, [|f — f;|*dp < 52}, 1 < j < m, satisfy the

relation |J D; = F, and
j=1

2/k
p ~k/2| > 2 ) <20D - — 2.2
(fSGu})G n Lk (f)] > A= Cxp @ <1OA0> (22)

2/k 2
if no?> (f> > MLlog =
ag g
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with the constants o = a(k), C = C(k) appearing in formula (2.1) and the exponent
L and parameter D of the La-dense class F if the constant M = M(k, A) is chosen

sufficiently large. Beside this, also the inequalities 4 (7%)2% > ng? > g L <Xa)2/k and
2/3 . S .
g2 > M 10((;:0:@;%" hold, provided that no? > (%) / > M(L+5)3/2 ]Ogg with
5 = ma (522.,0).

Remark: The introduction of the number A > 2% in Proposition 1 may seem a bit
artificial. Its role is to guarantee that such a number & could be defined in Proposition 1

2/k

which satisfies the inequality (%) > Ana? with a sufficiently large previously fixed

constant A = A(k).

Proof of Proposition 1. For all p =0,1,2,... choose a set F, = {fp.1,---, fpm,} CF
with m, < D2%PEg~L elements in such a way that 1<i'1rif J(f— fpi)2du < 27%a2 for
S)Smyp

all f € F. For all pairs (j,p), p=1,2,..., 1 < j <m,, choose a predecessor (j',p— 1),

J =17(,p), 1 <j < my_q,in such a way that the functions f;, and f; ,_1 satisfy
T2

the relation [ |f;, — fjrp—1/>dp < 02274~ Then we have | (%) du <

fip(T1,es k)= fit p—1(T1500es k)
J P

402274 and sup s

z;€X,1<j<k

| ) 9—(1+p) oy \ 2k
f%A@m»=:P(nkﬂu@Aﬁ@—fﬂVJMZ-—jg——)écﬁﬂp{—a(gAa)

2P
Ao

< 1. Inequality (2.1) yields that

/k
if no?2” 4p>< ) , 1<ji<my,, p=12..., (2.3)

and

2/k

_ —k/2 > < o <s<
P(B(s)) = P (n ™2 (o) > 57) Cexp{ o (512) } 1<s<m,
2/k
if no?> (L) .
if no® > (o1
(2.4)
Choose an integer R, R > 0, in such a way that 2(4+2/k)(+1) (—j’;)z/k > 92+6/kp 52 >
2(4+2/k)R( fu )2/ , and define 62 = 27402 and F; = Fr. (As no? > (%)Q/k

A > 2F by our conditions, there exists such a non-negative number R.) Then the

and

cardinality m of the set F5 is clearly not greater than Do—%, and U D; = F. Beside
7j=1

this, the number R was chosen in such a way that inequalities (2.2) and (2.3) can be

applied for 1 < p < R. Hence the definition of the predecessor of a pair (j,p) implies

that

R myp

P@wn*@m<n> )<PLJUAJP U B(s)
feFs p=1j=1 s=1
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R 00 9P 2/k
S;;P(A(jap))"'z ; CD2%Lg~ exp{—a <%> }

s=1

+ CDo Fexp {—a (ﬁ)wk} .

If the condition (5)2/ g > ML3/? log% holds with a sufficiently large constant M (de-

pending on A), then the inequalities

org \ 2/k org \ 2k
2pL _—L o _ < 97P _ _
277" o exp{ a(SAa) } <2 exp{ a(lOAa)

hold for all p=1,2,..., and
_I x \2/k x \2/k
rreni-a(gr) p<eeio(gg) g
Hence the previous estimate implies that
e oo P 2/k
P sup n= " 7|, x(f 2 < CD2 Pexp —a( — )
sup 2 L) > —

v (g5 220me )

and relation (2.2) holds. We have

i 8

ng? = 2R g2 < 9—AR . 9(4+2/k)(R+1)—2-6/k (_i)wk _ 92-4/k  92R/k (_i)wk
Ao Ao

g2k <6>1/k (%)2/k:224/k'(g>1/k (1[%)2%7

hence ng? < 4 (%)Q/k. Beside this, as no? > 2(4+2/k)R—2-6/k (L)Q/k, R>1,

AO’
1 x \2/k
al(w)
M?/3(L+B)logn
1000A%/3

This inequality clearly holds under the conditions of Proposition lifo <n
since in this case log 2 > 6% and ng? > &4 (£ )Q/k > LA2FM(L+ B)3/?log 2 >

ng? = 2 4Bpg2 > 9=2-6/k  92R/k <i>2/k
Ao

v

It remained to show that ng? >
-1/3

Ao 64
s AT2EM(L + B)logn > 10(0%:@;%” if M = M (A, k) is chosen sufficiently large.
If ¢ > n~'/3, then the inequality 2(4+2/F)E (%)Q/k < 922+6/kpn52 holds. Hence

, and

2/k 4/ (4+2/k)
9—4R > 9—4(24+6/k))/(4+2/k) (E)
- no?

2-16/3 o2k 4
—2 _ o—4R 2\1— : _

Wl N
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Since no? > (%)2/’“ > %(L + B8)3/2, and no? > n'/3, the above estimates yield that

_ 1-4/3 oN\2/k12/3
ng? > A2 (ng?)1/3 [(E) }

A=4/3 179 (M \2/3 M?/3(L+p)logn
Z “%5 nt/ (?) (L+8)= 1000A4/3 *

Now I formulate Proposition 2 and show that Theorem 2 follows from Propositions 1
and 2.

Proposition 2. Let us have a probability measure pn on a space (X, X) together with a
sequence of independent and p distributed random variables &1, .. .,&, and an Lo-dense
class F of canonical kernel functions f = f(x1,...,xk) (with respect to the measure )
with some parameter D > 0 and exponent L > 1 on the product space (X*, X*) which
consists of at most countably many functions, and satisfies conditions (1.3) and (1.4)

with some 0 < o < 1. Let no? > K(L + B)logn with 3 = max(logD 0) and a

logn >’
sufficiently large constant K = K (k). Then there exist some numbers C = C(k) > 0,
~v = y(k) > 0 and threshold index Ay = Ag(k) > 0 depending only on the order k of the
U-statistics we consider such that the degenerate U-statistics I, (f), f € F, defined in
(1.6) satisfy the inequality

P (}scug|n_k/21n’k(f)| > Ank/20k+1> < GerAY e’ if A> Ap. (2.5)
€

In the proof of Theorem 2 with the help of Propositions 1 and 2 we exploit our
freedom in the choice of the parameters in these results. Let us choose a number A, such
that Ag > Ap and ”yf_l(l)/% > % with the numbers Ay, K and 7 in Proposition 2. We
shall apply Proposition 1 with the choice A = max(2¥+2A,2%). Then by Proposition 1

and the choice of the numbers A and Ay also the inequality (%)Q/k > %/krﬁ? >

(4A0)?/*n&? holds, hence x > 4An*/25*+1 with the number & in Proposition 1. This

implies that (3 — %) x> %> Ank/25k+1 and A > Ay. The numbers z considered in

these estimations satisfy the condition no?/* > (%)Q/k > M(L+B)3?log % imposed in
Proposition 1 with some appropriately chosen constant M. Choose the number M >
M (A, k) in Proposition 1 (which also can be chosen as the number M in formula (1.7)

2/3
of Theorem 2) in such a way that it also satisfies the inequality M 10(0%2@;%71 > K(L+

B)log n with the number K appearing in the conditions of Proposition 2. With such a

2/3 n ..
choice the inequality ng? > M 10((%3@;% > K(L + ) logn holds, and Proposition 2

can be applied with the choice ¢ defined in Proposition 1 for the parameter o, the

number (% — 2_1A> x as the number A in this result, together with the classes of functions

D; = {g = f;fj, fe Dj}, 1 < j < m, where the classes of functions D; and functions

fj, 1 < j < m, are defined in Proposition 1.
Then Propositions 1 and 2 together with the above observations yield that

P (sup L ()] 2 a:) <P <sup 2L, ()] 2 3)

fEF fEeEFs
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(e (o 4)) e

2/k _ . _
< 2CDexp {—a < x ) } + CD6_L6_7A1/2k”U2.

—f—ZP (Sup nk/2

10A0

To get the result of Theorem 2 from inequality (2.6) we have to replace its second term
at the right-hand side with a more appropriate expression where, in particular, we get
rid of the coefficient @~ . The condition na? > K (L + ) logn implies that & > n~1/2,
and by our choice of Ay we have 7/_1(1]/%7162 > %n&Q > Llogn > 2L1log %, ie. oL <

+1/2k  _ . oy — 2/k
140’ ""n*/2 By the estimates of Proposition 1 ng? > & () /

imply that GLe— 1A e < =AY a2 < exp {—1'5—8/_1(1)/%/_1*2/’“ (%)Q/k} Hence
relation (2.6) yields that

. The above relations

fer

< 2 (2 __ ad
= QCDeXp{ (104)2 <a) }+CDeXp{ g0 A <o—) ’

P (sup n_k/2|In7k(f)| > m)

and this estimate implies Theorem 2 with some new appropriately defined constants
a>0and C > 0.

Thus I have reduced the proof of Theorem 2 to that of Proposition 2. I also show
in this section that the proof of Theorem 1 can be reduced to that of Theorem 2 and
a decomposition result of random integrals J,, (f) formulated in Proposition 3 below
whose proof will be given in the Appendix. Proposition 3 gives the representation
of a random integral J, ;(f) in the form of a linear combination of degenerate U-
statistics. To get this representation we can observe that a random integral J, 1 (f) can
be rewritten in the form of a sum of U-statistics. By applying an important result,
called Hoeffding’s decomposition, we can write a general U-statistic in the form of a
sum of degenerate U-statistics of different order. Proposition 3 contains the result we
get by carrying out this procedure. Let us recall that we have integrated with respect
to the signed measure p, — p in the definition (1.3) of the random integrals J, i (f).
This has a very strong cancellation effect, and the main content of Proposition 3 is that
this implies that the representation of J, ,(f) in the form of a linear combination of
degenerate U-statistics contains small coefficients.

Beside Proposition 3 we need another result to deduce Theorem 1 from Theorem 2.
We must have some control on the exponent and parameter of the classes of functions
appearing in the Hoeffding decomposition of the class of functions we consider together
with a good Lo-norm of these functions. Hoeffding’s decomposition is made with the
help of certain projections introduced in formulas (2.7) and (2.8) below. In Lemma 1 I
prove the properties of these projections I shall need later. I shall need Lemma 1 also
in the proof of Proposition 2, since Hoeffding’s decomposition is applied in it.

11



Let some measurable spaces (Y1,V1), (Y2,)2) and (Z, Z) be given together with
a probability measure p on the space (Z, Z). Consider a function f(yi,z,y2) on the
product space (Y1 X Z X Y5, 01 X Z X Yso), y1 € V1, 2 € Z, y2 € Yo, and define their
projections

P,f(y1,y2) = /f(ybzvyZ)u(dz)v y1 € Y1, y2 € Yo, (2.7)
and

Quf(ybz?y?) = (I - Pu)f(y1727y2)

(2.8)
:f(ylaz?yQ)_PMf(ylazayQ)a yleifh Z€Z7 y2€Y27

where P, f(y1,2,y2) = P.f(y1,y2), i.e. T have introduced a fictive argument z of the
function P, f in formula (2.8) to make it meaningful. Now I formulate the following

Lemma 1. Let us have some measurable spaces (Y1,)1), (Yo,V2) and (Z,Z), a prob-
ability measure p on the space (Z,2) and a probability measure p on the product space
(Y7 x Y5, V1 x Vo). The transformations P, and Q,, defined in (2.7) and (2.8) are
contractions from the space Lo(Y1 X Z X Ya,p X u) to the spaces Lo(Y1 X Ya,p) and
Lo(Y1 X Z X Yo, p X p) respectively, i.e.

1P.fZ,,p =/Puf(y1,z,y2)2p(dy1, dy2)

< flIF s pxp = /f(y1,z7y2)2p(dy1, dy2)p(dz),

and

1QufIE,, = / Quf (1. 2 y2)0( dyr, dyo)
- / (P2 2) — Pufyn, 292)2 p(dyn, dy)u(dz)  (2.9)

<N flIF g pxp = /f(yl,z,yz)zp(dyl, dy2)pu(dz).

Also the inequalities

sup [P f(y1,y2)| < sup [f(y1, 2, y2)| (2.10)
Y1,Y2 Y1,2,Y2
sup |Quf(y17zvy2)| <2 sup |f(y1’z7y2)| (210/)
Y1,2,Y2 Y1,2,Y2

hold. If F is an La-dense class of functions f(y1,z,y2) on the product space (Y1 X Z X
Yo,y X ZxY3), y1 € V1, 2 € Z, y2 € Vo with parameter D and exponent L, then
also the classes F,, = {P,f,: f € F} with the functions P, f defined in formulas (2.7)
are La-dense classes with parameter D and exponent L in the space (Y1 X Yo, V1 X Va).
Beside this, the class of functions G, = {3Qu.f = 3(f — P.f), f € F} is also an
Lo-dense class with exponent L and parameter D.

12



Proof of Lemma 1. The Schwarz inequality yields that P,(f)* < [ f(vy1,2,92)*u(dz),
and the inequality [[f(y1, 2, y2)—Puf(y1, 2, y2)?1(dz) < [ f(y1, 2, y2)*u( dz) also holds.
Integrating these inequalities with respect to the probability measure p(dy;, dys) we
get formulas (2.9) and (2.9’). The proof of relations (2.10) and (2.10") is self-evident.

Let us consider an arbitrary probability measure p on the space (Y7 x Y2, V1 X Va).

To prove that F, is an Lp-dense class with exponent L and parameter D we have to

find m < Del functions f; € F,, 1 < j < m, such that 1<in£ J(f; = f)*dp < & for
jsm

all f € F,. We can find such a sequence, since a similar statement holds for the class
of functions F in the space Y; x Z x Y5 with the probability measure p x u. This fact
together with the Lo contraction property of P, formulated in (2.9) imply that F, is
an Lo-dense class.

The Lo-density property of the set G, under the appropriate conditions can be
deduced from the following observation. For any probability measure p on the space
Y1 X Z x Y, and pair of functions f and g such that [(f — g)*3 (dp+ dp x du) < €%,
where p is the projection of the measure p to the space Y7 x Y3, i.e. p(A) = p(A x Z)
for all A € Yy x Vs, the inequality [((f — P.f) — (9 — Pu9))?dp < 2 [(f — g)*dp +
2 [(Puf—Pu9)?dp <2 [(f—9)*dp+2 [(f—g)?dpx du < 4e? holds. This means that
if {f1,..., fm} is an e-dense subset of F in the space Lo(Y] X Z x Y5, V1 X Z X Vo, p) with
p=2(p+pxp), then {Quf1,...,Qufm} is a 2e-dense subset of 2G,, = {f— P, f: f € F}
in the space Lo(Y1 X Z X Y3, V1 X Z X Vs, p). Hence, if {f1,..., fin} is an e-dense subset
with respect to the measure p = 5 (p+ p x ), then {3Q, f1,...,5Qufm} is an e-dense
subset of G,, in the space La(Y1 x Z x Y5, Y1 x Z x Vs, p) space.

To formulate Proposition 3 first I introduce the following notation. Given a function
f(x1,...,x%) of k variables on (X¥, X*) together with some probability measure u let
us introduce for all sets V' C {1,...,k} the function fy depending on the arguments
xj, j € V by the formulas

fv(zs, seV) = I P I Qus | flar, . 2w, (2.11)

se{l,....k\V seV

where P, s and @, s denote the operators P, and @, defined in formulas (2.7) and (2.8)
in the space (Y1 X Z x Y5,V X Z x )s), where (Y1,);) the product of the first s — 1,
(Y2,)s) the product of the last k — s coordinates, and (Z, Z) is the s-th coordinate
of the product space (X*, X*¥). The function fir depends only on the coordinates x,,
s € V, because at the application of the operator P, , the s-th coordinate disappears. It
can be shown that the function fy is canonical. To see this we have to observe that the
canonical property of the function fy can be reformulated as P, ,fyy =0 for all s € V.
Beside this, the operator P, s or @, s is exchangeable with P, ¢ or Q,, ¢ if s # ', and
P,sQus=Pus— P/is = 0. The functions fy defined in (2.11) appear in the Hoeffding
decomposition of a U-statistic with kernel function f.

Now I formulate Proposition 3 which will be proved in the Appendix.

Proposition 3. Let us have a non-atomic measure p on a measurable space (X, X)
together with a sequence of independent, u-distributed random variables &1, ...,&,, and
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take a function f(x1,...,11) of k variables on the space (X*, X*) such that

/f2($1,...,xk)u(dx1)...,u(dxk) < 00.

Let us consider the empirical distribution function u, of the sequence &1, ...,&, intro-
duced in (1.1) together with the k-fold random integral Jy, 1 (f) of the function f defined
in (1.2). The identity

Jn,k(f) = Z C(nak;vv)n7|V|/2In,|V|(fV)a (212)
k}

holds with the canonical (with respect to the measure pi) functions fy (x;, j € V') defined
in (2.11) and appropriate real numbers C(n,k, V), V- C {1,...,k}, where I, |v|(fv) is
the (degenerate) U-statistic with kernel function fy and random sequence &1, ...,&,
defined in (1.6). The constants C(n,k, V') in (2.12) satisfy the relations |C(n,k, V)| <
C(k) with some constant C(k) depending only on the order k of the integral J,, 1 (f),
nh—>Holo C(n,k, V) =C(k,V) with some constant C(k,V) < oo for all V C{1,...,k}, and

Cn,k,{1,...,k}) =1 for V={1,... k}.

Theorem 1 can be simply deduced from Theorems 2, Proposition 3 and Lemma 1.
Indeed, Lemma 1 together with formula (2.11) imply that if F is an Lo-dense class of
functions with exponent L and parameter D, and the elements of F satisfy relations
(1.3) and (1.4) with some o > 0, then for all V' C {1,...,k} the class of functions
Fv ={27Wlfy: f € F}, where fy is defined in (2.11), and |V| denotes the cardinality
of the set V' is again Ly-dense with exponent L and parameter D, whose elements satisfy
relations (1.3) and (1.4) with parameter 271Vlg. Beside this, the elements of Fy are
canonical functions. Hence, by Proposition 3 we can write

x
P sup |Jnk(f) >z < P | supn~IVI/2 I, vi(fv)] > s05~ 2.13
(fefr ()] ) o (m T i) > g | 219

with a constant C'(k) satisfying the inequality C(n,k,|V|) < C(k) for all coefficients
C(n,k,|V]) in (2.12), and each term at the right-hand side of (2.13) can be estimated
by means of Theorem 2 if F satisfies the conditions of Theorem 1.

Theorem 1 with appropriate universal constants M > 0, C' > 0 and « > 0 can be
proved with the help of some calculation if we bound each probability on the right-hand
side of (2.13) by means of Theorem 2. Let me remark that Theorem 1 implicitly contains
the condition that no® > M (L + 3)3/?log 2, which means that the set of numbers z
which satisfy the condition in relation (1.5) is not empty. Hence we may assume that
no? > 1. We need this observation to check that under the conditions of Theorem 1
no? > (%)Wl for all | < k, and we can apply Theorem 1 for each term V' C {1,...,k}
in the estimation of the right-hand side of (2.13).
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3. Some basic tools of the proof of Proposition 2

I shall prove Proposition 2 by means of some symmetrization procedure. The proof
becomes simpler with the help of a decoupling argument. This means the introduction
of decoupled U-statistics and the proof of a version of Proposition 2 about decoupled
U-statistics. It can be shown with the help of some known results that this statement
implies Proposition 2 in its original form. To carry out such a program first I recall the
definition of decoupled U-statistics.

Definition of decoupled U-statistics. Let k independent copies §1.5, ..., &n,s,
1 < s <k, of a sequence of independent and identically distributed random variables
&1, ..., &, with distribution p be given on a measurable space (X,X) together with a
function f = f(x1,...,x1) on the k-th power (X*, X%) of the space (X, X). We define
with their help the decoupled U-statistic I, ,(f) of order k with kernel function f by the
formula

L i (f) =% > F&nns s Giak) - (3.1)

T1<js<n, s=1,....k
Js#dsr if s#s’

A decoupled U -statistic is called degenerate if its kernel function is canonical.
I shall prove the following version of Proposition 2.

Proposition 2'. Let us have a probability measure p on a space (X, X) together with

k independent copies &1 s,...,&ns, 1 < s < k, of a sequence of independent and p
distributed random wvariables &1, ...,&, and a countable Lo-dense class F of canonical
kernel functions f = f(x1,...,x) (with respect to the measure p) with some parameter

D > 0 and exponent L > 1 on the product space (X*, X*) which satisfies conditions (1.3)
and (1.4) with some 0 < 0 < 1. Let no? > K(L+#)logn with 3 = max <1°gD 0> and a

logn?
sufficiently large constant K = K (k). There exists some threshold index Ag = Ag(k) > 0
such that the decoupled U -statistics I, 1 (f), f € F, defined in (3.6) satisfy the inequality

P (Jscup nR21, k()] > Ank/QakH) < gAY no? if A> Ap. (3.2)
€F

Proposition 2 follows from Proposition 2’ and the following Proposition A.

Proposition A. Let us consider a countable sequence fi(xy1,...,zr), | = 1,2,..., of
functions on the k-fold product (X*, X*) of some space (X, X) together with some prob-
ability measure p on the space (X, X). Given a sequence of independent and identically
distributed random variables &1,&a, ... with distribution p on (X, X) together with k
independent copies £1.5,82.5,--., 1 < s <k, of it we can define the U-statistics I, 1(f1)

and decoupled U -statistics I, x(f)) for alll =1,2,... andn =1,2,.... They satisfy the
mequality
P ( sup |Inx(f1)] > x) < AP ( sup  |Lk(f1)] > 'yac) (3.3)
1<l<oo 1<I<oo

15



for all x > 0 with some constants A = A(k) > 0 and v = (k) > 0 depending only on
the order k of the U -statistics.

Proposition A can be deduced from Theorem 1 in paper [6] of de la Pena and Mont-
gomery—Smith which compares the distribution of a single U-statistic with its decoupled
U-statistic counterpart. It holds for U-statistics with a kernel function taking values in
a general separable Banach space, and it compares the distribution of the norm of a U-
statistic with its decoupled counterpart. This result states that formula (3.3) remains
valid if we fix a function f of k-variables taking values in a separable Banach space
and replace sup Lo (f)] by 11 ()] and sup L ()] by | Fu(f)]l. Moreover, the
universal constants A and v do not depend on the Banach space, where the function f
takes its values. In the proof of Proposition A we exploit our freedom to work in an
arbitrary separable Banach space.

The proof of Proposition A (with the help of paper [6].) Let us fix an arbitrary positive
integer N, and apply the first part of Theorem 1 of [6] in the Banach space /X consisting

of the sequences = (x1,...,2zy) of length N of real numbers with norm ||z|| = sup |z]
1<I<N
for the U-statistic and degenerate U-statistic with kernel functions fj, . j, (z1,...,25) =

f(xy,...,zx), f = (f1,..., fn), with the functions f;, 1 < I < N, in Proposition A,
which maps the space (X*, X*) into the space ¢Y. (Here we do not exploit that in the
result of [6] the kernel functions may depend on the indices (ji,...,jx).) The first part
of Theorem 1 in [6] states that

P > F&, )| >
1<js<n, s=1,...,k
JeAjo if s#s' (3.4)
< AP Yoo TG G| >
1<js<n, s=1,....k
JeAjur if s#s'

with some universal constants A = A(k) > 0 and v = (k) > 0, and this statement

is equivalent to a weaker version of relation (3.3), where sup is replaced by sup .
1<l<oo 1<I<N

We get relation (3.3) from relation (3.4) by letting N — oo (and exploiting that the
constants A and v in formula (3.4) do not depend on the number N.)

Remark: 1 have introduced the number N in the above proof instead of working in the
space of infinite sequences with L., norm to avoid the difficulty which would arise if we
had to work in non-separable Banach spaces.

Thus I have reduced the proof of Theorem 2 to that of Proposition 2’. It will be
proved by means of a symmetrization argument. To apply this argument I shall need
two auxiliary results, the multi-dimensional version of Hoeffding’s inequality and an
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appropriate generalization of a well-known symmetrization lemma. First I discuss the
multi-dimensional version of Hoeffding’s inequality.

Lemma 2. (The multi-dimensional version of Hoeffding’s inequality.) Let
€1,...,En be independent random variables, P(e; = 1) = P(g; = —1) = %, 1<j5<n.
Fix a positive integer k, and define the random variable

= Z a(jl,...,jk)z—:jl---ejk (35)

(F1seees Jk):1<5;<n for all 1<i<k
didu it LA

with the help of some real numbers a(ji,...,Ji) which are given for all sets of indices
such that 1 < j; <n, 1 <1<k, and j; # jiy if l #1'. Put

5% = > a*(j1,- - k) (3.6)

(F1se--50k):1<5:<n for all 1<I<k
A i A

Then
T

2/k
P(|Z| > z) < Cexp {—B (g) } forallx >0 (3.7)

with some constants B > 0 and C' > 0 depending only on the parameter k. Relation

(8.5) holds for instance with the choice B = W and C = €.

Lemma 2 is a relatively simple consequence of an important result of the probability
theory, the hypercontractive inequality for Rademacher functions (see e.g. [4] or [5]). It
yields some moment inequalities that imply Lemma 2. Such an inequality is formulated
e.g. in Theorem 3.2.2 of [5]. It states (with the choice p = 2 in this result and the
observation EZ? < k!S?) that

E|Z|1 < (¢ — DF/2(KISH)Y2 for ¢ > 2. (3.8)

Here I used the notation of Lemma 2.
The Markov inequality and inequality (3.8) imply that

q
VEk!

P(|Z]| > z) < (qk/2—5> forall z >0 and ¢ > 2.
T

2/k
Choose the number ¢ as the solution of the equation ¢ (@) = % Then we get that

P(|Z]| > ) < exp {—B (%)Wk} with B = provided that ¢ = — (E)Q/k >

__k
2e(k)1/k S

2,ie. B (%)wk > k. By multiplying the above upper bound with C' = e* we get such
an estimate for P(|Z| > x) which holds for all x > 0. In such a way we get the proof of

Lemma 2.
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Remark: The parameter B given in Lemma 2 is not sharp. In paper [9] I have shown
that the right choice of B in formula (3.7) is B = 1.

The second result I need is a slight generalization of a simple lemma that can
be found for instance in Pollard’s book [12] (8° Symmetrization Lemma) or Lemma 2.5
in [7]. In this paper I need the result given in Lemma 3 below to carry out my arguments.
Its proof consists of a slight modification of the method in [7] or [12].

Lemma 3. (Symmetrization Lemma) Let Z(n) and Z(n), n = 1,2,..., be two
sequences of random variables on a probability space (2, A, P). Let a o-algebra B C A
be given on the probability space (2, A, P) together with a B measurable set B and two
numbers o > 0 and B > 0 such that the random variables Z,, n = 1,2,..., are B
measurable, and the inequality

P(|Z,| < a|B)(w)>p foralln=1,2,... ifwE B (3.9)

holds. Then

1 _
P( sup | Z,| >a+x> < —P( sup | Z, — Zy| >a:> +(1—-P(B)) forallxz>0.
1<n<oo ﬁ 1<n<oco
(3.10)

In particular, if the sequences Z,, n = 1,2,..., and Zn, n=12, ..., are two inde-
pendent sequences of random wvariables, and P(|Z,| < «) > B for alln = 1,2,...,
then )

P( sup \Zn\>a—l—x) SBP( sup \Zn—Zn\>.r). (3.10")

1<n<oo 1<n<oo

Proof of Lemma 3. Put 7 = min{n: |Z,| > a + x} if there exists such an n, and 7 = 0
otherwise. Then

P({r=nlnB) < /{_ }OBP(|Zn] < a|B)dP = %P({T:n}ﬂ{|Zn| <alnB)

<—-PHr=n}n{|Z, - Z,| >z}) foralln=1,2,....

@ = =

Hence

P( sup |Zn\>a+x)—(1—P(B))§P({ sup |Zn|>a+:c}ﬂB)

1<n<oo 1<n<oo

P({r =n}0{|Z — Zn| > 2})

M

{r=n}nB)<

™|
WK

I
—

1

P
P( sup |Zn—Zn|>m).

1<n<oo

n

3
I

IA
|

Thus formula 3.10 is proved. If Z,, and Z,, are two independent sequences, and P(|Z,| <
a) > pforallm =1,2,..., and we define B as the o-algebra generated by the random
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variables Z,, n = 1,2,..., then condition (3.9) is satisfied also with B = . Hence
relation (3.10") holds in this case. Lemma 3 is proved.

Before turning to the proof of Proposition 2’ I explain the main ideas of its proof.
These ideas are taken from the paper [1] of Alexander.

Let us restrict our attention to the case £ = 1. In this case a probability of the form

n
P (n‘l/ Zsup | > f(&)| > x| has to be estimated. By taking an independent copy of
feF |j=1

the sequence &, (which disappears at the end of the of the calculation) a symmetrization
argument can be applied which reduces the problem to the estimation of the probability

P (n‘”z sup | Y. 5jf(§j)| > f), where the random variables ¢;, P(e; = 1) = P(g; =
fEF |j=1
-1) = %, j =1,...,n, are independent, and they are independent also of the random
variables {;. Beside this, the number Z is only slightly smaller than the number z/2. Let
us bound the conditional probability of the event we have just introduced if the values
random variables ; are prescribed in it. This conditional probability can be bounded
by means of the one-dimensional version of Lemma 2, and the estimate we get in such
a way is useful if the conditional variance of the random variable we have to handle has
a good upper bound. Such a bound exists, and some calculation reduces the original

n
problem to the estimation of the probability P <n1/2 sup | Y. f(&)] > xHa) with
feF |j=1
some new nice class of functions 7’ and number « > 0. This problem is very similar to
the original one, but it is simpler, since the number x is replaced by a larger number
't in it. By repeating this argument successively, in finitely many steps we get to an
inequality that clearly holds.

The above sketched argument suggests a backward induction procedure to prove
Proposition 2’. To carry out such a program I shall prove a result formulated in Propo-
sition 4. First I introduce the following notion.

Definition of good tail behaviour for a class of U-statistics. Let us have some
measurable space (X, X) and a probability measure p on it. Let us consider some class
F of functions f(x1,...,71) on the k-fold product (X*,X*) of the space (X,X). Fiz
some positive integer n and positive number o > 0, and take k independent copies
1,60 &n,s, 1 < 8 <k, of a sequence of independent p-distributed random variables
&1,...,&,. Let us introduce with the help of these random wvariables the decoupled U -
statistics I, 1 (f), f € F. Given some real number T > 0 we say that the set of decoupled
U -statistics determined by the class of functions F has a good tail behaviour at level T
if the following inequality holds:

P (sup In=* 2L, 1 (f)] > Ank/20k+1> < exp {—Al/%nag} forall A>T. (3.11)
fer
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Now I formulate Proposition 4 which enables us to make the inductive procedure
leading to the proof of Proposition 2.

Proposition 4. Let us fiz a positive integer n, real number 0 < o < 2=+ gpd
a probability measure p on a measurable space (X, X) together with a countable Lo-
dense class F of canonical kernel functions f = f(x1,...,x) (with respect to the
measure ) on the k-fold product space (X%, X*) with some erponent L > 1 and
parameter D > 0. Let us also assume that all functions f € F satisfy the con-

ditions sup | f(@1,e ey mn)| < 27D [ 2y ap)p(dey) - p(day) < 02,
v €X1<j<k

and no® > K(L + B)logn with a sufficiently large fized number K = K(k) and
log D
S = max <loggn’o)'
There exists some real number Ay = Ag(k) > 1 such that for all classes of functions
F which satisfy the above conditions of Proposition 4 the set of decoupled U -statistics
determined by the functions f € F have a good tail behaviour at level T' for somel’ > Ay,

provided that for all classes of functions F with such properties the set of decoupled U -
statistics with kernel functions f € F have a good tail behaviour at level T*/3.

It is not difficult to deduce Proposition 2’ from Proposition 4. Indeed, let us observe
that the set of (decoupled) U-statistics determined by a class of functions F satisfying
the conditions of Proposition 4 has a good tail-behaviour at level Ty = o~ *+1 since
the probability at the left-hand side of (3.11) equals zero for x > o~ **1). Then we get
from Proposition 4 by induction with respect to the number j that all sets of U-statistics
L.x(f), f € F, with a class of functions F satisfying the conditions of Proposition 4 have
a good tail-behaviour also for T" > T0(3/4)] =g~ B/ (k+D) for all j = 1,2,... such that
o~ (/47 (k+1) > A,. This implies that if a class of functions F satisfies the conditions
of Proposition 4, then the set of U-statistics determined by this class of functions has a
good tail-behaviour at level T' = Aé/ 3, i.e. at a level which depends only on the order
k of the (decoupled) U-statistics. This result implies Proposition 2/, only we have to
apply it not directly for the class of functions F appearing in Proposition 2, but these
functions have to be multiplied by a sufficiently small positive number depending only
on k.

Thus to complete the proof of Theorem 2 it is enough to prove Proposition 4. I
describe its proof in the special case k = 1 in the next section. This case is considered
separately, because it may help to understand the ideas of the proof in the general case.

The main difficulty in the proof of Proposition 4 is related to a symmetrization
procedure which is an essential part of the proof. I want to apply some randomization
with the help of a symmetrization argument, and this requires a special justification.
It is not difficult to justify the right for this randomization in the case k = 1, when it
simply follows from Lemma 3 and a (simple) estimation of the variance of an appropriate
U-statistic, but it becomes hard for £ > 2. In this case we have to give a good estimate
on certain conditional variances of some (decoupled) U-statistics with respect to some
appropriate conditions. To overcome this difficulty I formulate a result in Proposition 5
and prove Propositions 4 and 5 simultaneously. Their proof follows the following line.
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First Proposition 4 and Proposition 5 will be proved for £ = 1. Then, if Propositions 4
and 5 are already proven for all ¥/ < k, then first I prove Proposition 4 for k, and
then Proposition 5 for the same k. Proposition 5 has a structure similar to that of
Proposition 4. Before its formulation I introduce the following definition.

Definition of good tail behaviour for a class of integrals of U-statistics. Let
us have a product space (X* x Y, X* x V) with some product measure u* x p, where
(XF X% uk) is the k-fold product of some probability space (X, X, pn), and (Y, Y, p) is
some other probability space. Fix some positive integer n and positive number o > 0,
and consider some class F of functions f(x1,...,Tr,y) on the product space (X* x
Y, X% x Y, u* x p). Take k independent copies El,60--+&n,s, 1 < s <k, of a sequence
of independent, p-distributed random variables &1,...,&,. For all f € F and y € Y
let us define the decoupled U -statistics fn’k(f, y) by means of these random variables
1,5, 6ns, 1 < s < k, and the kernel function fy(x1,...,xx) = f(z1,..., 2%, y) in
formula (3.1). Define with the help of these U-statistics I, x(f,y) the random integrals

Emﬁ%j/hﬂﬁw%ww,fef- (3.12)

Choose some real number T > 0. We say that the set of random integrals H,, r(f),
f € F, have a good tail behaviour at level T if

P(sup n"H, x(f) > A2nk02k+2) < exp {—Al/(2k+1)na2} for A>T. (3.13)
fer

Proposition 5. Fiz some positive integer n and real number 0 < o < 2=*+tD " and let
us have a product space (X* x Y, X* x V) with some product measure u* x p, where
(XF X% uF) is the k-fold product of some probability space (X, X, p), and (Y, p) is
some other probability space. Let us have a countable Lo-dense class F of canonical
functions f(xq,...,71,y) on the product space (X* x Y, X% x Y, u¥ x p) with some
exponent L > 1 and parameter D > 0. Let us also assume that the functions f € F
satisfy the conditions

sup \flz1,. . ap,y)| < 27 FFD
2;EX,1<j<kyeY

and

/ﬂ@bmﬂmmeﬂ~ﬂwuwww§f for all f € F.

Let the inequality no® > K(L + B)logn hold with a sufficiently large fized number
K = K(k).
There exists some number Ay = Ag(k) > 1 such that for all classes of functions

F which satisfy the conditions of Proposition 5 the random integrals H, x(f), f € F,
defined in (3.9) have a good tail behaviour at level T, provided that the random integrals
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H, i (f), f € F, of all classes F with such properties have a good tail behaviour at
level T(2k+1)/2k

Similarly to the argument formulated after Proposition 4 an inductive procedure
yields the following corollary of Proposition 5.

Corollary of Proposition 5. If the class of functions F satisfies the conditions of
Proposition 5, then there exists a constant Ay = Ag(k) > 0 depending only on k such that
the integrals H,, 1 (f) determined by the class of functions F have a good tail behaviour
at level Ag.

4. The proof of Proposition 4 in the case k =1

In this section Proposition 4 is proved in the special case k = 1. In this case we have to
show that

- 1/2, 2
P sup | Y f(&)| = Ant/20? | <em M A>T (4.1)
\/_fe]-‘ pr

if we know the same estimate for A > T%/3 and all classes of functions satisfying the
conditions of Proposition 4. This statement will be proved by means of the following
symmetrization argument.

Lemma 4. Let the class of functions F satisfy the conditions of Proposition 4 for

k = 1. Let e1,...,e, be a sequence of independent random wvariables, P(e; = 1) =
P, = -1) = %, independent also of the p distributed random wvariables &1, ..., &,.
Then
P > An'/2o?
o3 Zf )| 2 4n
(4.2)
< 4P A n'/2q? '
< sup Z&:Jfgj > if A>T.

\/_ reF i3

There are several similar results in the literature. Lemma 4 follows simply from Part
b) of Lemma 2.7 in [7] with the choice t = Ano?. (The quantity « in this result agrees
with our ¢.) It is enough to check that t > 21/2n'/25 and (t — 21/2n'/2¢) /2 > 4no? if
A>T > Ag is chosen sufficiently large, since under the conditions of Pr0p081t10n 4 (if
the parameter K is sufficiently large in Proposition 4) no? > 1.

To prove Proposition 4 for k£ = 1 let us investigate the conditional probability

A
P(vayglv"'7£n - Zgjf 5] = E\/EUQ 517"'7£n
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for all functions f € F, A > T and values ({3,...,&,). By Lemma 2 (with &k = 1) we
can write

QAZ 4
P(f,A\fh--.,ﬁn)SCeXp{—SQ(?& T )} (4.3)

with
1 n
2 _ = 2(..
S (f a1y xp) = njEZIf (z;), feF.

Let us introduce the set

H=H(A) = {(wl,...,xn): sup S2(f, 1, ... Tn) > (1 +A4/3> 02} . (4.4)
fer
I claim that s
P((&1,....,6) e H)<e A" if A>T, (4.5)

To prove relation (4.5) let us consider the functions f = f(f) for all f € F defined
by the formula f(z) = f?(z) — [ f2(z)u(dz), and introduce the class of functions
F' ={f(f):f € F}. Let us show that the class of functions F” satisfies the conditions of
Proposition 4. By the assumption of Proposition 4 this implies that the estimate (3.11)
with £ = 1, i.e. the estimate (4.1) holds for the class of functions F’ if the condition
A > T is replaced by A > T3 in it.

Relation [ f(z)u(dz) = 0 clearly holds. (In the case k = 1 this means that f is a
canonical functlon) The condition sup | f ( )\ < g < 1 also holds if sup|f(z)| < , and
[ P@)p(de) < [ fAz)p(de) < 3 [ f2(2) )_§<a2iff€]:.ltremainedto

show that F'is an Lo- dense class with exponent L and parameter D.
To show this observe that [(f(z) — g(z))?p(dz) < 2 [(f3(z) — ¢*(x))?p(dx) +
2 [(f*(z) — ¢? (33))2#( dx) < 2(sup(|f ()| + |g(=))? ([ (f(z) = 9(2))*(p(d) + p(dz)) <

[(f(z) - g( )) p(dz) for all f,g € F, f = f(f), g = g(g) and probability measure p,
where p = . This means that if {f1,..., fi,} is an e-dense subset of F in the space

Ly(X, X p) then {fi,..., fm} is an e-dense subset of F' in the space Lo(X, X, p), and
not only F, but also F’ is an Lo-dense class with exponent L and parameter D.

We get, by applying formula (4.1) for the number A*/3 > T%/3 and the class of
functions F’ that

P((&1,...,6n) € H) =P sug %Zﬂgﬂ)_'—%ZEfQ({]) > <1—|—A4/3) o2
; ~

fe =1
1 — -
<P|sup— f(fj) > A4/3,1/2 52 < €—A2/3m;2’
fer v

i.e. relation (4.5) holds.
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Formula (4.3) and the definition (4.4) of the set H yield the estimate

P(f, Al&r, ... &) < Ce BAno™ /10 g ¢y &) ¢ H (4.6)
for all f € F and A > T for the conditional probability P(f, Al¢,...,&,). Let us
introduce the conditional probability

P(I7A|€1a---7€n):P Sup —= Zsj 6] > \/_U §15--58n

fG.F

for all (&1,...,&,) and A > T. We shall estimate this conditional probability with the
help of relation (4.6) if (&1,...,&,) ¢ H. Given some set of n points (z1,...,x,) in the

space (X, X) let us introduce the measure v = v(z1,...,x,) on (X X) in such a way

that v is concentrated in the points z1, ..., x,, and I/({l‘j} I A (z)v(de) < 62

for a function f, then \/Lﬁ 21 eif(x;)] < n'/2 [|f(z)|v(dx) < n'/25. Since we have
j:

assumed that no? > 1, this estimate implies that if f and g are two functions such that

[(f — 9)?v(dz) < 62 with § = 6%, then
A fiig?.

Given some (random) point (&1,...,&,) € H let us consider the measure v =
v(&, ..., &) corresponding to it, and choose a d-dense subset {fi,..., fm} of F in the
space Lo(X,X,v) with § = 1 <6 = %, whose cardinality m satisfies the inequality
m < D&~ L. This is possible because of the Lo-dense property of the class F. (This is
the point where the Lo-dense property of the class of functions F is exploited in its full

strength.) The above facts imply that P(F, A|&1, ..., &) < Y. P(fi, Al&, ..., &) with
=1

Jr 2l @)~ dr L esne)| < ol <

these functions f1,..., f;,. Hence relation (4.6) yields that

P(F,Al&1, ... &) < CD(6n)le BAY 40 if (¢, . 6,) ¢ H and A > T.
This inequality together with Lemma 4 and estimate (4.5) imply that

n

P Anl/?42 AP nl/252
a6 annet | <ar | gl i) )

1

< 4CD(6n)le=BAPno?/40 | 4o=Ano® i A > T
Since we have a better power of A in the exponent at the right-hand side of formula
(4.7) than we need, the relation no? > K (L + 3)logn holds, and we have the right to
choose the constants K and Ay, A > Ay, sufficiently large, it is not difficult to deduce
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relation (4.1) from relation (4.7). Indeed, the expression in the exponent at the right-
hand side of (4.7) satisfies the inequality £ A4%/3no? > A/2no? + K(L + B)logn if Ag
is sufficiently large, and

n

1
P | — sup E (&) > Ant/?02
Vi jer |2 &)

< AC(6n)PTLe K p - K(L4B)o=APno® 4 g —APna® o (=AM no?
if A>T, and the constants Ay and K are chosen sufficiently large.
5. The symmetrization argument

In the proof of Propositions 4 and 5 we need two symmetrization results for all £ > 1
which play the same role as Lemma 4 in the case K = 1. These results are described in
Lemmas 5A and 5B. In this section these results are formulated and proved. The proofs
go by induction with respect to k. During the proof of Propositions 4 and 5 for k we
may assume that they hold for &' < k.

Lemma 5A. Let F be a class of functions on the space (X*, X*) which satisfies the
conditions of Proposition 4 with some probability measure j. Let us have k independent
copies &1,y éns, 1 < 5 < k, of a sequence of independent p distributed random
variables &1, ..., &, and a sequence of independent random variables € = (e1,...,&n),
P(es = 1) = P(es = —1) = 3, which is independent also of the random variables &; s,
1<j<n,1<s<k. Consider the decoupled U-statistics I, (f), f € F, defined from
these random variables by formula (3.1) and their randomized version

- 1
é,k(f) = E Z €1 .ngkf(g.jhl?' .- 7€jk7k)7 feF. (51)

" 1<js<n, s=1,....k
Js#Jer if s#s’

There exists some constant Ag = Ag(k) such that the inequality

P (sup n k2 Lo ()] > Ank/QakH) < oF+lp (sup 15 1 ()] > 2_(k+1)Ankak+1>
fer feF
+ 2knk—1e—A1/(2k_1)m72/k

(5.2)
holds for all A > Ay.

Before formulating Lemma 5B needed in the proof of Proposition 5 I introduce
some notations. Some of them will be needed later.

Let us consider a set F of functions f(x1,...,zx,y) € F on a space (X x Y, X* x
Y, u* x p) which satisfies the conditions of Proposition 5. Let us choose 2k independent
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copies 51 sree 5}2, 57_31), cee ,(;91), 1 < s <k, of a sequence of independent u dis-

tributed random variables &1,..., &, together with a sequence of independent random
variables (g1,...,e,), P(es = 1) = P(e; = —=1) = 2, 1 < s < n, which are independent
of them. For all subsets V' C {1,...,k} of the set {1,...,k} let |V| denote the cardi-
nality of this set, and define for all functions f(z1,...,2x,y) € Fand V C {1,...,k}
the decoupled U-statistics

M= X f(E ), ferF (5.3)

GsFder if s

where 03 = £1, 1 < s <k, 6s =1if s € V, and 05 = —1 if s ¢ V, together with the
random variables

U0 = [ TaltPotdn), fe 7 (5.3)
Put B )
Luw(fy) =I5 (Fy), How() = H (), (5.3)

i.e. these random variables agree with those defined in (5.3) and (5.3’) with the choice
V=A{l,...,k}.

Let us also define the ‘randomized version’ of the random variables IV, (f,y) and
HY ’
n,k(f ) as

v, 1 51) 5
00w =o X aeead (@ giy). fer G4
1<js<n, s=1,...,k
Js#Jgr if s#s’

where s = 1if s€ V,and §; = —1if s ¢ V, and
1O = [ 12 ey, JeF (5.4)

Let us also introduce the random variables

W= [| Y O] s, fer 6)

vc{l,...,k}

Now I formulate the symmetrization result applied in the proof of Proposition 5.

Lemma 5B. Let F be a set of functions on (X* x Y, X% x Y) which satisfies the
conditions of Pmposztwn 5 with some probability measure pu* x p. Let us have 2k in-
dependent copies §1 ey Sn o 1 < s <k, of a sequence of independent p distributed
random variables together with a sequence of independent random variables €1, ..., e,
P(es =1) = P(e, = —1) = 4, 1 < s < n, which is independent of them.
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There ezists some Ay = Ao(k) such that if the integrals H,, (f), f € F, determined
by this class of functions F have a good tail behaviour at level TFH1/2E for some
T > Ao, (this property was defined at the end of Section 3), then the inequality

_ A?
P <Sup Hn,k(f) > A2n2k02(k+1)) < 2P (sup |W(f)| > 771214302(1:-1-1))

fer ferF (5.6)

4 22k+1nk—1e—A1/2kn02/k

holds with the random variables H,, 1 (f) and W (f) defined in formulas (5.3") and (5.5)
forall A>T.

Let us observe that in the symmetrization argument of Lemma 5B we have ap-
plied the randomization I_S’/]f)(f, y) of fg;)(f, y), (compare formlllas (5.3) and (5.4)),
and compared the integral of the square of the random function I, 1 (f,y) with the in-

tegral of the square of a linear combination of the random functions I T(:/,f)( fsy). After
this integration the effect of the ‘randomizing factors’ €; will be weaker. Nevertheless,
also such an estimate will be sufficient for us. But the effect of this symmetrization
procedure has to be followed more carefully. Hence a corollary of Lemma 5B will be
presented which can be better applied than the original lemma. We get it by rewrit-
ing the random variable W (f) defined in (5.5) in another form with the help of some
diagrams introduced below.

Let G = G(k) denote the set of all diagrams consisting of two rows such that both
rows are the set {1,..., k} and the diagrams of G contain some edges (I1,1}), ..., (Is,1.),
0 < s < k connecting some points (vertices) of the first row with some points of the
second row. The vertices [q, ..., in the first row are all different, and the same relation
holds also for the vertices l{,...,l. in the second row. For each diagram G € G let us
define e(G) = {(I1,1}) ..., (Is,1%)}, the set of its edges, v1(G) = {l1,...,ls}, the set of
vertices in the first row and vo(G) = {I},...,l.}, the set of vertices in the second row
of G from which an edge starts.

Given some diagram G € G and two sets V1, Vo C {1,...,k}, we define with the help
of the random variables 5;11), cee S&, é;l), e §;1), 1 <s<k,and € = (€1,...,6n)
taking part in the definition of the expressions W (f), f € F, the random variables
Hn7k(f|G, Vl, VQ)Z

Hn,k(f|G7 Vl?‘/Q) = Z H gjs H gjé

Grodns Jodl)  S€{L B \01(G) s€{L kP \02(G)
1S]‘8Snﬁjs¢js’ if 57’58/,15575/§k7
1S]2Sn7]/§¢j;/ lf S¢8/,1S878/§k},

Js=il, if (s,s")€e(Q), js#5., if (s,8")¢e(Q)

1 51 5 5 5
g [ HER €€ ety £ e .
) 5.7

WhereészlifsEVl,6sz—lifs¢V1,and55:11f86V2,55:—1ifs¢V2.
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With the help of these random variables we can write that

W(f) = > (—)MiHIVal g (FI1GL VAL, V) for all f € F,
GEg,Vl,VQC{l,...,k}
because
/I_S,/zi’a)(f, NIV (foy)p(dy) = Y How(fIG, V1, Ve), for all Vi, Vo C {1,...,k}.

Geg

Since the number of terms in this sum is less than 24*k!, it implies that Lemma 5B
has the following corollary:

Corollary of Lemma 5B. Let a set of functions F satisfy the conditions of Proposi-
tion 5. Then there exists some Ay = Ao(k) such that if the integrals H, 1 (f), f € F,
determined by this class of functions F have a good tail behaviour at level T(2k+1)/2k
for some T > A, then the inequality

P (sup H, ik (f) > A2n2ka2(k+1)>
feF

AQ
<2 Z P (suglﬂn,k(ﬂG,Vth)l > %le.'n2ka2(k+1))
GEG, Vi, Vae{l,....k} fe !

+ 92k+1pk—1,— A% no® [k (5.8)

holds with the random variables Hy, (f) and Hy, 1 (f|G, Vi, V2) defined in formulas (5.3")
and (5.7) for all A>T.

The proof of Lemmas 5A and 5B uses the result of the following Lemma 6 which
states that certain random vectors have the same distribution.

Lemma 6. Let ¢ = (e1,...,&,) be a sequence of independent random wvariables,
P(ey =1) = P(e; = —1) = £, 1 < s < n, which is independent also of 2k fized inde-
pendent copies 582, e ,55}2 and 5&1), ce éy_sl), 1< s <k, of a sequence &1,...,&, of

independent v distributed random variables.

a) Let F be a class of functions which satisfies the conditions of Proposition 4. With
the help of the above random wvariables introduce the decoupled U -statistic

= 1 5 5
=5 X F(ENER). rer (5.9)
T 1<js<n, s=1,....k
JoAdu if s#s'

for all sets V- C {1,...,k} and functions f € F together with its ‘randomized
version’

(Ve 1 5 5
Ir(L,k )<f) = E Z €1 "'gjkf <§J(1711)7 sy j(klj]g> y f S .F, (59/)
_js;éjsz if s#s’
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where 6s = +1, 1 <s<k,0s=1ifseV,and s =—-1ifs¢ V.
Then the sets of random variables

S(H= > VI, feF, (5.10)

Sh= S VIV, fer (5.10')

Vcil,... k)
have the same joint distribution.

b) Let F be a class of functions satisfying Proposition 5. For all functions f € F
and V- C {1,...,k} consider the decoupled U -statistics IX,,C(f, y) determined by the
random variables 5&), . ,57(11,2 and 55;1), e 7(;31), 1 < s <k, by formula (5.3),
and define with their help the random variables

2

W(f) = / S OV (fy)| pldy), feF (5.11)

Then the random vectors {W (f): f € F} defined in (5.11) and {W(f): f € F} defined
in (5.5) have the same distribution.

Proof of Lemma 6. Let us consider Part a) of Lemma 6. I claim that for all M €
{1,...,n} the conditional distribution of the random vector in (5.10") under the condi-
tionthat e; =1if j € M ande; = —1ife; € {1,...,n}\ M agrees with the distribution
of the vector in (5.10). Since the distribution of the vector in (5.10) does not change
if we exchange the random variables fj(ls) and fj(;l) init for j ¢ M, 1 <s <k, and do
not exchange them otherwise, it is enough to understand that the random vector we
get from the vector in (5.10) after this transformation agrees with the random vector
in (5.10) if we write e; = 1 for j € M and ¢; = —1 for j ¢ M in it. These random

vectors really agree (not only in distribution) since for all functions f € F both vectors
have a component which is the sum of terms of the form f(fj(-fﬁ), cee ](kj,’;)), 9, = 1,
1 < s < k, multiplied with an appropriate power of —1, and this power equals the

number of —1 components in the sequence 9d;,,...,d;, plus the cardinality of the set
{j1,-- -, Jkt N M.
Part b) of Lemma 6 can be proved in the same way, hence it is omitted.

Lemma 5A will be proved with the help of part a) of Lemma 6 and the following
Lemma TA.

Lemma TA. Let us consider a class of functions F satisfying the conditions of Propo-
sition 4 and the random wvariables IXk(f), feF, Vc{l,.. k}, defined in for-

mula (5.1). Let B = B( 518), e Sl, 1 < s < k) denote the o-algebra generated by the
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random wvartables «55’12, e 7(112 , 1 < s <k, taking part in the definition of the ran-
dom wvariables I_Xk(f) For all V- .C {1,...,k}, V # {1,...,k}, there exists a number
Ao = Ao(k) > 0 such that the inequality

g (Jélelg E (jr‘;k(f)Q‘ B) > 2(3k+3)A2n2k0_2k+2> < k1= AY B Ino?/k (5.12)

holds for all A > Ay.

Proof of Lemma 7A. Let us first consider the case V = (. We have F (fgk(f)2‘ B) =

E <I_2’k(f)2> < 2—502 < n?ko?k*2 for all f € F. In the above calculation we exploited

that the functions f € F are canonical, and this implies certain orthogonalities, and
beside this the inequality no? > 1 holds. The above relation implies inequality (5.12)
for V=0 for all w € Q if the number Ay is chosen sufficiently large.

To avoid some complications in the notation let us restrict our attention to the sets
V={1,...;u}, 1 <u <k, and prove relation (5.12) for such sets. For this goal let us
introduce the random variables

- 1 _ _
1% - SN (1) (1) (=1) (1)
In,k:(fajqul?"':]k)_g Z f<€j1717"'7§‘u7u7§ju+l,u+17"'7 jk’k>7
) 1<js<n, s=1,...,u
Js#jer if s#s’, 1<s,8'<k
for all f € F, i.e. we fix some indices jyi1,-.-,Jk, 1 <Js <n,u+1<s <k, js # Js
if s # s, and sum up only those terms in the sum defining IX (f) which contain

53(;11)u IRPRRE ,fj(.k_’i) in their last £ — u coordinates. Then we can write
2
E(Ijz/,k(f)ﬂg) =F Z ij(faju+1a"'7juk) B
1<js<n s=u+1,..., k
JsFjsrif s#£s’ (513)

- Z E (LY 1 (f Jutts -5 du)?| B) -
1<js<n s=u+1,....k
JsFJorif ss’

The last relation follows from the identity
E (ij(faju+1a s 7jUk)j7‘7,/:k(f7j1/L—|—17 s ,.71/_%” B) =0
if (Jusis---5Jk) # (Jug1s - - -+ ), which relation holds, since f is a canonical function.
It follows from relation (5.13) that

{w: sup FE (I_Xk(f)2| B) (w) > 2_(3k+3)A2n2k02k+2}
fer

. ) A2p2k g 2k+2
C1<‘< u w¢]§lelgE(In,k(f,JuH,---,Juk) | B) (@) > SEere, e (-
<js<n s=u+l,....k
JeFiuil s#s’
(5.14)
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The probability of the events in the union at the right-hand side of (5.14) can be
estimated with the help of the corollary of Proposition 5 with parameter u < k instead
of k. (We may assume that Proposition 5 holds for u < k.) This corollary yields that

' A20.2k+2 k+u A1/ CutD) (g )e?
P(?ng(nkof Jutts o du)*| B) > =g | <€ (n=we™ (5.15)

Indeed, the expression F (I o (s Justts ooy Juy) ‘ B) can be calculated in the following
way: Take the decoupled U-statistic

I;ik(f,a:wl,...,xk):% Z f<€(1 1,...76(.1{)#,1‘“4_1,...,(11]@)
el I\t s}y
s=1,...,u, js#£jqr if s#s’

(5.16)
of order u with sample size n — k + u, and integrate the square of this function with
respect to the variables ,y1,...,2; by the measure p*~%. The expression at the
left-hand side of (5.15) can be bounded by means of Proposition 5 if we apply it for
our class of functions F considering them as functions on (X" x Y, X" x Y, u" X p)
with (Y, Y, p) = (XF~%, xk=v y*F=). (A small inaccuracy was committed in the above
statement because to define the expression in (5.16) as a U-statistic we should have

divided by u! instead of k!. But this causes no real problem.)
2,2k+2 ktu

We get inequality (5.15) from Proposition 5 by replacing the level AQ(W in
the probability at the left-hand side by A%(n — u)?%c?ut? < A2 PntT e Jast

22k T2)
inequality really holds if the constant K is chosen sufficiently large in the condition

no? > K logn of Proposition 4.
Relations (5.14) and (5.15) imply that

P (Sup E( }B) ) > 27 (3k+3)A2n2k02k+2> < ph—ue= ATV (n—u)o?
feF

and u < k — 1. Hence also inequality (5.12) holds.
Now I prove Lemma 5A.

Proof of Lemma 5A. 1 show with the help of Lemma 3 and Lemma TA that

_ A
P [ sup n=F/2 Lo (f)| > AnF25k 1) < 2P [ sup |S(f)] > =nFokt!
fer fer 2 (5.17)

+ 2knk—1€—A1/<2’“*1>n02/1f

with the function S(f) defined in (5.10). To prove relation (5.17) introduce the random

variables Z(f) = (-1 )'“I{1 """ k}(f) and Z(f) = > (=D)VIHLLY, (f) for
V{1, .k}, V£{1,... .k} ’
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all f € F, the o-algebra B considered in Lemma 7A and the set

B = ﬂ {w sup E( |B) ) <27 (3k+3)A2n2k0_2k:+2} .
VC{l,...k} fer
V#{1,... .k}

Observe that S(f) = Z(f) — Z(f), f € F, B € B, and by Lemma 7A the in-
equality 1 — P(B) < 2hph—1e=AY " Ino®/k 1o]ds. Hence to prove relation (5.17) as a
consequence of Lemma 3 it is enough to show that

_ A
P (|Z(f)| > Enkakﬂ forall f € F ifw e B. (5.18)

DN | =

B) (v <

But P (yf,{k(m > 2—<k+1>Ankak+1\f) (w) <270+ forall f € F,V C {1,...,k},
V #{1,...,k} if w € B by the ‘conditional Chebishev inequality’, hence relation (5.18)
holds.

Lemma 5A follows from relation (5.17), part a) of Lemma 6 and the observation that
the random vectors {I T(:/,f)( f), f € F}, defined in (5.9') have the same distribution for

all V C {1,...,k} as the random vector {I} ,(f), f € F}, considered in the formulation
of Lemma 5A. Hence

A _
P <sup 1S(f)| > §nkak+1> <okp (sup |I,§k(f)| > 2_(k+1)Ankak+l) .
fer fer

In the proof of Lemma 5B I apply the following Lemma 7B which is a version of
Lemma TA.

Lemma 7B. Let us consider a class offunctions F satisfying the conditions of Propo-
sition 5 and the random variables IV K(fy), feF, VC{l,... .k}, defined in for-

mula (5.8). Let B = B( fls), e 7(112, 1 < s < k) denote the o-algebra generated by the
random variables ESS), cee 7(11?9, 1 < s <k, taking part in the definition of the random

variables I_Xk(f, y) and ka(f)
a) ForallV C{1,...,k}, V £A{1,... k}, there exists a number Ay = Ag(k) > 0 such
that the inequality
P (Sup E(HY ( )|B) > 2—(4k+4)A(2k—1)/kn2ko_2k+2> < pk—le=AYno® [k (5.19)
feF

holds for all A > Ay.

b) Given two subsets Vi,Vo C {1,...,k} of the set {1,...,k} define the random inte-
grals

B = [IB ) Tl dy), £ e 7
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with the help of the functions I_Xk(f, y) defined in (5.3). If at least one of the sets
Vi and V4 is not the set {1,...,k}, then there exists some number Ag = Ag(k) >0
such that if the integrals Hy, 1 (f), f € F, determined by this class of functions F
have a good tail behaviour at level T@*+V/2k for some T > Ay, then the inequality

P (sup E(HT(LVé,Vz)U)‘B) > 2—(2k+2)A2n2k0_2k+2) < opk—1lo—AY*no® [k (5.20)
fer '

holds for all A > T.

Proof of Lemma 7B. The proof of part a) of Lemma 7B is similar to that of Lemma 7A,
only the formulas applied in it become a little bit more complicated. Hence I omit it.
(The difference between the power of the parameter A at the right-hand side of formulas
(5.19) and (5.12) appear, since the left-hand side of (5.19) contains the term A(2k—1)/2k
and not A2.) Part b) will be proved with the help of Part a) and the inequality

1/2 1/2
sup E(H' " (£)B) < <sup E(Hxlk<f>|6>) (sup E<H52k<f>|6>>
feF feF feF

which follows from the Schwarz inequality applied for integrals with respect to con-
ditional distributions. Let us assume that V3 # {1,...,k}. Then the last inequality
implies that

P | sup E(H(V];’V2)(f)|l3) > 27 (2k+2) 202k 52k+2
fer "
<P sup E(Hxlk(fﬂlg) > 2—(4k+4)A(2k—1)/kn2k0,2k+2
fer ’
+ P | sup E(H2 (f)|B) > AGkTD/kp2k52h+2 )
fer ’
Hence the estimate (5.19) for V' = V; together with the inequality

P (SUp E(HVZR(fHB) > A(2k+1)/kn2k02k+2> < nk_le_Al/%”Uz/k
fer ’ =

which follows from Part a) if Vo # {1,...,n} (in this case the level AZF+1)/kp2k;2k+2
can be replaced by 2~ (4k+4) A2k=1)/kp2k 52k+2 iy the probability we consider) and from
the conditions of Part b) if Vo = {1,...,k} imply relation (5.20).

Now I prove Lemma 5B.

Proof of Lemma 5B. By Part b) of Lemma 6 it is enough to prove that relation (5.6) holds
if the random variables W ( f) are replaced in it by the random variables W ( f) defined
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in formula (5.11). We shall prove this by applying Lemma 3 with the choice of Z(f) =
H (0, V =L kL Z(D = W) = Z2(), f € F B=BEL .. &l 1< s <
k), and the set

B = ﬂ {w: sup E(HS’/];’Vz)(f”B)(w) < 2—(2k:+2)A2n2k:0_2k+2} '
(V1,Vo):V;C{1,...,k}, j=1,2 fer
Vi#{1l,....,k} or Vo#{1,....k}

By Lemma 7B 1 — P(B)) < 92k+1pk—1=A"*"no®/k and to prove Lemma 5B with
the help of Lemma 3 it is enough to show that

_ A2 1
P (]Z(f)] > 7712]“02('““) B) (w) < 3 for all fe Fifwe B.
To prove this relation observe that
_ AQ
E(1Z()|IB) < > EHP (H)|B) < Tt itweB

(V1,V2):V;C{1,....k}, §=1,2
Vi#{1,....k} or Va#{1,... .k}

for all f € F. Hence the ‘conditional Markov inequality’” implies that
B) <

_ A2
P(]Z(f)]>7n2k02k+2 ifwe B and feF.

DN | —

Lemma 5B is proved.
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6. The proof of Propositions 4 and 5

The proof of Propositions 4 and 5 for general £ > 1 with the help of the symmetrization
lemmas 5A and 5B is similar to the proof of Proposition 4 in the case k£ = 1 presented
in Section 4. The proof applies an induction procedure with respect to the parameter k.
In the proof of Proposition 4 for parameter £ we may assume that Propositions 4 and 5
hold for ¥’ < k. In the proof of Proposition 5 we may also assume that Proposition 4
holds for the parameter k.

In the proof of Proposition 4 let us introduce (with the notation of this proposition)
the functions

. 1
SiwN@j 1Sj<n1<s<k)=5 > a2, [EF,
" 1<js<n, s=1,....k
G if s#s’
(6.1)
where ;s € X, 1 <j <n,1<s <k Fix some number A > T, and define the set H

H:H(A):{($j,571§j§n;1§5§k)7

(6.2)
sup S2 1 (f)(j6, 1 <j<n, 1<s<k)> 2kA4/3nka2}.
fer
We want to show that
Plw: (& (w), 1<j<n 1<s<k)eH})<2ke A" A>T  (6.3)

Relation (6.3) will be proved by means of the Hoeffding decomposition of the U-
statistics with kernel functions f?(z1,...,71), f € F, and by the estimation of the sum
this decomposition yields. More explicitly, write

FPlayn.o)= Y fr(zs,seV) (6.4)
vc{l,....k}
with
fr(@e,s €V) =[] Pus [ Qusf* @1, ), (6.5)
s¢V seV

where P, s and @, s are the operators P, and (), defined in formulas (2.7) and (2.8)
if (Y1 x Z x Y5, X Z X Y3) is the k-fold product (X*, X*) of the measurable space
(X, X) in these definitions, Y7 is the product of the first s — 1 components, Z is the s-th
component and Y5 is the product of the last £ — s components in this product space.

k
(Relation (6.4) follows from the identity f? = [] (Pus + Qpu,s)f? if the multiplications

s=
are carried out in this formula. In the calculation we exploit that the operators P, ,
and P, o are commutative if s # s’, and the same relation holds for the pairs P, ; and

Qus or Qs and P, o or Q, s and Qs .)
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The identity Si,k(f)(fjﬂ” 1<j<n1<r<k)=FkIx(f* holds for all f e F,
and by writing the (Hoeffding type) decomposition (6.4) for each term f2(&;, 1...,&j, &)
in the expression I,, ,(f?) we get that

P (sup Sfl’k(f)(fj,s, 1<j<n, 1<s<k)> QkA4/3nka2>
fer
(6.6)

< >y P (Sup n* =WV, v (Fv)] > A4/3nk02)
k}

fer

with the functions fy defined in (6.5). We want to give a good estimate for all terms in
the sum at the right-hand side in (6.6). For this goal we show that the classes of functions
Fv ={fv: [ € F} satisfy the conditions of Proposition 4 for all V' C {1,... k}.

The functions fy are canonical for all V' C {1,...,k}. (This follows from the
commutativity relations between the operators P, ; and @), ; mentioned before, the
identity P, ;Q,,; = 0 and the fact that the canonical property of the function can be
expressed in the form P, ;fyy = 0 for all j € V.) We have |f2(z1,...,2x)| < 2720+,
The norm of @), ; as a map from the L., space to L space is less than 2, the norm

of P, ; is less than 1, hence eS)l(lpeva(l'j,j c V)| < 27k+2) < o= (k+D) for all V C
xj 5]
{1,...,k}. We have [ f4(21,...,z5)u(dz1) ... p(dzy) < 2=*+D62 hence [ f2(zj,j €
V) 1 w(dz;) <272 < o2 for all V C {1,...,k} by Lemma 1. Finally, to check
jev

that the class of functions Fy = {fy: f € F}is La-dense with exponent L and parameter
D observe that for all probability measures p on (X*, X*) and pairs of functions f,g € F
[(f?—g*)*dp <272 [(f—g)?dp. This implies that if {f1,..., fm}, m < De L isane-
dense subset of F in the space Lao(X*, X*, p), then the set of functions {28 f2,... 2k f2}
is an e-dense subset of the class of functions 7' = {2¥f2: f € F} in the same space.
Then by Lemma 1 and formula (6.5) the set of functions {(f1)v, ..., (fm)v) is an e-dense
subset of the class of functions Fy in the space Lao(X*, X% p) for all V C {1,...,k}.
This means that Fy is also Ls-dense with exponent L and parameter D.

For V =  the relation fy = [ f*(z1,...,z5)p(dzy) ... p(dey) < o2 holds, and
Iv(fiv))| = fv < o*. Therefore the term corresponding to V' = ) in the sum at the
right-hand side of (6.6) equals zero if Ap > 1 in the conditions of Proposition 4. The
terms corresponding to sets V, 1 < |V| < k, in these sums satisfy the inequality

P <sup |I_n,|v|(fv)| > A4/3n|v|a2>
feF

<P (sup L v (fv)] > A4/3n|v|0|v|+1) < Aoty < V| <k.
fer

This inequality follows from the inductive hypothesis if |V| < k, and in the case
= {1,...,k} from the inequality A > T and the assumption that U-statistics de-
termined by a class of functions satisfying the conditions of Proposition 4 have a good
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tail behaviour at level 7%/3. The last relation together with formula (6.6) imply rela-
tion (6.3).

By conditioning the probability P ( fflk(f)‘ > 2_(k+2)Ank/20k+1) with respect to
the random variables §; 5, 1 < j <mn, 1 <s <k, we get with the help of Lemma 2 that

P(‘I_fbk(f)‘ > 2_(k+2)Anko—k+1} §sw)=2j,,1<j<n1<s< k)

(6.7)

A2p2k 5 2(k41) 1/k
< Cexp{ —B
=T eP 22RH1ST (2, 1< j<n1<s<k)

< Ce 2 TVIBAYY S g all fe Foif {ay,, 1<j<n, 1<s<k}¢H

Given some points z;,, 1 < j < n, 1 < s < k, define the probability measures p;,
1 < s < k, uniformly distributed on the set z;,, 1 < j < s, ie. pg(z),) = 1,
1 < j < n, and their product p = p; X --- X pg. If fis a funct1on on (X%, x*) such
that [ f2dp < 82 with some § > 0, then |f(z;)| < onF/2forall1<s<k,1<j<n,

and P (’jfm(f)’ > 5n3’“/2‘ §s=255,1<j<n,1<s< k:) = 0. Choose the numbers

§ = An~k/29=(k+2)gkt1 and § = 2= (k+2)p—k=1/2 < §. (The inequality 6 < 6 holds, since
A> Ay >1,and 0 > n~'/2) Choose a d-dense set {f1,..., fm} in the Ly(X*, X% p)
space with m < D§—F < 2(k+2)LpS+(k+1/2)L elements. Then formula (6.7) implies that

P (Sup I (F)] > 2_(k+1)14nk0k+1’ §js(w)=m55,1<j<n1<s< k‘)
fer

<ZP<| >2(k+2)Ankgk+1)€]8 w) = xjys,1§jgn,1§s§k:> s

< CHDLy SR/ L =27 VEBAY na® e (g ) < j<n 1<s<k}¢H.
Relations (6.3) and (6.8) imply that
P | sup ’I_fl k(f)’ > 27 (kD) gpk ghtt
fer 7

< C2(k+2)Ln,B+(k:+1/2)Le—2_3_4/kBA2/3kn02 + 2k€—A2/3kn02 if A>T.

(6.9)

Proposition 4 follows from the estimates (5.2) and (6.9) if the constants Ag and K in
the condition no? > K (L + ) log n are chosen sufficiently large. In this case the upper
bound these estimates yield for the probability at the left-hand side of (3.11) is smaller
than e=A”" o’

Let us turn to the proof of Proposition 5. By formula (5.8) it is enough to show
that

fer 924k+1[1

foral GeG and Vi,Voe{l,... )k} if A> A

A2
P (sup o o (F1G VA, V)| > ”2k02(k+1)> S (6.10)

37



with the random variables H,, 1 (f|G, V1, V2) defined in formula (5.7). Let us first prove
(6.10) in the case when |e(G)| = k, i.e. if all vertices of the diagram G are an end-point
of some edge, and the expression H,, ,(f|G, V1, V) contains no ‘symmetryzing term’ ¢;.
By the Schwarz inequality

1/2
) )
H, 1 (1G. VAL V)| < 3 / FER €0 ) p(dy)
jl 7]k71<]s<n
Goiur if ss
e (611)

o 0
> [ rEe Rt |

Jise- 5.7k251<.79<n7
JsFjgr if s#s’

for such diagrams G, where 0, = 1if s € V1, 6 = —1if s ¢ V3, and b, = 1if s € Vy,
ds = —1if s ¢ V5. Hence

A2
{w: sup |Hy 1 (f1G, V1, Va) (w)] > nQ’“o—“’““)}

fer ’ 924k+1[1
5 (s A2n2k 52(k+1)
clusw 3 [PE L @) > ST
fef]la 7]k71<36<n, '
JsFjgr if s#s’
2, 2k _2(k+1)
51) S A*n“Fo
Dfwisn 3 [ PER @@ ) > ST
fe]:j ,,,,, Ik, 1<]s<n ’
JsHjer if s#s
The last relation implies that
P | sup |H, k(f|G, V1, Vo)| > A—2n2k02(k+1)
fer ) 24k+1|
A2n2k 52(k+1)
< 2P | sup Z hy(inas- oo Enk) > BV
T€7 4y, gk <ga<n, ' (6.12)

GeAtiur if s’

with the function hg(xq,...,zx) = [ f2(z1,...,25,9)p(dy), f € F. (In this upper
bound we could get rid of the terms §; and 5j, i.e. on the dependence of the expression
H, 1(f|G, Vi, Vs) on the sets V; and Vs, since the probability of the events in the previous
formula do not depend on these terms.)
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I claim that

2

P (sup | Lok (hy)| > Ank02> < kAot g A > Ao (6.13)
fer

if the constant Ay and K are chosen sufficiently large in Proposition 5. Relation (6.13)
2k _2(k+1)

together with the relation “5ifr— > n*o? imply that the probability at the right-hand

side of (6.12) can be bounded by 2k+1e=A""*n0” and the estimate (6.10) holds in the
case |e(G)| = k. Relation (6.13) can be proved similarly to formula (6.3) in the proof of
Proposition 4. It is not difficult to check that 0 < [ hy(z1,...,z5)u(der) ... p(dey) <
o2, sup |hf(zy,...,zx)| < 272D and the class of functions H = {2Fh;, f € F} is
an Lo-dense class with exponent L and parameter D. This means that by applying
the (Hoeffding type) decomposition of the functions hy, f € F, similarly to formula
(6.4) we get such sets of functions (hy)y, f € F for all V' C {1,...,k} which satisfy
the conditions of Proposition 4. Hence a natural adaptation of the estimate given for
the expression at the right-hand side of (6.6) yields the proof of formula (6.13). Let
us observe that by our inductive hypothesis the result of Proposition 4 holds also for
k, and this allows us to carry out the estimates we need also for the class of functions
(hp)y, feF, withV ={1,... k} if A> A,.

In the case e(G) < k formula (6.10) will be proved with the help of Lemma 2. To
carry out this proof first an appropriate expression will be introduced and bounded for
all sets V1,Va C {1,...,k} and diagrams G € G such that |e(G)| < k. To define the
expression we shall bound first some notations will be introduced.

Let us consider the set Jo(G) = Jo(G, k,n),

JO(G) = {(]177]]?7]177]]2)1 S]S:.]; S TL, 1 S S S k? jS #js/ lfS 7é 8/7
.]; #;7;’ if s 7& S’a .js :j.;’ if (578/) € G7 js %]fs’ if (87 SI) ¢ G}7

the set of those sequences (j1, ..., Jk, ji,---,J;) which appear as indices in the summa-
tion in formula (5.7). T introduce a partition of Jy(G) appropriate for our purposes.

To do this first I define the sets M; = Mi(G) = {s(1),...,s(k — |e(G)])} =
{1,...,k} \ v1(G), s(1) < --- < s(k — |e(G)|), and My = My(G) = {5(1),...,5(k —
le(G))} =A{1,...,k} \ va(G), 5(1) < --- < 5(k — |e(G|), the sets of those vertices of the
first and second row of the diagram G in increasing order from which no edges start.
Let us also introduce the set V(G) = V(G,n, k),

VI(G) = {Us)s -+ > Jsth—1e(@))s J5 (1) -+ Tahote(@): L < Js(p)s Top) <
1< p < k— |€(G)|7 js(p) 7é js(p’)a Jé(p) 7é Jé(p/) 1fp #pla 1< p,p/ < k — |€(G)|
Jsp) F Japry L <00 <k —le(G)]},

which is the set consisting from the restriction of the coordinates of the vectors
(jb SRR ajlmji? e 7‘7]/@) € JO(G)
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to M7 U M,. Given a vector v € V(G) let v(r), 1 <r <k —|e(G)], and v(r), 1 <r <
k — |e(G)], denote its coordinates corresponding to the set M; and Ms respectively. Put
Ec() = {1, Jrs 1 sdr):1<js<m, 1 <4, <n, 1<s,s <k,

jo Ay ifs £, LA £,

Jo = 3l i (5,5') € e(G) and 4, £ Jiy if (5,5') ¢ e(G)

Jatry = (1), Gy = 0(), 1 <7 < k= [e(@)}, v e V(G),
where {s(1),...,s(k — |e(G)])} = My, {5(1),...,5(k — |e(G)])} = M in the last line
of this definition. The set Eg(v) contains those vectors in Jy(G) whose coordinates
in M; U My are prescribed by the vector v € V(G), the remaining coordinates can be
put into pairs (s, s’) such that (s,s’) € e(G), and the values js = j.., (s,5") € e(G),
must be different for different pairs, otherwise they can be chosen freely from the set
{]—7 s 7n} \ {1)(1)7 cee 7U(kj - |6(G)|)76(1)7 s 7@(k - |€(G)|)}

Now we define the partition

of the set Jo(G).
The inequality

P (S(FIG, V1, V) > A¥/3n2igt ) < 2k 1em A" ne" i 4 > 4y and e(G) <k (6.14)

will be proved for the random variable

s v = 3 JEGRERY
eV(Q)

fej:v (.71 7]k7]17 7jk)€EG(v)
(81) (dk)
f(gji,lla"‘a ]};Ijk-? ) (dy)) )

where 6, = 1if s €V}, 6, = —1if s ¢ Vi, and 6; = 1 if s € Vo, 6 = —1 if s ¢ V5.
To prove formula (6.14) let us first fix some v € V(G) and apply the Schwarz
inequality. It yields that

d1) 6 51 )
[ € R € nay

(jl ~~~~~ Jk .71 77777 Jk)eEG(U)

< 3 [P atan)

(jl:-“vjkvjia""j];)eEG(v)
51 5
(jl""7jk7ji7"'7j]/€)eEG(v)
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for all v € V(G). Summing up these inequalities for all v € V(G) we get that

S(FIG, Vi, Vo) <sup Y 3 [P etan)

FE€F 0ev(G) \(1roomrinodfrdl)EEG (v)

3 [P )

(jla"'vjk’ji """ J;)EEG(U)

d1) 1
< sup /f2 (€8, . ](k’“,z,y)p(dy)

rer (J1s- 085075 Jk)GJo(G)

sup [ PE e wtay)
fer (J1se-Tk37 5 ,Jk)EJo(G)
(6.15)
To check formula (6.15) we have to observe that by multiplying the inner sum at the left-

hand side of this inequality each term f? (55?11, . ,§§i’f,2,y)f2 (é’j(.f’ll), . E(éklz, y) appears

only once. (In particular, it is determined which index v € V(G) has to be taken in the
outer sum to get this term. The coordinates of this vector v agree with the coordinates
of the vector j = (j1,...,Jk,J1,-- -+ J%) in M7 U M,, with the coordinates of the vector j
which correspond to those vertices from which no edges of the diagram G start.) Beside
this, all these products appear if the multiplications at the right-hand side expression
are carried out.

Relation (6.15) implies that
P(S(F|G, V1, Va) > A8/3p2ksty < op <sup Lux(hy) > A4/3nka2>
feF

with h¢(z1,...,2x) = [ f2(21,..., 2k, y)p(dy). (Here we exploited that in the last
formula S(F|G, Vi, V3) is bounded by the product of two random variables whose dis-
tributions do not depend on the sets V4 and V5.) Thus to prove inequality (6.14) it is
enough to show that

2P | sup I, r(hs) > AY/3pk g2 < 2k+1€_A2/3k if A> A,. 6.16
feF /

Actually formula (6.16) has been already proved, only formula (6.13) has to be applied,
and the parameter A has to be replaced by A*3 in it.

The proof of Proposition 5 can be completed similarly to Proposition 4. It follows
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from Lemma 2 that

n2k 52(k+1)

P (|Hn,k(f|G,V17V2)| Z Sdktag)

Eﬁ,lﬁjﬁn,lﬁsék)(w

< C@_32*(4+2/k)(k!)fl/kAZ/BanQ i S(}-‘G, Vi, Vg)(w) < A8/3n2k04

forall fe F, Geg, le(G)] <k, and Vi,Vo e {l,...,k} if A> A,.
(6.17)
Indeed, in this case the conditional probability considered in (6.17) can be bounded by

4, 4k _4(k+1) 1/2j5 4/3,2k 4k 1/25 .
Cexp {_B (28’“+41?k!)25(J—"|G,V1,V2)> } < Cexp {_B (ésmw) }, where 2j =
2k — 2|e(G)], the number of vertices of the diagram G from which no edges start. Since

j < k, no? > 1, and also % > 1 if Ap is chosen sufficiently large the above

calculation implies relation (6.17).

Let us show that also the inequality

2k 52(k+1)

P (sup |Hn’]€(f|G, Vl,‘/g)| > SYUES YA

fer

gj%;lgjgn@gsgk:)(w)

< OBk L/245 ,—BAY *no® U2/ (g t/k o0 S(FIG, Vi, Va))(w) < A8/32k 4

forall G € G, |e(G)] <1, and Vi,Vo e{l,....k} if A> A
(6.18)
holds.

To prove formula (6.18) let us fix an elementary event w €  which satisfies the
relation S(F|G, Vi, V5))(w) < A8/3n? 6% two sets Vi,Vo C {1,...,k}, a diagram G,
consider the points x(il) = xg-’j;l)(w) = ﬁl)(w), 1<j<n,1<s <k, and introduce
with their help( t)he following probability measures: For all 1 < s < k define the probabil-

1

ity measures vs ’ which are uniformly distributed on the points xg-?j) , 1 <5 <n,and 1/§2)
which are uniformly distributed on the points xg(sss ), 1 <j<n, where 6, =1if s € V7,
ds = —1if s ¢ V4, and similarly b0, =1if seVyand 6, = —1if s ¢ V5. Let us consider
the product measures oy = yfl) X - X 1/,9) X p, Qg = l/§2) X - X y,(f) x p on the product
space (X* x Y, X% x ), where p is that probability measure on (Y,))) which appears

in Proposition 5, together with the measure a = % Given two functions f € F

and g € F we give an upper bound for |H,, ;(f|G, Vi, V2)(w) — Hp k(9]|G, Vi, V2)(w)] if
[(f —g)*da < § with some ¢ > 0. (This bound does not depend on the ‘randomizing
terms’ €;(w) in the definition of the random variable H,, (-|G, V1, V2).)

In this case [(f — g)?da; < 262, and

2
6 o 6 d
Sl a o = o) alf) )| pldy) < 2820,
8 0 é é
/ Pl y) = gl ) )| e dy) < VER*
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for all 1 < s <k, and 1 < j; < n, and the same result holds if all §, is replaced by ds,
1 < s <k. Since |f| <1 for f € F, the condition [(f — g)?da < é* implies that

/ ‘f(»sﬁ-f?f( L) @) ) FES (@), €99(0), )

— g6 @), €PN (@), g€ (@), €7 w), ) |l dy) < 2v20mH 2

for all vectors (j1, ..., Jk, ji,---,J;) which appear as an index in the summation in (5.7),
and

|H, i (FIG, Vi, Vo) (W) — Ha ok (9]G, Vi, Vo) (w)] < 2V/200°F/2

if the originally fixed w € 2 is considered.

= 2 —k/2 _2(k+1) . - .
Put 0 = A;L(4k+—7‘/’2)k,, and 0 = n~GkD/2 < § (since 0 > \/Lﬁ and we may

assume that A > A is sufficiently large), choose a d-dense subset {fi,..., f;n} in the
Ly(XF x Y, X% x Y, ) space with m < D§—L < nGk+DL/248 glements. Relation (6.17)
for these functions together with the above estimates yield formula (6.18).

It follows from relations (6.14) and (6.18) that

P | Hn ik (fIG, V1, V2)| > A o 2(k+1) | < 9k+1,-A*%no?
Jsfelg n.k V1, Vo ST O < e

+Cn(3k+1)L/2+ﬁ€—BA2/3kn02/2(4+2/’“)(k!)l/k it A> Ag

for all V1,Vo C {1,...,k} also in the case |e(G)| < k — 1. This means that relation
(6.10) holds also in this case if the constants Ay and K are chosen sufficiently large in
Proposition 5. Proposition 5 is proved.
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Appendix. The proof of Proposition 3

I shall explain the proof of Proposition 3 in a concise form. A more detailed explanation
can be found in [8].

The proof of Proposition 3. Let us first introduce the (random) probability measures
d¢;, 1 < j < n, concentrated in the sample points ;. We can write p, — p =

1 Zl (6, — u)), and formula (1.2) can be rewritten as
j:

1 /
Jn,k(f):m Z /f(:vl,...,xk)

(jl:"'vjk)
1<js<n for all 1<s<k (Al)

(3¢, (dz1) — p(dzr)) ... (5£jk(d90k) - M(dxk)> :

To rearrange the above sum in a way more appropriate for us let us introduce the
following notations: Let P = P}, denote the set of all partitions of the set {1,2,...,k},
and given a sequence (ji,...,Jk), 1 < js <mn, 1 < s <k, of length k let H(j1,...,Jjk)
denote that partition of Py in which two points s and ¢, 1 < s,¢t < k, belong the
same element of the partition if and only if j; = j;. Given a set A, let |A| denote its
cardinality.

Let us rewrite the expression (A1) for J,, x(f) in the form

/

R D DND DI NS (A2)

PeP  (ji,..0k),
1<js<n, 1<s<k
H(j1,....jk)=P

(5§j1 (dzy) — N(dxl)) e <5€jk(d5’3k) — p( dmk)) .

Let us remember that the diagonals xs = x¢, s # t, were omitted from the domain
of integration in the formula defining J,, x(f). This implies that in the case js = j
the measure d¢; (dws)de,, (dr,) has zero measure in the domain of integration. We
have to understand the cancellation effects caused by this relation. I want to show
that because of these cancellations the expression in formula (A2) can be rewritten as
a linear combination of the degenerate U-statistics I, |y|(fy) defined in (2.11) with
not too large coefficients. This seems to be a natural approach, but the detailed proof
demands some rather unpleasant calculations.

Let us fix some P € P and investigate the inner sum at the right-hand side of (A2)
corresponding to this partition P. For the sake of simplicity let us first consider such
an inner sum that corresponds to a partition P € P which contains a set of the form
{1,...,s} with some s > 2. The products of measures corresponding to the terms
in the sum determined by such a partition contain a part of length s which has the
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form (0¢, (dz1) — p(dzq)) ... (0, (dws) — p(dxs)) with some 1 < j < n. This part of the
product can be rewritten in the domain of integration as

S

> (U ulden) . p(deiea) (B, (day) — p( den)p( daga) - pl das)
=1

+ (=1 Hs = Dp(dzy) . .. p(dxy).

Here we have exploited that all other terms of this product disappear in the domain of
integration. Let us also observe that the term (—1)*"1(s — 1)u(dz1) ... u( dx;) appears
n-times as we sum up for 1 < 57 < n. Similar calculation can be made for all partitions
P € P and all sets contained in the partitions, only the notation of the indices will be
more complicated.

Let us fix a general partition P = {R;,...,R,} € P, and let us rewrite the inner
sum in formula (A2) in a more appropriate form. We can get the proof of Proposition 3
by means of summing up the identities we get in such a way for all P € P. To get
the desired formula fix some vector (ji,...,Jji) such that H(j1,...,jx) = P, and let us
rewrite the multiple integral in the inner sum of (A2) corresponding to this index.

We can get by working out the above mentioned calculation in the general case
that for a vector (j1,...,Jjx) such that H(ji,...,jx) = P the relation

/ Pl i) (8, (day) — () .. (5, (dar) — p(day))
= Z a(V, P)/f(:z:l,...,xk) H (de,. (dzs) — p(dxs)) H p(dxs)

VeT(P) s€V s'e{l,.. . k}\V

(A3)
holds with some appropriate constants a(V, P), where the class 7 (P) which consists
of subsets of {1,...,k} and depends on the partition P = {Ry,..., R,} is defined in
the following way. For all elements R;, 1 <t < u, of the partition P a set V € T(P)
contains zero or 1 elements of the set R;. If Ry = {b;} consists of one elements, then
the set V' contains this point b;. 7 (P) consists of all subsets of {1, ..., k} which satisfy
the two above properties.

The coefficients «(V, P) at the right-hand side of (A3) could be calculated explicitly,
but we do not have to do this. It is enough to know that it depends only on the partition
P and the set V € T(P). Let us also observe that at the right-hand side of (A3) the
prime is missing in the integral, i.e. here integration is taken on the whole space X*,
the diagonals are not taken out from the domain of integration. Indeed, it can be seen
that because of the non-atomic property of the measure u we do not change the value
of the integrals at the right-hand side of (A3) by inserting the diagonals to the domain
of integration.

Formula (A3) can be rewritten in the following way.

//f(azl, o) (B, (der) = p(dan)) . (B, (da) — pu(dr))
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= Z Oé(V, P) H P,u,s’ H Qu,s f(gjsv s € V)

VeT(P) s'e{l,...k\V seV (A4)

Here Q. s = I — P, s is the operator @, defined in (2.8) if Y; is the product of the first
s—1 components of the product space X*, Z is its s-th component and Y5 is the product
of the last k — s components. The operator P, o is the operator P, defined in (2.7) with
the choice of Y7 as the first s’ — 1 components, Z as the s’-th component and Y5 as the
product of the last & — s’ components of the space X*. To see why formula (A4) holds
we have to understand that integration with respect to (d¢, (dzs) — p(das)) means the
application of the operator ), s and then putting the value §; in the argument z,,
while integration with respect to p(dxs ) means the application of the operator P, o .
Beside this, the operators @), s and P, o are exchangeable.

By fixing some V € T(P) and summing up the term corresponding to it at the
right-hand side of formula (A4) for all (j1,...,Jx) such that H(j1,...,jx) = P we get
that

a(V,P) > I Pus [] Qus | f(&.. s€V)=a(V.Pk,n)L v (fv)
(J1seeesdk) s'e{l,...k}\V seV
1<js<n, 1<s<k
H(Jl 7777 Jkﬁ):P
(A5)
where I, |v|(fy) is the U-statistic of order |V'| with the kernel function

fv(zs,s€V) = II  Puoo I Qus| flar.. 2, (A6)

s'ef{l,....,k}\V seV

and the coefficients a(V, P, k,n) at the right-hand side of (A5) are appropriate coeffi-
cients which could be calculated explicitly. But we do not need such a formula. It can
be shown with some work that they satisfy the inequality |@(V, P, k,n)| < D(k)n?("V),
where (P, V) = u — |V] is the number of those components Rs, 1 < s < u, of the
partition P for which R, NV = (), and the constant D(k) < oo depends only on the
multiplicity k of the integral J,, 1 (f). Such an estimate is sufficient for us.

We get from relations (A2), (A4) and (A5) by summing up identity (A5) for all
P e P and V € T(P) that

Jn,k(f) = Z C(nvk7v)n_|V|/2In,|V|(fV) (A7)
vcil,2,... k}

with some coefficients C(n,k, V). Moreover, a careful analysis shows that the above
coefficients satisfy the inequality |C'(n, k, V)| < G(k) with some constant G(k) > 0. The
explicit expression for the coefficients C'(n, k, V') has a rather complicated form, but the
above estimate about their magnitude is sufficient for our purposes. This estimate for
C(k,n,V) is sharp, because for a fixed set V' those partitions P € P which contain the
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|V'| one-point subsets of V' and (k— |V|)/2 subsets of cardinality 2 of {1,...,k}\V yield
a contribution of order n=*/2nk/2=IVI1/2 to the coefficient C(n,k, V)n~IVI/2. A more
careful analysis also shows that for a fixed set V' C {1,...,k} the sequence C(n,k, V)
has a finite limit as n — oo. It is not difficult to see that C(n,k,{1,...,k}) = 1 for
V={l,...,k}.

The definition of the function fy in formula (A6) agrees with the definition of
fv in formula (2.11). Hence formulas (A6), (A7) and the estimates on the coefficients
C(n,k,V) in formula (A7) imply Proposition 3.
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