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Abstract

We take a class of functions F with polynomially increasing covering numbers
on a measurable space (X,X ) together with a sequence of i.i.d. X-valued
random variables ξ1, . . . , ξn, and give a good estimate on the tail behaviour

of sup
f∈F

n
∑

j=1

f(ξj) if the relations sup
x∈X

|f(x)| ≤ 1, Ef(ξ1) = 0 and Ef(ξ1)
2 < σ2

hold with some 0 ≤ σ ≤ 1 for all f ∈ F . Roughly speaking this estimate
states that under some natural conditions the above supremum is not much
larger than the largest element taking part in it. The proof heavily depends
on the main result of paper [6]. We also present an example that shows that
our results are sharp, and compare them with results of earlier papers.
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1. Introduction.

The main result of this paper is an estimate about the tail-distribution of
the supremum of sums of i.i.d. random variables presented in Theorem 1
together with an extension of it that provides an estimate for this tail-
distribution in some cases not covered in Theorem 1. At first glance these
results may look rather complicated, but as I try to explain in Section 2 they
yield sharp estimates under natural conditions. They express such a fact that
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Preprint submitted to Stochastic Processes and their Applications September 13, 2022



under some natural conditions we can get an almost as good bound for the
supremum of an appropriately defined class of random sums as for one term
taking part in this supremum. Before presenting these results I recall the
definition of uniform covering numbers and classes of functions with poly-
nomially increasing covering numbers, since they appear in the formulation
of our results. Here I define the notion of uniform covering numbers, unlike
to [6], with respect to all Lp-norms, p ≥ 1, because in some arguments I shall
apply it for p = 2 and not for p = 1.

Definition of uniform covering numbers with respect to Lp-norms.

Let a measurable space (X,X ) be given together with a class of measurable,
real valued functions F on this space. The uniform covering number of this
class of functions at level ε, ε > 0, with respect to the Lp-norm, 1 ≤ p <
∞, is sup

ν
N (ε,F , Lp(ν)), where the supremum is taken for all probability

measures ν on the space (X,X ), and N (ε,F , Lp(ν)) is the smallest integer
m for which there exist some functions fj ∈ F , 1 ≤ j ≤ m, such that
min

1≤j≤m

∫

|f − fj|p dν ≤ εp for all f ∈ F .

Definition of a class of functions with polynomially increasing cov-

ering numbers. We say that a class of functions F has polynomially in-
creasing covering numbers with parameterD and exponent L if the inequality

sup
ν

N (ε,F , L1(ν)) ≤ Dε−L (1)

holds for all 0 < ε ≤ 1 with the number sup
ν

N (ε,F , L1(ν)) introduced in the

previous definition with parameter p = 1.

Theorem 1 yields the following estimate.

Theorem 1. Let a sequence of independent, identically distributed random
variables ξ1, . . . , ξn, n ≥ 2, be given with values in a measurable space (X,X )
with some distribution µ together with a countable class of functions F on the
same space (X,X ) which has polynomially increasing covering numbers with
parameter D ≥ 1 and exponent L ≥ 1. Let the class of functions F satisfy
also the relations sup

x∈X
|f(x)| ≤ 1,

∫

f(x)µ( dx) = 0, and
∫

f 2(x)µ( dx) ≤ σ2

with some number 0 ≤ σ2 ≤ 1 for all f ∈ F . Define the normalized random

sums Sn(f) =
1√
n

n
∑

j=1

f(ξj) for all f ∈ F . There are some universal constants
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Cj > 0, 1 ≤ j ≤ 5, (such that also the inequality C2 < 1 holds), for which
the inequality

P

(

sup
f∈F

|Sn(f)| ≥ v

)

≤ C1e
−C2

√
nv log(v/

√
nσ2) for all v ≥ u(σ) (2)

holds if one of the following conditions is satisfied.

(a) σ2 ≤ 1
n400 , and u(σ) = C3√

n
(L+ logD

logn
),

(b) 1
n400 < σ2 ≤ logn

8n
, and u(σ) = C4√

n

(

L log n

log( logn

nσ2 )
+ logD

)

,

(c) logn
8n

< σ2 ≤ 1, and u(σ) = C5√
n
(nσ2 + L log n+ logD).

I complete the result of Theorem 1 with an extension which almost agrees

with Theorem 4.1 in [5]. It yields an estimate for P

(

sup
f∈F

|Sn(f)| ≥ v

)

in

cases not covered in Theorem 1. In case (c) it enlarges the set of levels v for
which a good estimate can be given for the probability at the left-hand side
of (2). I discuss this result to give a more complete solution of the problem
discussed in Theorem 1. Besides, it may be interesting to understand what
kind of tools are applied in its proof.

Extension of Theorem 1. Let us consider, similarly to Theorem 1, a
sequence of independent, identically distributed random variables ξ1, . . . , ξn,
n ≥ 2, with values in a measurable space (X,X ) with some distribution µ
together with a countable class of functions F on the same space (X,X ),
which has polynomially increasing covering numbers with parameter D ≥ 1
and exponent L ≥ 1, and such that sup

x∈X
|f(x)| ≤ 1,

∫

f(x)µ( dx) = 0, and
∫

f 2(x)µ( dx) ≤ σ2 with some number 0 ≤ σ2 ≤ 1 for all f ∈ F . The
supremum of the normalized sums Sn(f), f ∈ F , introduced in Theorem 1
satisfies the inequality

P

(

sup
f∈F

|Sn(f)| ≥ v

)

≤ C exp

{

−α
v2

σ2

}

(3)

with appropriate (universal) constants α > 0, C > 0 and C6 > 0 if logn
8n

<
σ2 ≤ 1, and

√
nσ2 ≥ v ≥ ū(σ), where ū(σ) is defined as

ū(σ) = C6σ

(

L3/4 log1/2
2

σ
+ (logD)1/2

)

.
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The value logn
8n

determining the boundary between cases (b) and (c) in

Theorem 1 could be replaced by α log n
n

with an arbitrary number 0 < α < 1.
To see this one has to check that the formula defining u(σ) in cases (b) and (c)
give a value of the same order if σ2 ∼ α log n

n
with 0 < α < 1. I chose the

parameter α = 1
8
because some calculations were simpler with such a choice.

Let me remark that a similar statement holds for the value of boundary n−200

between cases (a) and (b). This could have been replaced by n−β with any
β > 1.

In Section 2 I try to explain why the above results are natural. I present
an example which shows that Theorem 1 and its Extension are sharp. There
are models satisfying the conditions of these results for which these results
would not hold any longer if we replaced the functions u(σ) = u(σ, n) or ū(σ)
by a much smaller function. More explicitly, they would become invalid if we
replaced the function u(σ, n) by a function v(σ, n) such that lim

n→∞
v(n,σ)
u(n,σ)

= 0,

or ū(σ) by a function v̄(σ) such that lim
σ→0

v̄(σ)
ū(σ)

= 0. (Because of the condition

ū(σ) ≤ v ≤ √
nσ2 in the Extension of Theorem 1 the value of ū(σ) for small

values σ is interesting only in the case of large sample size n.) In Section 3
I present the proof of Theorem 1 and its Extension. In Section 4 I discuss
the content of these results in more detail. I explain the main problems and
ideas behind them, and I also make a comparison with the results of earlier
works.

2. Discussion on the conditions of these results.

We defined with the help of a sequence of i.i.d. random variables ξ1, . . . , ξn
on a measurable space (X,X ) and a class of functions F with polynomially
increasing covering numbers on the same space (X,X ) the random sums
Sn(f) for all f ∈ F , and wanted to give a good estimate on the tail distribu-

tion Pn(v) = P

(

sup
f∈F

|Sn(f)| > v

)

of the supremum of these random sums at

all levels v > 0 if the conditions sup
x∈X

|f(x)| ≤ 1, Ef(ξ1) = 0 and Ef 2(ξ1) ≤ σ2

hold with some number 0 ≤ σ ≤ 1 for all functions f ∈ F . In particular,
we were interested in the dependence of this estimate on the number σ. In
this section I discuss the sharpness of our results, and present an example
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that indicates that the estimates given in Theorem 1 and in its Extension
are sharp.

Although I gave an estimate for the supremum of a class of random sums
defined with the help of a class of functions F which has polynomially in-
creasing covering numbers with arbitrary exponent L and parameter D, I
was mainly interested in the special case when these parameters L and D
are bounded, more precisely when they have a bound not depending on the
parameter σ. In this case the functions u(σ) and ū(σ) in Theorem 1 and
in its Extension have a simpler form. Namely, we can choose u(σ) = C3√

n

in case (a), u(σ) = C4√
n

logn

log logn

nσ2

in case (b), u(σ) = C5

√
nσ2 in case (c), and

ū(σ) = C6σ log1/2 2
σ
in the Extension of Theorem 1. In this section I present

an example that indicates that our results are sharp in this case. I shall call
the estimates in these results sharp, because only the value of the universal
constants appearing in them can be improved. I do not try to find the opti-
mal value of these constants, but I want to present such an example where
these estimates cannot be improved in any other respect. In particular, I
shall show that the estimates in this example do not hold any longer if we
replace the coefficients Cj in the definition of the quantities u(σ) and ū(σ)
with very small positive constant, because after such a replacement the prob-
abilities Pn(v) would be very close to one at level v = u(σ) or v = ū(σ) at
large sample size n. I shall consider the following example.

Example. Take a sequence of independent, uniformly distributed random
variables ξ1, . . . , ξn on the unit interval [0, 1], fix a number 0 ≤ σ2 ≤ 1, and
define a class of functions Fσ and F̄σ with functions defined on the unit
interval [0, 1] in the following way. Fσ = {f1, . . . , fk}, and F̄ = {f̄1, . . . , f̄k}
with k = k(σ) = [ 1

σ2 ], where [·] denotes integer part, and f̄j(x) = f̄j(x|σ) = 1
if x ∈ [(j − 1)σ2, jσ2), f̄j(x) = f̄j(x|σ) = 0 if x /∈ [(j − 1)σ2, jσ2), 1 ≤ j ≤ k,
and fj(x) = fj(x|σ) = f̄j(x)− σ2, 1 ≤ j ≤ n.

It can be seen that Fσ satisfies the conditions of Theorem 1 with Ef(ξj) ≤
σ2 for all f ∈ Fσ. In particular, it has polynomially increasing covering
numbers with such a parameter D and exponent L that can be bounded by
numbers not depending on σ2. This can be seen directly, but it is also a
consequence of some classical results by which the indicator functions of a
Vapnik–Červonenkis class of sets constitute a class of functions with poly-
nomially increasing covering numbers. (See e.g. Theorem 5.2 in [5]). I shall
show that the sequence of random variables ξ1, . . . , ξn and class of functions
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F in the above example have the following property.

An estimate on the function Pn(v) in the models of the above Ex-

ample. A number C̄ > 0 can be chosen in such a way that for all δ > 0
there is an index n0(δ) such that for all sample sizes n ≥ n0(δ) and numbers
0 ≤ σ ≤ 1 the inequality

Pn(û(σ)) = P

(

sup
f∈Fσ

|Sn(f)| ≥ û(σ)

)

≥ 1− δ, (4)

holds with û(σ) = C̄√
n
in case (a), i.e. if σ2 ≤ n−400, û(σ) = C̄√

n
log n

log( logn

nσ2 )
in

case (b), i.e. if n−400 < σ2 ≤ logn
8n

, and û(σ) = C̄σ log1/2 2
σ
in case (c) i.e. if

logn
8n

≤ σ2 ≤ 1.

In Theorem 1 and in its Extension we gave a good estimate for Pn(v) if
v ≥ u(σ) in cases (a) and (b), and v ≥ ū(σ) in case (c), while in formula (4) I
claimed that there are such models satisfying the conditions of these results
for which no good estimate holds for Pn(û(σ)), if we define the function
û(σ) by replacing the coefficients Cj by a sufficiently small constant C̄ in
their definition. Let me recall that here we restricted our attention to the
case when the exponent L and parameter D of the polynomially increasing
covering numbers of the class of functions Fσ we considered are bounded by
a constant not depending on the parameter σ. Actually, in the case (c) we
have to explain the estimate on Pn(v) in more detail. In this case we have
to compare the estimates given by Theorem 1 and its Extension.

It may happen that
√
nσ2 ≥ ū(σ), and in this case the estimate (3) of

the Extension of Theorem 1 is an empty statement. I claim that in this
case we can replace the condition v ≥ u(σ) by the condition v ≥ ū(σ) in
case (c) of Theorem 1 with an appropriate constant C6 in the definition of
ū(σ), and Theorem 1 remains valid after such a modification. To show this
it is enough to check that u(σ) and ū(σ) have the same order of magnitude
in this case, i.e. there are universal constants C ′ > 0 and C ′′ > 0 such that
C ′ū(σ) ≤ u(σ) ≤ C ′′ū(σ).

We have ū(σ) ≤ √
nσ2 = 1

C5
u(σ) in this case, which implies the first

inequality. On the other hand, σ2 ≥ logn
8n

in case (c), hence as some calcu-

lation shows ū(σ) = C6σ log1/2 2
σ
≥ const.

√
nσ2. This implies the second

inequality.
If
√
nσ2 ≥ ū(σ), and the estimate (3) is not an empty statement, then we

can give a good estimate for Pn(v) for all v ≥ ū(σ), i.e. also if u(σ) ≥ v ≥

6



√
nσ2, in a case which was covered neither in Theorem 1 nor in its Extension.

In this case we have C6

√
nσ2 ≥ v, and we can write the following inequality

by means of relation (3) with the choice v =
√
nσ2.

P

(

sup
f∈F

|Sn(f)| ≥ v

)

≤ P

(

sup
f∈F

|Sn(f)| ≥
√
nσ2

)

≤ Ce−αnσ2 ≤ Ce−ᾱv2/σ2

,

with some ᾱ > 0, i.e. relation (3) holds (with a possible different parameter
ᾱ > 0) for all u(σ) ≥ v ≥ ū(σ).

To understand the content of Theorem 1 and its Extension together with
the estimate on the function Pn(v) in the models of the Example formulated
above it may be useful to recall a result called the concentration inequality
for the supremum of sums of i.i.d. random variables. (See e.g. [11]). It states
that there is a concentration point of the tail distribution of the supremum
of sums of i.i.d. random variables. This concentration point has the property
that the supremum is strongly concentrated in a small neighbourhood of it.
I do not formulate this result in a more precise and detailed form, because
we need it here only for the sake of some orientation. The problem with its
application is that this result determines the concentration point only in an
implicit way, as the expected value of the supremum we are investigating,
and we cannot calculate it explicitly in the general case. On the other hand,
the concentration inequality implies that we can get a good, non-trivial es-
timate for the tail distribution of the supremum of sums of i.i.d. random
variables only at levels higher than their concentration point. (Otherwise we
cannot give a better estimate for the tail distribution than the trivial upper
bound 1.) The number u(σ) defined in Theorem 1 is an upper bound for
the concentration point in cases (a) and (b), while the number ū(σ) defined
the Extension of Theorem 1 is an upper bound for it in the case (c). On
the other hand, the number û(σ) introduced in formula (4) is a lower bound
for the concentration point in the models introduced in the Example. So
in this case we have determined the concentration point up to a (universal)
multiplying constant.

Thus the functions u(σ) and ū(σ) can be considered as good upper bounds
on the concentration point of the supremum of the random sums Sn(f),
f ∈ F , if the conditions of Theorem 1 and its Extension are satisfied. In
formulas (2) and (3) we also gave an estimate on the function Pn(v), i.e.
on the tail distribution of the supremum we are investigating for v ≥ u(σ)
or v ≥ ū(σ). We can say that this estimate is also sharp, we cannot get a
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better bound (if we disregard the value of the universal constants C1, C2) in
formula (2) and C and α in formula (3) even if we took a single normalized
sum Sn(f) whose terms f(ξj) have variance Ef(ξj)

2 = σ2.
Indeed, if we disregard the value of the universal constants appearing in

our estimates, then we can say that formula (2) yields such an estimate for the
tail distribution Pn(v) as Bennett’s inequality yields for the tail distribution
of a single term Sn(f) if the terms in this normalized sum have variance σ2.
At least this is the case if we consider the estimate of Bennett’s inequality at
level v ≥ 2

√
nσ2. (This follows e.g. from formula (10) in this paper. Here we

recalled Bennett’s inequality, and formula (10) is a part of it.) On the other
hand, we considered in Theorem 1 only such levels v where this condition
is satisfied, since u(σ) ≥ 2

√
nσ in all cases of Theorem 1. Moreover, there

are examples that show that inequality (10) is sharp, we cannot get a better
estimate without some additional restrictions. (See Example 3.3 in [5]). In
inequality (3) we gave a Gaussian type upper bound, and this is also a sharp
estimate if we disregard the value of the absolute constants in it.

To complete this section we still have to show that the model introduced
in the Example satisfies formula (4). This will be done in the following proof.

The proof of the estimate on the function Pn(v) formulated about the models
in the Example of this Section. In the proof of relation (4) we introduce the
following notation. Define the empirical distribution function Fn(x) of the
random variables ξ1, . . . , ξn, i.e. put

Fn(x) =
1

n
{the number of indices j, 1 ≤ j ≤ n, such that ξj < x}

for all 0 < x ≤ 1, and take its normalization Gn(x) =
√
n(Fn(x) − x),

0 < x ≤ 1. Observe that
{

sup
f∈Fσ

|Sn(f)| ≥ û(σ)

}

=

{

max
1≤j≤k(σ)

|Gn(jσ
2)−Gn((j − 1)σ2)| ≥ û(σ)

}

.

(5)
By a classical results of probability theory, the normalized empirical distri-
bution functions converge weakly to the Brownian bridge as n → ∞. In our
next considerations it will be also interesting that the modulus of continuity
of a Brownian bridge, (which actually agrees with the modulus of continuity
of a Wiener process) can be also calculated, (see e.g. [8]). By a similar, but
simpler calculation we can estimate the probability of the event we get by
replacing the normalized empirical distribution function Gn(·) by a Brownian
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bridge in the right-hand side expression of (5). This is actually done with
the choice û(σ) = C̄σ log1/2 2

σ
in the fourth chapter of [5] (page 27), and it

is shown that this probability is almost one for large parameters n for all
σ > 0 if the coefficient C̄ of û(σ) is chosen sufficiently small. (Actually we
have to choose C̄ <

√
2.) Let us call this estimate the Gaussian version of

formula (4). At a heuristic level this result together with formula (5) and the
weak convergence of the normalized empirical processes Gn(·) to a Brownian
bridge suggests that formula (4) should hold with û(σ) = C̄σ log1/2 2

σ
and a

small coefficient C̄ > 0.
This heuristic argument is nevertheless misleading, since the weak con-

vergence of the empirical processes Gn(·) to the Brownian bridge in itself
does not allow to carry out a limiting procedure that leads to formula (4).
On the other hand, a stronger version of the weak convergence of the nor-
malized empirical processes (see [4]) yields a useful result in this direction.
This result states that a normalized empirical process Gn(x) and a Brow-
nian bridge B(x), 0 ≤ x ≤ 1, can be constructed in such a way that
sup

0≤x≤1
|B(x) − Gn(x)| ≤ K logn√

n
for all n ≥ 2 and sufficiently large K > 0

with probability almost 1. This result together with the Gaussian version of
formula (4) imply the validity of formula (4) if σ2 ≥ B logn

2n
with a sufficiently

large B > 0. Indeed, in this case û(σ) ≥ 2K logn√
n
, hence the Gaussian version

of formula of (4) together with the result of [4] imply that

P

(

max
1≤j≤k(σ)

|Gn(jσ
2)−Gn((j − 1)σ2)| ≥ û(σ)

2

)

≥ 1− δ

if σ2 ≥ B logn
n

, and n ≥ n0(δ), hence inequality (4) holds in this case if
we choose C̄ > 0 sufficiently small in the definition of û(σ). Moreover,
this relation also holds for all σ2 ≥ logn

8n
, i.e. in the case (c) if we choose

û(σ) = C̄σ log1/2 2
σ
with a sufficiently small Ĉ > 0. To see this it is enough to

observe that if max
1≤j≤k(σ)

|Gn(jσ
2)−Gn((j−1)σ2)| ≤ û(σ), then for any positive

integers A we have max
1≤j≤k(

√
Aσ)

|Gn(j(Aσ))− Gn((j − 1)(Aσ))| ≤ Aû(σ), and

that the corresponding result holds if σ2 ≥ B logn
8n

.
In cases (a) and (b) the above Gaussian approximation argument does not

work. Moreover, inequality (4) holds only with a different function û(σ) in
these cases. In case (b) we shall prove formula (4) by means of a Poissonian
approximation method described below. It can be considered as a more
detailed elaboration of the argument in Example 4.3 of [5].
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In this argument first we consider the following problem. Take a Poisson
process Zn(t), 0 ≤ t ≤ 1, with parameter n, (i.e. let EZn(t) = nt for
all 0 ≤ t ≤ 1) in the interval [0, 1]. Fix some number 0 ≤ σ2 ≤ 1

7
log n
n

,

and define with its help the number û(σ) = û(σ, n) = 3
4
√
n

log n

log( logn

nσ2 )
and the

random variables V̄j = V̄
(n)
j (σ) = Zn(jσ

2)−Zn((j−1)σ2) for 1 ≤ j ≤ k with

k = k(σ) = [ 1
σ2 ]. (Here we defined û(σ) similarly to the quantity introduced

with the same notation at the formulation of inequality (4) in the case (b).
We only made small modifications. Namely, we considered σ2 in the interval
[0, logn

7n
] instead of the interval [ 1

n200 ,
logn
8n

], and we fixed the value C̄ = 3
4
in the

definition of û(σ).) We shall show that for all δ > 0 there is some threshold
index n0(δ) such that the inequality

P

(

max
1≤j≤k(σ)

V̄
(n)
j (σ) ≥ √

nû(σ, n)

)

≥ 1− δ if n ≥ n0(δ) (6)

holds for all 0 ≤ σ2 ≤ 1
7
log n
n

.
To prove this inequality let us first observe that

P

(

max
1≤j≤k(σ)

V̄
(n)
j (σ) ≥ √

nû(σ, n)

)

≥ P (V̄
(n)
j (σ) =

√
nû(σ, n) for some 1 ≤ j ≤ k)

= 1− P (V̄
(n)
1 (σ) 6= √

nû(σ, n))k,

and

P (V̄
(n)
1 (σ) 6= √

nû(σ, n)) = 1− P (V̄
(n)
1 (σ) =

√
nû(σ, n))

= 1− (nσ2)
√
nû(σ,n)

(
√
nû(σ, n))!

e−nσ2 ≤ 1−
(

nσ2

√
nû(σ, n)

)

√
nû(σ,n)

e−nσ2

.

Since we have k = [ 1
σ2 ] we can bound the left-hand side of (6) from below as

P

(

max
1≤j≤k(σ)

V̄
(n)
j (σ)

√
nû(σ, n)

)

≥ 1−
[

1−
(

nσ2

√
nû(σ, n)

)

√
nû(σ,n)

e−nσ2

]1/σ2

≥ 1− e−T
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with T = 1
σ2

(

nσ2
√
nû(σ,n)

)

√
nû(σ,n)

e−nσ2

. Hence to prove (6) it is enough to show

that
(

nσ2

√
nû(σ, n)

)

√
nû(σ,n)

≥ σ2enσ
2

log
1

δ
if n ≥ n0(δ). (7)

The right-hand side of (7) can be bounded from above as

σ2enσ
2

log
1

δ
=

log 1
δ

n
(nσ2)enσ

2 ≤ log 1
δ

n

(

1

7
log n

)

e(logn)/7 ≤ n−5/6

if n ≥ n0(δ), since nσ2 ≤ 1
7
log n, and log 1

δ
≤ n1/100 for n ≥ n0(δ). Hence we

prove (7) if we show that
√
nû(σ, n)

nσ2
log

(√
nû(σ, n)

nσ2

)

≤ 5

6

log n

nσ2
.

By applying the definition of û(σ, n) and introducing the quantity z = 3
4
logn
nσ2

we can rewrite the last inequality as z
log( 4z

3
)
log( z

log( 4z
3
)
) ≤ 10

9
z, or since z ≥ 21

4

in the case we are investigating it can be rewritten as 1
9
log 4z

3
≥ − log log 4z

3
−

log 4
3
if z ≥ 21

4
, and this relation clearly holds. Thus we proved (6).

We shall prove relation (4) in the case (b) by means of formula (6) for
a Poisson process with parameter 99

100
n instead of n and a simple coupling

argument between an empirical process and a Poisson process. Namely, we
make the following coupling. Let us consider a sequence of independent ran-
dom variables ξ1, ξ2 . . . with uniform distribution on the unit interval [0, 1]
together with a Poissonian random variable η = ηn with parameter 99

100
n

independent of the random variables ξj, j = 1, 2, . . ., and take the first ηn
terms of the random variables ξj, i.e. the sequence ξ1, ξ2, . . . , ξηn with the
random stopping index ηn. In such a way we constructed a Poisson process
with parameter 99

100
n, which is smaller than the (non-normalized) empirical

distribution of the sequence ξ1, . . . , ξn in the following sense. For large pa-
rameter n with probability almost 1 all intervals [a, b] ⊂ [0, 1] contain more
points from the sequence ξ1, . . . , ξn than from the above constructed Poisson
process. This is a simple consequence of the fact that P (ηn > n) → 0 as
n → ∞.

The above coupling construction and formula (6) (with a Poisson process
with parameter 99

100
) imply that

P

(

sup
f̄∈F̄σ

√
nSn(f̄) ≥

√

99

100
nû

(

σ,
99

100
n

)

)

≥ 1− δ if n ≥ n0(δ)

11



with the class of functions F̄σ introduced before the formulation (4) and the
function û(σ, n) defined in the estimate about the models of the Example in
case (b). To complete the proof of (4) in the case (b) it is enough to check
that the above relation remains valid if the class of functions F̄σ is replaced

by the class of functions Fσ and the term
√

99
100

nû(σ, 99
100

n) is replaced by
√
nû(σ, n) = C̄ log n

log( logn

nσ2 )
with some appropriate C̄ > 0. Since the functions

f ∈ F are of the form f(x) = f̄(x) − σ2 with some f̄ ∈ F , the identity√
nSn(f) =

√
nSn(f̄) − nσ2 holds, and to prove the desired relation it is

enough to check that
√

99

100

3

4

log n

log( log n
99
100

nσ2 )
− nσ2 ≥

√

99

100

3

4

log n

log( logn
nσ2 )

− nσ2 ≥ C̄
log n

log( logn
nσ2 )

with some appropriate C̄ > 0 if 8nσ2 ≤ log n. The first inequality clearly
holds, and the second inequality is equivalent to the relation

√

99

100

3

4

log n
nσ2

log( logn
nσ2 )

≥ α

with some α > 1. But this relation clearly holds if 8nσ2 ≤ log n. Thus we
have proved (4) also in case (b).

In the case (a) the proof of (4) is very simple. It is enough to observe that
the sample points ξj fall into one of the intervals [(j − 1)σ2, jσ2), 1 ≤ j ≤ k,
(we disregard the event that they fall into the last interval [kσ2, 1) which has
negligibly small probability), hence

P

(

sup
f̄∈F̄σ

√
nSn(f̄) ≥ 1

)

≥ 1− δ if n ≥ n0(δ),

and since σ2 is very small for large n relation (4) holds in case (a) with
C̄ = 1− ε for any ε > 0.

I finish this section with some remarks on the paper [2], about whose
existence I learned only after finishing this work. Theorem 4 in Section 2
of that paper contains an almost sure limit theorem on the appropriately
normalized supremum of the increase of the empirical distribution functions
Fn, n = 1, 2, . . ., of a sequence of i.i.d. random variables in small intervals if
these i.i.d. random variables are uniformly distributed in the interval [0, 1].

12



Here we take the supremum of Fn for all subintervals of [0, 1] whose length
is smaller than a prescribed number an. Actually paper [2] contains a more
general result, but its application about the growth of the empirical distribu-
tion functions in small intervals seems to be its most interesting application.
I do not give a precise formulation of Theorem 4 in [2], I omit its rather tech-
nical conditions. In particular, I do not describe what kind of conditions the
number an must satisfy in this theorem. I only want to make some comments
about its relation to the result about the model in our Example.

If we look carefully at the result of [2], then we can understand that it
gives an improved version of the statement about the properties of the model
discussed in the Example of this section in case (b). It enables us to define
such a function û(σ) in this case for which even the relation

P

(

(1− ε)û(σ) ≤ sup
f∈Fσ

|Sn(f)| ≤ (1 + ε)û(σ)

)

→ 1

holds for all ε > 0 if n → ∞, and σ = σ(n) satisfies the relation n−400 ≤
σ2 ≤ log n

8n
. This means that in this case we can determine the value of the

concentration point precisely and not only up to a multiplicative constant.
Actually a precise explanation of this statement demands the elaboration of
some technical details, but I omit this.

Finally I remark that our approach to the problem studied in this section
is essentially different from that of [2]. In that paper the results are proved
by means of some deep inequalities contained in earlier results, while here
I tried to explain that they can be proved by means of a good Poissonian
coupling. This may explain the situation better, and this approach seems to
be appropriate also for the proof of the results in [2].

3. Proof of Theorem 1 and its extension.

Proof of Theorem 1. In the case (a) inequality (2) is a simple consequence
of Theorem 1 in [6]. We can apply this result by writing σ instead of ρ in its

formulation, since
(∫

|f(x)|µ( dx)
)2 ≤

∫

f 2(x)µ( dx) ≤ σ2 by the Cauchy–
Schwarz inequality. Hence under the conditions of Theorem 1 the inequality
∫

|f(x)|µ( dx) ≤ ρ holds for all f ∈ F with ρ = σ, and by Theorem 1 of [6]

P

(

sup
f∈F

|Sn(f)| ≥ v

)

≤ De−
1
25

√
nv log(σ−2) if v ≥ C̄√

n
L and σ2 ≤ 1

n400
(8)

13



with an appropriate C̄ > 0. (Here we apply a division by
√
n in the definition

of Sn(f), which was not done in [6], and this causes some difference in the
formulas.)

I claim that we can drop the coefficientD at the right-hand side of (8) if we
replace the coefficient 1

25
by 1

50
in the exponent, we choose such a constant

C̄ in (8) for which C̄ ≥ 1
8
, and exploit that by condition (a) v ≥ u(σ) ≥

C̄√
n
(L+ logD

logn
). To show this it is enough to check that D ≤ e

√
nv log(σ−2)/50 in

this case. This relation holds, since logD
logn

≤ 8
√
nv, and log(σ−2) ≥ 400 log n,

thus D = exp{ 1
400

( logD
logn

)(400 log n)} ≤ exp{ 1
50

√
nv log(σ−2)}, as I claimed.

Next I show that formula (8) or its previous modification remains valid
if we replace log(σ−2) by log( v√

nσ2 ) in the exponent of its right-hand side. In

the proof of this statement we can restrict our attention to the case v ≤ √
n,

since otherwise the probability at the left-hand side of (8) equals zero. In this
case the inequality σ−2 ≥ v√

nσ2 holds, and this allows the above replacement.

The above modifications of formula (8) imply inequality (2) in case (a).

Remark. If we are not interested in the value of the (universal) constants
in (2), then in the case (a) this inequality has the same strength if we replace
the term log(v/

√
nσ2) by log(σ−2) in it. To see this, observe that beside the

inequality σ−2 ≥ v√
nσ2 (if v ≤ √

n), the inequality v√
nσ2 ≥ 1

nσ2 ≥ σ−2+1/200

also holds in case (a) because of the inequalities v ≥ u(σ) ≥ n−1/2 and
n−200 ≥ σ2. The original form of (2) has the advantage that it simultaneously
holds in all cases (a), (b) and (c).

The proof of Theorem 1 in cases (b) and (c). We exploit that the class of
functions F satisfies (1). We use this relation with the choice ε = n−400

and the measure µ instead of sup
ν
. We may find in such a way m ≤ Dn400L

functions fj ∈ F , 1 ≤ j ≤ m, such that min
1≤j≤m

∫

|fj(x)− f(x)|µ( dx) ≤ n−400

for all f ∈ F . This means that F =
m
⋃

j=1

Dj, m ≤ Dn400, with

Dj =

{

f : f ∈ F ,

∫

|fj(x)− f(x)|µ( dx) ≤ n−400

}

,

and as a consequence

P

(

sup
f∈F

|Sn(f)| ≥ v

)

(9)
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≤
m
∑

j=1

P
(

|Sn(fj)| ≥
v

2

)

+
m
∑

j=1

P

(

sup
f∈Dj

|Sn(f − fj)| ≥
v

2

)

for all v > 0. We shall estimate both terms at the right-hand side of (9) if
v ≥ u(σ), the first term by means of Bennett’s inequality, more precisely by
a consequence of it formulated below, and the second term by means of the
already proved case (a) of Theorem 1. We shall apply the following version
of Bennett’s inequality, see [5].

Bennett’s inequality. Let X1, . . . , Xn be independent and identically dis-
tributed random variables such that P (|X1| ≤ 1) = 1, EX1 = 0 and EX2

1 ≤
σ2 with some 0 ≤ σ ≤ 1. Put Sn = 1√

n

n
∑

j=1

Xj. Then

P (Sn > v) ≤ exp

{

−nσ2

[(

1 +
v√
nσ2

)

log

(

1 +
v√
nσ2

)

− v√
nσ2

]}

for all v > 0. As a consequence, for all ε > 0 there exists some B = B(ε) > 0
such that

P (Sn > v) ≤ exp

{

−(1− ε)
√
nv log

v√
nσ2

}

if v > B
√
nσ2,

and there exists some positive constant K > 0 such that

P (Sn > v) ≤ exp

{

−K
√
nv log

v√
nσ2

}

if v > 2
√
nσ2. (10)

The above result is a special case of Theorem 3.2 in [5] in the case when
we restrict our attention to sums of independent and identically distributed
random variables. It has a slightly different form, because in the definition
of Sn we considered normalized sums (with a multiplication by n−1/2). Here
we need only the inequality formulated in (10) which helps to estimate the
probabilities appearing in the first sum at the right-hand side of (9). To
apply (10) in the estimation of these terms we have to show that if the
constants C4 and C5 are chosen sufficiently large in Theorem 1, then u(σ) >
2
√
nσ2 in cases (b) and (c).
In case (b) it is enough to show that

√
nu(σ) ≥ C4

log n

log( logn

nσ2 )
≥ 2nσ2,

and even C4
logn

log( logn

nσ2 )
≥ 20nσ2, or in an equivalent form C4

20
logn
nσ2 ≥ log( logn

nσ2 ).
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(Observe that logn
nσ2 ≥ 8, hence log( logn

nσ2 ) > 0 in case (b).) This statement

holds, since z = logn
nσ2 ≥ 8 in case (b), and C4

20
z ≥ log z if z ≥ 8, and C4 is

sufficiently large.
In case (c), clearly u(σ) ≥ C5√

n
nσ2 ≥ 20

√
nσ2 for sufficiently large constant

C5. These relations together with formula (10) imply that in cases (b) and
(c)

P
(

|Sn(fj)| ≥
v

2

)

≤ 2 exp

{

−K
√
nv log

v√
nσ2

}

if v ≥ u(σ) (11)

with an appropriate K > 0 for all 1 ≤ j ≤ m. (In formula (11) we have

exploited that log(
v
2√
nσ2 ) ≥ 1

2
log( v√

nσ2 ) since
v√
nσ2 ≥ 20, and as a consequence

log( v√
nσ2 ) ≥ 2 log 2.)

Let us define, with the help of the class of functions Dj the class of

functions D′
j = {h: h =

f−fj
2

, f ∈ Dj} for all 1 ≤ j ≤ m. It is not difficult
to see that sup

x∈X
|h(x)| ≤ 1,

∫

h2(x)µ( dx) ≤
∫

|h(x)|µ( dx) ≤ n−400 for all

h ∈ D′
j, and D′

j is a class of functions which has polynomially increasing
covering numbers with parameter D and exponent L, 1 ≤ j ≤ m. I claim
that

P

(

sup
f∈Dj

|Sn(f − fj)| ≥
v

2

)

= P

(

sup
h∈D′

j

|Sn(hj)| ≥
v

4

)

(12)

≤ C1e
−C2

√
nv log(v/4

√
nσ2

0)/4 if v ≥ u(σ)

with σ2
0 = n−400 for all 1 ≤ j ≤ n in both cases (b) and (c). We shall get

this estimate by applying Theorem 1 in the already proved case (a) with the
choice of parameter σ2

0 = n−400. To apply this result we have to check that
v
4
≥ u(σ)

4
≥ u(n−200) = C3√

n
(L+ logD

logn
) if the constants C4 and C5 are sufficiently

large. These statements hold, since in case (b) logn

log logn

nσ2

≥ log n
log(n399 log n)

≥ 1
400

,

hence u(σ) ≥ C4√
n
( L
400

+ logD) ≥ 4u(n−200) if C4 is chosen sufficiently large,

and an analogous but simpler argument supplies this relation in case (c) if
C5 is chosen sufficiently large.

It is not difficult to see that the right-hand side both of (11) and (12)
can be bounded from above by C1e

−C̄2

√
nv log(v/

√
nσ2) with some appropriate

constants C1 > 0 and C̄2 > 0. To see that the right-hand side of (12) can be
bounded in such a way it is enough to show that log( v

4
√
nσ2

0

) ≥ 1
2
log( v√

nσ2 ),
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i.e. vσ2 ≥ 16
√
nσ4

0. This inequality holds, since as we have seen v ≥ u(σ) ≥
20
√
nσ2, hence vσ2 ≥ 20

√
nσ4 ≥ 20

√
nσ4

0.
Hence relations (9), (11) and (12) together with the inequality m ≤

Dn400L imply that

P

(

sup
f∈F

|Sn(f)| ≥ v

)

≤ C1Dn400Le−C̄2

√
nv log(v/

√
nσ2) if v ≥ u(σ) (13)

in both cases (b) and (c). To complete the proof of Theorem 1 (with the
choice C2 =

C̄2

2
) it is enough to show that

e−
C̄2
2

√
nv log(v/

√
nσ2) ≤ e−

C̄2
2

√
nu(σ) log(u(σ)/

√
nσ2) ≤ D−1n−400L if v ≥ u(σ)

(14)
in cases (b) and (c) if the constants C4 and C5 are chosen sufficiently large.

It is enough to prove the second inequality in formula (14), since its proof
also implies that the expressions in the exponent of this formula have negative
value, and they are decreasing functions for v ≥ u(σ). The second inequality
in (14) clearly holds in case (c), since C̄2

2

√
nu(σ) ≥ 400L log n + logD, and

log u(σ)√
nσ2 ≥ 1 in this case. In case (b) relation (14) can be reduced to the

inequalities C̄2

√
nu(σ) log( u(σ)√

nσ2 ) ≥ 1600L log n, and C̄2

√
nu(σ) log(

√
nu(σ)
nσ2 ) ≥

4 logD. To prove the second inequality observe that in case (b)

C̄2

√
nu(σ) ≥ C4C̄2 logD ≥ 4 logD, and log

(√
nu(σ)

nσ2

)

≥ 1.

The second of these inequalities follows from the relation

√
nu(σ)

nσ2
≥ C4

logn
nσ2

log( logn
nσ2 )

≥ 3,

which holds because of the relation logn
nσ2 ≥ 8 in case (b).

The remaining inequality can be rewritten as C̄2

√
nu(σ)
nσ2 log(

√
nu(σ)
nσ2 ) ≥

800L log n
nσ2 . To prove it observe that because of the definition of the func-

tion u(σ) in case (b) we can write C̄2

√
nu(σ)
nσ2 ≥ 3200L log n

nσ2
1

log( logn

nσ2 )
. I also claim

that log(
√
nu(σ)
nσ2 ) ≥ 1

2
( logn
nσ2 ). By multiplying the last two inequalities we get

the desired inequality, and this completes the proof of Theorem 1.
To prove the above formulated inequality introduce the notation z = logn

nσ2

and û(σ) = 1√
n

logn

log( logn

nσ2 )
. By exploiting the definition of u(σ) in case (b) we
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can write with the help of this notation that log(
√
nu(σ)
nσ2 ) ≥ log(

√
nû(σ)
nσ2 ) =

log z − log log z ≥ 1
2
log z = 1

2
( logn
nσ2 ). In this calculation we have exploited

that in case (b) z ≥ 8, hence log z− log log z ≥ 1
2
log z. Theorem 1 is proved.

The extension of Theorem 1 is a slight generalization of Theorem 4.1 in [5],
and its proof is based on the same ideas. The original proof in [5] is made
by means of two results, formulated in Propositions 6.1 and 6.2 of that work.
Here I present a slightly improved version of Proposition 6.2 in Theorem 3.1,
which is, as I show, a simple consequence of Theorem 1. Then I formulate
Theorem 3.2 which is a (simplified) version of Proposition 6.1 in [5]. I show
that the Extension of Theorem 1 can be proved with the help of these results
by slightly modifying (and simplifying) the proof of Theorem 4.1 in [5]. In
Section 4 I shall discuss the role of Theorems 3.1 and 3.2 together with the
idea behind them in more detail.

First I formulate Theorem 3.1.

Theorem 3.1. Let us have a probability measure µ on a measurable space
(X,X ) together with a sequence of independent and µ distributed random
variables ξ1, . . . , ξn, n ≥ 2, and a countable class F of functions f = f(x) on
(X,X ) which has polynomially increasing covering numbers with some pa-
rameter D ≥ 1 and exponent L ≥ 1. Let this class of functions F also satisfy
the relations sup

x∈X
|f(x)| ≤ 1,

∫

f(x)µ( dx) = 0 and
∫

f 2(x)µ( dx) ≤ σ2 for all

f ∈ F with some 0 < σ ≤ 1 that satisfies the inequality nσ2 > L log n+logD.
Then there exists a threshold index A0 such that the normalized random sums
Sn(f), f ∈ F , introduced in Theorem 1 satisfy the inequality

P

(

sup
f∈F

|Sn(f)| ≥ An1/2σ2

)

≤ e−Anσ2

if A ≥ A0. (15)

Proof of Theorem 3.1. I show that the estimate (15) in Theorem 3.1 is a
weakened version of formula (2) of Theorem 1. First I show that the proba-
bility at the left-hand side of (15) can be estimated by means of Theorem 1
in case (c) with the choice v = An1/2σ2 if A ≥ A0 with a sufficiently large
threshold index A0 > 0. We have to check that nσ2 ≥ 1

8
log n, and v ≥ u(σ)

(with the function u(σ) defined in case (c) of Theorem 1) if A0 is chosen
sufficiently large. These inequalities hold, since under the conditions of The-
orem 3.1 nσ2 ≥ L log n ≥ 1

8
log n, and for v ≥ A0n

1/2σ2 we can write v ≥
A0√
n
nσ2 ≥ A0

2
√
n
nσ2+ A0

2
√
n
(L log n+logD) ≥ C5√

n
(nσ2+L log n+logD) = u(σ).
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Thus we can apply formula (2) with v = An1/2σ2 to estimate the left-hand
side of (15), and we get the upper bound

C1e
−C2

√
nv log(v/

√
nσ2) = C1e

−C2Anσ2 logA ≤ e−Anσ2

for A ≥ A0 if the (universal) constant A0 is chosen sufficiently large. Thus we
proved Theorem 3.1 which provides a slightly better estimate than Proposi-
tion 6.2 in [5].

In the proof of the Extension of Theorem 1 I shall also apply following
Theorem 3.2 which is a simple modified version of Proposition 6.1 in [5].

Theorem 3.2. Let us have a sequence of i.i.d. random variables ξ1, . . . , ξn,
n ≥ 2, on a measurable space (X,X ) with some distribution µ and a class of
functions F on the space (X,X ) that satisfies the inequality N (ε,F , L2(µ)) ≤
D̄ε−L with some numbers D̄ ≥ 1 and L ≥ 1 for all 0 < ε ≤ 1. Let us also
assume that this class of functions F also has the properties sup

x∈X
|f(x)| ≤ 1,

∫

f(x)µ( dx) = 0 and
∫

f 2(x)µ( dx) ≤ σ2 with a prescribed number 0 < σ ≤ 1

for all f ∈ F . Take the normalized sums Sn(f) =
1√
n

n
∑

l=1

f(ξl) for all f ∈ F ,

and let us fix a number Ā ≥ 1.
There exists a number M = M(Ā) > 0 such that with these parameters Ā

and M = M(Ā) ≥ 1 the following relations hold. For all numbers v > 0

such that nσ2 ≥
(

v
σ

)2 ≥ M(L log 2
σ
+ log D̄) define the number σ̄0 = σ̄0(v) =

1
8
√
n

v
Āσ

. Then for all numbers σ̄0 ≤ σ̄ ≤ σ a collection of functions Fσ̄ =

{f1, . . . , fm} ⊂ F with m ≤ D̄22Lσ̄−L elements can be chosen in such a way
that the union of the sets Dj = {f : f ∈ F ,

∫

|f − fj|2 dµ ≤ σ̄2}, 1 ≤ j ≤ m,

cover the set of functions F , i.e.
m
⋃

j=1

Dj = F , and the normalized random

sums Sn(f), f ∈ Fσ̄, n ≥ 2, satisfy the inequality

P

(

sup
f∈Fσ̄

|Sn(f)| ≥
v

Ā

)

≤ 4 exp

{

−α
( v

10Āσ

)2
}

(16)

with an appropriate (universal) constant α > 0 and with the previously chosen
parameter Ā. (In formula (16) we have assumed that the number v appearing
in it satisfies the condition nσ2 ≥ ( v

σ
)2 ≥ M(L log 2

σ
+ log D̄).)

Remark. Theorem 3.2 is an empty statement if the inequality nσ2 ≥ ( v
σ
)2 ≥

M(L log 2
σ
+log D̄) has no solution. This result can be considered as a conse-

quence of Proposition 6.1 in [5], although it contains some statements which
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are proved but not explicitly stated in [5]. In that work inequality (16) is
proved in the special case when σ̄ = 4kσ with some non-negative integer k,
and σ̄ ≥ σ̄0, and in that case the set Fσ̄ can be chosen with smaller cardi-
nality m ≤ D̄σ̄−L. It is not difficult to deduce Theorem 3.2 from this result.
Actually Theorem 3.2 contains the result one can prove with the help of the
classical chaining method under the conditions of the Extension of Theo-
rem 1. It is a classical method which works in ‘regular Gaussian’ or ‘almost
Gaussian’ models, see [5].

Proof of the Extension of Theorem 1. We shall prove the Extension of The-
orem 1 with the help of Theorems 3.1 and Theorem 3.2 with the following
choice of the parameters. We shall work in Theorem 3.2 with the param-
eters σ, D̄ = 2LD and L where σ, D and L agree with the corresponding
parameters in the Extension of Theorem 1, and we choose σ̄2 = 2v

Ā
√
n
, where

Ā = max(2, A0) with the parameter A0 appearing in Theorem 3.1. In The-
orem 3.1 the previously defined σ̄ plays the role of σ, and D̄ plays the role
of D. In Theorem 3.2 we are working with the same set of functions F as in
the Extension of Theorem 1 and in Theorem 3.1 with a subset of it. First we
show that under the conditions of the Extension of Theorem 1 the conditions
of Theorems 3.1 and 3.2 are satisfied with such a choice of the parameters.

Let us remark that it follows from the conditions of the Extension of Theo-
rem 1 that the inequality N (ε,F , L2(µ)) ≤ D̄ε−L with D̄ = 2LD holds, since
N (ε,F , L2(µ)) ≤ N ( ε

2
,F , L1(µ)) if F consists of functions whose absolute

values are bounded by 1. This relation is a consequence of the inequalities
∫

|f − g|2 dµ ≤ 2
∫

|f − g| dµ if sup |f(x)| ≤ 1 and sup |g(x)| ≤ 1. This
explains why we work with the parameters D̄ = 2l and L in Theorem 3.2. In
Theorem 3.1 we chose these parameters D̄ and L because we can guarantee
the existence of polynomially increasing covering number for a subset of F
only with such parameters.

In the application of Theorem 3.2 we have to check that nσ2 ≥
(

v
σ

)2 ≥
M(L log 2

σ
+ log D̄) under the conditions ū(σ) ≤ v ≤ √

nσ2 of the Extension
of Theorem 1. But this is a simple consequence of the definition of ū(σ) if the
constant C6 is chosen sufficiently large in it (in dependence of the previously
fixed number M = M(Ā)). Actually at this point we could replace the
number L3/4 by L1/2 in the definition of ū(σ).

We still have to show that σ̄0 ≤ σ̄ ≤ σ if the number v appearing in the
definition of σ̄ = σ̄(v) satisfies the conditions of the Extension of Theorem 1
with a sufficiently large constant C6 (condition in Theorem 3.2)), and nσ̄2 ≥
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L log n+ log(2LD). (condition in Theorem 3.1)).
The inequality σ̄0 ≤ σ̄ ≤ σ can be rewritten as v2

64
√
nĀσ2 = Ā

√
nσ̄2

0 ≤ 2v ≤
Ā
√
nσ2. Both of these inequalities hold if 2v ≤ Ā

√
nσ2, or in an equivalent

form ( v
σ
)2 ≤ Ā2

4
nσ2. This inequality holds, since ( v

σ
)2 ≤ nσ2 under the

conditions of the Extension of Theorem 1, and we chose a number Ā ≥ 2.
To prove the inequality nσ̄2 ≥ L log n + log(2LD) let us observe that

nσ̄2 ≥ nσ̄2
0 = 1

64
v2

Ā2σ2 ≥ M
64Ā2 (L log 2

σ
+ log(2LD)). This calculation implies

the desired inequality in the case σ ≤ n−1/3 if the constant M = M(Ā)
is chosen sufficiently large, since in this case log 2

σ
≥ 1

3
log n. In the case

n−1/3 ≤ σ ≤ 1 we exploit that in the Extension of Theorem 1 we restricted
our attention to the case when the number v satisfies the more restrictive
condition v ≥ ū(σ) = C6σ(L

3/4 log1/2 2
σ
+ (logD)1/2). In this case we can

write nσ̄2 = 2
√
nv

Ā
≥ 2

√
nū(σ̄)

Ā
≥ 2C6

√
nσL3/4 log1/2 2

σ

Ā
≥ L3/4n1/6 if the constant

C6 is sufficiently large, and nσ̄2 ≥ nσ̄2
0 = 1

64
v2

Ā2σ2 ≥ 1
64

ū(σ)2

Ā2σ2 ≥ C6L
3/2 log 2

σ
≥

C6L
3/2. The last two inequalities imply that in the case n−1/3σ ≤ 1 we have

nσ̄2 = (nσ̄2)2/3(nσ̄2)1/3 ≥ C
1/3
6 Ln1/9 ≥ 2L(log n+ log 2). On the other hand,

the former results imply that nσ̄2 ≥ 2 logD, and as a consequence the desired
inequality holds also in the case n−1/3 ≤ σ ≤ 1.

We shall prove the Extension of Theorem 1 with the help of Theorems 3.1
and 3.2 with the above chosen parameters. In the proof we define a se-
quence of functions Fσ̄ and some sets of functions Dj by exploiting some
conditions imposed in Theorem 3.2. We define a sequence of functions
Fσ̄ = {f1, . . . , fm} ⊂ F and sets Dj = {f : f ∈ F ,

∫

|f − fj|2 dµ ≤ σ̄2},
1 ≤ j ≤ m, with m ≤ D̄22Lσ̄−L elements such that

m
⋃

j=1

Dj = F .

Since we chose a number Ā ≥ 2 with the above notation we can write up
the inequality

P

(

sup
f∈F

|Sn(f)| ≥ v

)

≤ P

(

sup
f∈Fσ̄

|Sn(f)| ≥
v

Ā

)

+
m
∑

j=1

P

(

sup
f∈Dj

|Sn(f − fj)| ≥
v

2

)

if ū(σ) ≤ v ≤ √
nσ2, and the two terms at the right-hand side of this in-

equality can be estimated by means of Theorems 3.1 and 3.2.
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We can write

P

(

sup
f∈Fσ̄

|Sn(f)| ≥
v

Ā

)

≤ 4e−αv2/100Ā2σ2

by Theorem 3.2, and since v
2
= Ā

√
nσ̄2 and Ā ≥ A0 Theorem 3.1 implies

that
m
∑

j=1

P

(

sup
f∈Dj

|Sn(f − fj)| ≥
v

2

)

≤ me−nĀσ̄2

.

On the other hand,

me−nĀσ̄2 ≤ D22Lσ̄−Le−nĀσ̄2 ≤ e−nĀσ̄2/2 ≤ e−nĀσ̄2
0/2 = e−Āv2/64Āσ2 ≤ e−v2/64σ2

,

since
D22Lσ̄−Le−nĀσ̄2/2 ≤ D22Lσ̄−Le−nσ̄2 ≤ 1

by the inequality nσ̄2 ≥ L log 1
σ̄
+ log(D22L). The above inequalities imply

that

P

(

sup
f∈F

|Sn(f)| ≥ v

)

≤ 4e−αv2/100Ā2σ2

+ e−v2/64σ2

if ū(σ) ≤ v ≤ √
nσ2. Thus formula (3) (with a possibly different parameter

α > 0 as in the previous calculations) and the Extension of Theorem 1 is
proved.

I finish this paper with a discussion about its methods and results.

4. A discussion about the methods and results of this paper.

The problem of this paper, the estimation of the tail-distribution of the

supremum sup
f∈F

Sn(f) of the normalized sums Sn(f) =
1√
n

n
∑

k=1

f(ξk) for a se-

quence of i.i.d. random variables ξ1, . . . , ξn and a class of functions F with
some nice properties has a long history. Such a problem arises in a natural
way in the study of the uniform central limit theorem for a class of normalized
sums Sn(f), f ∈ F , with a nice class of functions F , see [3]. An important
part of such a study is to prove the ‘tightness’ of the class of functions Sn(f),
f ∈ F , by showing first that for a subclass F ′ ⊂ F such that E(f − g)2 ≤ δ
with a small number δ for any pairs f, g ∈ F ′ the supremum sup

f∈F ′

Sn(f − g)

with a fixed g ∈ F is small with probability almost 1. There are some results
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that give a bound on the tail-distribution of such a supremum if δ = δn, and
δn → 0 as n → ∞. But the estimates I know about in this direction do not
provide a sharp estimate if δn → 0 very fast. My goal in this paper was to
give a good estimate also in such cases, and to give a good bound on the tail
distribution of sup

f∈F ′

Sn(f − g) in the general case δ = δn.

Let us remark that for large indices n the random variables Sn(f) are
asymptotically Gaussian. Hence it is natural to study first the natural Gaus-
sian counterpart of the above problem to understand what kind of estimates
hold in this modified problem, what kind of methods are useful in their study,
and how they can be adapted to our original problem. The following prob-
lem can be considered as this natural Gaussian counterpart. Take a class
of (jointly) Gaussian random variables ηt, Eηt = 0, t ∈ T , with a (count-
able) parameter set T , and give a good estimate on the tail distribution of
sup
t∈T

ηt with the help of the (pseudo) metric ρ(s, t), ρ2(s, t) = E(ηs − ηt)
2,

s, t ∈ T . There is a good solution of this problem with the help of the so-
called chaining argument. This is worked out in detail in [12], and this book
contains the sharpest results in this direction. We get a good estimate if for
all ε > 0 we can find a set {t1, . . . , tM} ⊂ T with relatively few M = M(ε)
elements, whose ε-neighbourhood with respect to the metric ρ covers the
whole space T . The estimate depends on this function M(ε). In particular,
if M(ε) ≤ Dε−L with some constants D > 1 and L > 1, and Eη2t ≤ σ2 ≤ 1

for all t ∈ T and ε > 0, then the estimate P

(

sup
t∈T

ηt > u

)

≤ De−(u−u(σ))2/2σ2

holds for all u ≥ u(σ) with u(σ) = CL1/2σ log1/2 2
σ
, where C > 0 is a uni-

versal constant. The book [12] contains a sharper result which provides a
good estimate in the general case. It is also mentioned in this book that a
similar estimate holds for an arbitrary set of random variables ζt, t ∈ T , if
they satisfy the ‘Gaussian type estimate’ P (|ζt − ζs| > u) ≤ Ce−αu2/ρ2(s,t)

with some fixed numbers C > 0 and α > 0 for all s, t ∈ T and u > 0. The
question arises whether such an estimate holds also in our original problem
about the supremum of normalized random sums Sn(f), f ∈ F , if they are
defined with the help of a nice class of functions F .

Let us assume that sup |f(x)| ≤ 1, and ESn(f) = 0 for all f ∈ F in
the class of functions F we consider. Then we may try to apply the above
indicated result with T = F and an appropriate metric ρ on it. Observe
that E[Sn(f) − Sn(g)]

2 =
∫

(f − g)2 dµ for all f, g ∈ F , where µ denotes
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the distribution of the random variables ξj. This means that we have to
work with the metric ρ(f, g) defined as ρ2(f, g) =

∫

(f − g)2 dµ in this case.
The question arises whether the above formulated ‘Gaussian type estimate’
which provides a good estimate on the tail distribution of the supremum we
are interested in holds in this case.

I discussed this problem in detail in the third chapter of my book [5].
The main point is that there are some classical results, like the Bernstein or
Bennett inequality that give good estimates for the tail distribution of sums
of bounded i.i.d. random variables, but they provide so good ‘Gaussian type
estimates’ that we need only at not too high levels u. There are also examples
that show that in certain cases we cannot get good ‘Gaussian type estimates’
at high levels u. This has the consequence that the chaining argument worked
out to handle the Gaussian counterpart of our problem is not good enough
to solve our problem. It enables us to reduce it to the special case, when the
distance ρ(f, g) is very small for all f, g ∈ F , but it does not give more help.
(How small this distance must be that depends on the sample size n.) The
study of this reduced problem demands new ideas. Moreover, to get good
estimates we have to introduce some new conditions about the behaviour
of the class F , it is not enough to have good control on the metric ρ(f, g),
f, g ∈ F , introduced above.

There are two main approaches to introduce appropriate new conditions
which enable us to prove good estimates in the problem we are interested
in. The first one can be found in the book of Talagrand [12]. He introduced
a condition by which for all ε > 0 the class of functions F must have an ε-
dense subset with relatively few elements not only with respect to the metric
ρ but also with respect to the supremum norm. Theorems 1.2.7 and 2.7.2
in [12] are results in this spirit. Talagrand also proved some interesting and
deep consequences of these results in Chapter 3 of [12]. There are however
important problems where such an approach does not work. Such problems
are e.g. the behaviour of the models considered in the Example of Section 2
or the problems considered in Section 2 of [6]. More generally such a problem
appears if F consists of the indicator functions χA of different sets or if we
consider their normalized versions fA(x) = χA(x) − µ(A). (We may apply
such a normalization to get functions whose integral with respect to the
measure µ equals zero.) In such cases all functions of F are far from each
other in the supremum norm, and as a consequence of it F has no dense
subset with respect to the supremum norm with relatively few elements. To
overcome this difficulty a different additional condition was introduced. This
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new condition demands that F must be a class of functions with polynomially
increasing covering numbers. This approach proved to be useful in several
interesting cases when the method of [12] does not work. There are some
works, see e.g. [3], [10], [14] where it is shown that there are many classes
of functions F with polynomially increasing covering numbers. The proof
about their existence is closely related to the theory of Vapnik–Červonenkis
classes.

The original technique for proving good estimates on the tail distribution
of the supremum of the random sums Sn(f), f ∈ F , under the condition that
the class of functions F has polynomially increasing covering numbers was
the application of the so-called symmetrization argument. This technique is
applied in several works, see e.g. [3], [5], [7], [9], [10], [13], and it works in
several models when the method of [12] is not applicable. I do not describe
this method, I only remark that I compared it with that of Talagrand in
Chapter 18 of [5] at pp. 235–237. Here I also made a comparison between
the applicability of these two methods.

Nevertheless, the symmetrization argument does not provide a sharp es-
timate if the bound σ2 ≥ sup

f∈F
Ef 2(ξj) is too small. The main goal of the

present paper to give a sharp estimate also in this case. To understand our
results better let us compare them with the results of some previous papers in
the case when the class of functions F contains functions bounded by 1, and
it has polynomially increasing covering numbers with bounded exponent L
and parameter D, i.e. these numbers have a bound not depending on σ.
Paper [14] gives the following upper bound for the value of the concentration
point of the distribution of sup

f∈F
Sn(f) in this case.

E∗ sup
f∈F

Sn(f) ≤ CJ(σ,F , L2)

(

1 +
J(σ,F , L2)

σ2
√
n

)

with a universal coefficient C, where

J(σ,F , L2) = sup
ν

∫ σ

0

√

1 + logN (ε,F , L2(ν)) dε

with the uniform covering number sup
ν

N (·, ·, ·) with respect to L2-norms.

(Here the notation E∗ is applied, since the choice of a non-countable class
of functions F is also allowed, and in this case the outer expectation E∗ is
applied.)
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Some calculation shows that in this case J(σ,F , L2) ≍ σ
√

log 2
σ
, hence

we get the upper bound const.
(

σ
√

log 2
σ
+

log 2
σ√
n

)

for the value of the con-

centration point in this case. This yields the upper bound Cσ
√

log 2
σ

if

σ2 ≥ const. logn
n

and C
log 2

σ√
n

if σ2 ≤ const. logn
n

for the value of the concen-

tration point. This result is sharp in the first case, (see Theorem 1 and its
Extension together with the Example in Section 2). But it is not sharp in
the second case. Moreover, it can be improved in the following trivial way.
If σ2 ≤ σ2

0 = log n
n

, then we can apply the above estimate for σ2
0 instead of

σ2, and this yields the upper bound logn√
n

instead of the estimate
log 2

σ√
n

for the

value of the concentration point. This means that the result of [14] could not
yield a better estimate if σ2 ≪ σ2

0 than in the case σ2 = σ2
0.

Massart’s paper [7] contains another result about the tail distribution
of the supremum of Sn(f), f ∈ F . The proof in that paper is based on a
modified version of the symmetrization argument. The result of [7] is rather
complicated, but one can get an estimate for the value of the concentration
point with its help. Here I shall consider the version of this result presented
in Theorem 2.14.16 of the book [13]. We can get the bound for the value
of the concentration point by calculating when the bound given for the tail
distribution of the supremum given in this result becomes smaller than 1.

Some calculation that I would omit would provide the right bound Cσ
√

log 2
σ

if σ2 ≥ const.n−1/4 and a much weaker bound Cn−1/4 log1/2 2
σ
for the value

of the concentration point in the other case. It is also worth considering the
estimate that Alexander’s method worked out in [1] supplies. It is based
on the chaining argument, and it yields a good estimate, similarly to [14] if
σ2 ≥ σ2

0 = logn
n

, and a weak one in the other case.
Actually the proof of the result in [5] corresponding to the Extension

of the Theorem 1 is based on Alexander’s idea in [1], and it yields a good
estimate only for σ ≥ σ0. The starting point in the present investigation
was an attempt to find a refinement of this method which supplies a good
estimate for the tail distribution of the supremum we are investigating if the
number σ2 satisfying the inequality σ2 ≥ sup

f∈F
Ef 2(ξj) can be chosen in an

arbitrary way. The original result was proved by means of an appropriate
inductive hypothesis. To get an improved version of it we have to find a good
reformulation of this inductive hypothesis that takes into account that in the
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case of small parameter σ2 we have a better estimate. This lead me to the
investigation of the problem in paper [6]. Then it turned out that a direct
application of the results in [6] enables us to work out a different method
that yields a more general result with less effort. It may be interesting to
compare this method with some standard techniques applied in the study of
other probabilistic problems.

In the proof of limit theorems for sums of independent random variables
or in the study of some similar problems a standard method is the application
of the so-called truncation. The truncated random terms show nice ‘regular’
behaviour, since they are bounded. This enables us to study them with the
help of classical methods. The contributions omitted by truncation contain
the ‘irregular’ part of the random variables, and they cannot be handled by
standard methods. But in nice cases it can be proved that they are negligible,
hence we can prove the desired results.

Here we applied a similar approach to prove our estimates with the help
of the result in [6]. We took some appropriately chosen functions fj ∈ F ,
considered their small neighbourhoods with respect to the metric ρ defined
in this section, and estimated the increase of Sn(f) in these neighbourhoods.
More explicitly, we chose some appropriate functions fj ∈ F and an ap-
propriate small number σ > 0, and we estimated the tail distribution of

sup
f∈F , ρ(f,fj)≤σ

Sn(f − fj). The tail distribution of these terms could be well

estimated by means of the result in [6]. They played a role similar to that
part of random sums which were omitted at truncation in some analogous
problems because of their large value. These terms are small by the results
of [6]. On the other hand, they enable us to restrict our attention to such
problems where we can make good estimations by means of some standard
methods, like the application of classical estimates on the tail distribution of
the single terms Sn(f) or the chaining argument. In the proof of Theorem 1
and its Extension actually such an approach was followed.

If we look carefully how we could work with the help of the result of [6]
and how the symmetrization argument was applied in other works, then we
can see that they played a similar role. It seems to me that the result of [6]
can replace the symmetrization argument in most applications, moreover it
supplies a more powerful tool.
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